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Abstract: 
 

This paper describes computer vision techniques for 

early-season measurement of vine canopy parameters; leaf 

count, leaf area and shoot count. Accurate and high-

resolution estimation of these key vineyard performance 

components are important for effective precision 

management. We use a high-resolution stereo camera with 

strobe lighting mounted on a ground-vehicle that captures 

high-quality proximal images of the vines. For shoot image 

segmentation, we apply the Frangi vessel filter (originally 

developed for medical imaging processing) in conjunction 

with custom filtering to extract shoot counts. We also 

present an incremental leaf count estimation algorithm, 

that proposes leaf candidates for incremental leaf sizes and 

then removes the repeating candidates to accurately assess 

leaf count. The specified algorithms are robust to partial 

occlusion and varying lighting conditions. For shoot count 

measurement we observe an F1 score of 0.85 for image 

shoot count and R correlation of 0.88 for ground-truth 

shoot counts. The R correlation for leaf count estimation 

between ground truth sample images and algorithm output 

is 0.798. Whereas the R correlation between the data 

collected by a PAR sensor and leaf area estimation 

algorithm is 0.69.               
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1. Introduction 

Vineyard cultivation industry is a large and diverse 

industry. As many as 40 different varieties of grapes are known 

and cultivated worldwide. The produce is used for production 

of various edibles like grape juice, raisins and wine. As 

reported by “International Organization of Wine and Vine”, as 

of 2015 vineyards covered 7.534 million hectares of 

agricultural land worldwide. To give a better perspective to the 

size of the industry, according to “The Wine Institute from 

TTB data”, the total wine produced by USA alone was 835.468 

million gallons. Hence, such high investments and stakes 

involved in the vineyard industry makes application of 

technological advances in vineyard management a valuable 

exercise. 

 

Currently there are no systems available for growers to 

measure crop yield with high resolution during the growing 

season. Crop yield is a desirable attribute to be monitored and 

managed. The current process to estimate yield is by 

monitoring the farm at harvest time, and recording data during 

each growing season. However, yield can vary by large 

amounts from year to year, and using harvest estimates is an 

extremely coarse approximation of yield. In order to get 

accurate dense measures of crop yield, the crop needs to be 

continuously measured during the growing season. The 

obvious solution would be to exhaustively monitor the fields. 

 

While the approach might work well for small sized fields, 

it becomes economically intractable for larger fields owing to 

the labor intensive nature of the work. Additionally, the manual 

counting mechanism is performed just before harvest. Over the 

past few years, our research group has focused on developing 

a vision-based system for automatic fruit detection and high 

resolution yield-estimation [1] [2]. However, this does not 

include two of the major components of yield estimation and 

crop management, namely shoot density and leaf area and 

count measurements.   

 

One of the most major components of precise yield 

management is shoot density estimation for vines across the 

field. An accurate machine vision based approach for efficient 

calculation of this parameter would not only giving a vital 

estimate of number of prospective fruit bearing healthy crops 

this season but also be a telling parameter to monitor plant 

growth and health. Leaf area and leaf count estimation, during 

the early growth season helps the farmer to get a better insight 



 

 

into vineyard’s overall health. Providing a farmer with geo-

localized maps of leaf count/area help the farmer in focusing 

the water and nutrient resources. This in turn helps in an 

increase in the yield. The reduction and optimization of 

resources used in vineyard management is the motivation 

behind this work 

2. Related Work 

Exponentially increasing population growth has resulted 

in the need for proportionate increase in agricultural produce 

as well. Though population is growing at an exponential rate, 

the same cannot be said for cultivatable land. Thus this creates 

a need for increasing output from currently available land 

without overburdening it. This has led to an increased interest 

in funding research in precision viticulture.  

