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Abstract

Across a majority of pedestrian detection datasets, it
is typically assumed that pedestrians will be standing up-
right with respect to the image coordinate system. This
assumption however, is not always valid for many vision-
equipped mobile platforms such as mobile phones, UAVs or
construction vehicles on rugged terrain. In these situations,
the motion of the camera can cause images of pedestrians
to be captured at extreme angles. This can lead to very
poor pedestrian detection performance when using stan-
dard pedestrian detectors. To address this issue, we propose
a Rotational Rectification Network (R2N) that can be in-
serted into any CNN-based pedestrian (or object) detector
to adapt it to significant changes in camera rotation. The ro-
tational rectification network uses a 2D rotation estimation
module that passes rotational information to a spatial trans-
former network [12] to undistort image features. To enable
robust rotation estimation, we propose a Global Polar Pool-
ing (GP-Pooling) operator to capture rotational shifts in
convolutional features. Through our experiments, we show
how our rotational rectification network can be used to im-
prove the performance of the state-of-the-art pedestrian de-
tector under heavy image rotation by up to 45%.

1. Introduction

Pedestrian detection is an active research area in com-
puter vision and has rapidly progressed through the recent
decade. There are many benchmark pedestrian detection
datasets for learning and evaluation [6, 10, 7, 4]. One com-
mon setting in these datasets is that the camera’s y-axis
is roughly aligned to the direction of gravity. This means
that pedestrians are captured in the vertical direction be-
cause pedestrians usually stand upright on the ground. This

Figure 1. Upper: Schematic diagram of how the proposed ro-
tation rectification network (blue) is inserted into a CNN-based
pedestrian detector (yellow). Lower: Sample detection results
produced by a state-of-the-art pedestrian detector (left) and with
the R2N inserted (right). Inserting the R2N increases the robust-
ness of the network to image rotation and decreases the miss rate
of detection.

“upright assumption” in benchmark datasets distinguishes
pedestrians from many objects in the scene. Much work
has been devoted to designing features [4, 9] or model ar-
chitectures [29, 21, 25] to learn the appearance of upright
pedestrians.

However, this upright assumption may not always be true
in real-world situations where the camera orientation can be
highly dynamic. For example, when recording a video with
a mobile phone camera, the angle of the camera can vary
wildly as one walks or runs. For cameras installed on con-
struction vehicles, the upright assumption is easily invali-
dated when recording video over rough terrain. In both of
these examples, the projection of pedestrians in the image
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can be at extreme angles of rotation. Detecting pedestri-
ans in such situations is difficult with current state-of-the-art
models.

One straightforward way to achieve rotational robustness
for pedestrian detection is to simply increase the size of
the training data to include more instances of pedestrians
imaged at an angle. When new data is not available, one
can also augment the data [26] by creating new training
examples from rotated images. While such a brute-force
approach can certainly lead to improvements, simply creat-
ing more data does not necessarily address the fundamental
problem of understanding and modeling image rotations.

An alternative solution is to attempt to infer the rotational
distortion of the image and to remove the effect of that dis-
tortion prior to detection within a unified rotation-invariant
detection network. However, estimating rotational changes
in an image is difficult with the current paradigm of convo-
lutional feature extraction because they are based on a rect-
angular spatial decomposition of the image. In other words,
rotational changes in image content can produce very dif-
ferent feature responses in the upper convolutional layers of
a convolutional neural network (CNN).

In order to facilitate a smoother change in convolutional
feature responses due to image rotation, we propose the
use of a novel Global Polar Pooling (GP-Pooling) operator
which converts rectangular convolutional feature responses
to a polar grid system. Using this polar coordinate sys-
tem, rotations of the input images only result in translational
shifts of the polar features maps, making it easier for higher
level convolution layers to model image rotation. In this
way, our proposed GP-Pooling operator gives a deep neural
network the ability to encode image rotations more effec-
tively.

In order to obtain rotational invariance during detection
we propose a rotational rectification network (R2N) that
can be flexibly inserted into an intermediate layer of a gen-
eral detection network. The R2N uses a CNN with a GP-
Pooling layer to estimate the rotation angle present in the
images. Then the estimated rotation θ is passed to a spa-
tial transformer network to undistort the image features. An
overview of the overall network architecture is illustrated in
Figure 2. We show that after removing the effect of rotation
inside a network, the general detector can be easily adapted
to work on pedestrians imaged at arbitrary rotation angles.

