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Abstract— The last decade has seen a massive growth in
applications for Micro-Aerial Vehicles (MAVs), due in large
part to their versatility for data gathering with cameras,
LiDAR and various other sensors. Their ability to quickly
go from assessing large spaces from a high vantage points
to flying in close to capture high-resolution data makes them
invaluable for applications where we are interested in a specific
target with an a priori unknown location, e.g. survivors in
disaster response scenarios, vehicles in surveillance, animals
in wildlife monitoring, etc., a task we will refer to scouting.
Our ultimate goal is to enable MAVs to perform autonomous
scouting. In this paper, we describe a semantic mapping system
designed to support this goal. The system maintains a 2.5D map
describing its belief about the location of semantic classes of
interest, using forward-looking cameras and state estimation.
The map is continuously updated on the fly, using only onboard
processing. The system couples a deep learning 2D semantic
segmentation algorithm with a novel mapping method to project
and aggregate the 2D semantic measurements into a global 2.5D
grid map. We train and evaluate our segmentation method on
a novel dataset of cars labelled in oblique aerial imagery. We
also study the performance of the mapping system in isolation.
Finally, we show the integrated system performing a fully
autonomous car scouting mission in the field.

I. INTRODUCTION

Micro-Aerial Vehicles (MAVs) can quickly and inexpen-
sively gather information with cameras, LiDAR and various
other sensors, due to their agility. This makes them invaluable
for applications such as search and rescue, infrastructure
inspection, surveillance, crop and wildlife monitoring, etc.

A common trend in these applications is that not all
possible locations are of equal value; we are usually more
interested in gathering information about specific targets,
such as survivors, vehicles, animals, etc. Often, we do not
know in advance the location of these targets, making it
necessary to locate them before more detailed inspection.
For example, in a disaster scenario, we might be interested
in searching for survivors and then approach them to capture
high-resolution images. Equipped with cameras, UAVs are
able to switch from viewing large spaces at a distance to
flying in closely to obtain more accurate information. This
capability of gaining information at different scales makes
UAVs excellent for the aforementioned applications. We will
refer to the overall task of searching and gathering data for
a semantic class of interest as scouting (fig. 1). Our goal
is to create a system to enable MAVs to perform effective
general-purpose autonomous scouting.
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Towards this goal, we study the more concrete scenario
depicted in fig. 7. In this scenario, we wish to find any
cars within a predefined region and capture high-resolution
imagery (e.g., for 3D reconstruction). The location, number,
and appearance of cars, if any, is not known a priori. We have
a limited power budget, equivalent to around 10 minutes of
flight time.

Fig. 1. Overview: 1) The vehicle is tasked with mapping a semantic class
(here, car) with unknown prior location(s). 2) Using the system described in
this paper, the vehicle uses visual and positional information to create a 2.5D
semantic map on the fly. 3) Using the map, the vehicle flies towards objects
of the class of interest (here, car) and acquires high-quality imagery, useful
for tasks such as 3D reconstruction. Here we show a model reconstructed
from data captured with autonomous scouting.

In support of this goal, this paper proposes a novel
semantic mapping system to estimate the presence and metric
location of the semantic classes of interest (e.g. cars) in
its surroundings, so a separate planning system (beyond the
scope of this paper) can create information-gathering plans.
The map is continuously updated on-the-fly from forward-
looking camera imagery and global state estimation, using
only on-board computing.

The choice to use a forward-facing (in fact, tilted down-
wards a 15◦) is worth noting. We use this arrangement,
as opposed to a downward-facing camera, in order to be
able to perceive longer ranges quickly without needing to
fly long distances or extremely high altitudes. Unfortunately,
this also makes recognition and reconstruction more difficult.
Naturally, the choice is not mutually exclusive, and ideally,
we would have both.

There are several challenges in the design of such a
system. First, the recognition of semantic categories from



visual data is highly challenging task. In this case, the
difficulty is compounded by the fact that in MAVs with
forward-facing cameras, objects will have highly variable
appearance as they are captured from different heights and
angles. Second, it is non-trivial to reconstruct 3D metric
maps from monocular imagery, especially for distant objects
and with arbitrary camera motion patterns. Finally, to be
useful the system must operate in online and in real time,
using the relatively constrained on-board computing on our
vehicle.

