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Abstract— Wire detection is a key capability for safe naviga-
tion of autonomous aerial vehicles and is a challenging problem
as wires are generally only a few pixels wide, can appear
at any orientation and location, and are hard to distinguish
from other similar looking lines and edges. We leverage the
recent advances in deep learning by treating wire detection as a
semantic segmentation task, and investigate the effectiveness of
convolutional neural networks for the same. To find an optimal
model in terms of detection accuracy and real time performance
on a portable GPU, we perform a grid search over a finite space
of architectures. Further, to combat the issue of unavailability
of a large public dataset with annotations, we render synthetic
wires using a ray tracing engine, and overlay them on 67K
images from flight videos available on the internet. We use this
synthetic dataset for pretraining our models before finetuning
on real data, and show that synthetic data alone can lead to
pretty accurate detections qualitatively as well. We also verify if
providing explicit information about local evidence of wiry-ness
in the form of edge and line detection results from a traditional
computer vision method, as additional channels to the network
input, makes the task easier or not. We evaluate our best models
from the grid search on a publicly available dataset and show
that they outperform previous work using traditional computer
vision and various deep net baselines of FCNs, SegNet and E-
Net, on both standard edge detection metrics and inference
speed. Our top models run at more than 3Hz on the NVIDIA
Jetson TX2 with input resolution of 480x640, with an Average
Precision score of 0.73 on our test split of the USF dataset.

I. INTRODUCTION
Thin wires and similar objects like power lines, cables,

ropes and fences are one of the toughest obstacles to detect
for autonomous flying vehicles, and are a cause of numerous
accidents each year. They can be especially hard to detect
in cases where the background is cluttered with similar
looking edges, when the contrast is low, or when they are
of barely visible thickness. Power line corridor inspection is
another area of potentially widespread application of wire
detection capabilities, and leveraging UAVs for this task
can save a lot of money, time, and help avoid dangerous
manual labor done by linemen. Apart from UAVs, there have
been recent reports which document fatal injuries and deaths
caused by hitting barbed wire fences while riding ATVs,
and dirt and mountain bikes. Generally, one could use lidar,
infrared, electromagnetic sensors or cameras to detect wires
and power lines. Out of these, a monocular camera is the
cheapest and most lightweight sensor, and considering the
recent advances in deep learning on images, we use it as our
perception sensor. Apart from a good detection rate, real time
performance on a portable GPU like the NVIDIA Jetson TX2
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with a decent resolution like 480x640 is critical to ensure that
wires are still visible in the input image, and that the drone
has enough time for potentially avoiding them.

Previous work uses strong priors on the nature of power
lines - assuming they are straight lines, have the highest or
lowest intensity, appear with a fixed number in an image,
have a gaussian intensity distribution, are the longest line
segments, are parallel to each other, or can be approximated
by quadratic polynomials [1]–[6]. These works first gather
local criteria for potential wire pixels by using an edge de-
tection algorithm, filter them using the heuristics mentioned
above, and then gather global criteria via variants of the
Hough or Radon transform[1]–[3], clustering in space of
orientations[4] and graph cut models[6]. These approaches
demand a lot of parameter tuning, work well only in specific
scenarios, and are prone to false positives and negatives
since the distinction between wires and other line-like objects
in the image does not always obey the appearance based
assumptions and priors.

Another issue with wire detection is the unavailability of a
sufficiently large public dataset with pixel wise annotations.
The only existing dataset with a decent number of labeled
images is provided by [2], which we refer to as the USF
dataset. We use it for evaluation of our models, as done by
[6] as well.

