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Abstract

Pose estimation is central to several robotics applications such as registration, ma-

nipulation, SLAM, etc. In this thesis, we develop probabilistic approaches for fast

and accurate pose estimation. A fundamental contribution of this thesis is formulat-

ing pose estimation in a parameter space in which the problem is truly linear and

thus globally optimal solutions can be guaranteed. It should be stressed that the

approaches developed in this thesis are indeed inherently linear, as opposed to lin-

earization or other approximations commonly made by existing techniques, which

are known to be computationally expensive and highly sensitive to initial estimation

error.

This thesis will demonstrate that the choice of probability distribution significantly

impacts performance of the estimator. The distribution must respect the underlying

structure of the parameter space to ensure any optimization, based on such a distri-

bution, produces a globally optimal estimate, despite the inherent nonconvexity of

the parameter space.

Furthermore, in applications such as registration and three-dimensional recon-

struction, the correspondence between the measurements and the geometric model is

typically unknown. In this thesis we develop probabilistic methods to deal with cases

of unknown correspondence.

In this thesis work, we plan to extend our approaches to applications requiring

dynamic pose estimation. We also propose to incorporate probabilistic means for

finding the data association, inspired by [12]. Finally, we will develop a filtering

approach using a Gilitschenski distribution [31], that considers the constraints of

both rotation and translation parameters without decoupling them.
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Chapter 1

Introduction

Several applications in robotics require estimation of pose (translation and orienta-

tion) between two references frames of interest, for example, medical image regis-

tration [76], manipulation [25], hand-eye calibration [27] and navigation [25]. De-

pending on the nature of the sensor measurements, frequency of receiving the mea-

surements, knowledge of data association between the measurement modalities and

computational constraints imposed by the application, pose estimation offers different

challenges in different applications. As a result, a variety of approaches have been

developed in literature to cater to the unique challenges offered by different applica-

tions [9, 94, 85, 27, 25, 33]. This thesis derives linear models for probabilistic pose

estimation by using the appropriate parameter space and probability distributions

that respect the underlying structure of the space. This results in fast, accurate and

globally optimal pose estimates for a variety of pose estimation problems.

1.1 Motivation

Probabilistic pose estimation techniques have recently gained popularity due to their

ability to adapt to noisy sensor measurements. Probabilistic methods improve upon

the accuracy and flexibility of the standard pose estimation algorithms such as itera-

tive closest point (ICP) [9] through incorporation of generalized noise models. Most

of the early literature on probabilistic approaches to pose estimation were devel-
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oped for point registration applications. These methods incorporate anisotropic noise

models and provide optimal pose given a batch of point measurements [101, 26, 35].

Pennec et. al. [85], proposed an iterative solution to pose estimation by employing an

extended Kalman filter (EKF). Moghari et. al. [76] and Hauberg et. al. [39] improved

upon the EKF-based pose estimation by using an unscented Kalman filter (UKF).

While all the above methods match the point measurements to the closest point

on the geometric model, other authors have developed probabilistic methods for soft

matching, where each point measurement is matched to every point in the model

(instead of a single point) with an associated probability of match [78, 72, 12]. It

has been observed that the difference in match criteria can dramatically impact the

accuracy of the pose estimation.

The contributions of this thesis are motivated by the following needs:

1.1.1 Linear Update Model

Typically, filtering-based approaches provide incremental pose estimates using non-

linear update models that require linearization (in the case of extended Kalman filter)

or higher order approximations (in the case of unscented Kalman filter), which make

them highly sensitive to initial estimation errors, and computationally expensive.

Thus, there exists a need to develop linear update models which can ensure globally

optimal estimates.

1.1.2 Appropriate Choice of Probability Distribution

Gaussian distribution is a popular choice for modeling the uncertainty in pose pa-

rameters due to its convenient properties and natural appearance as a limit distri-

bution [39, 18, 116, 34, 120]. However, a Gaussian may not capture the inherent

structure of the parameter space, and as the uncertainties become larger, the errors

introduced by this distribution become non-negligible and can significantly impact

the performance of the estimator [60]. Hence, probabilistic approaches need to be de-

veloped for pose estimation using probability distributions that respect the structure
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of the parameter space.

1.1.3 Probabilistic Nonconvex Optimization

In applications such as point registration and three dimensional reconstruction, the

correspondence between the measurements in the different reference frames are un-

known resulting in a highly nonconvex problem [125]. Probabilistic methods that

have been developed to deal with this nonconvexity use particle filters [71], simulated

annealing [67], genetic algorithms [102] or multi-hypothesis filtering [89]. These imple-

mentations are computationally expensive and require several unintuitive parameters

to be tuned. Thus, there exists a need to develop filtering methods for nonconvex

optimization that are computationally fast and have few intuitive parameters to tune.

1.1.4 Registration with Few Sparse Measurements

Several methods have been developed to perform registration when dense point mea-

surements are obtained [9, 94, 101, 76, 12]. However, these methods do not perform

well when the number of available point measurements are small (≈ 20), as in the

case of probing-based registration in surgical applications [106]. Prior work assume

a priori knowledge of landmarks or shape segments to hand-pick a small number

of probing locations [106, 69]; which can be a very restrictice assumption. Others

use particle filter based approach which are computationally expensive and do not

provide realtime pose updates [71]. Hence, there is a need to develop a computa-

tionally fast approach to pose estimation in the presence of a small number of sparse

measurements.

1.1.5 Sequential Estimator with Probabilistic Matching

Approaches in literature that use probabilistic matching are batch processing in na-

ture and hence computationally expensive when used in applications with a large

number of point measurements [35, 12]. On the other hand, filtering approaches se-

quentially process the measurements and can provide fast pose updates even when
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there is a large number of measurements. However, these approaches do not use

probabilistic matching and hence are less accurate. Therefore there is a need to de-

velop a sequential approach with probabilistic matching for fast and accurate pose

estimation.

1.2 Key Contributions

The key contributions of this thesis are summarized in Table 1.1.

Table 1.1: Key Contributions of this Thesis

Sequential Estimation with
Dual Quaternion-based Filter

Known Data Association Bingham Distribution-based Filter

Sequential Estimation with
Multiple Start Branch and Prune Filter

Unknown Data Association

Batch Estimation with
Spare Point Registration

Unknown Data Association Complementary Model Update

1.2.1 Linear Models for Pose Estimation

In this work, we derive linear update models for pose estimation when using pose,

position or surface-normal measurements. This is made possible by using dual quater-

nions to parameterize the pose and using a pair of measurements per pose update.

To the best of our knowledge it is the first attempt at deriving linear update models

for probabilistic pose estimation.

1.2.2 Bingham Distribution-based Filter

In this work, we use unit quaternions to parameterize the rotation. Bingham et. al. [14]

showed that a Gaussians do not accurately represent the uncertainty distribution in
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the space of unit quaternions, and introduced the Bingham distribution to model the

uncertainty instead (see Fig. 3-1). In this work we model the uncertainty in rota-

tion using a Bingham distribution, and model the uncertainty in translation using a

Gaussian distribution. This results in an approach that is computationally fast and

more accurately estimates the pose compared to existing methods [111, 76, 85].

1.2.3 Multiple Start Branch and Prune Filter

We introduce a new filtering approach for nonconvex optimization, called multiple

start branch and prune filtering algorithm (MSBP). The MSBP starts with a num-

ber of initial states, similar to a multi-hypothesis filter. These states are perturbed

based on the uncertainty. The perturbed states are updated and then pruned based

on the innovation of the filter. This process is repeated iteratively until convergence.

The perturbation step encourages exploration while the pruning step encourages ex-

ploitation.

MSBP only has a few parameters to tune and can provide fast online estimates

of the optimal pose. MSBP can be applied not only for pose estimation but also

other nonconvex optimization problems where the objective function is available in

an analytical form and yet is expensive to evaluate.

1.2.4 Sparse Point Registration

In this thesis, we develop a probabilistic method for robust sparse point registra-

tion (SPR) using a small batch of ≈ 20 sensor measurements. Our approach for

SPR is iterative and in each iteration, the current best pose estimate is perturbed

to generate several poses. Among the generated poses, the best pose as evaluated

by an inexpensive cost function is used to estimate the locally optimum registration.