 

Some work has been done to obtain precise yield 

estimates in vineyards by accurately measuring fruit density 

measurement using classical image processing techniques 

[9][10]. There have also been some successful attempts at 

using purely learning based techniques such as feature-

learning based techniques [4], conditional random fields(CRFs) 

[5] amongst others. However, the most successful have been 

the ones using a combination of classical image processing 

pipelines with learning based methods [2].  

 

Surprisingly very little work is done on using shoot 

density measurement and leaf area/count estimates to do the 

same work. Some thinning based techniques have been used to 

remove shoots from the rest of the plant and estimate density 

[3]. There also has been an attempt at using reflection patterns 

of structured light to delineate convex shapes from concave 

ones thus using this technique to segment shoots from rest of 

the plant. [5]. Shape fitting based stem segmentation 

techniques on 3 dimensional plant models by taking advantage 

of prior knowledge of plant structure have also been attempted. 

[6]. The most promising approach is use of vesselness measure 

of plant branches for segmentation [21]. The method provides 

promising results in lab conditions, however uses the 

assumption that size of plant shoot is considerably larger than 

the size of leaf edges which is subject to plant type and not 

robust to occlusions. Thus, this paper uses the work of Amean 

et.al. [21] as baseline for shoot density measurement and 

builds on that.    

  

There have been a wide variety of attempts for estimation 

of leaf count and leaf area of plants. Various methods deploy 

techniques varying from image processing methods to digital 

sensor based data acquisition techniques. There has been an 

attempt on leaf segmentation by fitting quadratic curves to a 

combination of depth data and IR data [11]. RGBD sensors like 

Microsoft Kinect have been used for leaf segmentation and 

leaf count estimation using center of divergence methods, 

which employ parametric snakes [12][13]. But the drawback 

of this approach is limitation of Kinect to indoors and the slow 

convergence of parametric snakes. There exist techniques 

involving a combination of log-polar transformation and 

unsupervised learning using triangle encoding and K means 

clustering [14, 15, 16]. But these techniques presume that 

leaves are of a distinct shape, like circular or elliptical. Active 

Shape Modelling [17] technique has been used to detect 

multiple leaves, which might be occluded. The leaf boundaries 

and veins are detected using gradient change. Since this 

method tries to fit a model to leaves, it assumes all leaves to be 

roughly of similar shape. This is highly unlikely in the case of 

grape vines in outdoor conditions. 

 

Various techniques have been developed for leaf and 

canopy area estimation. NDVI [18] and PAR [19] sensors are 

known to be deployed over the field for vegetation index 

measurement. While they are straightforward to use, they are 

prone to errors due to change in distance from the vine under 

scrutiny. A machine learning based approach that estimates 

leaf area based from RGB images has also been tested [20]. 

One major drawback again, is the distance of camera from 

vines must remain unchanged. 

 

Though abovementioned works have been successfully 

implemented and display high accuracy, all of them have been 

tested on datasets obtained in favorable controlled lab 

environments. Thus making them vulnerable to failure in 

nonstandard conditions with varying lighting conditions, 

occlusions and scales. The major problem with leaf count 

estimation of grape vine leaves in field environments is clutter 

and background noise. The indefinite shape of leaves due to 

occlusion and curling further thwarts the process. 

 

3. Approach  

 

Our custom camera setup, mounted on a farm 

vehicle captures high resolution RGB stereo images. 

These images are used for all image based inferences. 

The depth generated from these images is used to convert 

inferred data into metric units. The images produced are 

not aligned to each other at first, hence they are first 

rectified, for accurate depth map estimation.  

 

3.1 Disparity calculation 

  

 After rectification, the correspondence problem can be 

solved by using an algorithm whose job is to scan both the 

images for matching features. Algorithms like Block Matching 



 

 

use a small patch around a pixel in one image and then look 

for the best match along the epipolar line for all possible values 

of disparities.  

