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Abstract In this paper we describe a semantic mapping system for autonomous off-
road driving with an All-Terrain Vehicle (ATVs). The system’s goal is to provide a
richer representation of the environment than a purely geometric map, allowing it to
distinguish, e.g. tall grass from obstacles. The system builds a 2.5D grid map encod-
ing both geometric (terrain height) and semantic information (navigation-relevant
classes such as trail, grass, etc.). The geometric and semantic information are es-
timated online and in real-time from LiDAR and image sensor data, respectively.
Using this semantic map, motion planners can create semantically aware trajecto-
ries. To achieve robust and efficient semantic segmentation, we design a custom
Convolutional Neural Network (CNN) and train it with a novel dataset of labelled
off-road imagery built for this purpose. We evaluate our semantic segmentation of-
fline, showing comparable performance to the state of the art with slighly lower
latency. We also show closed-loop field results with an autonomous ATV driving
over challenging off-road terrain by using the semantic map in conjunction with a
simple path planner. Our models and labelled dataset will be publicly available at
http://dimatura.net/offroad.

1 Introduction

The last few years have seen enormous progress in the 3D sensing capabilities of
autonomous vehicles. Mature and robust LiDAR and INS technologies give self-
driving vehicles an accurate and real-time sense of the geometric structure around
them, immensely simplifying navigation-related tasks.
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Fig. 1 Our Autonomous All-Terrain Vehicle (ATV). The two main sensors, a spinning 3D LiDAR
and a stereo camera, can be seen on the vehicle roof.

However, we have observed that relying primarily on geometric information
leads to disappointing results for autonomous navigation in off-road environments.
The main reason is that geometric structure, by itself, fails to provide many impor-
tant distinctions for wheeled All-Terrain Vehicles (ATVs) such as ours, shown in 1.
For example, tall grass may be perceived as an obstacle, but our ATV may traverse
it if desired. Similarly, leaf litter may appear as rocky terrain, or puddles may ap-
pear as either holes or smooth surfaces. All of these may lead to suboptimal, even
dangerous, decisions in path planning. Similar observations have been made many
times before in the context of off-road robotics, e.g., [12, 17, 24, 11].

In this paper, we describe a system to counter this problem by building a se-
mantic map, a representation of the vehicle’s surroundings encoding both geometric
(e.g. height, roughness) and semantic information (navigation-relevant classes such
as trail, grass, obstacle, etc.). The map is stored as a 2.5D grid centered on the ve-
hicle frame and is continuously updated as new sensor data is acquired. Using this
representation, a motion planner can create semantically-aware trajectories.

Our key contribution is a simple yet effective system coupling a custom Convo-
lutional Neural Network architecture, based on Fully Convolutional Networks [16],
and a 2.5D vehicle-centered semantic grid map that fuses the geometric and se-
mantic measurements as the vehicle moves and acquires more data. We show the
effectiveness of the semantic segmentation CNN in offline benchmarks. By using a
simple planner with the semantic map, we show qualitative examples of our system
being successfully used to navigate challenging off-road terrain.

As additional contributions, the labeled dataset of off-road imagery used to train
our network, as well as our semantic segmentation code, will be made publicly
available. See the project website, http://dimatura.net/offroad for links.
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2 Related Work

Our system is heavily inspired by the rich literature on semantic approaches to off-
road navigation tasks, going as far back as 1990 [7].

A decade later, various practical systems showed impressive results with this
paradigm, usually with a combination of LiDAR and images [12, 17, 24, 27, 28].

The LAGR program [11] featured various highly relevant systems such as [20,
13, 26, 2], which performed semantic classification with hand-engineered vision
pipelines. An exception is [9], featuring an early deep neural network system for
semantic segmentation.

In more recent work, [23] demonstrate autonomous navigation featuring a lightweight
semantic segmentation system. Unlike our system, they use traditional visual feature
engineering, leading to noisy pixel-wise predictions that they smooth with a novel
regularization method. In contrast, our architecture, based on Fully Convolutional
Networks (FCNs) [16], incorporates spatial context that naturally smoothes the out-
put. Another relevant work is [25], which uses an encoder-decoder network archi-
tecture that is similar to FCNs. They explore modalities beyond RGB and achieve
impressive segmentation results. However, they do not build a metric map or demon-
strate closed-loop navigation.