This process is repeated, until the pose converges within a tolerance bound. Upon

comparison with other methods, our approach was found to be robust to initial pose

errors as well as noise in measurements.
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1.2.5 Complementary Model Update

When dealing with probing-based registration of soft and flexible objects, mechanical

contact introduces a local deformation resulting the sensed points not lying on the

undeformed surface of the object. Therefore we have developed a new approach

termed complementary model update (CMU) that uses both contact force and contact

location information, to compensate for the local deformation and probabilistically

estimate the registration parameters. The use of contact/force data comes with the

advantage of providing a stiffness distribution on the surface of the object, which can

be useful in surgical applications such as tumor localization. Furthermore, we show

that stiffness priors can help improve the accuracy of registration estimate, especially

when the object is rotationally symmetric.
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Chapter 2

Motivating Example

In this section we describe a motivating example that demonstrates the importance

and highlights the expected results of this thesis.

Figure 2-1: A. CT image of a liver with tumor. B. Corresponding preoperative model.
Picture courtesy: Johns Hopkins Medicine Gastroenterology and Hepatology

The task at hand is to detect and localize a tumor in the liver of a patient using a

robot assisted minimally invasive surgery. This task would first involve diagnosing the

presence of tumor in the liver, which is typically done using imaging modalities such

as computed tomography (CT), magnetic resonance imaging (MRI) or ultrasound

(US). Fig. 2-1(A) shows a slice of the CT scan of the liver, in which the tumor is

visible as a dark contrast. A preoperative model of the liver and the tumor is then
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generated from the CT scans (see fig. 2-1(B)).

Figure 2-2: Experimental setup for the motivating example. There are three frames of
reference that are of interest – robot frame R, camera frame C and preoperative model
frame M. We need to find the pose among all these frames, TRM ,T CM ,T CR ∈ SE(3).
This would allow us to virtually overlay the model of the tumor in the camera’s view
and help navigate the robot to the tumor location.

A setup as illustrated in Fig. 2-2 is used to perform the surgery. The setup consists

of a stereo vision system and a surgical robot with a force sensor attached to its tip.

The following are some important problems to be solved in order to locate the tumor:

1. Stereo registration: Register a stereo reconstructed surface of the liver to its

preoperative model; find pose T CM ∈ SE(3) in Fig. 2-2.

The stereo camera provides a steady stream of thousands of point measure-

ments, which need to be registered to the preoperative model. The pose esti-

mation algorithm to be used needs to be capable of realtime computation, and

be able to handle noise in the measurements. In addition, the algorithm to be

used would need to work without the knowledge of the point correspondence
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between the measurements and the preoperative model. Sequential estimation

with unknown data association is described in Chapter 6.

2. Estimating pose between camera and robot: We need to track the tip

of the robot in the camera frame and in the robot frame, and find the relative

pose between the two, T CR ∈ SE(3). Estimating the relative pose between the

camera and the robot allows us to command the robot to a location as seem in

the camera frame (see Fig. 2-2).

The algorithm to be used for this problem needs to provide fast online updates

of the pose along with an uncertainty measure to indicate convergence of the

estimate. Sequential estimation with known data association is described in

Chapter 5 and Chapter 4.

3. Probing-based registration: To improve upon the estimate of the stereo

registration, the liver is probed with the robot and the obtained point measure-

ments on the surface are registered to the preoperative model; we need to find

TRM ∈ SE(3) in Fig. 2-2.

In contrast to the stereo registration, there are fewer points available to be used

in the pose estimation. The pose estimation algorithm to be used needs to

be capable of using few sparse measurements to accurately register the robot

frame to the model frame. Batch estimation using sparse point measurements

is described in Chapter 7.

4. Deformation compensation: Palpation introduces local deformation. This

deformation if not compensated for can lead to erroneous pose estimation. The

deformation needs to be estimated and compensated for it during the registra-

tion.

The approach to be used would require realtime estimation of the local deforma-

tion from the sensed force and position measurements. Deformation compen-

sated registration using complementary model update is described in Chapter 8.

Once the liver and the tumor are registered, the geometric model of the tumor has to
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be augmented into the view of the camera. Augmented model of tumor would reduce

the cognitive load of the surgeon and enable accurate extraction of the tumor.

Pose estimation is a common theme that binds all the problems listed above. How-

ever, each problem has unique constraints due to the nature of the measurements, the

knowledge of the correspondences between the measurements, and the computation

time requirements. In this thesis, we develop probabilistic means to estimate the

pose for a variety of applications including the ones listed above. The approach that

we follow provides fast and accurate estimates of the pose that is robust to noise in

measurements and initial estimation errors.
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Chapter 3

Mathematical Background

3.1 Quaternion

While there are many representations for SO(3) elements such as Euler angles, Ro-

drigues parameters, axis angles, etc, in this work uses unit-quaternions. We prefer

the quaternions because their elements vary continuously over the unit sphere S3 as

the orientation changes, avoiding discontinuous jumps (inherent to three-dimensional

parameterizations). A quaternion q̃ is a 4-tuple (q0, q1, q2, q3), where q0 is the scalar

part and

q = (q1, q2, q3)
T = vec (q̃)

is the vector part of the quaternion. A 3 dimensional vector can be denoted by a

quaternion with a 0 scalar part.
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Quaternion Multiplication

Multiplication of two quaternions p̃ and q̃ is given by

p̃� q̃ = p0q0 − p · q + q0p+ p0q + p× q,

=

p0 −pT

p p× + p0I3

 q̃ =

q0 −qT

q −q× + q0I3

 p̃ (3.1)

where � is the quaternion multiplication operator and [v]× is the skew-symmetric

matrix formed from the vector v.

Quaternion Conjugate

Given a quaternion q̃, its conjugate q̃∗ can be written as: q̃∗ = (q0,−q1,−q2,−q3). If

the scalar part of a quaternion is 0,

q̃∗ = −q̃∗. (3.2)

The conjugate has the following property: vec (q̃ � q̃∗) = 0.

Unit Quaternion

The norm of a quaternion is |q̃| =
√

scalar(q̃ � q̃∗) and a unit quaternion is one with

|q̃| = 1. Unit quaternions can be used to represent rotation about an axis (denoted

by the unit vector k) by an angle θ ∈ [−π, π] as follows

q̃ =

(
cos

(
θ

2

)
,k sin

(
θ

2

))
. (3.3)

Since rotating about k axis by θ is the same as rotating about −k axis by −θ, q̃ and

−q̃ both represent the same rotation. A point b can be rotated by a quaternion q̃ to

obtain a new point a as shown,

ã = q̃ � b̃� q̃∗, (3.4)
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where ã = (0,a) and b̃ = (0, b) are quaternion representations of a, b respectively.

3.2 Dual Quaternion

There are many representations for SE(3) elements such as Euler angles, quater-

nions, axis angles, etc. for rotation and Cartesian coordinates for translation. Dual

quaternions compactly represent both translation and rotation, and with the meth-

ods presented in this paper, give rise to a linear update model. A detailed discus-

sion on dual quaternions can be found in [55]. A dual quaternion d̂ is an 8-tuple

(p0, p1, p2, p3, q0, q1, q2, q3), which can be written in the form: d̂ = p̃ + εq̃, where

p̃ = (p0, p1, p2, p3) and q̃ = (q0, q1, q2, q3) and quaternions and ε is a mathematical

construct called the ‘dual operator ’ having the following property: ε 6= 0 and ε2 = 0.

The dual operator is a mathematical construct with a defined property and is not to

be confused as having a small value close to 0. p̃ is called the real part and q̃ is called

the dual part of the dual quaternion.

A dual quaternion used to represent a vector a ∈ R3 has the following form

â = 1 + ε (ã) , where ã = 0 + a. (3.5)

Dual Quaternion Multiplication

Multiplication of two dual quaternions d̂1 = p̃1 + εq̃1 and d̂2 = p̃2 + εq̃2 is given as

d̂1 ⊗ d̂2 = p̃1 � p̃2 + ε (p̃1 � q̃2 + q̃1 � p̃2) , (3.6)

where ⊗ is the dual quaternion multiplication operator.

Dual Quaternion Conjugate

Dual quaternions have three conjugates:

1. First conjugate: d̂
1∗

= p̃− εq̃.
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2. Second conjugate: d̂
2∗

= p̃∗ + εq̃∗. A dual quaternion is called “unit” if

d̂⊗ d̂
2∗

= 1.

3. Third conjugate: d̂
3∗

= p̃∗− εq̃∗. An important property of the third conjugate

that will be used in this work is,
(
d̂1 ⊗ d̂2

)3∗
= d̂

3∗
2 ⊗ d̂

3∗
1 .

