
Human Movement Science 24 (2005) 532–543

www.elsevier.com/locate/humov
Influence of swing leg movement on running stability

Heidi Knuesel a,b,*, Hartmut Geyer b, Andre Seyfarth b

a Laboratory for Biomechanics, ETH-Hoenggerberg, HCI E451, 8093 Zurich, Switzerland
b Locomotion Lab, University of Jena, Dornburgerstrasse 23, 07743 Jena, Germany

Available online 5 October 2005
Abstract

The aim of this study was to investigate the role of the swing leg movement on running stability.
A simple model was used describing a forward hopping motion. The model consisted of two sub-
models, namely a spring-mass system for the stance phase and a functional control model for the
swing phase (represented by a passive or actively driven pendulum). To verify the main simulation
results, an experimental study on treadmill running was performed. The results of the model indi-
cated that for certain running speeds and pendulum lengths, the behavior of the mechanical system
was stable. The following characteristic dependencies between the model parameters were observed.
(1) Pendulum length and hip muscle activity determined running height and therefore swing dura-
tion. (2) Horizontal velocity was inversely related to leg angle of attack. Increased speed corre-
sponded to flatter leg angles at touch-down, which is in agreement with experimental studies and
previous predictions of spring-mass running. It was shown that a biologically motivated control
approach with oscillating leg movements is well capable of generating stable hopping movements.
Due to its simplicity, however, the monopedal model failed to explain more detailed mechanisms like
the swing-leg to stance-leg interaction or the functional role of the leg segmentation. This simple
model is therefore considered as a functional mechanical template for legged locomotion, which
could help to build more elaborate models in the future.
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1. Introduction

Running is the preferred way of humans for locomoting at higher speeds. Considering
only a single leg, the gait cycle consists of a stance and a swing phase. Blickhan (1989) pro-
posed a planar spring-mass model to describe the stance phase of running. The simulation
and study of such dynamic models is useful to investigate functional aspects of human
locomotion.

Since contact times are very short when running fast, it is important to know which
mechanisms could provide the required movement stability. A number of studies investi-
gating selected aspects of running, like the influence of kinematic conditions on the impact
generation in heel-toe running (Gerritsen, Van den Bogert, & Nigg, 1995). Interestingly,
only few models have been published that suggest strategies for achieving stable running
or hopping movements (Herr, Huang, & McMahon, 2002; Herr & McMahon, 2001;
McGeer, 1990; Seyfarth, Geyer, Gunther, & Blickhan, 2002; Seyfarth, Geyer, & Herr,
2003). In a simulation study of continuous running, Seyfarth et al. (2002) demonstrated
that even a simple �fixed angle of attack� strategy would be sufficient to obtain self-stabi-
lizing running patterns, provided that an elastic leg operation is present. This corre-
sponded nicely to the great success of the hopping robots of Raibert and coworkers
(1986), which controlled the leg angle during swing depending on forward speed. In sim-
ulation studies by Herr (Herr et al., 2002; Herr & McMahon, 2001) and Seyfarth (Seyfarth
& Geyer, 2002; Seyfarth et al., 2003), it was further demonstrated that the backward rota-
tion of the swing leg prior to landing, called leg retraction, is a powerful strategy to further
enhance running stability. McGeer (1990) presented results of a passive bipedal running
machine, where an appropriate choice of design parameters enabled the machine to run
without any active control. To move the legs backwards and forward, a torsional spring
was added to the hip joint resulting in an elastically enforced pendulum motion during
swing phase.

The control of the swing leg seems to be crucial for the appropriate placement of the
swing leg at touch-down, which influences running stability. The question remains how
the observed swing leg motion during running can be explained. As suggested in the liter-
ature, the �swing phase of human gait may be described as a ballistic motion� (Mochon &
McMahon, 1980). It was concluded that it is feasible to compare swing leg movement to a
pendulum-like motion.

The aim of this work was to investigate the influence of a pendulum-like swing leg
movement on the stability of spring-mass running.

2. Model

To keep the model simple, only one leg was used to describe forward hopping move-
ments. This situation is similar to kangaroo hopping, where both legs are working in par-
allel. For systematic reasons, it was decided to exclude the mechanical interplay of the
stance and swing leg dynamics at this stage of modelling. In the future, this might help
to clarify the importance of two-legged systems in nature.