In order to face these challenges, we make the following
contributions:
• We design a custom Deep Learning architecture for

2D semantic segmentation that achieves a good accu-
racy/speed trade-off for our application. Our starting
point are recent convolutional architectures [1], [2], but
we empirically make various modifications to optimize
for our scenario. In order to train this network, we
assembled and labelled a new dataset consisting of
oblique aerial imagery gathered from publicly available
videos, as well as our own field data.

• We propose a new 2.5D mapping system to efficiently
estimate the location of the semantic classes found by
the semantic segmentation system. Instead of solving
the full 3D reconstruction problem, we assume we
have access to a Digital Elevation Map (DEM) of the
region, and we project the 2D measurements on this
map, while exploiting for available semantic knowl-
edge. DEMs are freely available for many places in
the world, including most of the United States. The
mapper aggregate measurements over time, making use
of knowledge regarding typical heights of objects to
improve its accuracy.

• We evaluate each part of our system, and show the
integrated system autonomously completing a closed-
loop data gathering mission in the field. As part of this
evaluation, we have assembled a dataset of labeled aerial
imagery.

We will make code and datasets for the semantic seg-
mentation system available at http://dimatura.net/
mavs.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation of RGB imagery is a highly active
topic in computer vision. As for most classification tasks in
computer vision, the state of the art has been considerably ad-
vanced by Deep Learning. In particular, Fully Convolutional
Networks [1] achieved high performance and efficiency by
adapting networks for single-label prediction to perform
dense pixelwise prediction with a single forward pass. Simi-
lar models [3]–[5] were proposed at approximately the same
time. Since then, most work has focused on optimizing
accuracy (e.g. [6], [7]), but relatively little attention has been
paid to optimizing computational cost, and in particular,
per-image latency (as opposed to memory usage). Recent
exceptions include ENet [8] and FastNet [9].

B. Robotic Mapping

Reconstruction of geometric maps from visual and (op-
tionally) inertial sensing data is a well-studied topic in
the Simultaneous Localization and Mapping (SLAM) and
Structure from Motion (SfM) literatures.

Algorithmic and computational advances have made it
feasible to employ these systems in robotics for real-time
decision making; recent relevant examples include SVO [10],
which was used for elevation mapping with nadir-looking
cameras in a UAV [11].

While this work shows impressive results, it is not applied
to frontal-facing cameras, a considerably harder problem,
given the relatively small (or non-existent) parallax induced
by camera motion in this scenario, especially for distant
objects. Recently, Hinzmann et al [12] have proposed a map-
ping approach optimized for fixed-wing UAVs with oblique
cameras. In the future, we will evaluate the incorporation of
this kind of approach in our system.

C. Semantic Mapping

Some form of semantic mapping in robotics frequently
arises in robotic systems using both semantic and spatial
information to navigate; see [13] for a review and taxonomy.

Sengupta et al [14] present an influential system using
images and depth to create 3D segmentations for street-level
imagery. A more recent, similar approach is [15]. Brostow
et al [16], and more recently [17] use monocular imagery
for semantic segmentation and 3D reconstruction. Savinov
et al [18] jointly use semantic predictions and monocular
imagery to create 3D semantic reconstructions. Compared to
these approaches, we make various simplifications in order
to be able use our system online and onboard the embedded
platform on our vehicle.

An impressive recent work is [19], which performs terrain
classification with a UAV to support search and rescue
missions. Another relevant work is [20], which uses vision
to find landing zones. Most of these works use top-down
imagery, and it is unclear how their results generalize to
oblique imagery. In addition, computation is performed off-
board.

In summary, to our knowledge online semantic mapping,
on-board an MAV is still an open problem when using
oblique monocular imagery.

III. SYSTEM OVERVIEW

The goal of the Semantic Mapping system is to inform
the planning system about the presence and approximate
location of the classes of interest in its surroundings, so it can
create information-gathering plans. It does so by means of a
semantic map, a metric map that is annotated with localized
predictions regarding semantic classes.

