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Abstract— Agile MAVs are required to operate in cluttered,
unstructured environments at high speeds and low altitudes for
efficient data gathering. Given the payload constraints and long
range sensing requirements, cameras are the preferred sensing
modality for MAVs. The computation burden of using cameras
for obstacle sensing has forced the state of the art methods to
construct world representations on a per frame basis, leading
to myopic decision making. In this paper we propose a long
range perception and planning approach using cameras. By
utilizing FPGA hardware for disparity calculation and image
space to represent obstacles, our approach and system design
allows for construction of long term world representation whilst
accounting for highly non-linear noise models in real time. We
demonstrate these obstacle avoidance capabilities on a quad-
rotor flying through dense foliage at speeds of up to 4 m/s
for a total of 1.6 hours of autonomous flights. The presented
approach enables high speed navigation at low altitudes for
MAVs for terrestrial scouting.

I. INTRODUCTION

Micro-aerial vehicles have long promised to be the agile
sensing platforms of the future. MAV applications like stealth
reconnaissance, search and rescue and cargo delivery etc.
need fast aerial vehicles moving autonomously in cluttered
environments, at low altitudes [1], [2]. Hence, fast and safe
obstacle avoidance has remained an active research area.
Achieving safe, autonomous, fast flight through cluttered
environments on MAVs, presents two main challenges. The
need for a large sensing horizon to allow for adequate time
to detect and avoid obstacles and fast and accurate world
representation update for minimal latency in reacting to
newly discovered obstacles, (Figure 1).

Both of these challenges need to be addressed while keep-
ing the sensing and computational payload to a minimum,
to allow for maximizing MAV’s flight time and agility.
However, current state of the art systems that have demon-
strated reliable autonomous flights in cluttered environments
have either done so through active sensors like lidars [1],
sacrificing agility and range of sensing, or have relied on
monocular cameras and data driven techniques to provide
proof of concept implementation in a specific environment
[3]. Both schools of thoughts have led to pioneering demon-
strations of obstacle avoidance capabilities of MAV’s albeit
at low speeds, either due to restricted sensing range or slow
world/robot state updates.

Use of a stereo camera pair offers low weight, long range
sensing at the cost of increased computation. Barry et. al [4]
and Mathies et. al [5] have demonstrated obstacle avoidance
at high speeds. While [5] perform motion planning on data
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Fig. 1: Low altitude high speed navigation for MAVs. The robot makes a
turn to go to the goal point and avoids the immediately seen obstacle.

observed in a single frame, [4] generate a relatively sparse
map leading to a reactive behavior which is likely to be stuck
in local minima in complex environments.

Integrating multiple disparity images, generated by a
stereo pair is hindered by its highly non-linear noise model
with noise monotonically increasing with distance. We pro-
pose an approach to integrate multiple disparity images in
a computationally efficient manner to allow for long range,
non-myopic obstacle avoidance using stereo data. Our main
contributions are -

o Improvement of disparity expansion as suggested by
Mathies et. al [5] through incorporating a sensor error
model and explicitly using two disparity images to
create a front and back mask for obstacles.

o An approach to use multiple disparity images for occu-
pancy inference.

« System design and demonstration of high speed (4 m/s)
obstacle avoidance in dense foliage, at heights as low
as 1 m AGL (above ground level).

The rest of the paper is structured as follows, Section II
presents a short summary of the related work. Section III
describes the overview of our planning algorithm. Section
IV describes various parts of the obstacle perception and
planning algorithm in detail while Section VI describes
the MAV system on which the algorithm was tested with



experimental results.

II. RELATED WORK

Recently many research groups have ventured into the
vision only obstacle detection and avoidance. Most ap-
proaches generate point clouds from disparity images and
fuse with point clouds from other sensors such as lasers.
Appropriate fusion of multimodal sensory data is still a
work of active research. Most prevalent approach has been
to generate evidence grids or occupancy grids to determine
occupancy and do collision checks [6], [7]. Working with
3D gridmaps is both memory intensive for large occupancy
maps and require more computation for registration of data
and book keeping when scrolling or moving the grid along
with the robot. Trade-off between high resolution gridmap
vs grid size is another reason why occupancy grids usually
cannot be used to map a large volume with higher accuracy.
OctoMaps [8] have recently become popular due to their
efficient structure for occupancy mapping. However, due to
excess noise in stereo sensor generated data at long ranges,
often a smaller map is maintained and full stereo sensor data
is not used.