The monopedal running model of this investigation consisted of two sub-models. (1) The
spring-mass model (Fig. 1a) described the movement of the center of mass (COM) during
the stance phase, while (2) the pendulum model (Fig. 1b) simulated the leg orientation dur-
ing the swing phase. In contrast to previous studies, the movement of the swing leg was not
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Fig. 1. (a) The stance phase of running is described by the spring-mass model. (b) Swing leg movement is depicted
by the pendulum model describing the motion of a mathematical pendulum. See text for details.
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prescribed but represented a simple mechanical system with its own natural behavior. The
initial conditions for the pendulum were derived from the leg configuration at the end of the
stance phase. Since the body was reduced to a point mass during the stance and flight phase,
the pendulum sub-model merely acted as a leg angle controller and, hence, had no physical
representation. In a physical sense, the pivoting point of the pendulum was thought to be
fixed, whereas the pendulum motion started at take-off. Therefore, the pendulum sub-
model represented just an abstract control model that described the movement of the swing
leg (backward and forward swing – retraction and protraction, respectively). Although this
sub-model has no physical representation within the spring-mass model, it is thought to
help to improve the understanding of the swing leg function.

In the following, the equations of motion for the two sub-models as well as simulation
details are presented.

2.1. Stance phase

A simple mechanical spring represented the action of the stance leg. During the first half
of the stance phase, the leg spring (stiffness k, rest length l0) was compressed and stored
energy, which was released in the second half of the stance phase resulting in an acceler-
ation of the COM counteracting the permanent influence of gravity (Fig. 1a). The accel-
eration of the mass in horizontal and vertical direction was given by Eqs. (1) and (2) with
body mass m, gravity g = 9.81 m/s2 and aleg depicting the leg angle measured with respect
to the ground:

ax ¼ � k � Dl
m

� cosðalegÞ; ð1Þ

ay ¼
k � Dl
m

� sinðalegÞ � g. ð2Þ

Here, Dl denoted the amount of leg shortening Dl(t) = l0 � l(t). To minimize the notation,
time dependent variables as Dl(t) or v(t) are abbreviated to Dl and v.

The mechanical energy of the system was given by the sum of kinematic, potential and
spring energy (E = 0.5mv2 + mgy + 0.5kDl2) with y describing the vertical position of the
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COM relative to the ground. During the flight phase, no elastic energy was stored, result-
ing in a simple dependency between apex height Dl and forward speed vx (Eq. (3)), with the
apex height representing the highest point in flight (vy = 0 m/s).

E ¼ 0:5mv2x þ mgyapex. ð3Þ
2.2. Swing phase

A mathematical pendulum of length lp and mass mleg described the change in leg angle
u (which was defined with respect to the vertical axis in counterclockwise direction) during
the swing phase (Fig. 1b). The equation of motion for the mathematical pendulum (Eq.
(5)) was derived from Eq. (4), with P representing the angular momentum and

P
iMi

the sum of acting torques.

d

dt
P ¼

X
i

Mi; ð4Þ

€u ¼ � g
lp

sinu. ð5Þ

The calculated rotation of the swing leg had no effect on the trajectory of the COM, which
followed a ballistic curve. Furthermore, there was no influence of the COM movement on
the pendulum, i.e., the pivoting point of the pendulum was fixed. As an extension of the
simple mathematical pendulum, an actively driven pendulum was considered by introduc-
ing a rotational spring at the pivoting point of the pendulum, representing hip muscle
activity. The rotational spring exerted a torque MS with a rotational stiffness c and rest
position u0 (Eq. (6)).

MS ¼ cðu0 � uÞ. ð6Þ

By applying Eq. (4), the swing dynamics for the actively driven pendulum were given by
Eq. (7).

€u ¼ � g
lp

sinu þ cðu0 � uÞ
mlegl

2
p

. ð7Þ

The parameters of the spring-mass model were set similar to those used by Seyfarth et al.
(2002): l0 = 1 m, m = 80 kg, k = 20 kN/m, u0 = 0� and mleg = 0.16 Æ m = 12.8 kg. The leg
mass was derived from anthropometric data (Winter, 1979).