Thus, in order to be useful, the system must operate online
and in real time, in order to keep the map updated as new
sensor data is acquired. Additionally, it must also be capable
of recognizing and localizing distant (20m to 200m) objects,
as its function is primarily to help the vehicle decide where
to go, and secondarily to describe where it has been.

http://dimatura.net/mavs
http://dimatura.net/mavs


To this end, the semantic mapping system must answer
two questions about the scene: what objects of interest are
in it, if any, and where are they, in physical space. To answer
these questions, our semantic mapping module has two main
stages. In the first stage, semantic segmentation, we use a
deep learning system to label monocular camera imagery. In
the second stage, mapping, we project the segmentation into
a 2.5D grid map which maintains the robot’s belief about the
semantic class of each grid cell. We describe each stage in
further detail in the following sections.

IV. SEMANTIC SEGMENTATION

In the semantic segmentation stage, the goal is to assign
one of K predefined semantic labels to each pixel in an
RGB image. In this paper, the semantic classes are car and
background, where the background class simply corresponds
to anything that is not of interest. The choice of semantic
classes was driven mainly by pragmatic reasons concerning
our testing sites and available data, but the framework
extends naturally to arbitrary semantic classes.

Semantic segmentation is closely related to object de-
tection, for which the most common goal is to predict a
bounding box around each instance of an object class. In
this work we prefer the pixel-level semantic segmentation
approach over the detection approach, for several reasons:
1) Current algorithms for segmentation are faster, with the
possible exception of recent one-shot approaches (e.g., [2]);
see [21] for a survey of speed versus accuracy in object
detection. 2) We are interested in classes that may not be
easily enclosed in a box, such as buildings. 3) We do not re-
quire instance-level segmentation; knowing the presence and
approximate location of the class of interest suffices. 4) The
model is trivially extended to multiple classes. Nonetheless,
proposal-based approaches such as Faster RCNN [22], may
present advantages for detection of small objects, at some
computational expense; this may be an interesting evaluation
for future work.

As summarized in section II, in recent years the state of the
art has been significantly advanced by Deep Learning, and in
particular Fully Convolutional methods [1], which constitute
our starting point.

To apply these networks in our project we faced two
challenges. First, we found the architectures to be too slow
for real-time operation on our embedded platform. Second,
we found that off-the-shelf architectures and datasets were
optimized for ground-level, prominent objects in the image,
whereas we are interested in distant objects that only occupy
a few pixels.

Thus, for this project we created a custom architecture and
dataset, as we describe below.

1) Architecture: Our main architecture, ScoutNet, is
shown in fig. 2. The structure is similar to FCNs [1]. FCNs
consist of a Directed Acyclic Graph (DAG) of convolutional
and pooling layers, with a 3-channel RGB image as the
input and a K-channel “label image” as the output, not
necessarily the same size as the input. The network is
trained end-to-end by minimizing the pixelwise cross-entropy
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Fig. 2. Our network architecture for a problem, which takes as input an
RGB image into the leftmost layer and outputs a K-class image of 1/16
resolution from the rightmost layer. Blue blocks are 3 × 3 convolutional
layers. Gray blocks are pooling layers with two-pixel stride and 2 × 2
receptive fields. Pink blocks are 1×1 convolutional layers. The green block
is a transposed convolutional layer with a half-pixel stride, i.e. it upsamples
by a factor of two. The plus symbol corresponds to elementwise addition.
All convolutional layers use leaky RelUs and have single stride. Figure best
viewed electronically.

loss with stochastic gradient descent. At runtime, inference
for pixelwise labelling is purely feed-forward and can be
performed efficiently with GPUs.

Most semantic segmentation architectures have focused on
maximizing accuracy, at the expense of memory and com-
puting requirements. This becomes evident when applying
these methods on relatively low-power platforms such as
the NVIDIA TK1, in which inference times for the FCN-
VGG16 from [1] proved to be more than a second per image.
Therefore, we made various experiments and modifications
towards a faster architecture, even at the expense of accuracy.

Our main architecture, which we call ScoutNet, is shown
in fig. 2. The initial layers are inspired by the Darknet archi-
tecture, which was also used as the basis of the YOLO9000
[23] detection network. Here, we adapt it for segmentation
instead. Compared to FCN-VGG16, the number of filters is
reduced in the initial layers, and 1× 1 convolutional layers
are used to further decrease the number of feature maps
while retaining useful information. We also eschew the heavy
convolutionalized fully-connected layers from the original
approach, as in [6], and remove padding, which was observed
by [24] to have little effect on accuracy. Like the original
FCN, we use skip layers fused by elementwise addition of
feature maps, which we observed to be beneficial.