Dual Quaternion for Pose Representation

A dual quaternion that is used to represent an SE(3) element has the following form

d̂ = q̃r + ε
q̃t � q̃r

2
, (3.7)

where q̃r is the rotation quaternion whose form is as shown in Eq. 3.3 and q̃t = 0+t is

the quaternion representation of the translational component of the SE(3) element,

t ∈ R3. For the sake of simplicity, we rewrite Eq. 3.7 as

d̂ = q̃r + εq̃d, where (3.8)

q̃d =
q̃t � q̃r

2
. (3.9)

It is important to note that d̂ is a unit dual quaternion since its dual-product with the

second conjugate is unity. Let point a ∈ R3 be obtained by transforming point b ∈ R3

using a dual quaternion d̂. The transformation can be mathematically described as

â = d̂⊗ b̂⊗ d̂
3∗
, (3.10)

where â and b̂ are obtained using Eq. 3.5.

Lemma 3.2.1. For a unit dual quaternion, d̂ = q̃r + εq̃d, the product of third and

first conjugate equals unity: d̂
3∗
⊗ d̂

1∗
= 1.
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Proof:

d̂
3∗
⊗ d̂

1∗
= (q̃∗r − εq̃

∗
d)⊗ (q̃r − εq̃d)

= q̃∗r � q̃r − ε (q̃∗r � q̃d + q̃∗d � q̃r) , from Eq. 3.1

= 1− ε
(
q̃∗r �

q̃t � q̃r
2

+
q̃∗r � q̃

∗
t

2
� q̃r

)
. (3.11)

Using the property that q̃r is a unit quaternion and q̃∗t = −q̃t from Eq. 3.2. Eq. 3.11

can be further simplified as d̂
3∗
⊗ d̂

1∗
= 1.

3.3 Bingham Distribution

The Bingham distribution was introduced in [14] as an extension of the Gaussian

distribution, conditioned to lie on the surface of a unit hyper-sphere. The Bingham

Figure 3-1: A 2D Bingham distribution: z = 1
N

exp(sTMZMTs), where M = I2×2,
Z = diag(0,−10), and s = (x, y). The mode is at x = ±1, y = 0.

distribution is widely used to analyze paleomagnetic data [59], computer vision [38]

and directional statistics [14]. Recently the Bingham distribution has found applica-

tions in robotics for orientation estimation [60, 32], feature description [33] and planar

pose description [31].
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Definition 1. Let Sd−1 = {x ∈ Rd : ||x|| = 1} ⊂ Rd be the unit hypersphere in Rd.

The probability density function f : Sd−1 → R of a Bingham distribution is given by

f(x) =
1

N
exp(xTMZMTx),

where M ∈ Rd×d is an orthogonal matrix (MMT = MTM = Id×d),

Z = diag(0, z1, . . . , zd−1) ∈ Rd×d with 0 ≥ z1 ≥ · · · ≥ zd−1 is known as the concentra-

tion matrix, and N is a normalization constant.

Mode of the Distribution

It can be shown that adding a multiple of the identity matrix Id×d to Z does not

change the distribution [14]. Thus, we conveniently force the first entry of Z to be

zero [14]. Because it is possible to swap columns ofM and the corresponding diagonal

entries in Z without changing the distribution, we can enforce z1 ≥ · · · ≥ zd1. This

representation allows us to obtain the mode of the distribution very easily by taking

the first column of M . Note that sometimes an alternate convention is used in

literature, wherein Z is chosen such that the last entry of Z is 0 and the last column

of M is chosen as the mode of the distribution [60, 14]. Such a convention is used

when the quaternion chosen is q = (vec(q̃), scalar(q̃)), which we do not adopt in this

work.

Normalization Constant

The normalization constant N is given by

N =

∫
Sd−1

exp(xTZx)dx.

The matrix M is not a part of the normalization constant, because M controls the

location of the modes and not their width [14]. Computation of the normalization

constant is difficult and often one resorts to some form of approximation such as saddle

point approximations, or precomputed lookup tables ( see [33] and the references
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therein).

Antipodal Symmetry

An example of the PDF for two dimensions (d = 2) is shown in Fig. 3-1. The PDF

is antipodally symmetric, i.e., f(x) = f(−x) holds for all x ∈ Sd−1. The antipodal

symmetry is important when dealing with distribution of unit-quaternions, because

the q̃ and −q̃ describe the same rotation. The Bingham distribution with d = 4 is

used to describe the uncertainty in the space of the unit-quaternions.

Product of Two Bingham Distributions

Similar to a Gaussian, the product of two Bingham PDFs is a Bingham distribution,

which can be rescaled to form a PDF [60]. Consider two Bingham distributions

fi(x) = 1
Ni

exp
(
xTM iZiM

T
i x
)
, i = 1, 2. Then,

f1(x)·f2(x) =
1

N1N2

exp(xT
(
M 1Z1M

T
1 +M 2Z2M

T
2

)︸ ︷︷ ︸
A

x)

∝ 1

N
exp

(
xTMZMTx

)
, (3.12)

where N is the new normalization constant after renormalization, M is composed of

the unit eigenvectors of A. Z = D −D11Id×d where D has the eigenvalues of A

(sorted in descending order) and D11 refers to the largest eigenvalue.

Calculating the Covariance

Even though a Bingham distributed random vector x only takes values on the unit

hyper-sphere, it is still possible to compute a covariance matrix in Rd, which is given

by: Cov(x) = E(x2)− E(x)2 [60]. Upon simplification one obtains

Cov(x) = −0.5
(
M(Z + cI)MT

)−1
,
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where c ∈ R can be arbitrarily chosen as long as (Z + cI)) is negative definite [32].

Without loss of generality c = min(zi) is chosen in this work.

3.4 Bayesian Filter

State estimation problems that utilize filtering algorithms are typically comprised of

a recursive Bayesian formulation with probabilistic models. Bayesian filtering algo-

rithms seek to estimate a posterior probability distribution over an unknown state

vector xk at time step k given the control inputs uk and measurements zk. The

probability density function (PDF)can be factored using Bayes law,

p(xk|z1:k,u1:k) = ηp(zk|xk, z1:k−1,uk)p(xk|z1:k−1,uk),

where η is a normalization constant. Assuming the measurements are independent

and the processes Markov, we obtain

p(xk|z1:k,u1:k) =

η p(zk|xk, z1:k−1,uk)
∫
xk−1

p(xk|xk−1, z1:k−1,u1:k−1)p(xk−1|z1:k−1,u1:k−1)∂xk−1.

(3.13)

In Eq. 3.13, p(zk|xk, z1:k−1,uk) is the measurement model and p(xk|xk−1, z1:k−1,u1:k−1)

is the process model. Eq, 3.13 is often written in the following form,

bel(xk) = η p(zk|xk, z1:k−1,uk) bel(xk), (3.14)

where bel(xk) is the belief over the state xk and bel(xk) is the posterior before incor-

porating measurement zk.
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Kalman Filter

The Kalman filter is a Bayesian filter, which assumes that xk, zk and uk are gaussian

distributions. If the system has a linear measurement model and a linear process

model, the Kalman filter is the optimal stochastic estimator for the state xk [53].

The posterior distribution xk is parameterized as

xk ∼ N (µk,Σk).

There are two steps in a Kalman filter: prediction and update. In the prediction

step, given the previous estimate of the state, the current state is estimated using the

process model. From Eq. 3.14,

bel(xk) =

∫
p(xk|xk−1, z1:k−1,u1:k−1)bel(xk−1)∂xk−1,

= η1

∫
exp

(
−1

2
(xk −Akxk−1 −Bkuk)

TR−1k (xk −Akxk−1 −Bkuk)

)
exp

(
−1

2
(xk−1 − µk−1)TΣ−1k−1(xk−1 − µk−1)

)
dxk−1,

= η1 exp

(
−1

2
(xk − µk|k−1)TΣ−1k|k−1(xk − µk|k−1)

)
, where

µk|k−1 = Akµk−1 +Bkuk, (3.15)

Σk|k−1 = AkΣk−1A
T
k +Qk, (3.16)

where Ak is the state transition matrix, Bk is the control input matrix and Qk is the

covariance of the process model noise.