 

 

 

                        (a) 

 
(b) 

 

FIGURE 1 Top two images in (a) represent the stereo image pair while 

image (b) is the corresponding disparity map  

  A comparison between the two patches in the images is 

made by comparing the corresponding pixels in the two 

patches, according to Normalized Correlation 

 

N.R = 
∑ ∑ 𝐿(𝑟,𝑐) .  𝑅(𝑟,𝑐−𝑑)

√(∑ ∑ 𝐿(𝑟,𝑐)2 .  (∑ ∑ 𝑅(𝑟,𝑐−𝑑)2)
   (1) 

 

 Where L: left image patch R: right image patch r: row 

number c: column number d: current disparity. The disparity 

for which N.R is least being the disparity of the current pixel. 
 
 Using disparity we can calculate real world X,Y and Z 

using the relations (2) (3) and (4). Here f is camera’s focal 

length, B is camera baseline and D is the disparity. U and V 

are pixel coordinates in X and Y directions respectively.  

 

 

𝑍 =  
𝑓𝐵

𝑑
 

(2) 

𝑋 =   
𝑢𝑍

𝑓
 

(3) 

𝑌 =  
𝑣𝑍

𝑓
 

(4) 

 
 The disparity map and corresponding stereo image pair is 

displayed in Figure 1. All the points that have a depth above a 

certain threshold are removed. Thus, segmenting the 

background.  

 

3.2 Color Segmentation 

 

 The first step is to pre-process the image by removing the 

background as well as the non-green parts of the image. Hence, 

first the image is converted from RGB color space to HSV 

color space, so that the thresholding is easier and provide 

robustness to varying lighting conditions 

 

Then the HSV image is thresholded such that Hue value is 

between 0.1 and 1, saturation values are between 0.25 and 1. 

Figure 2 shows image after color segmentation and contrast 

stretching. 

3.3 Frangi filter  

As per the approach suggested by Amean et.al. [21], we use 

Frangi 2D filter to obtain vessel like structures (shoots in our 

case) by use of eigenvalues of the Hessian matrix of pixel 

intensities as suggested by Frangi et al. [7]: 

 

 

FIGURE 2. Left side is the initial image and right side is the image after 

background removal and color segmentation 



 

 

𝐻 =  [
𝐼𝑥𝑥 𝐼𝑥𝑦

𝐼𝑦𝑥 𝐼𝑦𝑦
]             (5) 

 

I is the pixel’s intensity value. The image’s second order 

derivatives are calculated by convolving the image with 

derivatives of a Gaussian kernel. A small first eigen value of 

the corresponding Hessian and a large second eigen value are 

suggestive of a ‘tube-like’ structure (in our case, shoots). 

Figure 3 shows the output of the applied filter on previously 

enhanced image and thresholding the grayscale image to 

obtain a binary image.  

 

 

 

FIGURE 3. Left side is the segmented image and right side is the image 

after applying Frangi image. 

  

3.4 Hough Transforms   

Hough Transforms [Duda and Hart, 8] is a popular technique 

to detect imperfect shapes in an image. It involves using 

parametric form of figures and a voting mechanism to 

determine how many points in the image fall on the specified 

parametric curve. If the number of points falling on the curve 

are above a predefined threshold, the curve is said to exist in 

the figure. Hough line detection is used on the output binary 

image obtained in the previous step to obtain all the candidate 

shoots in the image. Figure 4 shows the output of Hough line 

detection applied to the output obtained in previous step. 

 

 

 
 

FIGURE 4. Left side is the segmented image and right side is the 

image after applying Hough transform on Frangi image 

 

3.5 False positive removal 

It can be observed that if length of Hough line is set as the 

only criteria to separate shoots from leaf edges, it is certain to 

miss the shoots occluded by leaves. If not, the output consists 

of several false positive in the form of leaf edges. In order to 

obtain high precision, the length threshold is kept to a bare 

minimum and custom filters are applied to remove false 

positives.  