The main contributions of our work are summarized
as follows: (1) we propose a Global Polar Pooling (GP-
Pooling) operator, which can be used to encode the radial
distribution of features within a general CNN architecture
and (2) we propose a rotational rectification network (R2N)
that can be inserted into a wide range of CNN-based detec-
tors to achieve rotational invariance.

2. Related Work
Rotational Robustness in CNNs. The existing methods to
incorporate CNN with rotational robustness can be split into
two categories. The first category methods add robustness
by manipulating the images or feature maps. Prior works
[1, 14, 11, 8, 13] achieve rotational robustness by augment-
ing the input images on the fly and fusing the response in
the upper layer of the network. Dieleman et al. [5] copy the
feature responses from intermediate layers in four 90◦ an-
gles and compress them by their proposed operators, which
achieves rotational robustness in a compact way. However,
by augmenting the data, these methods are only robust to
a discrete set of rotations instead of 360◦ continuous rota-
tions. This does not directly address the fundamental prob-
lem of incorporating rotation rectification in CNNs.

[12] introduce a general warp framework called Spa-
tial Transformer Networks to enable affine transformations
with differentiable sampling inside the network. It achieves
transformation invariance within CNN architectures very
efficiently without data augmentation. An important point
which is often overlooked is that the design of the local-
ization network whose purpose is to estimate transforma-
tion parameters is not explored in the original work. They
use two baseline CNNs as the localization networks in the
spatial transformer: (1) two fully-connected layers; (2) a
CNN with two convolutional and two max pooling layers.
The models are evaluated on the distorted MNIST dataset.
However, the MNIST dataset is small and has low resolu-
tion images which is not a strict criteria to judge transfor-
mation invariance of a network. In other words, the design
of a network with natural transformation invariance is still
an open problem. Note that our work is complementary to
the spatial transformer because our proposed rotation esti-
mation module with GP-Pooling operators can be viewed as
an expert localization network with natural rotation invari-
ance.

On the other hand, the second category methods achieve
rotational robustness by modifying filters within CNN ar-
chitectures instead of manipulating the data. Cohen et al.
[2, 3] apply kernel-based pooling to sample responses in
symmetry space such that only the least important features
are lost at each layer. Prior works [19, 30, 20, 22] replicate
and transform the learned canonical filters in a finite set of
orientations and then fuse the output responses at each layer
to achieve rotational robustness. However, these methods
are also robust to only a discrete set of rotations. Instead,
our proposed GP-Pooling operator is able to add rotational
robustness to general CNN architectures in 360◦ continuous
rotations.

H-Nets [27] replace regular CNN filter with complex
circular harmonics and is also able to capture continuous
rotational changes. But H-Nets assume the learned filters
are in the harmonic wavelets space. Instead, GP-Pooling



Figure 2. Architectural Overview. Rotation rectification network (R2N) (cyan) is inserted into intermediate layer of pre-existing CNN-
based pedestrian detector (yellow). R2N uses rotation estimation network (see Figure 4) with GP-Pooling (gray) operators to estimate
rotation angle (blue). Estimated rotation angle θ is passed to Spatial Transformer (green). R2N warps image features to remove global
rotation. Last layer (yellow) yields tight rotated bounding boxes.

does not impose any assumption on the image filters. More-
over, H-Nets is designed to learn local rotational robust fil-
ters while GP-Pooling operator focuses on global rotational
changes. More importantly, most existing methods only test
rotational robustness on synthetic tasks such as digit recog-
nition from MNIST. Our proposed GP-Pooling operator is
able to succeed on real-world task, namely, pedestrian de-
tection on the Caltech Pedestrians dataset.

Detection More recent detection methods are based on re-
gion proposals. They perform detection by classifying re-
gion proposal of images and regressing the bounding box
simultaneously. For example, Ren et al. [23] introduce a
Region Proposal Network (RPN) to enable nearly cost-free
region proposals and propose an unified detection frame-
work. Liu et al. [17] introduce default boxes which tiles
input images and then regress the offset for each box in the
work of Single Shot MultiBox Detector (SSD). In the con-
text of pedestrian detection, Zhang et al. [29] analyze the
performance of Faster-RCNN on pedestrian detection and
propose a simple yet powerful baseline for pedestrian de-
tection based on RPN. In many of these methods, the region
proposals are represented by axis-aligned rectangles, which
are not suitable for detecting pedestrians imaged at an an-
gle. To address this issue, Ma et al. [18] propose a novel
framework to detect text with arbitrary orientation in natu-
ral scene images. In their work, they present the Rotation
Region Proposal Networks (RRPN) to generate rectangular
proposals at different rotations instead of axis-aligned pro-
posals only. This approach is limited because the RRPN
can only deal with a discrete set of rotations and it is only
applicable to proposal-based detection network.