Gohl et. al [9] propose to use a spherical coordinate
based gridmap for stereo sensors but it also suffers from the
problem of computationally expensive step of map warping
or scrolling as the robot moves.

A pushbroom stereo scanning method is proposed in [4]
for obstacle detection for MAVs flying at high speeds. As the
robot moves, disparity measurements equal to a fixed value
are collected to generate a map of the environment. Since
the collected disparity measurements are at a fixed distance,
usually not very far to obtain reliable measurements from
stereo camera, it is only suitable for short distance planning.

We base our work on [5] which proposed a C-space
expansion step to apply an extra padding around disparities
based on robot size. The method in [5] works when planning
in spaces where the stereo system disparity is not very noisy
i.e. in close range making the planning system myopic in
nature and prevents long planning horizon.

Although cameras provide rich information about the
environment, the aforementioned approaches fall short of
utilizing this rich information.

III. PLANNING PIPELINE

Mathies et. al [5] presented an approach to use disparity
images generated by a stereo pair for obstacle avoidance.
In this approach the occupied pixels in the disparity image
obtained from the stereo pair are expanded to account for
robot’s size. The expanded disparity images are used as a
spatial representation to plan collision free paths.

We maintain a similar pipeline to process the disparity
images but improve the expansion step through the inclusion
of the observation noise model in the disparity expansion.
Furthermore, we compute two image expansions; frontal
and back to probabilistically capture the occupancy region.
Figure 2 and Figure 4 show how the two images capture the
pole obstacle. The frontal expansion is shown in pink point
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Fig. 2: Planning pipeline based on inverse depth obstacle perception. The
frontal expansion and back expansion are shown in pink and red point cloud
around the original point cloud of pole. Planned path around the pole is also
shown with the current robot position circled in green.

cloud and the back expansion in red. We also improve the
path planning by using multiple disparity images to infer
occupied volumes. The use of multiple disparity images
allows the planner to reason about long range obstacles. The
improved expansion algorithm and multi-image occupancy
inference are presented in section IV-F. Furthermore, all the
planned paths end at hover position with zero velocities
ensuring safety of the vehicle. Figure 2 briefly shows the
planning pipeline.

IV. LOCAL PERCEPTION & PLANNING

We use disparity image or inverse depth image for ob-
stacle representation as it naturally captures spatial volume
according to the sensor resolution [9]. This representation is
befitting for noisy stereo data as explained in Section IV-A.
We employ C-space expansion where the original disparity
image is expanded, allowing us to treat the robot as a point
when doing collision checks during planning [5].

Our method incorporates a stereo sensor error model and
allows us to reason about space behind obstacles. We use
an additional padding in disparity both in front and behind
obstacles. This padding varies from 3o for close obstacles
to 1o for far obstacles, where o is the standard deviation of
disparity error and the multiplier is represented by A in later
sections. By varying \ we ensure safe planning at short range
and a more optimistic planning at long range. This enables
the deliberative planning required for exploration tasks.

A. Disparity error and its effects

Disparity is a measure of the proximity of an obstacle.
We can derive how close the obstacle is in depth using
triangulation in stereo vision as follows.

b
- d
Where, z is the depth of a pixel(u,v) with disparity d, b is
baseline and f is the focal length in pixels.

The actual 3D point can be derived as

P(a,y,2) = (uz/f,vz/f, 2) 2)

The accuracy of the stereo setup is drastically affected as
the disparity decreases. The error in depth increases quadrat-
ically with depth as shown in equation (5). Differentiating
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Fig. 3: Left: Disparity vs Depth (blue) and probability distributions are
shown in red and green. Red and Green PDF in disparity are same and easy
to model but their corresponding Red and Green PDF in range vary and
difficult to model. Hence we use inverse depth space to represent obstacles.
Also, disparity i.e. inverse range captures space at multi-resolution suitable
for registration of stereo sensor data. Right: Shows the pixel-wise expansion
of a point obstacle according to robot size.
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Disparity error is primarily caused due to correspondence
error while matching pixels along the epipolar line. It can
be modelled using a Gaussian pdf. Assuming correspondence
error during disparity computation has a std deviation ¢ =
0.5 pizels, we define the Gaussian pdf N(d,o?). Figure 3
shows how this Gaussian pdf in disparity results in a difficult
to model pdf for error in depth with an elongated tail on
one side and a compressed tail on the other. This motivates
to use disparity image space domain directly for occupancy
inference rather than resorting to depth or 3D domain.