We address the former of the aforementioned issues by
investigating the effectiveness of using convolutional neural
networks (convnets) for our task. Recent advances in seman-
tic segmentation and edge detection using convnets are an
indication of an end to end wire detection system omitting
hand-engineered features and parameter tuning, which can
also potentially generalize to different weather and lighting
conditions depending on the amounts of annotated data avail-
able [7]–[9]. To meet our objectives of real time performance
on the TX2 and reasonable detection accuracy, we perform
a grid search over 30 architectures chosen based on our
intuition. We investigate the effect of filter rarefaction[10]
by systematically adding dilated convolutional layers with
increasing amounts of sparsity as shown in Table I and II. We
show that the top 5 models from our grid search outperform
various baselines like E-Net[11], FCN-8 and FCN-16s[7],
SegNet[12], and non-deep baseline of [2] as shown in Fig. 4
and Table IV across multiple accuracy metrics and inference
speeds on the Jetson TX2.

To address the latter issue of the unavailability of a large
dataset with pixel wise annotations, we generate synthetic
data by rendering wires in 3D as both straight lines and in
their natural catenary curve shape, using the POV-Ray[13]



Fig. 1: A few samples from our synthetically generated dataset along with ground truth labels of wires. Video examples available at this
link1 and our project page2.

ray-tracing engine with varying textures, numbers, orienta-
tions, positions, lengths, and light source, and superimpose
them on 67702 frames obtained from 154 flight videos
collected from the internet. A few samples from our dataset
can be seen in Figure 1 and in the video here3. Although
training on synthetic data alone is not enough to match the
performance of models which are finetuned or trained from
scratch on the USF dataset, we observe that synthetic data
alone gave pretty accurate qualitative detections on a few
unlabeled flight videos we tested on as shown in Figure 5.
More results are available at our project page4.

Further, for wire detection and avoidance, false negatives
(undetected wires) are much more harmful than false posi-
tives. We adapt the line of thought of finding local evidence
and then refining it via heuristics or global criteria used by
previous works, to convnets by explicitly providing local
evidence of ‘wiryness’ in the form of extra channels to
the network input. One would expect that doing this would
make the network’s task easier as now it has to filter out
the non-wire edges and line segments and return pixels that
were actually wires. However, in the case of training from
scratch, or finetuning on the USF dataset after pretraining on
synthetic data, we find that the local primitive information
does not have much effect in the performance of the network.
On the other hand, we find out that adding this information
of local criteria does help in the case of models trained on
only synthetic data, as shown in Table II.

In summary, the contributions of this paper are:
• Systematic investigation of the effectiveness of convnets

for wire detection by a grid search.
• Large scale generation of a synthetic dataset of wires

3https://www.youtube.com/watch?v=z6sPz-WPCWQ
4http://madratman.github.io/wire_detection_iros_

2017

and demonstrating its effectiveness.
• Investigation of the effect of explicitly providing local

evidence of wiryness.
• Demonstrating real time performance on the NVIDIA

Jetson TX2 while exceeding previous approaches both
in terms of detection accuracy and inference speed.

Fig. 2: Close up of synthetic wires rendered using POV-Ray [13].

II. RELATED WORK
A. Wire detection using traditional computer vision

One of the earliest works in wire detection is from Kasturi
et al.[1], who extract an edgemap using Steger’s algorithm
[14], followed by a thresholded Hough transform which
rejects lines of short length. However, due to unavailabil-
ity of ground truth, they evaluate their approach only on
synthetically generated wires superimposed on real images.

Candamo et al.[2] find edges using the Canny detector and
then weigh them proportionally according to their estimated
motion found using optical flow, followed by morphological
filtering and the windowed Hough transform. The resulting
parameter space is then tracked using a line motion model.
They also introduce the USF dataset and show that their
approach performs better than [1]. We modify their temporal
algorithm to a per-frame algorithm as explained later, and use
it as a baseline.

https://www.youtube.com/watch?v=z6sPz-WPCWQ
https://www.youtube.com/watch?v=z6sPz-WPCWQ
http://madratman.github.io/wire_detection_iros_2017
https://www.youtube.com/watch?v=z6sPz-WPCWQ
http://madratman.github.io/wire_detection_iros_2017
https://www.youtube.com/watch?v=z6sPz-WPCWQ
http://madratman.github.io/wire_detection_iros_2017
http://madratman.github.io/wire_detection_iros_2017


TABLE I: The parameter space over which we perform a grid
search. Each context module from the 2nd column was stacked
over each front-end module from the first column to get a total of
30 models. All layers use 3*3 convolutions. Each layer is separted
by a ‘-’ sign. ‘k’ refers to the number of channels in each layer.
‘p’ refers to pooling layers, ‘d’ refers to the dilation factor.