Finally, we also output a lower-resolution labeling. In the
FCN, regardless of the effective classification resolution, the
output is scaled to the original resolution at the end, even
when training. Instead, we simply output the low-resolution
output (1/16 of the input, in our case); during training and
validation, we downscale the label image. It must be noted
that this changes the objective function, as it is possible for
small labeled objects to disappear when downscaled.

Our choice was motivated by the observation that most
of the information regarding the presence of objects was
found already in the lower-resolution layers; the upsampling
layers mostly served to add higher-frequency detail, which
in our case is not required, as we only need to detect
the object presence and approximate location. At the same
time, increasing the output resolution through upsampling
adds some cost to runtime inference, especially when the
operation is not optimized by the GPU backend.

However, while high output resolution is not essential,
high input resolution is important, since smaller objects (in
image space) are harder to detect; for highly downsampled



images, many of the smaller objects simply disappear. Hence,
we choose to classify images at 896×896 resolution, higher
than e.g., the 224× 224 resolution commonly used by other
architectures since AlexNet [25]. For the output resolution,
we use 56× 56, i.e., a 16-pixel stride.

In the first generation of our vehicle, which featured an
less powerful platform, we used a more lightweight variation
of ScoutNet, which we call ScoutNet v0. The network has
approximately half the filters for each layer, and due to
memory constraints, classification for an 896 × 896 image
is performed by dividing the image into four 448 × 448
tiles and classifying each separately. This results in border
artifacts. In our current vehicle, which features the NVIDIA
TX2 platform, we use ScoutNet and classify the whole image
at once.

2) Dataset: To address the data issue, we created our
own dataset. To reliably detect the classes of interest we
need to learn how they appear from the highly varied
viewpoints and ranges we encounter in MAV data; but
to our knowledge, there is no dataset for object detection
or semantic segmentation for oblique, low-altitude (10m
to 40m) aerial imagery. Instead, existing datasets feature
top-down views (e.g., VEDAI [26]) or are biased towards
ground-level imagery (e.g., ADE20K [27], Pascal-Context
[28]).

Fortunately, thanks to the recent popularity of camera-
equipped consumer MAVs, thousands of aerial videos from
around the world have been made publicly available on
video-sharing websites such as YouTube [29]. These videos
vary widely in location, season, time of day, camera in-
trinsics, video quality, and so on, making for a diverse but
challenging source of data.

After downloading hundreds of videos by using various
relevant keywords, we performed some elementary analysis
to explore the data and filter out unrelated videos. By
performing k-means on frame features extracted with a
pre-trained network [30], we grouped semantically similar,
including clusters of unrelated videos (fig. 3).

Fig. 3. Frames belonging to videos in automatically extracted clusters, with
one cluster in each column, and the top row showing the average cluster
frame. The cluster on the left corresponds to videos of reviews for MAV
hobbyists, which we discard.

We then manually chose a diverse set of videos and labeled
the cars in the dataset with polygons. Our dataset has 1459

images, of which 845 have visible cars, with more than 8000
car instances. We call this the MAVCAR dataset.

Finally, we also created another dataset consisting of 500
images captured from our own field experiments, spanning
two years and three locations around western Pennsylvania.
Like before, we label cars only. We call this the FIELD
dataset.

Example images from the datasets are shown in fig. 4.

Fig. 4. Example images from our datasets.

V. MAPPING

Given a semantically classified image, we want to map
the objects in detected in the image in 3D, as well as
model regions for which the information in measurements is
uncertain. Since this mapping has to be performed on board
the vehicle, the driving requirement of the application is
computation time. To perform the mapping operation we use
the images with soft pixelwise semantic predictions, together
with the robot’s global pose estimate and a pre-existing
Digital Elevation Map (DEM). We exploit prior knowledge
of the world (e.g., every object rests on the ground) and use
the digital elevation map to infer the 3D structure of the
environment.

Given a global pose by state estimation filter, each pixel
in the labeled image defines a ray originating at the cam-
era center and passing through the pixel center, providing
bearing measurements for semantic objects. Occupancy grid
mapping is a basic tool used by mobile robots to represent
their beliefs regarding the spatial state of their surroundings
when range and bearing measurements are available. The
standard algorithm [31] reduces computational complexity
by assuming cells in a grid are independent binary random
variables and measurements are independent, given a cell’s
true occupancy value. These assumptions have been shown
to work effectively with sensors that provide both range and
bearing.