The update step corrects the predicted estimate using the obtained sensor mea-

surement zk by computing a Kalman gain Kk. To obtain the update equations we
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use Eq. 3.14

bel(xk) = η p(zk|xk, z1:k−1,uk)bel(xk),

= η exp

(
−1

2
(zk −Hkxk)

TR−1k (zk −Hkxk)

)
exp

(
−1

2
(xk − µk|k−1)TΣ−1k|k−1(xk − µk|k−1)

)
,

where Hk is the measurement model, such that zk = N (Hkxk,Rk) and Rk is the

covariance of the measurement noise. We can obtain the µk|k by finding the maximum

likelihood estimate of bel(xk)

µk|k = argmax
xk

bel(xk),

= argmin
xk

(
(zk −Hkxk)

TR−1k (zk −Hkxk) + (xk − µk|k−1)TΣ−1k|k−1(xk − µk|k−1)
)
,

(3.17)

where Hk is the measurement model, such that zk = N (Hkxk,Rk) and Rk is the

covariance of the measurement noise. Upon simplification we obtain

µk|k = µk|k−1 +Kk(zk −Hkµk|k−1), (3.18)

Σk|k = Σk|k−1 −KkHkΣk|k−1, where, (3.19)

Kk = Σk|k−1H
T
k (HkΣk|k−1H

T
k +Rk)

−1. (3.20)

From the above equations it can be observed that the uncertainty of the state Σk|k,

is reduced upon the inclusion of the information provided by the measurement.

The Kalman filter is only optimal for linear systems. For systems with nonlinear

process models and nonlinear measurement models, one popular method is to use

an extended Kalman filter (EKF). An EKF linearizes the models about the current

estimate and then perform a similar prediction and measurement correction step.

The other popular method is to use an unscented Kalman filter (UKF). The UKF

uses a deterministic sampling technique known as the unscented transform to pick a
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minimal set of sample points (called ‘sigma points ’) around the mean. These sigma

points are then propagated through the nonlinear functions, from which a new mean

and covariance estimate are then formed. The result is a filter which, for certain

systems, more accurately estimates the true mean and covariance. In addition, this

technique removes the requirement to explicitly calculate Jacobians (as required by

EKF), which for complex functions can be a difficult task in itself, if not impossible.

3.5 Rigid Registration

Point set registration is the process of finding a spatial transformation that aligns the

elements of two point sets. Point set registration is frequently encountered in robotic

applications, such as computer vision [66], localization and mapping [47], surgical

guidance [71], etc.

Horn’s Method

When the correspondence between the points in the two point sets is known, rigid

registration can be solved analytically as shown in [43]. Consider two point sets, A =

{ai}, and B = {bi}, ai, bi ∈ R3, i = 1, . . . , n. Let T ∈ SE(2) be the transformation

that aligns A and B, ai
1

 = T

bi
1

 . (3.21)

The objective function to be minimized is

O =
n∑
i=1

||ai −Rbi − t||2, (3.22)
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where R ∈ SO(3) and t ∈ R3 are the rotation matrix and translation vector that

comprise the transformation T . Let the centroids of the two point sets be ac and bc,

ac =
1

n

n∑
i=1

ai, bc =
1

n

n∑
i=1

bi.

From Eq. 3.21,

ac = Rbc + t,

⇒t = ac −Rbc (3.23)

Substituting Eq. 3.23 in Eq. 3.22,

O =
n∑
i=1

||ai −Rbi +Rbc − ac||2,

=
n∑
i=1

||(ai − ac) +R(bi − bc)||2,

=
n∑
i=1

||(ui) +R(vi)||2, where ui = (ai − ac),vi = (bi − bc)

=
n∑
i=1

uTi ui + vTi vi − 2(uTi Rvi). (3.24)

Minimizing O is equivalent to maximizing f ,

f =
n∑
i=1

(uTi Rvi),

= Trace

(
n∑
i=1

Ruiv
T
i

)
,

= Trace (RN ) , where N =
n∑
i=1

uiv
T
i . (3.25)
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The R that maximizes f can be obtained as

R = V UT , where (3.26)

N = UDV T is the eigen decomposition of N .

Iterative Closest Point

However, when point correspondences are unknown, finding the optimal transforma-

tion becomes a nonconvex optimization problem with several local minima solutions.

Besl et. al. came up with the popular iterative closest point (ICP) method that re-

cursively finds correspondences and minimizes the alignment difference between point

sets [8]. Over the years several variants of the ICP have been developed [92], and also

filtering based solutions have been developed that are better at handling noise in the

data and provide online estimates [77]. The ICP algorithm has two important steps:

1. Finding correspondences between the two point clouds.

2. Computing the transformation which minimizes the distance between corre-

sponding points.

These two steps are repeated iteratively until convergence.

Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: T 0 ∈ SE(2)
Output: T ∈ SE(2) that aligns A and B
Initialize: T ← T 0

while not converged do
Correspondence: cj = FindClosestPoint(T (bj)), cj ∈ A
Minimization: T = argmin

T

m∑
j=1

‖cj − T (bj)‖2

end
Algorithm 1: Iterative Closest Update

Consider two point clouds, A = {ai}, ai ∈ R3, i = 1, . . . , n are points on the

geometric model of the object and B = {bj}, bj ∈ R3, j = 1, . . . ,m are points
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obtained using sensor measurements. Let T ∈ SE(2) be the transformation that

aligns A and B. The ICP algorithm is listed in Alg. 1. In Alg. 1, the minimization is

typically performed using Horn’s method [44]; although there are other optimization

variants as well [115].
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Chapter 4

Dual Quaternion Filter for Pose

Estimation

Dual quaternions provide a means to compactly combine both rotation and translation

in an unambiguities and singularity free manner [22]. While dual-quaternions have

been used with iterated extended Kalman filter (IEKF) to estimate pose, the update

model was non-linear [34]. Non-linear update models can be highly sensitive to initial

estimation errors, and can be computationally expensive. As a result in this work,

we focus on deriving a linear update model to estimate pose. Chaukron et al [20]

come closest to our work in terms of formulating a linear update model, but they

only estimate the SO(3) element. In this work we use multiple sensor measurements

simultaneously to rearrange the originally nonlinear update model into a linear form.

To the best of our knowledge, this is the first attempt to derive a linear update model

for estimating time invariant pose using a Kalman filter.

The linear measurement model comes at the cost of state dependent measurement

uncertainty. Measurement uncertainty is typically state independent and can be

obtained based on the physical characteristics of the sensor and/or the measurement

process. However, in case of state dependence, there is an additional burden of

estimating the measurement uncertainty after each state update. State dependent

measurement uncertainties have been used in systems for satellite tracking [104] and

robot navigation [108]. We use an approach similar to [104], [20] to formulate the
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expressions for the state dependent measurement uncertainties. It should be noted

that the measurement uncertainties have a linear dependence on their state vector,

which allows for derivation of exact expressions of uncertainties [48].

We consider two broad classes of applications in this section based on the type

of measurements used to estimate the pose: 1) those that use position measurements

such as registration from medical imaging [76], object tracking using laser range scan-

ners [123], etc. and 2) those that use pose (position and orientation) measurements

such as sensor calibration using inertial measurement units [73], hand-eye calibration

using stereo vision [42], etc . The linear measurement models and state-dependent

uncertainties are derived for both of these cases. We develop a dual quaternion-

based filter (DQF) for pose estimation in this section and compare the results with

non-linear filtering variants. We evaluate the formulation through simulations and

experiments for two applications: registration and sensor calibration. DQF produces

more accurate and fast estimates even in the presence of high initial errors.

4.1 Related Work

Estimation of SE(3) elements has been of interest for a long time in robotics litera-

ture. Horn et al [44] and Besl et al [9] developed methods for least squares estimation

of SE(3) elements for point registration. Park et al [83] and Chen et al [17] devel-

oped optimization based methods for estimating SE(3) elements in sensor calibration

problems. In the presence of noisy measurements, deterministic optimization meth-

ods have been observed to perform poorly [85]. However, probabilistic estimation

techniques such as Kalman filters are effective at handling noisy measurements and

producing accurate estimates of the state and associated uncertainty [53].

Several researchers have noted that filters used for pose estimation have non-linear

update models [39], and hence variants of the Kalman filter have been introduced to

handle this non-linearity. The extended Kalman filter (EKF) and unscented Kalman

filter (UKF) have been used to estimate SE(3) elements for satellite orientation [104],

manipulation [64], registration [85, 76] and sensor calibration [27]. EKF based filters
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perform first-order linear approximations of the non-linear update models and pro-

duce estimates which are known to diverge in the presence of high initial estimation

errors [20]. UKF based methods do not linearize the models but instead require evalu-

ation at multiple specially chosen points (called sigma points), which can be expensive

for a high-dimensional system such as SE(3). In addition UKF based methods require

tuning of multiple parameters, which is not intuitive.

Prior work also has looked at several parameterizations of SE(3) that would im-

prove the performance of the filters. In [39] the state variables are confined over a

known Riemannian manifold and a UKF is used to estimate the SE(3) element. Lie

algebra elements were used with an iterated extended Kalman filter (IEKF) in [113].