Front-end Modules Context Modules
Key Architecture Key Architecture
f1 k64-k64-p2-k128-k128 c1 k2(none)
f2 k32-k32-k64-k64 c2 d1-d2-d1-k2
f3 k32-k32-k32-k32 c3 d1-d2-d4-d1-k2
f4 k32-k32-k64-k64-k64-k64 c4 d1-d2-d4-d8-d1-k2
f5 k32-k32-k32-k32-k32-k32 c5 d1-d2-d4-d8-d16-d1-k2
f6 k32-k32

Song and Li [6] proposed a sequential local-to-global
power line detection algorithm which can detect both straight
and curved wires. In the local phase, a line segment pool is
detected using Gaussian and first-order derivative of Gaus-
sian filters, following which the line segments are grouped
into whole lines using graph-cut models. They compare their
method explicitly to [1] and their results indicate similar
performance as [2], which is one of our baselines.

B. Semantic segmentation and edge detection using deep
learning

Fully Convolutional Networks(FCNs)[7] proposed learned
upsampling and skip layers for the task of semantic seg-
mentation, while SegNet[12] proposed an encoder-decoder
modeled using pooling indices. For thin wires, FCNs and
SegNet are intuitively suboptimal as crucial information is
lost in pooling layers which becomes difficult to localize in
the upsampling layers. E-Net [11] develop a novel architec-
ture by combining tricks from multiple works for real time
semantic segmentation performance, but one of their guiding
principles is aggresive downsampling again.

III. APPROACH

A. The search for the right architecture
For a wire detection network running on a platform like

the NVIDIA TX2 atop a small UAV, we desire low memory
consumption and a fast inference time. Further, as wires are
barely a few pixels wide, we do not want to lose relevant
information by the encoder-decoder approaches [7,11,12] in
which one first downsamples to aggregate global evidence
and then upsamples back up to localize the target object.

Dilated convolutional layers [10] are a simple and effective
way to gather context without reducing feature map size.
Each layer is defined by a dilation factor of d, which
correspond of d − 1 number of alternating zeros between
the learnt elements, as visualized in [10,15]. [10] proposed
appending a ‘context module’ comprising of 7 layers with
increasing dilation factors (d for each layer following the
series {1,1,2,4,8,16,1}) to existing segmentation networks
(front-end moduleS), which boosted their performance sig-
nificantly.

In order to investigate the effect of dilation on our task,
we run a grid search over a finite set of front-end and context
modules as summarized in Table I. We now introduce a
simple naming scheme to refer our models with. Each layer

is separated by a ‘-’ the number succeeding ‘k’ is equal to
the number of channels, ‘p’ refers to a pooling layer and ‘d’
to a dilation layer. For all layers, we use 3*3 convolutions.

For front-end modules, we begin with trimming down
VGG[16] to its first two blocks, which is the model f1 in
Table I. Next, we halve the number of channels across f1
and remove the pooling layer to get f2. Then, we halve the
number of channels in the last two layers of f2 of this model
to get f3. Further, to investigate the effect of depth we append
2 layers each to the f2 and f3, while maintaining the number
of channels to get f4 and f5. We stop at 6 layers as previous
work [9] found it to be enough to detect edges. Finally to
check how well a simple two layer front-end performs, we
add f6 to our list. The second column shows the range of
the context modules we evaluated, starting with an empty
context module (c1) and building up to c5 as in [10]. Our
first model is d1+d2+d1 due to the fact that a dilation factor
of 1 is equivalent to standard convolution without holes. Note
that there is always a k2 in the end as in the last layer, we
do a softmax operation over two output classes (wire and
not-wire).