2.3. Sub-models interaction

The two sub-models spring-mass model and pendulum model interacted only at two in-
stances within the gait cycle. (1) At take-off (TO), the pendulum was initiated by the angu-
lar configuration (angle, angular velocity) of the leg spring. TO took place when the actual
leg length l(t) exceeded the rest length of the leg spring l0, i.e., when l(t) P l0. (2) At touch-
down, the swing leg angle determined the initial orientation of the leg spring (angle of
attack aTD). Touch-down (TD) occurred when y 6 l0 sinðalegÞ.
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2.4. Initial conditions

The simulation of the model started at take-off. The initial leg angle at take-off (aTO,0)
and the initial horizontal speed (vx,0) had to be set very accurately, as they determined
whether stability could be reached or not. These parameters completely determined the
COM conditions and the initial conditions of the swing leg pendulum (angle, angular
velocity). Stability was reached with aTO,0 = 96� and vx,0 = 1.5 m/s.

2.5. Stability

For a given model configuration (system energy, pendulum length), running stability
was defined by the number of successful steps predicted by the model. The simulations
stopped if non-physiological conditions (e.g., y < 0 or aTD > 90�) were detected or – for
practical reasons – after executing 50 steps.

2.6. Implementation

Themodel was implemented in Simulink (TheMathwork, Inc.) and consisted of two sub-
models: the spring-mass model and the pendulum model. In the present simulation, the
ode45-integrator (Dormand-Prince) was used with a maximum step size of 0.001 s and a rel-
ative and absolute tolerance of each 10�8. The integrator ode45 proved to be fast and accu-
rate (energy fluctuations smaller than 0.01%) compared to other solvers provided by
Simulink.

3. Simulation results

3.1. Predicted leg angle kinematics

The time course of the leg angle during the gait cycle is shown in Fig. 2. The angle swept
during stance was nearly a linear function of time, while the touch-down and take-off
angles were symmetric with respect to the vertical axis (a = 90�).
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Fig. 2. Predicted leg angle tracings aleg(t) during stance and swing (MS = 0). The transition between stance and
swing (TO) is indicated by dots. (a) The angle swept during stance is nearly a linear function of time, whereas
swing phase can be divided into three sections: take-off (TO) retraction (A), protraction (B) and landing retraction
(C). (b) Leg angles characteristics is influenced by speed (vx = 0.6, 1.3, 1.7, 2.1 and 2.4 m/s) as indicated by the
varying angular range of motion.
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The transition of the leg angle trajectory from stance to swing phase was continuous in
value (i.e. leg angle) and in its first derivation (i.e. leg angular velocity). The tracing of the
leg angle during swing could be subdivided into three parts: take-off retraction (A), pro-
traction (B) and landing retraction (C). TO retraction was due to negative initial angular
velocity of the pendulum at take-off. After reaching the maximal posterior position, the
pendulum swung forward (protraction) in preparation of the next ground contact. Just
prior to touch-down, the pendulum was starting to swing again backward (landing
retraction).

Increasing horizontal velocity at constant pendulum length increased the leg angle
swept during stance, whereas stance and swing durations were not affected much by speed
(Fig. 2b). Higher velocities influenced pendulum dynamics by increasing the angular range
of TO retraction, faster protraction and increased landing retraction. All the predicted leg
angle trajectories had two common intersection points with a = 90�: one at mid-stance and
the other at mid-swing.

3.2. Model with pendulum-like swing leg (MS = 0)

For a range of system energies E and pendulum lengths lP, stable movement patterns
were predicted by the model (Fig. 3). Three types of stable solutions were present: hopping
on place, fixed point stability and bi-stability.

For a given pendulum length, stable solutions were present within a range of energies.
Let us consider the condition lP = 0.2 m in Fig. 3. At low energies, bouncing in place (with
aTD = aTO = 90� and vx = 0 m/s) was predicted. With higher system energies stable run-
ning patterns with nonzero horizontal speeds were observed. At highest energies, the solu-
tions became bistable with the characteristic system state parameters (yapex, vx, aTD)
alternating step-by-step. In the following, only fixed point stability is considered.