Figure 3. Left: GP-Pooling Operator. Feature map in polar coor-
dinates. Right: Feature Responses of GP-Pooling Operator. Input
rotations result in translational shifts of feature responses.

3. Global Polar Pooling (GP-Pooling)

In a CNN, pooling increases the receptive field and fil-
ters out the noisy feature responses from previous lay-
ers. Moreover, existing pooling operators, especially spatial
max pooling, are used frequently because of their robust-
ness to translation. In other words, translational changes
in image content can produce feature responses with trans-
lational shifts in existing spatial pooling operators. How-
ever, this is not the case for rotational changes. Current
paradigms of convolutional feature extraction are strictly
based on a rectangular spatial decomposition of the image
features. As a result, any rotational changes in image con-
tent can produce a very different feature response.

To achieve a smoother change in general CNN feature
responses due to rotational changes, we propose the Global
Polar Pooling (GP-Pooling) operator. This operator ex-
tends existing pooling operators from rectangular to a ra-
dial decomposition. It makes the global rotational changes
from the input image content easily recognizable in CNNs.
Specifically, the GP-Pooling operator represents convolu-
tional feature responses on a polar grid system such that any



in plane rotation from an input image results in translational
shift of the polar feature map. Then the translational shifts
can be used by the upper layers of the network to enable
rotation invariance.

The core idea of how GP-Pooling works is illustrated in
Figure 3. Inside the GP-Pooling operator, the feature maps
are represented in polar coordinate system. The origin is
defined at the center of the feature map. We note here that
while our pooling layer is designed primarily for in-plane
rotation about the image center, we find empirically that it
can handle moderate levels of off center rotation. To be con-
crete, a pixel P (x, y) of the feature map with width w and
height h can be represented in polar coordinate Pp(xp, yp)
by:

Pn(xn, yn) = (x− w

2
,−y + h

2
) (1)

Pp(xp, yp) = (
√
x2n + y2n, atan2(yn, xn)), (2)

where Pn(xn, yn) is the normalized coordinate based on the
center of the feature map.

The key difference of GP-Pooling from existing pooling
operators is that we define parameters of kernel size, stride
and padding along radial and angular axis in polar coordi-
nates. These parameters determine how the input feature
map is tiled into a grid. Inside each grid cell, a max op-
eration is then executed for pixels that fall into that cell. A
switch variable records the location of maximum activation.
Then, the gradient only flows back to this location during
backpropagation. This is illustrated in Figure 3, where the
input feature map is tiled with kernel size of π

4 , stride of π
4

and padding of 0 along angular axis. In this particular il-
lustrative example, this results in 8 angular sectors, each of
size π

4 radians. Each angular sector is further divided into
7 cells along radial axis. In practice, it is necessary to set
the stride and kernel size along the angular axis to be π

180 to
capture one degree of image rotation.

To demonstrate the functionality of converting rotational
changes to translational shifts, we visualize the output fea-
tures of the proposed GP-Pooling operator in Figure 3. We
take two MNIST images (28 × 28) as the input of the GP-
Pooling operator. The kernel size, stride and padding along
angular and radial axis is π

36 , π
36 , 0, 1, 1 and 0 respectively.

This results in an output features of size 20 × 72. We then
re-scale them to a size of 28×100 to obtain the same height
as the input image for better visualization. The results show
that the feature responses approximately shift leftwards or
rightwards when we rotate the input image.
Rotation Estimation Module. In order to estimate the ro-
tation parameter from images or image features efficiently,
the property of converting rotational changes to transla-
tional shifts is very useful. We insert multiple GP-Pooling
layers into the rotation estimation module in a multi-scale
manner and concatenate their output feature responses with
features from general spatial max pooling layer. The rota-
tion estimation module ultimately outputs the estimation of

rotation θ ranging from −π to π present in the input image
by solving a regression problem. A typical architecture of
our rotation estimation module embedded with GP-Pooling
operator is shown in Figure 4.