3 Approach

Fig. 2 Overview of our semantic mapping system.

Overview. This system architecture is outlined in Fig. 2. There are two primary
sensor streams, RGB imagery and LiDAR point cloud data. The RGB images are fed
into the semantic segmentation module, which uses a CNN to generate a pixel-wise
labeling. Concurrently, the LiDAR point clouds are used to update a 2.5D grid map
in the semantic mapping module. The semantic mapping module also receives the
pixel-wise prediction images from the semantic segmentation module and projects
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them onto the 2.5D grid map, which fuses the semantic predictions over time. The
result is a vehicle-centered 2.5D grid map encoding continuously updated estimates
of relevant geometric and semantic information for off-road navigation. Finally, the
map is used for semantically-aware path planning. For our initial testing, we used
a simple receding horizon path planner that assigns a traversal cost to each seman-
tic class and continuously chooses a path to minimize the cost. The whole system
runs at 10 Hz, a rate dictated by the speed at which the semantic mapping module
processes images.

Hardware Platform. Our vehicle is shown in Fig. 1. It is a commercial All-Terrain
Vehicle modified and instrumented for experiments in autonomous off-road driving.
The sensor suite includes an INS/GPS system, a 64-line Velodyne LiDAR and an
RGB stereo camera with a 21 cm baseline manufactured by Carnegie Robotics. Note
that the system in this paper does not currently use the stereo depth information. All
computation is performed onboard with two COTS laptops, connected through high-
speed ethernet. The laptop for semantic mapping includes an NVIDIA GT980M
GPU, used to achieve real-time execution of the CNN classifier.

Software Platform. All computers run Ubuntu Linux. The different system mod-
ules run concurrently as ROS nodes and communicate through ROS messages. The
nodes are implemented in C++ and Python, using CUDA (generated via the Theano
library [3]) to make effective use of the GPU.

3.1 Semantic Segmentation

The goal of 2D semantic segmentation is to assign one of K predefined classes to
each pixel in an image. Like many tasks in computer vision, the state of the art
for this task has been recently revolutionized by Deep Learning, and in particular
Convolutional Neural Networks.

For this task, the most successful neural networks architectures are Fully Convo-
lutional Network (FCNs) [16]. The key idea in these networks is to take advantage
of convolutional structure to label all the pixels simultaneously with a very similar
network to more traditional CNNs. Due to pooling, this results in low-resolution
outputs; to reverse this, so-called “deconvolution” layers are added to upsample the
output. In order to preserve high-frequency detail, skip layers connecting early lay-
ers to upsampled feature maps are added. Encoder-Decoder architectures [19, 1], of
which UpNet [25] is an example, are similar but omit skip layers.

At the start of the project, we found state of the art architectures to be relatively
slow, as they were optimized for accuracy over speed. Thus we implemented and
trained our own architectures, using the Theano [3] and Lasagne [6] libraries. We
have found various possible architectures to show very similar accuracy for our off-
road semantic segmentations tasks, differing mostly in time cost, which in turn is
largely driven by details of the architecture and input/output resolution. We believe
this is due to the relatively small datasets used.
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We use two architectures. The first, cnns-fcn, is based on our “convolution-
alization” of VGG-CNNs from [4], and has 227× 227 input size with 109× 109
output size. The second, dark-fcn, is based on our convolutionalization of the
Darknet architecture [21], which in turn is similar but more efficient than VGG16
[22]. For dark-fcn both the input and output are 300×300, in order to facilitate
comparison with UpNet. Despite the higher resolution dark-fcn is faster than
cnns-fcn: 21 ms on a GT980M, compared to 37 ms. The authors of UpNet [25]
describe a 50 ms with Caffe on a GTX Titan X, which in our experience has similar
speeds to the GT980M. This leads us to believe our model should be faster or at
least comparable. Fig. 3 shows both of our architectures. Code and trained models
will also be made available.

Fig. 3 Our two network architectures. “conv” denotes a convolutional layer; “pool”, a pooling
layer; layers ending in “nin” are 1× 1 convolutional layers; “fuse” is an elementwise sum layer;
“up” is an upsampling deconvolution layer; “norm” is a local response normalization layer. The
input is assumed to be the layer above, unless otherwise specified. For convolutional layers, “size”
is the kernel size; for pooling layers, it is the pooling receptive field. Note that for dark-fcn we
split the table due to space constraints.