However, a semantically classified image provides bearing
only measurements through rays originating from camera
pose, making the ray independence assumption limiting. To
fully exploit the bearing only measurement and the semantic
structure knowledge of the world, we need to model ray
dependence. Section V-A and section V-B describe how we
model dependence amongst observations while still allowing
for an online mapping algorithm.



TABLE I
DATA MEMBERS OF GRID CELL Cij FOR CLASS c.

Symbol Description
h
cij
u The highest height at which a ray with label c passes over or

intersects the cell Cij .
h
cij
l The lowest height at which a ray with label c passes over or

intersects the cell Cij .
n
cij
f The number of rays with label c that pass over or intersect

the cell Cij at a height less than hc.
n
cij
a The number of rays with label other than c pass over or

intersect the cell Cij at a height less than hc.
p
cij
f The cumulative probability of rays with label c that pass over

or intersect the cell Cij at a height less than hc.
n
cij
a The cumulative probability of rays with label other than c that

pass over or intersect the cell Cij at a height less than hc.
l
cij
o Integrated logodds of an object of class c being present in the

cell Cij .

A. Exploiting Prior Knowledge

Assume that objects of our interest, represented by LM =
{c1, c2, . . . , cn}, rest on the ground and we know the likely
height hci∀ci ∈ LM. We model the world as a 2.5D grid.
In every cell, Cij of the grid at location i, j, we store the
heights at which rays pass over the cell for all classes by
casting rays originating from the classified image, table I.
We are interested in finding the cells where the height of
rays passing over the cell match the height of object we are
looking for, while accounting for occlusions and limited field
of view. This leads to following cases for a given class in a
cell Cij , see fig. 5 :
Case 0. Average probability of rays that pass over cell Cij

with a label other than class c is greater than average
probability of rays with class c.

Case 1. Rays of some other class pass from below and
above the class of concern over the cell Cij .

Case 2. Rays of some other class pass from below and
nothing is observed above the class of concern over the
cell Cij .

Case 3. Nothing is observed above or below the class of
concern over the cell Cij .

Case 4. Nothing is observed below and some other class is
observed above the class of concern over the cell Cij .

Case 1 implies that the cell is well-observed. Therefore, hciju

should be close to or greater than hc and h
cij
l should be

close to the ground height. Case 2 implies that the upper
part of the object could not be sensed due sensing geometry
or multiple, large semantic objects are present. Hence, hcijl
should be close to ground. Similarly, Case 3 implies that
there is not enough evidence to confirm or deny a class and
Case 4 implies that hciju should be greater than hc and hcijl
should be less than hc. These cases lead to eq. (1), that
is used to determine whether there is positive, negative or
lack of evidence in the current classified frame regarding the
presence of object of class c over the cell Cij :

φij(c) =


0.5, Case 3

eαkh
cij
l eβk(hc−h

cij
u )/hc

p
cij
f

n
cij
f

, Case k
(1)

Where k ∈ [0, 4] \ 3 and αk, βk are negative constants
that enable us to change the weights of the measurements

according to the cases encountered. We use the following
values for these constants: α0 = β0 = −100, α1 = β1 =
−10, α2 = −10, β2 = −1, α4 = −1, β4 = −10. A
value of φij(c) close to 0.5 indicates lack of evidence, and
φij(c) < 0.5 indicates negative evidence and φij(c) > 0.5
positive evidence for the presence of class c in cell Cij .

B. Temporal Evidence Integration

φij(c), enables the algorithm to model the dependence
amongst rays, while treating the cells independently. We
assume at any given cell, the log odds of probability of
observing a class c is given by a constant γ. Each class in a
cell is represented as an independent binary random variable,
as a cell can have objects of multiple classes. Once the nature
of evidence (φij(c)) is identified, log-odds for each class in
each cell are updated with eq. (2).

l
cij
o =



l
cij
o + γ(n

cij
f − ncija ), n

cij
f ≥ ncija ∧
φij(c)− 0.5 ≥ ζ

l
cij
o + γ(n

cij
f − ncija ), n

cij
a ≥ ncijf ∧

0.5− φij(c) ≥ ζ
l
cij
o , otherwise

(2)

Where ζ is a small positive number less than 0.5. We use
ζ = 0.2 and γ = 1. Each semantically classified image is
integrated with the grid and l

cij
o is updated for every cell

that needs updating; this process is repeated for every input
semantically classified image.