By choosing a front-end (f1-f6) and appending it with
a context module (c1-c5), we do a grid search over 30
architectures and do multiple experiments - training each
model on synthetic data, real data, finetuning models trained
on synthetic data, and finally evaluation on real data as shown
in Table II. We use a 50-50 train-test split of the USF dataset
for the grid search. We then choose the top 5 models based
on the accuracy and inference speed on the NVIDIA TX2
(bold text in Table III) for comparison with various baselines.

B. Generating synthetic data

Due to the unavailaibility of a large dataset with annota-
tions of wires, we render synthetic wires using the POV-Ray
ray tracing engine [13], and superimpose them on 67702
frames sampled from 154 flight videos collected from the
internet. Figure 1 and this video shows some examples from
our synthetic dataset.

Our dataset consists of wires occuring as both straight
lines and catenary curves (the natural shape of a wire
hanged at its ends under uniform gravity). We vary the
wire sag, material properties, light source location, reflection
parameters, camera angle, number of wires and the distance
between them across the dataset to obtain a wide variety of
configurations. A close up of the rendered wires can be seen
in Figure 2.

C. Class Balancing Loss Function

As wire pixels occupy only a minisicule fraction of the
total number of pixels in an image, it is important to account
for class imbalance in the loss function, as well as in the
evaluation metrics used. To that end, we use the image-level,
class-balanced cross entropy loss function defined in [9]. For
the USF dataset, we find that wire pixels account for only
4.9% of the total number of pixels, and the rest 95.1% are
background pixels, and weigh the loss accordingly.

https://www.youtube.com/watch?v=z6sPz-WPCWQ


TABLE II: Results of our grid search experiments. The strings in bold, blue text represent the front end architecture as explained in text.
Each front end is appended with five different context modules as shown in the Col. 1. We conduct six experiments, all of which are
evaluated on our test split of the USF dataset. Each experiment category is grouped with the same hue (Col. 2-3, 4-5, 6-7 respectively).
Darker color implies better performance. Choice of colors is arbitrary. Col. 8-11 list the performance speeds on the NVIDIA TitanX
Pascal and the Jetson TX2, with batch size 1 and input resolution of 480x640.