3.2 Semantic Mapping

The output of the semantic mapping step is in 2D image space, but it is far more
natural for vehicles to plan in a 3D, metric space. In our case, we adopt a 2.5D grid
with each grid cell containing estimated height, i.e. a height map. This suffices for
many environments, but would potentially have issues with overhanging trees or
tunnels.

To keep an up-to-date height map of the vehicle’s surroundings, we use a
scrolling grid data structure, which has been reinvented multiple times in the lit-
erature. This structure is a generalization of ring-buffers to two dimensions, and its
main feature is that it can be shifted (translated) without copying its data, and instead
updating the variables indicating its limits. This is a speed optimization; logically,
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the grid behaves like a finite 2D array centered around the vehicle, with each grid
cell containing various properties about the terrain. In our paper the grid cells are
0.25m× 0.25m each, and the map has 400× 400 cells. Each grid cell maintains a
running estimate of the minimum and maximum height in that grid cell, computed
by using occupancy and free-space constraints derived from LiDAR rays, similar to
[8, 30]. For each point in the point cloud, we raytrace on our grid using Bresenham’s
algorithm in 3D; cells that are passed through, and above, are considered empty, and
cells where the beam stops, and below, are considered occupied.

The semantic map also integrates semantic measurements, as its name indicates.
To project the output of the 2D semantic segmentation into a height map represen-
tation, we follow a straightforward process depicted in Fig. 4.

Fig. 4 Mapping the semantic segmentation to the 2.5D map.

Given that we know the relative position of the camera and the LiDAR, and the
camera intrinsics, we can project the 2D semantic predictions onto the 2.5D grid
cells using simple geometry. However, for added robustness, we fuse measurements
over time. To this end we adopt a scheme inspired by the sequential filtering process
of occupancy maps [18], but generalized to K classes.

For this, we use the probabilistic (softmax) pixel-wise output of the classifier. We
maintain a running sum of the log odds of the K classes projected to each grid cell.
While this soft multiclass representation could be used directly, for simplicity when
interfacing with other systems, we use the argmax of the K classes as our current
best estimate of the semantic class for each grid cell. Note that this representation
assumes a single class per cell, which may be a limitation in certain environments.

An example cumulative output of the semantic map in a live field run is shown
in Fig. 5.
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Fig. 5 Example output of semantic map in a field run.

3.3 Path Planning

Fig. 6 Path Planning. a) Library of candidate paths, overlaid on top of the semantic map. Red
indicates feasible paths. b) Illustration of how we account for vehicle width. For each trajectory,
we compute the cost (or reward) over seven shifted versions of the trajectory, covering the vehicle
footprint. c) An example of a chosen trajectory, chosen according to the traversability score of the
semantic classes it covers.

In order to demonstrate autonomous operation, we implement an extremely sim-
ple receding horizon path planner. The planner has a library of 30 trajectories cor-
responding to yaw rates of −15◦/s to 15◦/s, discretized at 1◦/s, and at constant
velocity of 9 kmh−1; see Fig. 6a).

Each time the map is updated, which happens at 10 Hz, a trajectory is chosen
from the library. The choice of trajectory maximizes a reward function derived from
the semantic map as follows. Cells labeled as “smooth” or “rough” trail have a
reward of 1, and cells labeled as “grass” have a reward of 0.1. All other classes
have zero reward. The total reward of a trajectory is the sum of rewards over a 20 m
trajectory length, originating from the vehicle. To account for vehicle width, we
slightly modify this calculation, as shown in Figure 6b).

The advantage of this planner is that in its extreme simplicity, its performance
depends largely on the output of our semantic mapping, with no interference from
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other factors that will be a present in a more complex, multi-layered system. How-
ever, our system was also used as an additional input to a more deliberative pro-
prietary planner, for which the main representation was a geometric map built with
LiDAR. In this planner, our semantic predictions were used primarily to avoid treat-
ing grass on and near trails as obstacles, enabling operation on narrow trails.