4. Rotational Rectification Network (R2N)
We describe the rotational rectification network (R2N)

and how we fit it into a general pedestrian detector to
achieve rotation-robust detection. The R2N takes two in-
puts: (1) the input image and (2) an intermediate feature
map from an intermediate layer of the detection network,
then it outputs a warped image feature where the global
rotation has been removed. In essence, we transform a
complex task of arbitrary-oriented pedestrian detection to a
much easier task of upright pedestrian detection. The over-
all architecture is shown in Figure 2. The R2N is composed
of a rotation estimation module and a spatial transformer.
We use the estimation of rotation θ from the rotation esti-
mation module to construct a 2×3 transformation (rotation)
matrix M .

M =

[
cosθ −sinθ 0
sinθ cosθ 0

]
(3)

The transformation matrixM is then passed to the spatial
transformer to warp the input feature map. This warping
removes the effect of global rotation distortion present in the
image features prior to detection. Note that in our paradigm,
the spatial transformer is used only for image warping. The
warp parameters are provided by our specific localization
net1– the rotation estimation module – which is designed
for increasing robustness to image rotation.

We emphasize here again, that the R2N is a separate
module, independent of the pedestrian detector. It can work
as a plugin and be inserted into an intermediate layer in
many CNN-based pedestrian detectors to achieve rotation-
invariant detection. In practice, we usually insert the R2N
module into the feature extraction part of the network (e.g.,
after the pool3 layer of the VGG part). The R2N can en-
able the final layer of pedestrian detector to yield the tight
rotated bounding boxes based on the estimated rotation θ.

5. Datasets
In order to evaluate the performance of our GP-pooling

layer and our rotation invariant R2N network, we need a
dataset with images of people undergoing heavy rotation.
In order to perform a detailed quantitative analysis, we uti-
lize a rotated MNIST and a rotated Caltech datasets, where
the digit and pedestrian images are synthetically rotated at
various angles. In order the verify the performance on real
rotated data in the wild, we collected a YouTube Wearable

1Please refer to [12] for more details about the spatial transformer and
definition of localization net.



Figure 4. Architecture of a rotation estimation module embedded with the GP-Pooling (blue) operator. This network composes of convolu-
tion (red), max pooling (yellow), GP-Pooling (blue), batch normalization (gray), concatenation (green), flatten (magenta), fully connected
layer (cyan). The rotation estimation module takes images or image features as the input. The final regression layer produces the estimation
of rotation θ present in the input.

Video dataset, where images are captured by people with
wearable cameras during dynamic activities (e.g., running,
riding a bike) such that pedestrians are imaged at various
angles.

5.1. Rotated MNIST

The rotated MNIST dataset is created by rotating images
from the MNIST dataset [16]. The rotation angle is uni-
formly selected from −90◦ to 90◦ (the upper half of a cir-
cle). The rotated MNIST dataset contains 10000 training
images, 2000 validation images and 50000 testing images,
each with a size of 28×28. We emphasize here that this
dataset is not used to evaluate object classification but rather
to evaluate the performance of image rotation estimation.

Figure 5. Sample images from the rotated MNIST dataset.

5.2. Rotated Caltech

We use a rotated version of the Caltech pedestrian dataset
to evaluate the ability of a pedestrian detector to detect peo-
ple imaged at varying angles of rotation. The original Cal-
tech dataset contains 6 video sequences for training and 5
for testing. Since consecutive images are very similar, im-
ages are sampled every 3 frames in training set and every 30
frames in testing set. This results in 42786 training images
and 4024 testing images in our rotated Caltech dataset. We
rotate all images by uniformly selecting the rotation angle
from −90◦ to 90◦. The rotation angles are saved as ground
truth for training and testing the rotation estimation module.

Figure 6. Sample images from the rotated Caltech dataset.

5.3. YouTube Wearable

In order to evaluate the performance of our rotation in-
variant R2N in the wild, we create the YouTube Wear-
able dataset where images contain pedestrians with vari-
ous poses without manual rotation. We obtain 100 short
YouTube videos recorded by people with wearable cameras.

To have a high possibility to contain pedestrians within im-
ages, we cut 4000 frames from videos where images are
taken outdoor in the city. Around 500 images contain pedes-
trians. We label the bounding boxes manually and remove
boxes under 400 pixels.