Performance

Trained On → Synthetic Data Scratch on USF Finetuned on USF TX2 TitanX

RGB RGBLE RGB RGBLE RGB RGBLE

Column 1 2 3 4 5 6 7 8 9 10 11

Front End Module →                                k32-k32

k2 0.23 0.30 0.45 0.45 0.50 0.47 37.7 26.6 3.2 309.6

d1-d2-d1-k2 0.33 0.35 0.63 0.58 0.61 0.59 115.7 8.7 8.0 124.7

d1-d2-d4-d1-k2 0.28 0.42 0.65 0.61 0.64 0.62 159.3 6.3 10.2 98.0

d1-d2-d4-d8-d1-k2 0.35 0.45 0.65 0.62 0.66 0.65 203.7 4.9 12.4 80.6

d1-d2-d4-d8-d16-d1-k2 0.36 0.49 0.70 0.64 0.70 0.69 249.4 4.0 14.6 68.4

k32-k32-k32-k32

k2 0.24 0.32 0.57 0.50 0.57 0.54 70.7 14.2 5.7 176.1

d1-d2-d1-k2 0.25 0.39 0.62 0.60 0.64 0.59 148.5 6.7 10.1 99.1

d1-d2-d4-d1-k2 0.28 0.40 0.63 0.62 0.66 0.63 192.7 5.2 11.9 83.9

d1-d2-d4-d8-d1-k2 0.33 0.42 0.69 0.62 0.68 0.66 236.6 4.2 13.8 72.6

d1-d2-d4-d8-d16-d1-k2 0.43 0.48 0.70 0.64 0.72 0.64 282.6 3.5 15.7 63.9

k32-k32-k32-k32-k32-k32

k2 0.18 0.35 0.63 0.53 0.61 0.57 104.0 9.6 8.2 121.7

d1-d2-d1-k2 0.30 0.42 0.61 0.58 0.64 0.59 181.5 5.5 13.2 76.1

d1-d2-d4-d1-k2 0.25 0.43 0.62 0.59 0.67 0.62 225.4 4.4 15.3 65.2

d1-d2-d4-d8-d1-k2 0.32 0.47 0.66 0.64 0.70 0.65 270.1 3.7 17.6 57.0

d1-d2-d4-d8-d16-d1-k2 0.03 0.47 0.68 0.66 0.47 0.65 315.0 3.2 19.8 50.6

k32-k32-k64-k64

k2 0.20 0.28 0.59 0.50 0.60 0.55 118.7 8.4 8.3 120.9

d1-d2-d1-k2 0.25 0.45 0.62 0.60 0.62 0.60 350.7 2.9 19.9 50.4

d1-d2-d4-d1-k2 0.29 0.38 0.65 0.62 0.68 0.62 496.2 2.0 26.3 38.1

d1-d2-d4-d8-d1-k2 0.28 0.45 0.66 0.64 0.66 0.64 641.7 1.6 32.8 30.5

d1-d2-d4-d8-d16-d1-k2 0.40 0.48 0.71 0.62 0.71 0.67 787.6 1.3 38.4 26.1

k32-k32-k64-k64-k64-k64

k2 0.27 0.39 0.63 0.57 0.61 0.58 206.6 4.8 13.4 74.8

d1-d2-d1-k2 0.29 0.42 0.62 0.60 0.67 0.59 439.2 2.3 24.7 40.5

d1-d2-d4-d1-k2 0.28 0.38 0.64 0.60 0.65 0.62 582.7 1.7 31.0 32.3

d1-d2-d4-d8-d1-k2 0.37 0.45 0.68 0.62 0.67 0.63 729.8 1.4 37.2 26.9

d1-d2-d4-d8-d16-d1-k2 0.42 0.49 0.68 0.63 0.70 0.63 877.7 1.1 43.9 22.8

k64-k64-p2-k128-k128

k2 0.26 0.35 0.65 0.60 0.66 0.60 136.0 7.4 8.1 124.1

d1-d2-d1-k2 0.30 0.34 0.66 0.63 0.72 0.66 279.8 3.6 17.1 58.5

d1-d2-d4-d1-k2 0.41 0.45 0.70 0.67 0.73 0.67 350.8 2.9 21.8 45.8

d1-d2-d4-d8-d1-k2 0.34 0.49 0.71 0.66 0.73 0.70 421.8 2.4 26.5 37.7

d1-d2-d4-d8-d16-d1-k2 0.36 0.47 0.72 0.64 0.75 0.68 493.2 2.0 31.2 32.0

Average Precision Scores
(evaluation on USF test split)

Context Module ↓ Time
(ms)

Speed
(fps)

Time
(ms)

Speed
(fps)

D. Explicitly providing local evidence of wires
Previous works extract local evidence of wiryness via

edge maps obtained from standard edge detection algorithms,
which is followed by filtering using domain knowledge,
and finally gathering global evidence. We adapt this line of

thought to convnets by appending the results of line segment
and edge detection using the recently proposed CannyLines
and CannyPF detectors [17] in the form of two additional
channels to the network’s input.