The values of the system�s state parameters were dependent on system energy and pen-
dulum length (Fig. 4). Apex height was merely influenced by pendulum length but not by
energy (Fig. 4a). In contrast, horizontal speed and angle of attack both depended on sys-
tem energy and pendulum length. High energies and short pendulum lengths corresponded
to high velocities (vx", Fig. 4b) and flat angles of attack (aTD#, Fig. 4c).
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Fig. 4. For all predicted stable fixed point solutions, the corresponding values of parameters (a) apex height yapex
[m], (b) horizontal speed during flight vx [m/s] and (c) angle of attack aTD [deg] are illustrated. The bar on right
hand side indicates the values of these parameters. Apex height is influenced by pendulum length and is
independent of energy, whereas horizontal velocity at flight and angle of attack both depend on pendulum length
and system energy.
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Fig. 5. (a) Apex height is dependent on pendulum length but not on system energy. Lines of constant system
energy are overlapping one another. (b) The relation between angle of attack and horizontal speed in flight is
reciprocally proportional and almost independent of pendulum length as indicated by the lines of constant
pendulum length.
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Fig. 5 further illustrates the dependencies between the model parameters. The apex
height was directly proportional to pendulum height independent of system energy
(Fig. 5a), i.e., the longer the pendulum the higher the flight trajectory. The relation
between horizontal speed and angle of attack was inversely proportional and almost
independent of pendulum length (Fig. 5b).

3.3. Model with elastically enforced pendulum

The model was further used to study the influence of hip muscle activity on running sta-
bility. This was simulated by introducing a linear rotational spring of stiffness c at the piv-
oting point of the pendulum. It was found that apex height was reduced with increasing
stiffness, resulting in shorter swing durations. Furthermore, longer pendulum lengths
could be stabilized. The reciprocal relationship between angle of attack and forward speed
(compare to Fig. 5b) was found to be independent of the rotational stiffness.

4. Experimental method

To verify the main simulation results, an experimental study on treadmill running (5
male and 4 female participants, age 28 ± 9 years, body mass 65 ± 6 kg, body height
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1.73 ± 0.09 m) was performed. Leg kinematics (Qualisys), ground reaction forces (GRF)
and electromyogram (EMG) of major leg muscles were measured. Sampling frequency
was set to 150 Hz for kinematics and 2000 Hz for GRF and EMG. Treadmill speed ranged
from 0.6 to 3.6 m/s with speed increments of 0.3 m/s. All participants were informed about
the experimental protocol and signed a declaration approved by the local ethics
committee.

The instances of touch-down and take-off were detected based on the low-pass filtered
force data (cutoff frequency 30 Hz, first order digital Butterworth filter). The leg axis was
defined based on hip, ankle and toe markers, resulting in the leg length (distance from hip
to the middle of ankle and toe) and leg angle (orientation of the connecting line relative to
the ground).

5. Experimental results

The results of the experimental study showed that leg kinematics was influenced by
speed (Figs. 6 and 7). With increasing speed, flatter angles of attack (Fig. 6a) were
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Fig. 7. (a) Leg angle tracings aleg during stance and swing of one subject at six different running speeds (vx = 0.6,
1.2, 1.8, 2.4, 3 and 3.6 m/s). Touch-down (TD) and the transition between stance and swing (TO) are indicated by
bold and fine circles, respectively. Touch-down and take-off of the contralateral leg (TDc and TOc) are marked by
bold and fine squares, respectively. (b) The angular velocity of the leg for a particular horizontal speed (2.4 m/s) is
shown. See text for details.
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observed, whereas touch-down and take-off leg angles were not symmetrical with respect
to the vertical axis (shifted forward by about 4�). Swing duration (	0.5 s) was hardly
affected by speed, whereas stance time clearly decreased with speed (Fig. 6b).

In Fig. 7a, leg angle tracings are shown for one participant. Higher velocities corre-
sponded to smaller leg angles at touch-down. Increasing speed resulted in larger TO
retraction and faster protraction. Furthermore, landing retraction was slightly increased
with speed. The instance of touch-down and take-off of the contralateral leg (TDc and
TOc) are indicated. In Fig. 7b, the angular velocity of the leg for one horizontal speed
(vx = 2.4 m/s) is shown. Between TO and TDc angular velocity was nearly kept constant.
The onset of swing leg protraction occurred shortly after TDc.