Figure 7. Sample images from the YouTube Wearable dataset.

6. Evaluating the Rotation Estimation Module
The success of the R2N module to enable rotation invari-

ant detection relies heavily on the precision of the estimated
rotation θ. As such, it is critical to estimate the image ro-
tation precisely. In this first experiment, we evaluate the
accuracy of the rotation estimation module using the pro-
posed GP-Pooling operator on rotated MNIST and rotated
Caltech dataset.

6.1. Rotation Estimation on Rotated MNIST

In order to see how the rotation estimation module works
independently despite of the R2N, we evaluate three base-
line rotation estimation modules. Descriptions of the base-
lines are in Table 1 (first three rows). We train all baselines
using rotation angle as the ground truth and evaluate them
based on root of sum of squared error.
Training Details. we use Euclidean loss during training.
The training takes 160 epochs with batch size of 128 for all
models. Adam optimizer is used with learning rate of 0.001,
two momentums of 0.9 and 0.999.
Results. In Table 3, we find that the 2-layer fully con-
nected network cannot work very well because the network
has too few neurons and simple structure. Importantly, the
GP-Pooling+CNN outperforms the CNN by achieving 22%
lower error (from 11.26◦ to 8.78◦), showing that the adding
GP-Pooling operator to the network is able to increase ro-
bustness to image rotation.
Visualization. To understand what has been learned in the
rotation estimation module (GP-Pooling+CNN), we extract
the feature responses before the fc3 layer as a vector repre-
sentation for each image patch. For a set of 7 random digit



Name With STN?[12] Description
2FC No a 2-layer fully connected network (20 and 1 neurons per layer respectively).
CNN No a standard CNN described in Table 2.
CNN+GP-Pooling No Two GP-Pooling operators are inserted into the CNN in 2nd row after the conv1 and

conv2 layers before concatenating with the pool2 features.

STN-2FC [12] Yes a spatial transformer with 2FC as the rotation estimation module.
STN-CNN [12] Yes a spatial transformer with CNN as the rotation estimation module.
STN-CNN+GP-Pooling Yes a spatial transformer with CNN+GP-Pooling as the rotation estimation module.

Table 1. Baselines used in two rotated MNIST experiments.

Layer conv1 ReLU pool1 conv2 ReLU pool2 fc3 ReLU dropout fc4 sigmoid
Units 16 16 16 32 32 32 20 20 20 1 1

Feature 28×28 28×28 14×14 14×14 14×14 7×7 1 1 1 1 1

Table 2. Topology of the CNN used in the rotated MNIST dataset.

images, we find the 19 nearest neighbors (Figure 8). We
observe that the nearest neighbors are not necessarily the
same digit. More importantly, the nearest neighbors have
the same rotation angle as the query image which seems to
indicate that the learned feature representation is encoding
digit angle instead of digit label.

6.2. Rotation Estimation with Spatial Transformer
Network (STN) on Rotated MNIST

As our proposed rotation estimation module with
the GP-Pooling operator is similar but complimentary
to the spatial transformer (STN), we evaluate the STN
with/without our GP-Pooling to see if the GP-Pooling is
helpful in STN. we use the same rotation estimation mod-
ules evaluated in section 6.1. Descriptions of the baselines
are in Table 1 (last three rows). As we estimate the ro-
tation parameters, the transformation matrix of the STN is
restricted to a rotation matrix in the form of Equation 3. We
train three baselines STNs using digit labels as the ground
truth because STN is trained with digit classification task
in MNIST dataset. However during testing, in order to see
how the GP-Pooling operator affects the performance of ro-
tation estimation, we do not care about the predicted digit
but evaluate the estimation of rotation produced by the rota-
tion estimation module, an intermediate output of the over-
all network.

Training Details. As we are solving a classification task
during training, we use Cross Entropy Loss instead of Eu-
clidean Loss. All other training details are the same as in
section 6.1.

Results. In table 4, we observe that, while STNs are trained
with classification task without using rotation angle, the
rotation estimation module is learning to estimate the im-
age rotation. A stronger rotation estimation module (STN-
CNN) can have lower estimation error than a simpler model
(STN-2FC). Additionally, we found that adding the GP-
Pooling operators to the rotation estimation module helps
improve the accuracy of rotation estimation even with the

Methods Error (degree)

2FC 44.91◦

CNN 11.26◦

GP-Pooling+CNN 8.78◦

Table 3. Rotation estimation error on rotated MNIST dataset. 2FC,
CNN and GP-Pooling+CNN are the rotation estimation modules
defined in Table 1.