IV. EXPERIMENTS AND RESULTS

A. Evaluation Metrics
We first define and justify the metrics used. Average

Precision(AP) and Optimal Dataset Scale(ODS) F1 score are
standard metrics used for edge detection tasks[18]. AP is de-
fined as the mean precision taken over all recall values, and is
equal to the area under the Precision-Recall(PR) curve. ODS
F-score is the optimal F1 score obtained by choosing the
threshold of a probabilistic classifier which gives the best per-
formance across the training dataset. Previous works on wire
detection use the Receiver Operating Characteristics(ROC)
at a per-wire basis. This entails fitting a line or a curve to
thresholded predictions and then counting instances of the
same, which leads to ambiguity due to issues like minimum
length to register a detection, choosing polynomials to fit the
thresholded predictions for curved wires, and coming up with
tolerances which relax the detection criteria. Therefore, we
calculate both ROC and PRC on a per-pixel basis and report
Area under the Curve of the ROC diagram(AUC), which like
AP, summarizes the curve with a single number.

It is also worth mentioning that for the case of severely
class-imbalanced problems such as ours, AP is a better per-
formance metric than ROC. In ROC analysis. false detections
are evaluated via False Positive Rate, which compares false
positives to true negatives (i.e. background pixels which
account for roughly 95% of the USF dataset). Whereas in PR
curves, the measure of false detections is done by Precision,
which compares false positives to true positives. Therefore,
in problems where the negative class outnumbers the positive
class by a huge margin, AP is a better measure for classifier
evaluation. We refer the reader to [19] for more details.

B. Grid Search
We do extensive evaluation of the models listed in Table I

on the USF dataset. First, we randomly select half of the
USF videos (21 out of 42 available) for the training set
and kept the rest for testing, leading to 2035 frames for
training and 1421 frames for testing. Meanwhile, we also
have a synthetic dataset consisting of 67702 frames from 154
publicly available flight videos as mentioned before. For all
cases, the input resolution used is 480x640. For each model
from Table I, we conduct three kind of experiments:

• Synthetic: Train on our synthetic dataset
• Scratch: Train on train split of USF dataset
• Finetune: Finetune on the USF train split after training

on synthetic dataset
For each category above, we conduct runs with two differ-

ent inputs to investigate the benefits of explicitly providing
local evidence:

• RGB: training on monocular images only
• RGBLE: training on monocular images, concatenated

with lines(L) and edges(E) detected by [17].
Table II shows the results of all the six experiments on

each model, along with the AP scores and performance on
the NVIDIA Titan X Pascal and the TX2. Each experiment
category is assigned an arbitrary hue, and darker color
emphasizes better performance. Same is true for the last

Fig. 3: Precision recall curves obtained by evaluating our models on
USF test split with RGB input, after finetuning our models on USF
train split after pretraining on synthetid data. Each subfigure has the
same front end module, while the context module changes as shown
in the legends. Numbers in paranthesis are the Average Precision
scores for the respective model. In all cases we can see that adding
increasing dilation increases the precision of the classifier at various
recall levels (except for one case in k32-k32-k32-k32-k32-k32’s
series where the model with the maximum dilation didn’t converge.

4 columns which depict the inference performance with a
batch size of 1, and input resolution of 480x640. Each class
of models with the front-end is demarked by the bold blue
text, while context modules of increasing amount of dilation
are added to them in 5 consecutive rows. From Table II, we
can draw the following conclusions:

• Dilated kernels with increasing sparsity help:
This trend can be seen throughout in Col 2-7 for
each front-end. For each column, for the same frontend
module, we can observe increasing AP scores as we
add more dilation in the context modules. As the AP
numbers can be close and hard to judge, we verify the
same with Precision Recall curves for each front-end
with varying context modules as shown in Figure 3. At
the same time, the run-time performance of the models
decrease as we can keep on adding more layers (Col
8-11).