Both these methods involve highly non-linear update models with trigonometric terms

in them. Quaternions are used to parametrize the rotation component of SE(3) and

an EKF is used to estimate the state in [75, 7]. Quaternions are used with a UKF

in [62]. Quaternion representation-based filters usually involve a quadratic update

model. Dual quaternions with an IEKF has been used in [34].

In this work, we use dual-quaternions to represent the SE(3) element; using mul-

tiple simultaneous measurements, we derive a linear update model which can be used

with a Kalman filter without the need for linearization.

4.2 Problem Formulation

Most applications that estimate time invariant pose can be broadly divided into two

cases: Case I, ones that use position measurements and Case II, that use pose mea-

surements for updating the state. The measurement model for both these cases are

non-linear and algebraically very different. Dual quaternions provides the means to

rewrite the measurement models for both these cases in a linear form. The rest of

this chapter deals with the derivation of measurement models for the two cases and

the corresponding uncertainties.
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4.2.1 Measurement Model for Position Measurements

Systems that use position-measurements for model update have the following general

form

a = Rb+ t, (4.1)

where a is the sensor measurement, R ∈ SO(3) is the rotation matrix, b ∈ R3 is

the point to be transformed and t ∈ R3 is the translation vector. In an application

such as rigid registration to a geometric model, a is the sensed location of points and

b is the corresponding point on the geometric model of the object. Eq. 4.1 can be

rewritten using dual-quaternions from Eq. 3.10 as shown

â = d̂⊗ b̂⊗ d̂
3∗
, (4.2)

where d̂ is as defined in Eq. 3.8. Applying Lemma 3.2.1, Eq. 4.2 can be rewritten as

â⊗ d̂
1∗

= d̂⊗ b̂. (4.3)

Let us consider the case of a pair of measurements ai, i = 1, 2. From Eq. 4.3, we have

âi ⊗ d̂
1∗

= d̂⊗ b̂i,

⇒(1 + εã1)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃1), and (4.4)

(1 + εã2)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃2) (4.5)

Subtracting Eq. 4.5 from Eq. 4.4, we obtain

(ε (ã1 − ã2))⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗
(
ε
(
b̃1 − b̃2

))
⇒ ε ((ã1 − ã2)� q̃r) = ε

(
q̃r �

(
b̃1 − b̃2

))
⇒ (ã1 − ã2)� q̃r − q̃r �

(
b̃1 − b̃2

)
= 0̃. (4.6)
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Note that Eq. 4.6 does not have q̃d and contains only the rotation quaternion. Using

the quaternion multiplication described in Eq. 3.1, Eq. 4.6 can be rewritten in the

following form

Hq̃r = 0̃, where (4.7)

H =

 0 −(a1 − a2 − b1 + b2)
T

(a1 − a2 − b1 + b2) (a1 + a2 + b1 + b2)
×

 ∈ R4×4. (4.8)

The rotation quaternion q̃r lies in the null space of H . In order to estimate q̃r we

use a Kalman filter whose state vector is q̃r. For this filter, the pseudo-measurement

model is

h = Hq̃r, where h ∈ R4. (4.9)

We enforce the pseudo-measurement h = 0. The measurement in Eq. 4.9 is called

“pseudo-measurement” because h does not represent a true measurement (refer to

Sec. 6.1 for a discussion on pseudo-measurement models). The pseudo-measurement

model, is dependent on the state q̃r, and sensor measurements ãi and b̃i all of which

have associated uncertainties. In section 4.2.3, we discuss the procedure to compute

the uncertainty in the pseudo-measurement. Subsequently in section 4.3, we describe

the equations of the Kalman filter that estimates q̃r using the linear measurement

model.

After estimating q̃r using a Kalman filter, we need to estimate q̃t. Adding the

Eq. 4.4 and Eq. 4.5 we have

(2 + ε(ã1 + ã2))⊗ (q̃r − εq̃d) =

(q̃r + εq̃d)⊗
(

2 + ε(b̃1 + b̃2)
)
,

⇒2q̃t � q̃r = (ã1 + ã2)� q̃r − q̃r � (b̃1 + b̃2),

⇒q̃t =
ã1 + ã2

2
− q̃r �

b̃1 + b̃2
2

� q̃∗r. (4.10)
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Thus, Eq. 4.10 computes q̃t directly using the estimated value of q̃r without the

need for a Kalman filter. This is a helpful byproduct of using multiple measurements

simultaneously in Eq. 4.4. Since the scalar part of q̃t is 0 and vector part is t, we can

rewrite Eq. 4.10 in the following vector form

t =
a1 + a2

2
−Rq̃r

(
b1 + b2

2

)
, (4.11)

where Rq̃r is the rotation matrix formed using the quaternion q̃r. Section 4.2.3

describes the uncertainty associated with t.

4.2.2 Measurement Model for Pose Measurements

Systems that use pose-measurements for model update typically have the following

general form [83]

AX −XB = 0, (4.12)

whereA,X,B ∈ SE(3). A andB are noisy pose-measurements andX is the desired

transformation to be estimated.

A Kalman filter used to estimateX such as in [27], would have a pseudo-measurement

model of the form, h = AX −XB, h ∈ R3×3. One again we enforce the pseudo-

measurement h = 0. A UKF with a state matrix instead of state vector can directly

handle measurement models in matrix forms [39]. The pseudo-measurements can also

be converted to a vector form as shown in [27] and then estimated using a UKF. Using

dual quaternions we rewrite Eq. 4.12 in an alternate form, which would ultimately

result in a linear pseudo-measurement, thus allowing us to use a linear Kalman filter

for state estimation.

Let â, x̂, b̂ be the dual quaternions corresponding toA,X,B respectively. Eq. 4.12

can be rewritten as

â⊗ x̂− x̂⊗ b̂ = 0̂. (4.13)
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Using Eq. 3.8, Eq. 4.13 can be written as

0̂ =(ãr + εãd)⊗ (q̃r + εq̃d)− (q̃r + εq̃d)⊗ (b̃r + εb̃d),

=
(
ãr � q̃r − q̃r � b̃r

)
+

ε
(
ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d

)
. (4.14)

Hence we have

0̃ = ãr � q̃r − q̃r � b̃r (4.15)

0̃ = ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d. (4.16)

Eq. 4.15 has a form very similar to Eq. 4.6, with the only difference being that the

scalar parts of ãr, b̃r are not 0. If ãr = a0 + ar and b̃r = b0 + br, using Eq. 3.1 we

rewrite Eq. 4.15 as

Hrq̃r = 0, where (4.17)

Hr =

a0 − b0 −(ar − br)T

ar − br (ar + br)
× + (a0 − b0) I3

 ∈ R4×4. (4.18)

The pseudo-measurement model is

hr = Hrq̃r, (4.19)

and the pseudo-measurement hr = 0, where hr ∈ R4. The uncertainty associated

with hr is derived in section 4.2.3.

Similar to section 4.2.1, we use the estimated value of q̃r to estimate t. Using

Eq. 3.9, Eq. 4.16 can be rewritten as

0̃ = ãr � q̃t � q̃r − q̃t � q̃r � b̃r + σ̃1, (4.20)

where σ̃1 = 2ãd � q̃r − 2q̃r � b̃d. Multiplying both sides of Eq. 4.20 with q̃∗r, we
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obtain:

0̃ = ãr � q̃t − q̃t � q̃r � b̃r � q̃
∗
r + σ̃1 � q̃∗r,

= ãr � q̃t − q̃t � σ̃2 + σ̃3, (4.21)

where σ̃2 = q̃r � b̃r � q̃
∗
r and σ̃3 = σ̃1 � q̃∗r. The structure of Eq. 4.21 is similar to

Eq. 4.15, with the only differences being the addition of σ̃3 term. If σ̃2 = σ0
2 + σ2,

using Eq. 3.1 we rewrite Eq. 4.21 as

0 = H tt+ σ̃3, where (4.22)

H t =

 −(ar − σ2)
T

(ar + σ2)
× + (a0 − σ0

2) I3

 ∈ R4×3. (4.23)

Unlike the case discussed in section 4.2.1, t cannot always be directly obtained from

the estimated q̃r. This is because estimation of t would require inversion of a non-

square matrix H t. As shown in section 4.3, a linear Kalman filter is employed with

the following pseudo-measurement model to estimate t,

ht = H tt+ σ̃3, (4.24)

and pseudo-measurement ht = 0, where ht ∈ R3. The uncertainty associated with

ht is derived in section 4.2.3.