Methods Error (degree)

STN-2FC [12] 23.37◦

STN-CNN [12] 18.00◦

STN-GP-Pooling+CNN 16.38◦

Table 4. Rotation estimation error on Rotated MNIST dataset with
Spatial Transformer Network.

Figure 8. Feature Space Visualization. Nearest neighbors of probe
images (left column). Feature representation encodes digit angle,
not digit label.

spatial transformer.

6.3. Rotation Estimation on Rotated Caltech

As the rotated MNIST dataset is very simple and has
only low resolution images, it can not be strict dataset to
judge the rotation invariance of a network. As such, we also
evaluate the rotation estimation module on rotated Caltech
dataset, where images have much higher resolution (480 ×
640) and more complex contents compared to the MNIST.
However, the task of pedestrian detection on Caltech dataset
is beyond the scope of the spatial transformer, so the com-
parison experiments with STN are not applicable here. On
the other hand, the task of horizontal line detection is very



Methods Error (degree)

Zhai et al [28] 38.79◦

Lezama et al [15] 29.26◦

VGG-S [24] 18.33◦

GP-Pooling+VGG-S 15.82◦

Table 5. Results on rotated Caltech dataset. The topology of the
GP-Pooling+VGG-S is described in Figure 4 and Section 5.2.

similar to the rotation estimation (estimation of rotation is
the slope of horizontal line), so we compare our rotation
estimation module with two state-of-the-art horizontal line
detection algorithms.
Baselines.

1. Zhai et al. [28]: a state-of-the-art CNN-based horizon-
tal line detector.

2. Lezama et al. [15]: a traditional edge-based horizontal
line detector.

3. VGG-S [24]: the small version of VGG network.
4. GP-Pooling+VGG-S: two GP-Pooling operators are

inserted to VGG-S after the conv2 and conv5 layers
before concatenation. The topology of the network is
shown in Figure 4. All convolution layers have kernel
size of 3, stride of 1 and padding of 1. All max pooling
layers have kernel size of 2 and stride of 2.

Training Details. For baseline 1 and 2, we follow the train-
ing procedure from the original work. For baseline 3 and
4, We fine-tune both networks from the VGG-S model pre-
trained on ImageNet (up to the pool5 layer) for 16 epochs
with batch size of 4, learning rate of 0.000001 and weight
decay of 0.00005.
Results. In Table 5, we observe that [29] and [15] is not
working as well as VGG-S and GP-Pooling+VGG-S. This
is because both two horizontal line detection algorithms
heavily rely on the geometric priors which are not always
true on the rotated Caltech dataset, especially when the im-
age rotation is heavy. Importantly, when comparing GP-
Pooling+VGG-S with VGG-S, we can achieve lower error
in degree by 13.7% (from 18.3◦ to 15.8◦) by simply adding
two GP-Pooling operators to the rotation estimation mod-
ule. This demonstrates again that the proposed GP-Pooling
operator can increase robustness to image rotation and im-
prove rotation estimation.

7. Evaluating the Rotational Rectification Net-
work (R2N)

In order to see our R2N can enable rotation invariance in
CNN-based pedestrian detectors, we now evaluate the per-
formance of two end-to-end pedestrian detectors with R2N
on original/rotated Caltech and YouTube Wearable dataset.
Baselines. Faster-RCNN2 [23] and RPN-BF3 [29] are very

2The Faster-RCNN we used is pre-trained on VOC2007 dataset. We
only evaluate the class of “person” from the total 20 classes in VOC2007.

3For RPN-BF, we have not used the random forest part compared to the

strong pedestrian detectors, we use four variants of them as
the baselines for comparative analysis:

1. Base4: Faster-RCNN is trained on VOC2007 dataset
and RPN-BF is trained on original Caltech dataset.

2. Base+Aug: Faster-RCNN and RPN-BF fine-tuned on
the mixture of original and rotated Caltech dataset for
better domain adaptation.

3. Base+R2N: We train the Faster-RCNN on VOC2007
dataset and RPN-BF on the original Caltech dataset,
and then insert the proposed R2N module after the
pool3 layer of both detectors without fine-tuning on
rotated Caltech dataset.