4 Experiments

Overview. We evaluate our system in two ways. First, we run offline benchmarks
of the semantic segmentation module in two datasets. Second, we demonstrate the
whole system operating autonomously live field experiments.

4.1 Offline Benchmarks

In order to evaluate our semantic segmentation module, we use two datasets, the
DeepScene dataset from Valada et al. [25] and our own dataset, the Yamaha-CMU
Off-Road Dataset.

DeepScene Dataset. This dataset consists of 233 training images and 139 valida-
tion images of off-road imagery densely labeled with six semantic categories: void,
road, grass, vegetation, tree, sky, and obstacle. While this dataset shows some in-
teresting variety in appearance due to the time of day, it is fairly small and seems
to lack diversity in terms of weather and location. A key feature of this dataset is
various modalities (depth, NIR), but we do not currently make use of them.

Yamaha-CMU Off-Road Dataset. In order to train and evaluate our method we
have collected our own dataset, which we call Yamaha-CMU-Off-Road, or YCOR.
It consists of 1076 images collected in four different locations in Western Penn-
sylvania and Ohio (8), spanning three different seasons (Fig. 7). The dataset was
labeled using a polygon-based interface with eight classes: sky, rough trail, smooth
trail, traversable grass, high vegetation, non-traversable low vegetation, obstacle.
The polygon labels were post-processed using a Dense CRF [15] to densify the la-
bels; the output of the CRF was manually inspected, and in some cases corrected, to
ensure no wrong labels were created.

We believe our dataset is more diverse and challenging than DeepScene. In Fig. 8,
we show the mean RGB image and pixel-wise label mode of each dataset. The Deep-
Scene dataset shows a left-right bias and more predictable structure than ours; if we
used the pixel-wise mode as a baseline classifier, we would obtain 0.30 pixel-wise
error-rate in DeepScene, but 0.51 in ours. However, we acknowledge that compared
to recent efforts, both datasets are relatively small; cf. CityScapes [5], with 25000
labeled images.
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Fig. 7 Montage of frames from our dataset collection.

Fig. 8 First two columns: A comparison of dataset statistics. We show the mean RGB frame and
the pixel-wise mode for the labeled frames in the training sets of each dataset used. Last column:
a map with locations where YCOR was collected.

Our current split has 931 training images, and 145 validation images. This split
was generated randomly, ensuring there was no overlap in data collection session
between images in the training and validation split. However, there is overlap in
locations used. We will provide location and time of acquisition metadata to enable
further evaluation regarding generalization across these factors.

Quantitative Results. We evaluated our models on the two datasets. In each case,
we train our models from scratch on the predefined training set until convergence
with SGD, dividing by the initial learning rate (0.0001) by a factor of 10 three times.
We use a standard pixel-wise cross-entropy loss with a small L2 regularization factor
(0.0005). Training takes around two days on a GT980Ti GPU. We use crop, rotation
and color augmentations at training time, and none at test time. We use per-class
intersection over union (IoU) as the evaluation metric, the most common metric for
semantic segmentation.

Table 1 shows results for DeepScene and Table 2 shows results for YCOR. In
both, we include a variant of the dark-fcn model with 448× 448 resolution, in
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addition to the standard 300× 300. We report the numbers from their paper [25],
where we denote by frequency-weighted IoU (fw-IoU) what they denote as IoU,
and add mean IoU (mIoU), calculated by ourselves. As we can see, both our models
perform comparably, with dark-fcn having a slight advantage. In the DeepScene
dataset we can also compare the two models with the RGB UpNet. We see that
our models have a slight edge in fw-IoU, though they display dramatically worse
performance for obstacles, which severely skews the mIoU metric. We note that the
number of obstacle pixels in the dataset is three orders of magnitude less than for
the other classes, so the network tends to ignore it. A similar situation occurs with
puddles in YCOR. Nonetheless, it is an important class, and we are investigating
how to detect it more accurately. Finally, we see that increasing the input resolution
gives a slight boost in performance.