4.2.3 Uncertainty in pseudo-measurements

In order to estimate the uncertainties associated with the pseudo-measurements as

well as the translational vector described in the previous sections, we make use of an

important result from stochastic theory [48, pp. 90–91], [20, Appendix A] described

in Proposition 1.

Proposition 1. Consider b ∈ Rm and c ∈ Rn which are sequences with zero mean.

Let h ∈ Rn, x ∈ Rl and a linear matrix function G(·) : Rl → Rn×m, such that
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h = G(x)b+ c. Assume that x, b and c are independent. Then Σh is given by

Σh = G(x)ΣbGT (x) +N (Σb ~ Σx)NT + Σc, (4.25)

where ~ is the Kronecker product, Σ{·} is the uncertainty associated with {·} and

N ∈ Rn×lm is defined as, N , [G1 G2 · · · Gm]. Gi ∈ Rn×m is obtained from

Gix = G(x)ei, where ei is the unit vector in Rm with 1 at position i and 0 ev-

erywhere else.

Uncertainty in pseudo-measurement for estimating the rotation in Case I

To find the uncertainty in the linear pseudo-measurement, we rewrite h from Eq. 4.9

in the following form

h = H(a1,a2, b1, b2)q̃r,

= G(q̃r)vtrue, where vtrue = (aT1 ,a
T
2 ,a

T
1 ,a

T
2 )T

=
[
G1 −G1 G2 −G2

]
vtrue. (4.26)

In Eq. 4.26, G1 =

 −qTr
−q×r + q0I3

 and G2 =

 qTr

−q×r − q0I3

, where q̃r = q0 + qr are

obtained from Eq. 3.1. Eq. 4.26 is the pseudo-measurement for a noise-free sensor

measurement vtrue. If v is the sensor measurement with noise δv, then

v , vtrue + δv (4.27)

Solving for vtrue from Eq. 4.27 and substituting in Eq. 4.26 yields:

h(q̃r) = G(v − δv)

= Gv + ν1, (4.28)

where ν1 = −G (q̃r) δv is a zero mean noise. From Eq. 4.28, the uncertainty in the

pseudo measurement Σh can be obtained using Eq. 4.25.
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Uncertainty in translation for Case I

The expression for t assuming perfect measurements ai and bi is given in Eq. 4.11.

In the presence of noise in the measurements, similar to the derivation of Eq. 4.27,

we obtain from Eq. 4.10

t =
p1 + p2

2
− vec

(
q̃r �

q̃1 + q̃2
2

� q̃∗r
)

+ ν2, where,

ν2 = −δp1 + δp2
2

+ vec

(
q̃r �

δq̃1 + δq̃2
2

� q̃∗r
)
. (4.29)

From Eq. 4.29, ν2 is a zero mean noise with variance Σt ∈ R3×3,

Σt =
Σp1 + Σp2

4
+ Στ , (4.30)

where τ = vec
(
q̃r �

δq̃1+δq̃2
2
� q̃∗r

)
, δq̃i = 0 + δqi. Στ is computed using Eq. 4.25 as

shown below

τ =vec

(
q̃r �

δq̃1 + δq̃2
2

� q̃∗r
)

=vec (q̃r � (0 + σ)) = −G2σ

where σ̃ = 1
2

[
G3 G3

]δq̃1
δq̃2

 and G3 =
[
q×r + q0I3

]
is obtained from Eq. 3.1.

Eq. 4.25 is then used to find Σσ,Στ .

Uncertainty in pseudo-measurement models for Case II

For pose based measurements, there are two pseudo-measurements corresponding to

estimation to q̃R and t. Eq. 4.19 and Eq. 4.24 are rewritten in the following form

hr = Grutrue, (4.31)

ht = Gtwtrue + σ3, (4.32)
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where Gr =

q0 −qTr −q0 qTr

qr q0I3 − q×r qr −q0I3 − q×r

, utrue = (a0,a
T
r , b0, b

T
r )T ,

Gt =

0 −tT 0 tT

t −t× t −t×

 and wtrue = (a0,a
T
r , σ

0
2,σ

T
2 )T .

Eq. 4.31 and Eq. 4.32 are the pseudo-measurements for noise free sensor mea-

surements utrue, wtrue. If u and w are the sensor measurements with noise δu and

δw respectively, then hr = Gru+ ν3, ht = Gtw + σ3 + ν4, where ν3 = −Grδu and

ν4 = −Gtδw − δσ3 are zero mean noise with covariance Σhr and Σht respectively,

which can be obtained using Eq. 4.25.

4.3 Kalman filter equations

As shown in Eq. 4.6 and in Eq. 4.14, q̃r and t can be estimated in a decoupled manner.

In this work, we formulate a Kalman filter that first estimates the rotation parameter

q̃r. For Case I, translation t and Σt can be directly estimated from Eq. 4.11 and

Eq. 4.30 upon estimating q̃r and Σq̃r . However for Case II, a Kalman filter is used

to estimate the mean and uncertainty in translation t.

The state vector of the Kalman filter that is used to estimate q̃r is xk = q̃r, xk ∈ R4.

The state vector is initialized with a suitable guess for mean and uncertainty. In the

absence of a good initial guess, the state is initialized to x0 = (1, 0, 0, 0)T with a

large initial uncertainty. If the uncertainty in rotation is known in terms of some

other parametrizations such as Euler angles, then the uncertainty is propagated to

the space of quaternions using a Jacobian mapping as shown in [80].

Since the pose to be estimated is time-invariant, the process model is static, i.e.,

xk|k−1 = xk−1|k−1. Upon obtaining measurements ai and bi, we formulate the pseudo-

measurement model h(xk|k−1) = Hkxk|k−1. The observation matrix Hk is given by

Eq. 4.8 for Case I and by Eq. 4.18 for Case II. The measurement uncertainty Σh
k is

then calculated as shown in section 4.2.3 for Case I and section 4.2.3 for Case II.
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The state is updated using standard equations of the Kalman filter [53]

xk|k = xk|k−1 −Kk

(
Hkxk|k−1

)
, (4.33)

Σx
k|k = (I −KkH)Σx

k|k−1, (4.34)

where Kk = Σx
k|k−1H

T
(
HΣx

k|k−1H
T + Σh

k

)−1
.

It has already been discussed that q̃r is a unit quaternion; which implies that

the state vector has to be a unit vector. This requirement is not enforced by the

equations of the Kalman filter directly. However, there are three methods to enforce

unit-normalization of state vector (1) including the constraint as an additional pseudo-

measurement [7], (2) reducing the dimension of the state vector by substituting q0 =√
1− q21 − q22 − q23 [104], (3) normalizing the state vector at the end of each update

step [20]. The first two methods result in non-linear measurement models, which

defeats our purpose of developing equations for a truly linear filter. As a result we

resort to the third method of normalizing the state vector after every update and

suitably scaling the uncertainty,

x∗k|k =
xk|k∥∥xk|k∥∥ , Σx

∗

k|k =
Σxk|k∥∥xk|k∥∥2 . (4.35)

Such an approach has been shown to estimate efficiently in [75] and [34].

Upon estimating xk|k and Σxk|k, Eq. 4.11 and Eq. 4.30 are used to estimate tk|k

and Σtk|k, for Case I. For Case II, we initiate another Kalman filter whose process

model is static as in the case of q̃r. The measurement model is also linear as in the

case of q̃r. The equation for the measurement model is as shown in Eq. 4.24. The

observation matrix is evaluated at the estimated value of q̃r.

54



4.4 Results: Sequential Estimation with Known

Data Association

We apply the filtering method developed in the earlier sections to two examples:

rigid registration and sensor calibration representing Case I and Case II respectively.

Simulation as well as experimental results are provided in the following sections.

4.4.1 Rigid registration

The rigid-registration problem can be defined as finding the SE(3) element that aligns

points in one reference frame to the points in another reference frame. Usually points

in one frame are computed from a CAD model of the object and points in the other

frame are estimated from images, position sensors, laser range scanners, etc.

Iterative closest point (ICP) is one of the most popular methods to perform rigid-

registration [9]. A number of variants to the ICP have been introduced [94, 115].

ICP and most of its variants are batch processing tools; i.e., one needs to wait for

all the measurements to be collected before estimating the transformation. Also

in the presence of noisy data, ICP and most of its variants have been observed to

produce inacurate estimates [85]. As a result, online estimation techniques have been

developed to account for noise in the measurements [85, 76, 39].