The next section presents the hardware system on which
we run the semantic mapping system to enable autonomous
scouting. Preliminary results for the mapping algorithm are
presented in section VII-B.

VI. PLATFORM

Fig. 6. Aerial Platform.

Our current MAV is depicted in fig. 6. The base plat-
form is an off-the-shelf quadrotor DJI vehicle retrofitted
with our own sensors and computing payload designed for
autonomous scouting.

1) Sensing: The sensor suite consists of a monochrome
stereo camera pair, a monocular color camera, an integrated
GPS/INS unit and a barometer. The GPS/INS system and the
barometer are used for state estimation.

All cameras are forward-facing, tilted downwards at 15◦,
an orientation well suited for low-altitude (< 40m) op-
eration. The horizontal field of view for this camera is
approximately 60◦, which we considered a good compromise
between coverage and object size, given the sensor resolution
of 1600× 1200 pixels.



Case	
  0
Majority	
  of	
  the	
  rays	
  passing	
  over	
  a	
  
cell	
  below	
  height	
  hc do	
  not	
  
belong	
  to	
  class	
  c.

Case	
  1
The	
  cell	
  is	
  fully	
  observed,	
  and	
  
other	
  classes	
  are	
  visible	
  over	
  and	
  
under	
  the	
  class	
  of	
  interest.

Case	
  2
No	
  classes	
  are	
  visible	
  above	
  the	
  
class	
  of	
  interest	
  due	
  to	
  limited	
  
FOV.

Case	
  3
No	
  classes	
  are	
  visible	
  above	
  or	
  
below	
  the	
  class	
  of	
  interest	
  due	
  to	
  
limited	
  FOV.

Case	
  4
No	
  classes	
  are	
  visible	
  below	
  the	
  
class	
  of	
  interest.

Fig. 5. Illustration of different scenarios that arise due to scene and sensing geometries, when semantically classified images are used to map objects
using a camera on an unmanned aerial vehicle.

2) Hardware Platform: All computation for autonomous
operation is performed on-board. To this end, we equip the
MAV with various embedded computers. In the first genera-
tion of our vehicle, we used two embedded ARM computers,
an NVIDIA TK1, and an ODroid XU4, to perform perception
and planning tasks, respectively. In the second generation we
use an NVIDIA TX2 for all computing.

3) Software Platform: Both computers use ROS on
Ubuntu Linux. Our segmentation and mapping methods run
concurrently as ROS nodes and communicate through mes-
sages. The segmentation node, implemented in Python, uses
the Theano [32] and Lasagne [33] libraries library with the
Nvidia CuDNN backend to make effective use of the GPU.
The mapping algorithm is CPU-only and is implemented in
C++.

VII. RESULTS

Here, we present results for each of the two main sub-
systems in isolation and document the integrated system
performing a fully autonomous mission in the field.

A. Semantic Segmentation Evaluation

We first study the performance of ScoutNet on the popular
Pascal-Context [28] benchmark, with approximately 10k
densely labeled images of indoor and outdoor scenes. We
use the same protocol as [1], with 59 semantic categories.
In table II, we show the results of the FCN-VGG16 16s
[1] evaluated at full resolution, FCN-VGG16LR which is
the FCN-VGG16s evaluated at 1/16 resolution, and both of
our ScoutNets, also evaluated at 1/16 resolution. We also
show timing for each network, evaluated on the NVIDIA
TK1 and NVIDIA TX2 GPUs. As can be observed, using
low resolution has a strong impact on accuracy, as well as
a significant impact on timing. We found this to be more
pronounced without optimized support from recent versions
of the CuDNN backend, as in our first generation vehicle.
We also see that the FCN outperforms both of our networks;
however, this comes at a high computational cost.