   

3.5.1. Perpendicular intensity profile 

 

We have all the Hough lines; we divide these each Hough 

line into 5 equal segments. At each segment we make an 

intensity profile across the Hough line and analyze it. To make 

the analysis robust to minor variations, we first fit a 

polynomial on the intensity profile. It can be intuitively seen 

that in case of leaf edges this profile will be a monotonically 

increasing or decreasing and in case of shoot a bell shaped 

curve should be observed.  

 

 

 
(a) 



 

 

 
(b) 

FIGURE 5 (a) Perpendicular intensity profile for leaf (b) Perpendicular 

intensity profile for shoot 

  

If for a majority of intensity profiles, a monotonic 

increase or decrease is observed, then it is said that the given 

Hough line is a false positive. Figure 5 shows the 

perpendicular intensity profile results for both a leaf and a 

shoot. 

 

3.5.2. Parallel intensity profile 

 

We make an intensity profile along the length of the 

Hough line (green line) output from previous step. It is 

observed that the intensity profile for actual shoots if a lot 

smoother whereas intensity profile for leaf edges has a lot 

more jitter. Thus we obtain the intensity profile along the 

Hough line and fit a polynomial to it in order to smoothen the 

function. Then peak analysis is done on this intensity profile.  

 

Thus we try and find all the peaks which have prominence 

more than one fourth of the average intensity in that intensity 

profile. If we find more than 2 such peaks, we reject the Hough 

line.  
 

 
(a) 

 
(b) 

FIGURE 6 (a) Parallel intensity profile for leaf (b) Parallel intensity profile 

for shoot  

3.6  Multiple detection removal in shoots 

It can very often be the case that a shoot is detected 

multiple times, i.e. there are multiple lines describing the same 

shoot. One most obvious scenario is when a shoot is partially 

occluded by a leaf in the middle. To remove these multiple 

detections, we have the following approach. We start by doing 

blob analysis on binary mask of the selected Hough lines. We 

start by getting all connected components in the binary mask 

with the following algorithm. 

 

Blobs are the continuous regions in the black and whire binary 

image mask. Using matlab BlobAnalyser, we detect blobs 

from sizes ranging from 1000 𝑝𝑥2   to 50000 𝑝𝑥2 . This 

gives us all the continuous regions in the image, with almost 

all possible sizes. 

For blob analysis the following algorithm is followed : 

 

1. We start with the first foreground pixel in the binary 

image. We assign the label ”current_label” to 1. Then 

go to 2 

 

2. If the current pixel is a foreground pixel and is 

currently unlabeled, then give it the label name 

“current_label”. Put it as the current element in the 

queue. If it is not a foreground pixel, then repeat this 

step for next pixel. 

 

3. Then take out an element from the queue and analyze 

the neighbours, based on either 4-Connectivity or 8-

Connectivity. If the neighbour is not a background 

and not currently labeled, then give it the label 

“current_label”. And add it to the queue. Repeat it 

until there remain no more elements in the queue. 

 

4. Then go to second step for the bext pixel in  the 

image and increase the “current_label” by 1. 



 

 

 

Hence, the above algorithm gives us the connected 

components in the binary mask. These components are further 

analyzed to remove all the prospective multiple detections.  

 

Then this is followed by ellipse fitting on all the 

connected components. The following steps are followed to 

remove double detections.  

 

1. Treat every connected component as a separate 

ROI(Region of interest) 

 

2. Locate center of mass for each ROI and locate each 

pixel in ROI with respect to center of mass 

 

3. Use Eigen values of the mass distribution tensor of 

these pixels to get ellipse orientation, minor and 

major axis [22].  

 

4. If two ellipses are of similar orientations, then 

transform coordinate system to align with ellipse’s 

orientation. In order to remove double detections, if 

horizontal distance between two ellipses’ centers is 

very small in the transformed coordinate system, 

they are said to be parts of a common shoot. 