TABLE III: Top models from our grid search. All models were
trained on synthetic data first, then finetuned on our USF dataset
test split using RGB input. Darker color in each colum implies
higher accuracy, higher speed (frames per second) on the TX2, and
smaller number of model parameters. Hues for each column are
chosen arbitrarily.

k64-k64-p2-k128-k128-d1-d2-d4-d8-d16-d1-k2 0.75 2.03 1,147,970

k64-k64-p2-k128-k128-d1-d2-d4-d1-k2 0.73 2.85 852,802

k64-k64-p2-k128-k128-d1-d2-d4-d8-d1-k2 0.73 2.37 1,000,386

0.72 3.54 84,706

k64-k64-p2-k128-k128-d1-d2-d1-k2 0.72 3.57 705,218

k32-k32-k64-k64-d1-d2-d4-d8-d16-d1-k2 0.71 1.27 288,290

0.70 4.01 66,210

k32-k32-k32-k32-k32-k32-d1-d2-d4-d8-d1-k2 0.70 3.7 93,954

k32-k32-k64-k64-k64-k64-d1-d2-d4-d8-d16-d1-k2 0.70 1.14 362,146

0.68 4.23 75,458

k32-k32-k64-k64-d1-d2-d4-d1-k2 0.68 2.02 214,434

k32-k32-k32-k32-k32-k32-d1-d2-d4-d1-k2 0.67 4.44 84,706

k32-k32-k64-k64-k64-k64-d1-d2-d1-k2 0.67 2.28 251,362

k32-k32-k64-k64-k64-k64-d1-d2-d4-d8-d1-k2 0.67 1.37 325,218

Model AP Score 
(Finetune RGB)

TX2
(fps)

Number
of params

k32-k32-k32-k32-d1-d2-d4-d8-d16-d1-k2

k32-k32-d1-d2-d4-d8-d16-d1-k2

k32-k32-k32-k32-d1-d2-d4-d8-d1-k2

• Explicitly providing local information only helped in the
case of synthetic data:
This can be seen by comparing the RGB and RGBLE
columns in Table II under each category. In case of
training (Col 4-5) or finetuning on real data (Col 6-
7), we actually observe slightly poorer performance by
providing results of line and edge detection. However,
for the case of training on synthetic data (Col 2-3),
providing local evidence helps to boost the networks’
performance on real data by fairly big margins. We
believe this is due to the nature of the synthetic dataset
which doesn’t have the same distribution as the USF test
split, and hence, giving the networks all lines and edges
explicitly helps to improve their performance. This also
suggests that an RGBLE input might generalize better
to a test set having a significantly different distribution
from the training set, but more experimentation is
needed to ascertain that.

• Pretraining on synthetic data helps slightly:
This can be seen by comparing Col 4 with Col 6
(RGB inputs). We believe this is another artifact of
the USF dataset, which is small in size and a lot of
images are relatively simplistic. The previous statement
is supported with evidence of results presented in Fig.
5. Here, we train only on synthetic data with 720x1280
resolution, and tested on a few publicly available videos.
In this case, the value of synthetic data is clearly
evident.

For our use case, we desire fast inference speed on the
TX2 and decent precision at high recalls for wires. To pick
the best of the lot, the top 15 models from our grid search
experiments on finetuning on the USF dataset with RGB
input can be seen in Table III, along with inference speed
with batch size 1 and resolution of 480x640, and number of
parameters (although number of parameters isn’t that much
of a burden at inference time due to enough memory on the
TX2). We cherry pick the 5 models in bold text by looking at
these three metrics, the precision recall scores (Fig. 4), and

Fig. 4: Precision Recall curves of the top models from our grid
search experiment (in bold text in Table III). Legend shows Average
Precision scores on the USF test split, and speed on the NVIDIA
TX2 in frames per second.

TABLE IV: Our top models compared with various baselines. The
metrics used are Average Precision(AP), Area under the Curve
of ROC diagram(AUC), Optimal Dataset Scale F1-Score(ODS F-
Score)

Model AP AUC ODS
F-Score

TX2
(fps)

FCN-8 [7] 0.581 0.960 0.598 1.37
FCN-16 [7] 0.639 0.972 0.663 1.39
Segnet [12] 0.571 0.939 0.567 2.19