We also evaluate the same approaches on our MAVCAR
and FIELD datasets. For MAVCAR, we use a split of 1230
images and a validation set of 229 images; since some videos
appear with more than one labeled frame, we ensure there
are no videos For some in common between the training and
validation sets, to avoid overfitting. For FIELD, we use the
whole dataset as validation, and train with the MAVCAR
training set. A threshold of 0.5 was used for all results. In

TABLE II
PERFORMANCE AND TIMING ON PASCAL-CONTEXT VALIDATION

Arch. mIoU Pixel Acc. TK1 (s) TX2 (s)

FCN-VGG16 [1] 37.6 66.8 4.336 0.816

FCN-VGG16LR 33.3 26.6 3.770 0.698
ScoutNet 20.8 17.8 0.452 0.056
ScoutNet v0 20.6 17.7 0.306 0.038

TABLE III
PERFORMANCE ON MAVCAR AND FIELD VALIDATION

MAVCAR FIELD

IoU Prec. Recall IoU Prec. Recall

FCN-VGG16LR 43.4 77.0 49.8 36.6 78.6 40.7
ScoutNet 44.9 70.1 55.5 34.6 79.4 37.9
ScoutNet v0 28.4 65.0 33.5 29.8 79.9 32.2

table III we see that ScoutNet and FCN perform comparably,
with ScoutNet and FCN-VGG16LR having a slight lead in
MAVCAR and FIELD, respectively. Figure 7 shows some
qualitative examples of ScoutNet on MAVCAR and FIELD
datasets, highlighting some failure cases.

B. Mapping

In this section we demonstrate the effects of exploiting
semantic knowledge and modeling ray dependence qual-
itatively, while measuring the sensitivity of the mapping
algorithm to height inaccuracies in the DEM. Figure 8-4
shows a canonical scenario where a car, more than 50m
away, is detected by the semantic classification algorithm.
Exploiting prior knowledge and modeling dependence allows
the mapping algorithm to capture the uncertainty about the
presence of a car in the cell occluded by the car, fig. 8-
1, whereas if we do not reason about ray interdependence,
the occluded cell is also inferred to contain cars fig. 8-3. If
both the semantic knowledge and ray interdependence are
not exploited, then a simple projection of classified image
to the DEM leads to an inference that multiple cells are
occupied by a car fig. 8-2. Demonstrating that modeling
the ray interdependence and exploiting semantic knowledge
leads to better mapping of objects and uncertainties. Figure
fig. 8 shows that the algorithm’s performance deteriorates in
presence of height errors in the DEM. Unsurprisingly, the
degradation is faster if DEM underestimates the height of
the cells due to observation geometry.
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Fig. 8. Figure 1 shows the updated map after a classified image (4) is integrated into our current mapping pipeline; Figure 2 shows the updated map if
the classified image is projected on the DEM without exploiting semantic knowledge and Figure 3 shows the updated map if the ray interdependence is not
modeled. Dark squares indicate absence of cars and red squares presence of cars. Shades of gray and red signify certainty. Modeling ray interdependence
and exploiting semantic knowledge leads to better modeling of uncertainties due to occlusions while providing an improved cell occupancy estimate. Figure
4 provides the sensitivity analysis of mapping performance vs. DEM height errors.

Fig. 7. Examples of ScoutNet, trained on the MAVCAR training set, on
MAVCAR (top two rows) and FIELD (bottom two rows) validation images.
In each case, the first row shows successful detections, while the second row
shows failure cases. For the second row, we can see some false positives:
buildings detected as cars in the upper right corner. For the fourth row, we
can see our method does not deal well with close-up images of cars.

C. Field Results

We use the semantic mapping pipeline presented in the
paper to enable autonomous data gathering missions on-
board a custom aerial platform, fig. 6. The vehicle’s mission
is to scout for cars and collect high-resolution data if a
car is found, while making sure it returns to pre-specified
location before the battery runs out. Randomized Anytime
Orienteering algorithm [34] is used for generating efficient,
budgeted data gathering paths for the vehicle, while vision-

based obstacle avoidance presented by Dubey et. al. [35] is
used for obstacle avoidance. The semantic classification and
mapping algorithm is able to detect and map both cars in the
environment with sufficient accuracy to enable collection of
high resolution data of said cars; see fig. 9.

VIII. CONCLUSIONS

In this paper, we have described a semantic mapping sys-
tem aimed to support autonomous scouting with MAVs. We
evaluated the two main components of the system in isolation
and demonstrated an integrated autonomous mission.