 

 

The image pipeline in figure 7 well describes the entire 

process, of how first each segment is taken as individual region 

of interest. Then ellipse is fit on each of these segments. Then 

if any two ellipses have similar orientations, these ellipses are 

candidates for being the same shoot. After this the coordinate 

system is shifted to be aligned with ellipse’s major axis. If two 

ellipses have similar orientation and the horizontal distance 

between their centroids is small in the transformed coordinate 

system then these two ellipses are merged, i.e. it is considered 

that they belong to the same shoot and were separated due to 

some occlusion. 

 

  
(a)                    (b) 

 

   
               (c)                   (d)  

 

 
(e) 

FIGURE 7 (a) Initial Image (b) Binary mask from Hough Transform (c) 
Ellipse fitting on binary mask (d) Coordinate system transformation (e) 

double detections removed 

4. Leaf Count Estimation 

For leaf count estimation we proceed with the color and 

depth segmented image obtained after stage 3.2. Blob analysis 

is performed over the binary mask of this color and depth 

segmented image, to obtain blobs of various connected parts 

of the binary mask. Rectangles are fitted to the connected 

components generated from the algorithm shown in fig.8(a). 

Centroid of the blob is the centroid of the rectangle. Since 

blobs may be of various shapes and sizes, it is common that 

many of the rectangles might be overlapping, partially or even 

completely. An instance is shown in fig 8. 

 
(a)                    (b) 

FIGURE 8 (a) binary mask of the segmented image. (b) 

Rectangles fitted to various blobs detected in th eimage. 



 

 

 

Now we proceed with leaf count estimation in a step by 

step method. 

 

4.1 Candidates for Small Leaves  

All the blobs that have an area between 500 𝑝𝑥2 and   1000 

𝑝𝑥2 are considered to be candidate blobs for small leaves in a 

vine. The center coordinates of the fitted rectangle are dumped 

in a queue. Let it be Q1. These blobs are covered with a black 

mask which is of the size of their respective fitted rectangles. 

This is done so that these blobs are not taken into account in 

later stages. For display purposes these blobs are shown in blue 

color in Fig.9. Some of these blobs might not be leaves, or may 

be part of a relatively bigger leaf. Such instance are removed 

at later stages.  

 

 
 

FIGURE 9. Blobs selected at first stage 

 

4.2 Shoot Removal 

 

Next step is to remove the shoots from the Image, so that only 

laeves remain. It is not possible to remove all instances of 

shoots completely from the image. But we can do some 

morphological operations to remove as many as possible. For 

that we create a Morphological Structuring Element of shape 

‘Disk’ and a size of radius 20 px. This method removes nosie 

speckles, but more importantly it removes the small linear 

parts of the image. Hence, it effectively erodes away the 

instances of shoots that might not be lying over a leaf, i.e. 

shoots whose neighboring pixels are black. 

 

 
 

FIGURE 10. Morphologically opened image 

 

Note that we use morphological opening and not erosion 

alone, because we have not selected leaf candidates of size 

greataer than 1000 𝑝𝑥2 yet. An erosion operation might 

erode away the small leaf candidates and shoots alike.  

 

4.3 Candidates of leaves in meduim sized blobs 

 

Then, next step is to make the binary mask of the image shown 

in Fig.9. Then blobs are again detected over this bibary mask. 

The blobs that have an area of 800 𝑝𝑥2 to 6000  𝑝𝑥2 are 

taken as individual leaves and are covered with black masks. 

This size range is decided emperically. The centroids of these 

blobs are dumped in the queue Q1. Some of thse centroids 

might be repetitions. But that will be addressed to at later stage. 

These blobs are masked with a black mask, so that they are 

taken into account in later stages of algorithm. The masked 

part of the image is shown in the figure below. It is shown in 

green for ease of visualization. 

 

 
FIGURE 11. Blobs for leaf candidates at second stage 

 



 

 

4.4 Candidates of leaves in large blobs 

 

At this point we are left with an inamge that looks like fig.10. 