In this work, we use our DQF approach to register 100 points randomly sampled

from the surface of a geometric model of “Stanford bunny”. We first assume that the

point correspondence is known and estimate the registration with DQF, whose actual

registration parameters are θx = 0, θy = 0, θz = 0, x = 0, y = 0, z = 0. Note that even

though dual quaternions are used to parameterize the pose, we report the results in

Euler angles and Cartesian coordinates for ease of understanding.

We sample 1000 initial registration estimates uniformly drawn from large ini-

tial errors in position, for x, y, z ∈ [−10000, 10000]mm and orientation θx, θy, θz ∈

[−180, 180]deg. From Fig. 4-1, we observe that DQF correctly estimates the reg-

istration for all the initial estimates. Following this, we perform two more experi-
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ments with noise added to the sampled points. The noise is uniformly sampled from

[−2, 2]mm along each axis, in one case and [−3, 3]mm in the other. Fig. 4-1 shows that

the RMS error for all the estimates is only due to the noise in the measurements and

its magnitude matches well with the noise added to the points. Thus, when the point

correspondences are known, DQF accurately estimates the registration parameters

even in presence of very high errors in the initial estimate.
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Figure 4-1: RMS error upon estimating registration parameters with DQF for 1000
runs with different initial estimates, when the point correspondence is known. Three
experiments were carried out: 1) noise uniformly sampled from [-1,1], 2) noise uni-
formly sampled from [-2,2] and 3) no noise was added. DQF accurately estimates he
registration parameters in all cases

4.4.2 Sensor calibration

The sensor calibration problem is as follows: given the pose of two bodies Ai and

Bi, defined with respect to two different inertial frames: {1} and {2}, we would like

to estimate the rigid transformation between the two bodies, by tracking Ai and

Bi, where the index i denotes an instance of time. Fig. 4-2(a) shows the various

frames described above. This problem can be described as AijX = XBij, where

Aij = A−1i Aj and Bij = B−1i Bj. X is the rigid transformation between the two
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Figure 4-2: (a) The setup shows a da Vinci robot with an EM tracker rigidly attached
to the tool. The reference frame for the EM tracker is shown in red. The reference
frame for the robot is located at its remote center of motion (RCM), shown in yellow.
The pose of the tip of the robot, Ai is shown in blue and the pose of the sensor, Bi

is shown in green. X is the transformation between the tip of the robot and the EM
tracker. (b) The robot is shown at two time instances i and j. Aij is obtained from
kinematics and Bij is obtained from the EM tracker measurements. The unknown
to be solved for is X, which can be posed in the form: AijX = XBij.
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bodies which needs to be estimated as shown in Fig. 4-2(b).

If the measurements are noise-free, then X can be obtained analytically from a

pair of measurements: A12X = XB12 and A23X = XB23 [83, 17]. But sensors are

seldom noise-free, and hence several optimization based approaches exist to solve this

problem [44, 103], whose solution drives many applications [23, 1, 24, 42]. Recently

Faion et al [27] developed a filtering based solution to this problem, which could

perform online estimation using a UKF to estimate the pose which is parameterized

using axis-angle and Cartesian parameters. We compare our DQF to this UKF based

estimation. We also develop an EKF based estimation using the measurement model

described in [27] for a second comparison.

Simulation

We first tested our algorithm with simulated data and then with data collected from

real experiments. For the simulated case, we first generate 500 random poses for the

tool tip, Ai (i = 1, . . . , 500). We then choose a ground truth SE(3) element X to

generate the corresponding poses for the EM tracker Bi. We initialize the filters to

zero translation and zero rotation with an initial covariance of Σ
q̃r
0 = 5I4 for rotation

and Σt
0 = 100I3 for translation. We assume that the correspondence between the

sensed poses is known. Such an assumption is reasonable as the sensor measurements

can be easily time-synchronized. If this synchronization is not possible, correlation

between the sensor measurements can be obtained as shown in [73].

The SE(3) elements estimated by DQF, EKF and UKF are shown in Table 4.1

along with computation time for each algorithm and the error in position and orien-

tation parameters. DQF provides faster estimates and is more accurate, especially in

the translation estimation, compared to UKF and EKF.

Following this, we perturb Bi that is computed from the ground truth X. The

pose is perturbed by a translation uniformly sampled from the interval [−2 2]mm

along each axis and a rotation uniformly sampled from [−10 10]deg along each axis.

The estimated parameters are shown in Table 4.1. Once again DQF estimated faster

and is more accurate than UKF and EKF.
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Experimental validation

In order to test our formulation with real data, we use an experimental setup as shown

in Fig. 4-2(a), which consists of a da Vinci R© surgical robot (Intuitive Surgical Inc.,

Mountain View, CA) and an electromagnetic (EM) tracking sensor (trakSTARTM

from Ascension Technologies, Burlington,VT). The tracker is rigidly attached to a

known point on the tool of the robot. The robot is then telemanipulated and the

position and orientation of the tip of the robot is measured from the kinematics. The

position and orientation of the EM tracker with respect to the inertial frame attached

to the magnetic field generator is also simultaneously recorded. We then use DQF,

EKF and UKF to estimate the transformation between the frames of the tip of the

robot and the frame of the EM tracker. The last three rows of Table 4.1 shows the

parameters as estimated by DQF, EKF and UKF.

Table 4.1: Results for sensor calibration using dual quaternion filtering

Simulation: No noise in sensor measurements

x y z θx θy θz Time
(mm) (mm) (mm) (deg) (deg) (deg) (s)

Actual 5.73 8.59 11.46 10.00 -16.00 35.00 –
DQF 5.73 8.59 11.46 9.96 -15.95 34.91 0.25
EKF 3.38 1.82 5.25 10.09 -15.93 35.05 1.20
UKF 3.56 10.59 10.81 9.98 -15.98 35.05 3.11

Simulation: With noise in sensor measurements

DQF 5.59 8.22 11.38 9.95 -15.95 34.81 0.24
EKF -3.48 4.22 8.36 10.14 -16.01 35.01 1.15
UKF 5.89 10.44 10.01 10.83 -16.81 34.81 3.20

Robot experiments

Actual -4 -20 45 105 88 109 –
DQF -4.10 -17.50 -45.10 105.55 87.88 108.69 0.27
EKF -3.60 -22.00 -45.10 105.97 86.15 107.08 1.39
UKF -4.40 -14.1 -47.50 132.11 87.05 135.01 3.70

Fig. 4-3 shows the values of the quaternion and the translation vector as esti-

mated by the dual quaternion filter. The estimated values converge at around 100

measurements for rotation and 200 measurements for translation. Since the rotation
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Figure 4-3: (a) The plot shows the estimated value of the quaternion that represents
the rotation. The values converge at around 100 measurements. (b) The plot shows
the estimated value of the translation vector. The values converge at around 200
measurements.
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estimation does not depend upon translation estimation, we can stop running the

filter that estimates rotation after convergence and continue to run the translation

filter until convergence. We observe that it takes around 0.08s for the DQF estimate

to converge which is roughly 5 times faster than EKF and 15 times faster than UKF,

while being more accurate than both EKF and UKF. Since the estimation is close

to real time, we implement this algorithm in an online manner to estimate SE(3)

elements as needed.

4.5 Results: Sequential Estimation with Unknown

Data Association

4.5.1 Rigid Registration

We perform registration in a more realistic scenario where point correspondence is

unknown. Point correspondence to the CAD model is found using a closest point

rule as in [9, 85, 76]. We repeat the exercise by adding noise to the points and then

estimating the transformation. In both the cases, we compare the dual quaternion

based filtering to an EKF based estimator [85] and a UKF based estimator [76]. We

choose an initial guess of zero rotation and zero translation and an initial covariance

of Σ
q̃r
0 = 5I4 for rotation and Σt

0 = 100I3 for translation. DQF, EKF and UKF

are implemented with 40 initial starts obtained by locally perturbing the initial guess

by translation sampled uniformly from [−15 15]mm along each axis and a rotation

sampled uniformly from [−30 30]deg along each axis. Since the problem has several

local minima, using multiple initial guesses improves the chances of finding the global

minimum.