6. Discussion

The basic behavior of legs during locomotion could be described in terms of two prop-
erties: (1) the spring-like force development during leg compression in the stance phase and
(2) the oscillation of the legs around the hip including retraction during stance and
protraction during swing. So far, many studies looked at the mechanisms and conse-
quences of spring-like leg operation during stance (Arampatzis, Bruggemann, & Metzler,
1999; Bullimore & Burn, in press; Dutto & Smith, 2002; Farley, Glasheen, & McMahon,
1993; Geyer, Seyfarth, & Blickhan, 2005; Seyfarth et al., 2002). Only little is known about
strategies for achieving stable running movements and how the leg operation during the
stance phase could be controlled using an appropriate leg control strategy during the
swing phase. Therefore, it was asked whether a pendulum-like swing leg movement would
suffice to achieve stable running movements. The aim was to identify and describe the
function and influence of selected mechanical control parameters (e.g., swing leg length)
on running stability. The model behavior was a result of the dynamics of two sub-models
(spring-mass model, pendulum model), which interacted only at the transitions between
stance and flight phases. First, a spring-mass model with ballistic flight phases was used
during stance. Second, the movement of a mathematical pendulum prescribed the swing
leg kinematics during flight resulting in the leg angle at touch-down. This template-based
swing-leg control model (called pendulum model) was influenced by the dynamics of the
stance leg and the effective length of the pendulum (representing leg flexion) and is, there-
fore, directly involved into the mechanics of running. The monopedal model described for-
ward hopping, which is similar to kangaroo hopping.

6.1. Interpretation of simulation results

Stable running patterns were found provided that model parameters were carefully cho-
sen. A distinct relation between different parameters was observed, in which pendulum
length and horizontal speed played a crucial role.

Pendulum length determined apex height (Fig. 5a). The longer the pendulum, the larger
the observed hopping amplitude independent of system energy (i.e., independent of speed).
Hence, swing duration increased with pendulum length. The discovered correlation be-
tween pendulum length and swing duration is in agreement with the characteristics of a
mathematical pendulum. In approximation, the time period of a mathematical pendulum
for small amplitudes is given by 2p

ffiffiffiffiffiffiffiffiffi
lP=g

p
. Furthermore, swing duration was influenced by

hip muscle activity. High rotational hip stiffness decreased apex height and consequently
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swing duration. For stable locomotion, the appropriate placement of the swing leg at
touch-down is important; the cadence of the swing leg movement (here represented by
the pendulum) takes on an essential role. A similar observation was made in a robotic
study, where running stability was affected most by the �scissor frequency� (McGeer, 1990).

There was also an inverse relationship between running speed and leg angle of attack
(Fig. 5b). The faster the predicted running speed, the flatter the angle of attack. This result
is in agreement with experimental studies (Fig. 6a), with the mechanical walking model of
Garcia and with previous predictions of spring-mass running (Garcia, Chatterjee, Ruina,
& Coleman, 1998; Seyfarth et al., 2002), where a similar relation between speed and angle
of attack was found. Furthermore, the horizontal speed seemed to determine the angular
range of the swing leg in humans (Fig. 7a) and of the pendulum of the model (Fig. 2b). The
faster the model moved, the higher the angular range of the pendulum. A mathematical
explanation for the discovered behavior is proposed: the movement of a mathematical
pendulum can be described by a sine function with maximum amplitude umax and fre-
quency x, whereas umax is related to _umax=x. Motivated by the results of the simulation,
coupling of swing and stance phases resembles the motion of a mathematical pendulum
(Fig. 2). The time course of the leg angle during stance merged into the cyclical pendulum
motion, which may result from the interaction of stance and swing phases. As the model
showed symmetrical behavior in respect of the vertical axis, the maximum angular velocity
_umax can be derived from midstance and is defined as vx/lms, with lms denoting the leg
length at midstance. The maximum amplitude is given by Eq. (8).

umax ¼
vx
lms

ffiffiffiffi
lP
g

s
; with x ¼

ffiffiffiffiffiffiffiffiffi
g=lP

p
. ð8Þ

For a given leg compression and pendulum length, the maximum amplitude of the pendu-
lum increases proportionally to the horizontal velocity. This dependence of forward speed
and range of motion of the swing leg in the inactive pendulum model as well as in human
running supports the idea of the passive swing leg motion.