We are currently improving this system in several ways.
We are labeling a larger dataset, including more semantic
classes. With this dataset we hope to get a more accurate
picture of the performance limits of our method. We are
also evaluating methods from recent work in semantic seg-
mentation aimed to optimize performance.

At the same time, we are planning more field experiments,
in order to gather data and evaluate the integrated system
quantitatively. One interesting improvement would be to
generate the observation model for mapping in a data driven
fashion. In the future, we are interested in using the image
data for dense 3D reconstruction, hoping to avoid the need
for an external DEM, or even a GPS.

ACKNOWLEDGEMENTS

We acknowledge the Office of Naval Research (Grant No.
N00014-14-1-06393) and the Qualcomm Innovation Fellowship for
providing financial support. We also acknowledge Greg Armstrong
for assistance in field experiments and robot construction and
repairs.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015.

[2] J. Redmon, R. Girshick, and A. Farhadi, “You Only Look Once:
Unified, Real-Time Object Detection,” arXiv, pp. 1–10, 2015.

[3] D. Eigen and R. Fergus, “Predicting Depth, Surface Normals and
Semantic Labels with a Common Multi-Scale Convolutional Archi-
tecture,” arXiv preprint arXiv:1411.4734, 2014.

[4] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” CoRR, vol. abs/1505.04366, 2015.



Fig. 9. a) Testing site, start and end are marked by green nodes and car locations are shown in orange. Figures 1,2,3 and 4 show the series of plans at
various stages of the exploration mission, Dark squares indicate absence of cars and red squares presence of cars. Shades of gray and red signify certainty.
Once the car is recognized, a 360 view of the car is obtained. The mapping pipeline enables detection and data collection for both cars present in the
environment.

[5] V. Badrinarayanan, A. Handa, and R. Cipolla, “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Robust Semantic
Pixel-Wise Labelling,” 2015.

[6] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” pp. 1–9, 2015.

[7] Z. Wu, C. Shen, and A. van den Hengel, “Wider or deeper: Revisiting
the resnet model for visual recognition,” CoRR, vol. abs/1611.10080,
2016.

[8] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
CoRR, vol. abs/1606.02147, 2016.

[9] G. L. Oliveira, W. Burgard, and T. Brox, “Efficient deep models for
monocular road segmentation,” in IROS 2016. IEEE, 2016, pp. 4885–
4891.

[10] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, Vision-based Flight and Live Dense
3d Mapping with a Quadrotor Micro Aerial Vehicle,” JFR, 2015.

[11] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza,
“Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles,” in ICRA, 2015,
pp. 111–118.

[12] T. Hinzmann, T. Schneider, M. Dymczyk, A. Melzer, T. Mantel,
R. Siegwart, and I. Gilitschenski, “Robust map generation for fixed-
wing uavs with low-cost highly-oblique monocular cameras,” in IROS
2016. IEEE, 2016, pp. 3261–3268.

[13] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66,
pp. 86–103, 2015.

[14] S. Sengupta, P. Sturgess, L. Ladicky, and P. H. S. Torr, “Automatic
dense visual semantic mapping from street-level imagery,” IROS, pp.
857–862, Oct. 2012.

[15] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V. A.
Prisacariu, O. Kähler, D. W. Murray, S. Izadi, P. Pérez, and P. H. S.
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[33] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby,
D. Nouri, et al., “Lasagne: First release.” Aug. 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.27878

[34] S. Arora and S. Scherer, “Randomized algorithm for informative path
planning with budget constraints,” in ICRA 2017. IEEE, May 2017.

[35] S. A. Geetesh Dubey and S. Scherer, “Droan - disparity-space repre-
sentation for obstacle avoidance,” in IROS 2017. IEEE, September
2017.

http://youtube.com
http://dx.doi.org/10.5281/zenodo.27878

	Introduction
	Related Work
	Semantic Segmentation
	Robotic Mapping
	Semantic Mapping

	System Overview
	Semantic Segmentation
	Architecture
	Dataset


	Mapping
	Exploiting Prior Knowledge
	Temporal Evidence Integration

	Platform
	Sensing
	Hardware Platform
	Software Platform


	Results
	Semantic Segmentation Evaluation
	Mapping
	Field Results

	Conclusions
	References