B. Configuration-Space Expansion

C-Space expansion is required to represent obstacles such
that a single point state query can be used for collision
checks [5]. Occupancy grids have been the default methods
for registration of sensor data and C-Space expansion for oc-
cupancy inference. Usually point clouds are used to populate
occupancy grids but point cloud generated using disparity
images are highly uncertain at greater depths Figure 9(c)
and hence occupancy grid based representation is infeasible.
Moreover, 3D occupancy grids require a huge amount of
memory to capture the planning workspace and hence fail to
incorporate long range measurements available from stereo
sensors. To overcome this limitation we use disparity images
and apply disparity expansion step explained in section IV-C.

C. Disparity Expansion

In this section we explain the step of C-Space expansion
as applied to disparity images. This step allows us to capture
the volume occupied by an obstacle using two surfaces
represented by two disparity images. These images represent
front and back surface limits of the reported disparity. Each
pixel in these two images effectively captures the range of
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Fig. 4: Disparity expansion shown as point cloud. The pink and red point
cloud represent the foreground and background disparity limits.

disparity based on robot size and the sensor error model as
shown in the Figure 3. This process can be divided into two
steps.

The first step expands disparities along the image XY
axis Figure 3 (right) i.e. an obstacle at some pixel (u,v)
after inflation occupies a manifold of pixels from [u1,us]
and [v1,vq]. This is achieved by traversing through the
image row-wise first and then column-wise. This is sim-
ilar to [5] but we also incorporate sensor error. We
omit the steps required to generate the look-up-table
(LUT) to map u — [u1,ug] given disparity d and v —
[v1,v2] given disparity d. Reader is advised to refer [5] for
generation of the LUT, but unlike looking up for the raw
disparity value d from table we look up for (d+ o), where
A is the sigma multiplier dependent on the range as discussed
previously in Section IV.

The second step expands disparities to get new values
for front and back images using equation (6). These images
represent the maximum and minimum disparities for every
pixel respectively.
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Where r, is the expansion radius based on robot size, d
and d,, are the computed front and back disparities which
encompass the obstacle. As shown in illustration on left side
of Figure 4, the red area around the original disparity of
obstacle is the padding generated in the expansion step. This
padding is based on the robot size and sensor error model.

Our approach uses the LUT as shown in Algorithm(1)
which takes the original disparity image D as input and
processes it to generate the expanded frontal and back
disparity images Dy and D, respectively. Note that this
algorithm is run twice, once row-wise and subsequently
column-wise. Hence, to prevent double expansion in depth,
the function expand(d) implements equation (6) with A =
0 and r, = 0 for row-wise operation. The function
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Fig. 5: Pose Graph of expanded disparity images. Dashed path shows
robot motion and stored nodes in the graph are shown as triangles. Nodes
are stored at intervals of distance and orientation.

connectedComponent() searches for minimum disparity
connected to the maximum disparity over steps of provided
range (set to a multiple of robot radius). This helps to find
an obstacle bounding volume. We do not want to use the
minimum disparity in a window as that can be located very
far with no connection to the actual obstacle and hence the
connectedComponent() step is required.

Algorithm 1: Disparity Expansion Algorithm

Input: Disparity image D
Output: Expanded disparity images: D¢, Dy,
1 for v =1: Height(D) do
for u = 1: Width(D) do
d = ceil(D(u,v) + \o)
[u1,u2] = LUT (u, d)
V = D(u1 : uz,v)
dy = expand(maz(V'))
dy, = expand(connectedComponent(dy, range))
for i = uj : uz do
Dy (i,v) = max(dys, Dy (3,v))
Db(iz U) = min(dln Db(iv U))

(I N I 7 VI N

10 en
11 end
12 end

Next column-wise expansion is applied with A and 7,
set to default values as specified in Table II when using
expand() function to get correct final expansion.The ex-
panded disparity images constitute a single snapshot volumes
occupied by obstacles. To maintain a spatial memory we
create a pose graph consisting of multiple expanded disparity
images as described in the following section.