Next step is count the big leaves. Now the region of interests 

are the bounding boxes with an area greater than 6000 𝑝𝑥2. 

Each bounding box at this point is treated seperately. The 

coordinates of all the boubding boxes are noted down and 

stored in a separate queue, say Q2. The imge which we obtain 

at stage corresponding to Fig.18 is turned into a grayscale 

image. The greyscale image is passed through the 

morphological operation, called Erosion. 

Erosion induces gaps between the bigger leaves or the cluster 

of leaves that a blob might be depicting. Fig.11 shows the 

eroded image.  

 

 
 

FIGURE.10 Image resulting when small and medium blobs 

are masked 

 
 

FIGURE.11 Eroded image 

 

After erosion the bounding box coordinates are taken oout of 

Q2 and the eroded image is cropped at the coordinate 

locations, to produce several images. Some of those crops are 

shoen in Fig. 12 

 

        
 

FIGURE. 12 Crops at coordinates of bounbing boxes in Q2 

queue 

After this, each crop is converted into a binary image and blob 

analysis is done over them. This technique in practice, helps us 

to differentiate leaves among a cluster of leaves, that the blob 

corresponding to rectangle in queue Q2 might be depicting. 

The centroids of the blobs obtained after blob analysis in each 

crop are dumped into the queue Q1. 

 

At this stage the centroids in Q1 represent candidate leaves in 

various sized blobs in the image. Hence, by plotting the 

coordinates in Q1 over the original image yields an image 

shown in Fig.13. 

 

This result looks disasterous due to all the multiple detections 

of same leaves. Hence, in the next section a way to tackle it is 

discussed. 

 

 

 
 

FIGURE. 13 All the candidate leaf positions plotted over the 

original image 

 

 

 



 

 

4.5 Removing Multiple Detections 

 

From previous steps, we have a queue data structure, Q1 that 

has the centroids of all the perspective leaf candidates. The 

length of this queue gives us the total number of leaf proposals. 

Since multiple proposals might belong to the same leaf, there 

are multiple-dtections and this reduces accuracy. 

 

The following algorthm is implemented to get rid of multiple 

detections: 

 

• Initialize 1-D arrays Leaf and Repeat 

• Copy all coordinates from Q1 to 1-D array q1 

• While Q1 is not empty 

o Dequque a coordinate pair from top of Q1  

o Make a crop of 400x400 px, in around the 

coordinate pair, in the binary of thresholded image. 

o White pixels represent traversable regions and black 

pixels represent non-traversable regions fro 

geodesic distance transform computation. 

o For all remaining coordinate pairs in Q1: 

  If any pair lies in the crop : 

▪ Compute geodesic distance transform 

between the centroid of crop and the 

coordinate pair. 

▪ Skelettonize the transform. 

▪ Calculate the pixel length along the 

skeletonized transform. 

▪ Calculate the euclidean distance among the 

two coordinates 

▪ If the ratio 
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑖𝑧𝑒𝑑 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
 > 1.3 :  

❖ Copy the centroid coordinates to the 

array Leaf 

▪ Else : 

❖ Copy the centroid coordinates to the 

array Repeat 

  End If 

o End For 

• End While 

 

The following steps explain the algorithm in detail: 

1. Extract the coordinates from th enqueue, ony by one from 

the top. 

2. Crop a 400px X 400px region from the binary mask of the 

image. The white pixels in the mask correspond to the 

traversable region and black correspond to the non-

traversable region. 

3. In the crop, we look if any other coordinate from the queue 

lies in it too. 

4. If yes, then we conpute the geodesic distance transform 

between the two points. This gives us the maximum 

possible paths with minimum distance between the two 

points. 

5. If no, then we pass to the next point in the queue and repeat 

the step 3. 

6. If, point is present, then we skeletonize the geodesic 

distance. The number of pixels in it gives the minimum 

path length along the mask. 