4. Base+R2N+GT: Instead of estimating the rotation
from the rotation estimation module, we pass the
ground truth of rotation to the STN such that all pedes-
trians within images lead to upright pose. This should
achieve upper-bound performance of the Base+R2N.

The evaluation metric for all following experiments is
the log-average miss rate on false positive per image (FPPI)
[6]. As is common practice, an intersection over union
(IoU) of 0.5 is used to determine true positives.

Results on Rotated Caltech. We now evaluate the ability
of our proposed R2N to transform a pre-trained pedestrian
detector into a rotation-invariant pedestrian detector. We
begin with experiments on rotated Caltech dataset. Results
are shown in Figure 9 (left). The average miss rate (FPPI)
of the base detectors (Faster-RCNN and RPN-BF) have a
maximum of 89.8% and 83.3%, respectively, because both
detectors are only trained on datasets without rotated pedes-
trians. By fine-tuning the detectors on a mixture of origi-
nal and rotated Caltech dataset, the performance of Faster-
RCNN and RPN-BF is increased 1% and 20% respectively.
This is expected as better data augmentation is known to
improve performance.

If we add the R2N to each detector, the performance in-
creases by a large percentage: 11.0% for Faster-RCNN and
44.6% for RPN-BF (the average miss rate decreased from
83.3% to 57.6%. This result demonstrates that adding ro-
tation invariance via our R2N module to a CNNs is much
more effective at improving detection performance than
data augmentation. We emphasize here, that we do not fine-
tune the two baseline models after adding the R2N module.
This shows that the R2N module works like a plugin with-
out additional tuning.

Additionally, when comparing baseline base+R2N with
base+R2N+GT, the performance is very close. This demon-
strates that, in the case of no fine-tuning, the performance of
base+R2N almost achieve the upper bound on rotated Cal-
tech dataset. Qualitative results are shown in Figure 10.

original work.
4Base represents one of the general pedestrian detectors: Faster-RCNN

or RPN-BF.
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Figure 9. Quantitative results on rotated Caltech (left), original Caltech (middle) and YouTube Wearable dataset (right). Intersection of
Union (IoU) of 0.5 is used to determine true positives.

Figure 10. Detection Results. Top 2 rows: rotated Caltech dataset. Bottom 2 rows: YouTube Wearable dataset.

Results on Original Caltech. We want to see how the
added R2N module effects the performance of original
pedestrian detector under upright images. Therefore, the
second experiment focus on original dataset instead of a ro-
tated one. When evaluated on the original Caltech dataset
(Figure 9 middle), we found that the performance drops 1%
and 3% for RPN-BF and Faster-RCNN respectively after
inserting the R2N to the original detector. This drop is rea-
sonable because we do not jointly fine-tune the networks af-
ter inserting the R2N module and the estimation of rotation
from the rotation estimation module is not perfectly precise
(i.e. it might add some rotations to the upright pedestrians.).
Note that the performance of Faster-RCNN series is much
worse than RPN-BF series due to the fact that Faster-RCNN
is pre-trained on VOC2007 dataset not Caltech.

Results on YouTube Wearable. In order to see how our
R2N performs on real-world rotated image data in the wild,
we compare the Faster-RCNN and RPN-BF with/without
our R2N on the YouTube Wearable dataset. Quantitative

and qualitative results are shown in Figure 9 (right) and 10
respectively. Compared to the results on Caltech dataset,
Faster-RCNN+R2N performs much better, which might re-
sult from similar appearance and scale of pedestrians be-
tween YouTube Wearable and VOC2007 dataset. More im-
portantly, adding the R2N increases the performance by
18.2% for Faster-RCNN and 11.7% for RPN-BF although
we do not fine-tune the detectors on this completely new
dataset. This demonstrates again that the proposed R2N can
add rotation invariance to a detection network immediately
without joint fine-tuning such that the detector is able to de-
tect pedestrians with various poses.

8. Conclusion
We introduce the GP-Pooling operator which converts

rotational changes to translational shifts and thus enables
CNNs to encode rotational information. We then propose
a rotational rectification network (R2N) and apply it to a
real application of oriented pedestrian detection. We show



that the use of R2N can immediately help achieve rotation
invariance without any fine-tuning given a detector trained
on datasets with only upright pedestrians. Our approach
enhance the performance of a state-of-the-art detector under
heavy image rotation by 44.6% on rotated Caltech dataset.
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