D. Pose Graph of Disparity Images

The motivation to maintain spatial memory of the previ-
ously seen environment as the vehicle is moving using a pose
graph is because of the following reasons:

1) Previously seen obstacles might not be visible in the

current image.

a) The stereo sensor has a minimum range depen-

dent on maximum perceivable disparity.
b) Obstacles get occluded in different views.
¢) The field of view is limited.
2) Maintain a pose graph of disparity images (measure-

ments) with nodes at regular intervals of distances and
angles as shown in Figure 5.

3) Allows occupancy inference using multiple measure-
ments.

Algorithm(2) shows how we construct this graph. Each

Algorithm 2: Pose Graph Algorithm

Input: ny Dg’ Pose, Ngraph7 Vd; Vi

Output: Pose Graph of Expanded disparity images: Graph
1 TY < Pose

2 Node = createNode(Ty’, Dy, Dy,)

3 if Graph.size() == 0 then

4 Graph.push_front(Node)

5 Graph.push_back(Node)
6
7
8
9

end

PrevNode = Graph.begin()

pos_err = distance(Pose, PrevNode)

ang-err = angle(Pose, PrevNode)
10 if pos_err >= vy4|lang-err >= v, then
1 if Graph.size() == Ngyqpn then
12 |  Graph.pop_back()

13 end
14 Graph.push_front(Node)
15 end

16 Graph.pop_back()
17 Graph.push_back(Node)

node in the graph is comprised of the following:
1) Dy
2) Dy
3) T which is the transform between the processed
sensor measurement(D, D) and world frame.

The algorithm takes as input the current robot position
Pose, processed disparity images D¢, Dy, maximum number
of nodes Nyqpn and two tolerance parameters 7y, 7y, for po-
sition and angular displacement respectively. The constructed
graph is used to project a given world point into all node
images and do occupancy inference. Occupancy inference
using the set of disparity images in the graph is explained
in subsequent section.

E. Occupancy Inference

Evidence grids or occupancy maps are methods to al-
low fusion of different measurements taken over time. By
maintaining a pose graph of expanded disparity images, we
can also take advantage of similar fusion without building
an occupancy grid which are not suited for stereo data as
discussed previously. We devised an occupancy inference
method by fusing information from all the images in the
graph using the stereo sensor error model. Given the standard
deviation of correspondence error o, we compute confidence
of a disparity state in the following manner.
(d—o)

7 (7
Confidence measure from equation (7) gives us a measure
of how much can we trust a given disparity for occu-
pancy inference. Thus, long range or low disparity, un-
certain measurements have low confidence and update the
occupancy with lower values. In the experiments we further
discount measurements that mark an area safe or potentially
safe(occluded) by a value of 0.5 which we picked empiri-
cally, to be more conservative about clearing areas previously
marked occupied. It should be noted that the potentially safe

C(d) =



areas are behind obstacles and have lower disparity state,
hence their contribution to occupancy clearance is less due
to lower confidence value. The final occupancy measure is
obtained by projecting a world point P using equation (8)
and equation (2) in disparity images of all nodes in the graph
and accumulating the occupancy cost according to Table I:

TABLE I: Occupancy update

Check Remark occupancy cost occ(ds )
ds > di(u,v) safe —0.5C(ds)
ds < di(u,v)
and obstacle C(ds)
ds > dy(u,v)
ds < dp(u,v) | potentially safe —0.5C(ds)

F. Collision Checking

Collision checking is used to plan a new path and to
validate if an existing path is safe to follow. Collision
checking is performed using the following mapping of a 3D
world point P to image pixel I with disparity d,:

P(z,y,2) < I(u,v,ds) (8)

A state is in collision if the total occupancy measure M
as shown in equation (9) crosses a pre-defined threshold ~.

M = maz( Z oce(dy), 0) )
nodes
1, if M>~

. (10)
0, otherwise

Collision = {

If the occupancy for a state is below the threshold, we

consider that state as not occupied by an obstacle. We also

clamp M to be not negative to prevent over confidence for
free volume.

G. Planning

We use a sampling based planner, BIT* [10] to draw sam-
ples in 3D space which are checked for collision as described
in IV-F. The output is a collision free path connecting start
to goal state.