7. If the ratio of euclidean distance to the path length is more 

than 1.3, that means path length is curvy and there is no 

straight line path among the two points. This means the 

point sbelong to different leves. 

8. If the ratio is below 1.3, it means that the points more or 

less lie on the same leaf. Then one of them is set to (0,0) 

9. Steps 2 t 8 are repeated for all the points. 

 

  
       (a)                 (b) 
 

   
         (c)                      (d) 

FIGURE. 14. (a) Two points of interest, (b) The binary mask 

of the crop, (c) Geodesic distance transform along the binary 

mask among the two points and (d) The Skeletonized 

path(zoomed for clarity)  

 

Fig.14 Shows an example where the two candidate points 

belong to deifferent leaves. In this case the pixel length of 

skeletonized path is greater than the euclidean distance among 

these points. This suggests that the path between the two points 

is wavy, due to breaks between the binary mask, between the 

two points. These breaks are due to discontinuities between the 

leaves. So, the two points belong to different leaves. Hence, 

none of the candidates are eliminated. 

Whereas, Fig. 15 depicts an example where both the 

candidates belong to the same leaf. The pixel length of the 

skeletonized path is not substantially greater than the euclidean 



 

 

distnce aming the two points, it may even be exactly the same 

in case of staright lines. In other words the ratio  
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑖𝑧𝑒𝑑 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
  < 1.3 (the constant 1.3 is emperically 

decided). This shows that an almost straight line path exists 

between the two points, along the binary mask. This suggests 

that both the point belong to the same leaf. Hence the point that 

is not the centroid is eliminated.  

 

     
        (a)                       (b) 

    
         (c)                       (d) 

FIGURE. 15. (a) Two points od interest, (b) The binary mask 

of the crop, (c) Geodesic distance transform along the binary 

mask among the two points and (d) The Skeletonized 

path(zoomed for clarity) 

 

Fig.16 shows the fimal result for leaf count. The points that 

didn’t get eliminated are shown in yellow and the eliminated 

points are shown in red color. Hence, the number of yellow 

points is the final leaf count. The algorithm gives a leaf count 

of 59 as compared to 105 prior to removal of double detections. 

The ground truth for the image, which is 52, is manually 

labelled. Hence, the accuracy increases manifold. 

 

 
FIGURE. 16. Eliminated double counts 

5. Leaf Area Estimation 

The image obtained after background and color 

segmentation is used as the starting point for leaf area 

estimation. From the disparity map, shown in Fig.1 is used to 

calculate the depth of each and every pixel in rectified image. 

From emperical study, we can safely conclude that, a square 

object of area 100 𝑐𝑚2 at a calibrated distance of 50 cm from 

the camera, when projected over the focal plane of the camera, 

covers the image plane such that each pixel depicts an area of 

0.0005351158 𝑐𝑚2 in real world coordinates.  

     

    This Area Per Pixel(App) increases as a square function 

of distance from the camera. Hence if the distance of the object 

from the camera is x cm, then the area represented by each 

pixel at that distance will be 
𝑥

50
∗ 0.00053511582. Hence, the 

real world area is given by the following 

 

𝐴𝑟𝑒𝑎 = ∑ (𝐴𝑃𝑃 ∗  (
𝐷𝑖

50
)

2

)𝑁
𝑖=1             (6) 

Where, 

• N  =  number of green pixels 

• 𝐷𝑖   =  Depth of each pixel 

• 𝐴𝑝𝑝 =  Area per pixel at depth of 50 cm 

 

The following flow-chart explains the process: 

 



 

 

        
       (a)                      (b) 

 

 

               
      (d)                       (c) 

 

 

0.2518 sq. m. 
 