Candamo [2] 0.408 - 0.382 -
E-Net [11] 0.580 0.945 0.595 -

k64-k64-p2-k128-k128-
d1-d2-d4-d1-k2 0.729 0.972 0.688 2.85

k32-k32-k32-k32-
d1-d2-d4-d8-d16-d1-k2 0.717 0.976 0.678 3.54

k32-k32-
d1-d2-d4-d8-d16-d1-k2 0.703 0.969 0.673 4.01

k32-k32-k32-k32-k32-k32-
d1-d2-d4-d8-d1-k2 0.696 0.973 0.656 3.70

k32-k32-k32-k32-k32-k32-
d1-d2-d4-d1-k2 0.667 0.970 0.647 4.44

qualitative comparisons (Fig. 6). Table IV compares these
top-5 models with various baselines.

Implementation details: For training on synthetic data, we
use a minibatch size of 4 and train for 2000 iterations, while
for the USF dataset, we train for 1000 iterations. All input
images are of 480x640 resolution. We use AdaDelta [20] we
found that stochastic gradient descent with momentum lead
to slower convergence and a few architectures getting stuck
in local minimas. We implement our models in both Lasagne
[21] and Pytorch, as we found that the latter is faster and
consumes less memory on the TX2.



C. Baselines
We consider four baselines to compare our approach with -

Candamo et al.[2], FCNs[7], SegNet[12] and E-Net[11]. We
adapt the temporal approach of [2] described in the related
work section to a per-frame method: first we perform edge
detection using [17], followed by morphological filtering
of 8-connected components with connectivity of less than
30 pixels, followed by a windowed Hough transform by
breaking up the edgemap image into 16 (4*4) subwindows.

Table IV and Figure 4 shows the performance of our top 5
models along with the baselines. We report AP, AUC, ODS-
F1 scores, inference speed for a 480x640 image with batch
size 1 on the NVIDIA TX2, and the PR curves. For [2], as
the output is a binary prediction (detected lines via windowed
Hough transform) and not a confidence value as in the case
of CNNs, we report the F1 score and the Precision value in
the ODS F-score and the AP fields respectively. We don’t
report AUC as that is applicable to probabilistic classifiers
only. To calculate the metrics in this case, we rasterize the
results of the Hough transform with varying thickness of the
plotted lines from 1 to 5 pixels and report the best F1 and
Precision scores obtained for a fair comparison.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented a method to detect wires using

dilated convnets to facilitate autonomous UAVs. We generate
a large synthetic dataset by rendering wires and superim-
posing them on frames of publicly available flight videos,
and demonstrate its effectiveness by showing qualitative and
quantitative results. Our experiments systematically find the
best architectures over a finite space of model parameters
and outperform various baselines across multiple detection
metrics and inference speeds on the NVIDIA TX2.

We are currently working on multi-view stereo methods
to find distance of the wires and coming up with methods
to avoid them robustly at high speeds. For improving the
perception pipeline, we are looking into eliminating false
positives and considering temporal information into account
for consistent detection of wires.
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Fig. 5: Qualitative results on real images with model k32-k32-k32-k32-d1-d2-d4-d8-d16-d1-k2 trained on our synthetic dataset with input
resolution of 720x1280. High resolution helps the network pick far off (Image 6), very thin wires (Images 3 and 4), those in clutter (Image
11) and taken when in high speed (Images 5 and 7). Video available at this link and our project page.

Fig. 6: Qualitative results of our top 5 models after finetuning on the USF dataset with RGB input. Left to right : Input image, Ground
Truth, predictions with architecture k64-k64-p2-k128-k128-d1-d2-d4-d1-k2, k32-k32-k32-k32-d1-d2-d4-d8-d16-d1-k2, k32-k32-d1-d2-d4-
d8-d16-d1-k2, k32-k32-k32-k32-k32-k32-d1-d2-d4-d8-d1-k2, k32-k32-k32-k32-k32-k32-d1-d2-d4-d1-k2.

https://www.youtube.com/watch?v=YlcEybmGbok&
http://madratman.github.io/wire_detection_iros_2017
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