In our experiments we found that disparity images fluc-
tuate around obstacle edges leading to unwanted replanning
due to the current plan being in collision. To remedy this we
used two threshold values. A lower value 7;,,, is used during
planning to find a path i.e. obstacles are observed sooner
even at long distances and hence a more conservative path
is obtained. A higher threshold value 34, is used to check
the current plan for collision and do replanning in case of
collision. The advantage of using two threshold values is that
an initial plan is found using a more conservative occupancy
map while the replanning is done using a more reliable
occupancy map. The reliable occupancy map is not affected
by fluctuations in the disparity maps. The thresholds are
chosen such that collisions at close range are always detected
but have great advantage to not force replanning due to
less reliable and fluctuating observations at long range when
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Fig. 6: Quadrotor platform used for experiments: equipped with stereo
camera sensor suite and onboard ARM computer

planning paths to longer distances. In our experiments we
have planned paths at distances longer than 100m (Figure 9).
Figure 2 shows a planned path that avoids a pole obstacle.
This path is sent to the motion controller of the vehicle.

H. Motion Control

We developed a path tracker similar to [11]. It takes the
current trajectory and uses feed-forward velocities specified
in the trajectory and generates final velocity and heading
rates for the low level velocity controller. The low level
velocity controller runs on the quadrotor’s flight control unit.
For more details reader is advised to read [11] Section IV-B
and Section V-A.

V. SYSTEM & EXPERIMENTS

We test our algorithms on-board an autonomous UAV
system, see Figure 6. The base platform is an off-the-shelf
DIJI Matrice m100 quadrotor vehicle retrofitted with in-house
developed sensing and computing suite designed for semantic
exploration. The sensor suite consists of a monochrome
stereo camera pair, a monocular color camera, an integrated
GPS/INS unit and a barometer. The stereo camera pair
provides 640 x 480 resolution disparity image at 10 fps for
the obstacle avoidance and 3D mapping systems. The central
camera is operated at a lower frame rate, to provide high
resolution color imagery for the semantic perception system.
All cameras are forward-facing, tilted downwards at 15°, an
orientation well suited for low-altitude (< 40 m) operation.
The GPS/INS system and the barometer are used for state
estimation.

All computation for autonomous operation is performed
onboard. To this end we equip the MAV with two em-
bedded ARM computers; one of them is devoted primarily
to planning tasks, while the other is devoted to perceptual
tasks. In addition, we use a specialized FPGA processor [12]
for stereo depth computation. The computers are networked
through high-speed ethernet.

We conducted most of the experiments in the highlighted
area shown in Figure 7. Some of the features of region were
narrow trails, dense foliage and varying height tree line, all of
which made for challenging and interesting obstacles. Tests
involved manual take-off and sending a random goal point as
shown in Figure 7 or a list of sparse global waypoints to the
obstacle avoidance system with the desired velocity. Sparse
global waypoints were selected to force navigation through
obstacle populated areas. Table II lists the values we used for



Fig. 7: Marked area of the location where experiments were carried out.
Various start and goal locations are shown in green and red star markers
respectively. Runs were conducted between random pairs of the start-goal
locations and sometimes by creating a sparse waypoint list using the marked
goals.

conducting the experiments. For field experiments we fixed
A = 1 instead of setting it to a function of depth. Sensor error
o was determined empirically by analysing sensor error.

TABLE II: Parameters Used

Parameter Value
Baseline: b 0.35m
Focal length: f | 514.17 pixels
Correspondence error: o 0.5
Sigma multiplier: A 1.0
Connected component range: range 27y
Robot radius: 7, 1.5m
Lenient Occupancy Threshold: ypign 1.8
Strict Occupancy Threshold: ;4. 0.9
No. of nodes in Pose graph: Nyrapn 10
Displacement between nodes: v4 1.5m
Angle between nodes: vy 30°
VI. RESULTS
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Fig. 8: Time profile of expansion step at different resolutions on Jetson
TK1 arm computer. On recent Jetson TX2 computer it takes 20 ms on CPU
for 320 x 240 resolution.

Figure 8 shows the time taken to process a single disparity
image to compute the frontal and back expansions using
Algorithm(1) on the onboard ARM computer. In our experi-
ments we used CPU version at 320 x 240 resolution because
the GPU was used for semantic classification algorithm as
concurrent part of the experiments. A pose graph using
Algorithm(2) was created and used for collision checks
using equation (9). Using our approach a single occupancy
inference and collision check takes on average 0.01 ms.
Given 100 ms between each frame we can do about 2000
collision checks which was usually sufficient for the BIT*
planning algorithm.