FIGURE. 17. Leaf Area Estimation flow-chart (a) Rectified 

image, (b) Disparity Map, (c) Median filter application for 

smoothening and (d) Image for area calculation 

6. Results and discussion 

Our imaging system consisting of a pair of RGB stereo 

cameras and a pair of flashes is setup to optimize low motion 

blur, capture increased depth-of-focus, and uses low 

illumination power for fast-recycle times permitting high-

frame rates. This camera and illumination design maintains 

high image quality at high vehicle velocities and enables 

deployment on large scales. The imaging system is mounted 

onto the side of the farm vehicle facing the fruit wall. 

Depending on the size of the fruit zone a distance of 0.9 to 

1.5m is maintained between the imaging system and the fruit 

zone. The farm vehicle was driven at 1.5m/s through each row 

and the images were captured at 5Hz. 

The datasets were collected from different vineyards 

across California. In each field calibration tags were put up 

randomly in 10 rows and for 2 vines in each of the selected 

rows. For shoot count estimation the ground truth was 

measured on these rows manually by 2 people. Whereas, for 

leaf area measurement the sensor data collected from a PAR 

sensor was used as ground truth. The sensor values were 

regularly sampled from start to end of a tag. Canopy light 

penetration as well as ambient light data were recorded. These 

values were used to find the correlation between the value 

 1 −
𝐶𝑎𝑛𝑜𝑝𝑦 𝑙𝑖𝑔ℎ𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑙𝑖𝑔ℎ𝑡
  and algorithm output.  

 
For testing the accuracy of leaf count estimation 

algorithm, 32 images from a dataset containing the images of 

Flame Seedless vines were randomly selected. These images 

were hand labelled for marking and counting visible leaves in 

the images.  

Fig.19 and Fig.20 show the linear regression curves for 

leaf count estimation and leaf area estimation respectively. The 

correlation coefficient for leaf count estimation is 0.798 and 

that for leaf area estimation is 0.69. The performance of the 

system for shoot count estimation can be analyzed by the F1 

score given in table 1. 25 images were randomly picked and 

the visual shoot count in the images was done manually to 

obtain the F1 score.  

 

Precision Recall F1 

Score 

0.86 0.84 0.85 

Table 1. Precision recall and F1 score 

    

Each vine has an average length of 14 feet. Which then 

converts to 4.2672 meters. Thus this helps to get ground truth 

shoot count per meter for each of the vine. Then visual counts 

for these images covering calibration vines was divided by 

difference of real world x coordinate values obtained from the 

disparity map at both the ends of calibration plots to get visual 

shoot count per meter.  
To find the correlation between visual shoot count per meter 

and ground truth shoot count per meter, we use Pearson’s 

correlation. Correlation value was calculated to be 0.88. The 

correlation graph is described in figure 18.  

 

 
 

FIGURE 18 Correlation graph for ground truth shoot count per meter vs 

algorithmically calculated shoot count per meter 



 

 

 

FIGURE. 19 Linear Regression Curve for Leaf Count Estimation 

 

FIGURE. 20 Linear Regression Curve for Leaf Area Estimation 

7. Conclusion 

It has been known that shoot density plays an important 

role in grower decision making process regarding storage, 

shipment, crop management and market price. Thus if there 

exists an algorithm that can accurately estimate this parameter, 

it can add economic value to the vineyard industry.  

 

The quantitative analysis shows that there exists a 

correlation between the visual shoot count per meter and the 

actual shoot count per meter. The algorithm is validated by a 

high F1 score of 0.85 and the existence of correlation between 

visual count and ground truth can be validated by the 

correlation coefficient value of 0.88. And for leaf area analysis, 

it can be deduced that, there exists a correlation between the 

PAR sensor data and estimated leaf area. The low value of the 

R1 correlation coefficient might be attributed to the variance 

in PAR data collection and vine image collection. Further 

study is required to resolve this discrepancy. The work also 

shows that the leaf count estimation algorithm has a correlation 

coefficient of 0.798, with the manually ground truthed images. 

The future work would estimate the correlation between the 

total number of leaves counted in a vine and the algorithm 

output.     
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