6.2. Proposition for economic running strategies

In considering the results of the proposed model, one may ask whether economic run-
ning strategies can be identified. During flight, system energy was distributed in terms of
apex height and horizontal speed (Eq. (3)). The higher the hopping amplitude, the slower
the forward movement: in the model, short pendulum lengths corresponded to low apex
heights. Translated into human running, short swing leg lengths may be advantageous
for increasing performance as more energy is converted into forward than vertical motion.
However, shortening of the swing leg in humans is generally associated with muscle work.
The question is to what extent passive mechanisms contribute to the observed swing leg
kinematics in humans. Mochon and McMahon (1980) found that the swing phase in walk-
ing may function without any muscle action – except that at take-off the initial conditions
(positions and velocities of the lower limb) had to be set. One may further speculate that
the segmentation of the leg (thigh, shank and foot) and the elasticity of hip muscles con-
tribute to passive leg shortening. Moreover, the active plantar flexion at the ankle joint
during the push-off phase may support leg flexion. Therefore, it is proposed that perfor-
mance increases by shortening the swing leg.
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6.3. Application in rehabilitation and robotics

Our objective was to better understand the interaction of the mechanical parameters
between stance and swing phase. Such a functional understanding is of importance for
many applications as in therapy, diagnostics and robotics. In a recently developed robotic
gait orthosis, paraplegic patients are walking on a treadmill with induced leg movements
(Colombo, Wirz, & Dietz, 2001). Using such a locomotor training many incomplete para-
plegic patients are able to regain locomotor function. Replacing stereotypical kinematic
leg control during swing with a more functional leg program could have an impact on
the therapeutical effect of the locomotor therapy.

The pendulum-like swing-leg control of an elastically operating leg is a technically and
biologically reasonable approach to relax the control effort for locomotion. Sinusoidal
patterns at the hip joint can be found in human running and walking as well as in simple
hopping robots (Seyfarth, Lipfert, & Rummel, 2005). Interestingly, this harmonic oscilla-
tory movement of the hip joint does not imply a sinusoidal movement of the foot with re-
spect to the body. The gait specific knee flexion has an important influence on the foot
trajectory (Seyfarth, 2005). However, this cannot be discussed in the framework of the
spring-mass model. To this aim, a more precise representation of the leg geometry would
be required.

Many simple hopping robots used fixed landing limb angles (Raibert, 1986). In the
hexapod robot RHex a continuous leg rotation with no leg protraction was implemented
(Saranli, Buehler, & Koditschek, 2001). In the simulation presented here it was demon-
strated that a biologically motivated control approach with oscillating leg movements
was capable of generating stable hopping movements. This represents in a simplified
way the action of neural pattern generators (Grillner & Wallen, 1985). In contrast to a
neural pattern generator, however, the pendulum dynamics was used here as a control
template generating the required oscillating leg kinematics.

6.4. Limitations and prospect

Two fundamental restrictions of the model were observed. Firstly, running was stable at
speeds only up to 2.5 m/s. This limitation could not be resolved by adding a rotational
stiffness or by implementing a variable pendulum length (unpublished results). Secondly,
the model predicted constant stance times independent of speed. This is due to the inverse
relationship between speed and angle of attack. However, this is not in agreement with
spring-mass running (Seyfarth et al., 2002) and experimental studies (Fig. 6b), where
stance time decreases with speed. This discrepancy might be due to the characteristics
of the proposed pendulum model, which restricted – as a result of the additional pendulum
condition – the solution space of stable spring-mass running (Seyfarth et al., 2002).

It is clear that the present model is far too simple to describe the real swing leg move-
ment, which is largely influenced by intra-body dynamics and muscular activity influencing
the leg movement. However, the analysis of simple models will help us to better under-
stand more complicated models. In the future, a more detailed representation of human
running will be pursued by including a second leg. The initiation of the pendulum during
swing may then be triggered by the touch-down of the opposite leg (Fig. 7). Such bipedal
models will provide a framework for investigating the interactions between stance and
swing leg in both running and walking.
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