Fig. 10: Reactive Planning at 4 m/s: Top image shows the robot has
planned to go right with unseen obstacle marked in red ellipse. Bottom
image: after banking right an obstacle obstructs the previous plan and a
new plan avoiding it is generated.

Figure 9(a) Shows planned path going through two low
height trees. The top left is the disparity image with left
camera image shown on top right. The point cloud is only
for visualization purpose and the trees are marked in ellipses.
Although the trees are not completely visible in the current
disparity image, they are still a part of obstacles as they were
seen at previous robot positions and hence stored in the pose
graph. Without the pose graph these trees would have been
invisible to the robot. Thus the pose graph helps in keeping
memory of obstacles which were seen previously but can’t
be observed as they exceed the limit of maximum possible
disparity after robot motion.

Figure 9(b) shows the previous path was replanned and
pushed up as more observations of the bushes/trees are made
at long range are marked as obstacles at approximately 30 m
distance from the robot. This was possible due to fusion of
occupancy using several disparity images in the pose graph.

Figure 9(c) emphasises the advantage of planning in
disparity space at long distances. At greater distances the
point cloud is very noisy but we are able to get some infor-
mation about occupancy by using all the sensor data. While
occupancy grids would have huge impact, both memory wise
and computationally to use all this data, our approach is able
to incorporate all the information using minimalistic image
space representation and do better occupancy inference.

Figure 10 shows the reactive nature of our approach. For
this experiment the robot was allowed to find a plan outside
the sensor’s field of view and was given a goal point in
right direction. As the robot follows the plan and turns right,
an obstacle obstructing its path is detected and a new plan
avoiding it is generated. This happened at a speed of 4 m/s
hence implying our approach quickly reacts to newly seen
obstacles. Figure 1 shows the third person view of the same
run.

Using the parameters specified in Table II, if the robot
moves 15 m maintaining 10 nodes and assuming a maximum
of only 100 m depth (1.79 pizel disparity) per image our
approach uses approximately 38% of the memory required by
a gridmap of cell size 1 m? covering the same volume. This
is the case when using a gridmap of large cell size meaning
a very coarse resolution. For a better resolution gridmap will
require even more memory.



Fig. 9: All figures: Top Left (disparity image), Top Right (left camera image), Bottom (Point cloud for reference). Point cloud is colored by height in
(a) & (b) and by actual intensity in (c). (a) Planned path(green) between low trees highlighted in ellipses (b) Replanned(green path) as more observations
are made, marked in ellipse, (c) Long range planning horizon. The point cloud shows the noisy measurement but even noisy information allows to infer

occupancy at long distances.

More than 100 successful runs were executed with ap-
proximately 1.6 hours in autonomous mode, covering a
cumulative distance of approximately 1.5 £m. The maximum
speed was capped at 4 m/s. Our approach allowed us to plan
to distances greater than 100 m as shown in Figure 9(c).
Average distance to goal was 36 m. The standard deviation
of length of planned paths from straight line paths was on
average of 1.38 m with a maximum of 30 m. This shows
that in most cases planned paths were close to a straight path
but with slight deviation to avoid obstacles.

VII. CONCLUSIONS & FUTURE WORK

We have presented an approach and a system design
that allows high speed, non-myopic obstacle avoidance. We
demonstrated the system flying at 4 m/s in dense foliage
while relying on stereo image data for modeling the world.
To our knowledge it is the first one to do so.

The key factor that enables our system to perform safely at
high speeds in highly cluttered environments is integrating
multiple stereo sensor frames in real time while reasoning
about the related highly non-linear noise model to gener-
ate a world representation in inverse depth space. Using
FPGA hardware for disparity calculation, combined with fast
disparity expansion allowed us to limit our computational
burden. This allowed the system to share computation with
classification and state estimation tasks.

The current disparity space representation lacks an explicit
model of unknown space, rendering the system vulnerable
to collision whilst operating in environments with complex
geometries. We are currently working on this issue by per-
forming disparity space expansion over multiple layers whilst
guaranteeing vehicle safety using emergency maneuver li-
braries [13] in conjunction with active control of heading
along the lines of the sensor planning approach suggested in
[14].
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