Table 1 Per-class, mean IoU and frequency-weighted IoU of UpNet (RGB) and our models in
DeepScene dataset. The first three rows use a 300 × 300 image size, as in UpNet; the last row uses
448×448.

road grass veg./tree sky obstacle mIoU fw-IoU

Upnet (RGB) [25] 85.03 86.78 90.90 90.39 45.31 79.68 85.30
cnns-fcn 85.95 85.34 87.38 90.53 1.84 58.51 87.47
dark-fcn 88.03 86.65 89.21 93.17 5.03 60.35 89.41

dark-fcn-448 88.80 87.41 89.46 93.35 4.61 60.61 89.85

Table 2 Per-class, mean IoU, and frequency-weighed IoU of our models in the YCOR dataset.

smooth grass rough puddle obstacle low veg. high veg. sky mIoU fw-IoU

cnns-fcn 46.70 64.03 38.29 0.0 32.74 24.32 79.15 88.01 46.66 61.31
dark-fcn 46.24 71.25 41.35 0.0 29.74 28.17 80.15 91.45 48.54 63.62

dark-fcn-448 52.46 72.11 39.61 0.0 35.56 24.61 82.51 92.69 49.82 65.18

Qualitative Results. We show some qualitative labelings of the cnns-fcn archi-
tecture for each dataset in Fig. 9. As can be seen, the results are generally accurate.
For the YCOR, most of the confusions come from smooth vs. rough trail, a distinc-
tion that is hard for humans to make consistently.

4.2 Field Experiments

We performed various self-driving experiments in March and July 2017, in various
locations around our testing site near Pittsburgh, PA. The terrain traversed including
steep slopes, rocky and muddy terrain, puddles, and vegetation of various heights
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Fig. 9 Montage of predictions from cnns-fcn in the YCOR dataset (top four rows) and Deep-
Scene (bottom four rows). In each case, we show three images: input, ground truth labels, and
predicted labels.

surrounding and covering the trails. Despite the simplicity of our planner, the ve-
hicle managed to successfully traverse various trails that were too challenging for
a previous LiDAR-only system. These include locations with puddles, grass in the
middle of the trail, and narrow trails. Video is available in the project website. Fig.
10 shows the vehicle in autonomous operation.

On the other hand, we observed some limitations of our current system. Many
of the limitations were due to the simplicity of the receding horizon planner, which
often swerved from side-to-side in wider trails.

Some of the failures were also due to our semantic classification system. For
example, it sometimes failed to detect sparse grass alongside the trail, resulting in
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Fig. 10 Action shots of autonomous off-road driving in our testing site. In the first two rows, the
left-hand side shows screenshots of the sensor data and map as seen from the vehicle. The last
row shows aerial action shots with the right-hand showing the semantic map. Videos will be made
available on the project page.

the vehicle veering off-trail. In one occasion, it also confused a large non-traversable
bush with traversable grass, forcing us to manually intervene.

While we maintained a nominal speed of 9 kmh−1, the velocity in practice varied
by a kilometers per hour; when traveling at more than 12 kmh−1, we occasionally
observed the map would not update in time to make correct planning decisions,
again resulting in failures to react appropriately.

More extensive testing was performed with the proprietary deliberative planner.
In trials traversing more than 100 km, we observed far more stable operation.

Timing. We run all computation onboard the vehicle using an i7 laptop with a
6GB GT980M GPU. The bottleneck of the system is in the raytracing operation
of semantic mapping, with semantic segmentation taking approximately 35 ms per
image and the label projection taking around 60 ms per image. These steps occur
sequentially, leading to the roughly 10Hz rate operation of the system. This is suffi-
cient for medium-speed operation, but there is ample space to optimize performance
futher to support faster driving and/or more limited computing platforms.
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5 Conclusions

We have introduced an efficient and robust semantic mapping system for off-road
navigation featuring a state-of-the-art CNN classifier. To train the CNN, we have
collected and labelled a new dataset of off-road imagery. We have evaluated it in of-
fline benchmarks with results comparable to the state of the art with lower latencies.
We have also demonstrated closed-loop operation in challenging off-road terrain.

In future work, we are interested in incorporating recent advances from the state
of the art in semantic segmentation, such as Dilation layers [29], pyramid spatial
pooling [10]. We are also evaluating the contribution of multiple input modalities,
including an approach jointly using LiDAR and imagery for segmentation [14].

Having verified firsthand the difficulty of accurately labelling large amounts of
data, in future work we are interested in alternatives to manual labelling, such as
self-supervision and inverse reinforcement learning.
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