Fig. 4-4(a) shows the CAD model of the Stanford bunny in green. The blue

diamond markers show the initial guess for the location of the points and the red

circular markers show the DQF estimated location of the points. Fig. 4-4(b) shows

the RMS error versus number of points used to estimate the parameters. The RMS

error decreases with the usage of more point measurements. DQF and EKF converge
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Figure 4-4: (a) Initial position and DQF estimated position of 100 points are shown
against the CAD model of the “Stanford bunny”. DQF accurately registers the points
to the CAD model. (b) A plot of the RMS error wrt number of points for DQF, EKF
and UKF. DQF and EKF converge quickly, while UKF takes a while to converge.
DQF however converges to lower RMS error, with computation time an order of
magnitude lower than EKF and UKF as shown in Table 4.2.
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to a smaller RMS error at about 10 points, while the UKF takes many more points

to converge. The first four rows of Table 4.2 show the actual registration parameters

and the estimated registration parameters. The right column of Table 4.2 shows the

time taken by the filters to update for 100 point measurements. DQF converges an

order of magnitude faster than EKF and UKF and also has the lowest RMS error.

Table 4.2: Results for registration using dual quaternion filter

No noise x y z θx θy θz RMS Time
(mm) (mm) (mm) (deg) (deg) (deg) (mm) (s)

Actual 22 -23 20 15 -10 -10 – –
DQF 22.54 -21.52 20.03 17.28 -9.94 -10.15 1.12 23.44
EKF 22.35 -26.39 21.11 11.43 -11.44 -14.76 3.88 155.02
UKF 21.36 -23.89 18.94 16.39 -5.95 -10.55 2.47 247.56

With noise

DQF 22.34 -24.22 18.79 13.37 -9.09 -10.18 2.70 47.05
EKF 20.29 -26.09 20.69 8.76 -12.79 -8.08 3.81 324.23
UKF 20.08 -24.78 14.6 11.90 -6.08 -8.04 4.80 510.73

Fig. 4-5 shows the results for the case where the sampled points are corrupted

with a noise uniformly sampled from [−2 2]mm along each axis. DQF accurately

registers the points to the CAD model as shown in the last three rows of Table 4.2.

DQF once again performs better than EKF and UKF, and takes lower computational

time 1.

4.6 Conclusion and Discussion

In this chapter, we have developed linear measurement models to be used with Kalman

filters for pose estimation. This was possible due to our choice of using dual quater-

nions to represent SE(3) elements and combining multiple sensor measurements si-

multaneously. All the information contained in the non-linear update model was

encoded in the linear measurement model and its corresponding uncertainty, which

happens to be state dependent in this case. Since the dependence on the state was

1The computational time taken is calculated for a code running on MATLAB R2015a software
from MathWorks, running on a ThinkPad T450s computer with 8 GB RAM.
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Figure 4-5: (a) Initial position and estimated position of 100 points with added
noise are shown against the CAD model of the “Stanford bunny”. DQF estimates
the registration parameters accurately even in the presence of noise. (b) A plot
of the RMS error wrt number of points for DQF, EKF and UKF. DQF and EKF
converge quickly, but UKF takes a while to converge. Overall, all the three filters
converge closely to one another, with the DQF performing marginally better. The
DQF converges with computation time an order of magnitude lower than the other
two as shown in Table 4.2.
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found to be linear, results from stochastic theory were used to determine the exact

expressions for the uncertainty. We show that the new linear measurement model al-

lows for decoupled estimation of rotation and translation using independent Kalman

filters. The decoupled estimation potentially has the advantage of running in-parallel

and accelerating the estimation process.

We have shown through simulations and experiments that the dual quaternion-

based linear filtering (DQF) is capable of estimating the pose more accurately with less

computation time compared to state-of-the-art filtering methods for pose estimation.

These characteristics of the DQF, make it an ideal candidate to be used in applications

that require real-time pose estimation such as sensor calibration, localization and

manipulation.

4.7 Contribution

The contributions from this chapter include:

1. Development of a linear update model for pose estimation. The linear update

model can be derived for position, pose and surface normal measurements.

2. Development of a Kalman filter that uses the linear update model for fast and

robust pose estimation.

4.8 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan, Gillian T. Rosen, Feroze M. Naina, and Howie Choset, “Es-

timating SE(3) elements using a dual-quaternion based linear Kalman filter, in

the proceedings of Robotics: Science and Systems, Michigan, USA, June 2016.
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Chapter 5

Bingham Filter for Pose

Estimation

Most of the current filtering methods use unimodal Gaussian distribution for modeling

the uncertainty in the pose parameters, including our work described in Sec. 4. Such

a distribution is a good choice to capture the uncertainty in paramaters that are

defined in a Euclidean space. However, the uncertainty in parameters such as unit-

quaternions when modeled using a Gaussian does not consider the structure of the

underlying space, i.e, antipodal symmetry introduced by q̃ = −q̃ [60]. In this section

we introduce an online pose estimation method that uses a combination of Bingham

and Gaussian distribution to accurately and robustly estimate the pose.

The Bingham distribution is defined on a unit hypersphere and captures the bi-

modality of the unit-quaternions [14] (see Fig. 3-1). When compared to prior methods,

the use of the Bingham distribution results in a more principled formulation that has

lower computation time, because there is no normalization step or projection onto

a hyper-sphere. Another advantage of this approach compared to existing meth-

ods [111, 76, 85] is the ability to update the pose using surface-normal measurements

as well as simultaneous multiple measurements (as obtained from a stereo camera or

lidar).

Inspired by [44, 111], the pose is estimated by decoupling orientation from trans-

lation estimation, in this work. The method uses a Bingham distribution-based fil-
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tering (BF) for orientation estimation and a Kalman filter for translation estimation.

While there has been some recent work on using the BF for orientation estima-

tion [60, 32], there are some key differences compared to the approach presented

in this chapter. Firstly, prior work assumes that the state and measurements both

are unit quaternions. This is not true in our case, since our measurements are posi-

tion, surface-normal or pose. Secondly, prior works deal with non-linear measurement

models, hence resorting to unscented filtering. This results in computation of the nor-

malization constant which is known to be expensive [33, 60]. We use a linear updte

model (as described in the previous chapter) and hence bypasses the computation of

normalization constant.

In this chapter we systematically estimate the pose for cases with position mea-

surements as well as surface-normal measurements. In Sec. 5.3 we provide a com-

parison to state-of-the-art methods. The Bingham filter-based approach produces

accurate estimates even in the presence of high initial errors and sensor noise, with

fewer iterations. Even though this work focuses on static pose estimation, the ideas

presented can be easily adapted to dynamic pose estimation.

5.1 Related Work

Batch Processing Approaches

Pose estimation has been of interest for a long time in the robotics literature. Much

of the early literature deals with collecting all sensor measurements and processing

them offline in a batch to estimate the pose. Horn et. al. [44] developed a least

squares implementation for pose estimation with known point correspondence. Besl

et. al. [9] introduced the iterative closest point (ICP), which extends Horn’s methods

for unknown point correspondence by iteratively estimating point correspondence

and performing least squares optimization. Several variants to the ICP have been

developed [94]. Thrun et. al. [101] further generalized the ICP by incorporating

measurement noise uncertainties. Taylor et. al. [12] have recently developed a prob-
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abilistic framework to estimate pose using surface-normal in addition to position

measurements, while incorporating measurement uncertainty similar to [101]. Since

batch processing methods provide an estimate only after all the measurements are

collected, often it is not clear as to how many measurements are required to produce

an accurate estimate.

Probabilistic Sequential Estimation

Probabilistic sequential estimation approaches provide sequential state updates based

on a continuous stream of sensor measurements. The uncertainty in the state variables

is often modeled using probability distributions functions (pdf) and the parameters of

the pdf are updated after each measurement. In contrast to batch estimation methods,

where there is no indication of when to stop collecting measurements, convergence of

the state estimate and decrease in the state uncertainty provides clear indication of

when to stop collecting measurements

Recently there has been a lot of interest in the robotics community to develop

online pose estimation approaches. Critical applications include medical image reg-

istration [76], SLAM [25], manipulation [25], and sensor calibration [27].

Gaussian Filtering Approaches

Several online pose estimation methods are based on Kalman filters, which model the

states and measurements using Gaussian distributions [85, 76, 39, 111]. Kalman filters

by construction provide optimal state estimates when the process and measurement

models are linear and the states and measurements are Gaussian distributed [53]. Pose

estimation is inherently a non-linear problem, and hence linear Kalman filters produce

poor estimates [39]. Several variants of the Kalman filter have been introduced to

handle the non-linearity. EKF-based filters perform first-order linear approximations

of the non-linear models and produce estimates which are known to diverge in the

presence of high initial estimation errors [76]. UKF-based methods do not linearize

the models but instead utilize evaluation at multiple points, which can be expensive
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for a high-dimensional system such as SE(3). In addition UKF-based methods require

tuning a number of parameters, which can be unintuitive.

Bingham Filtering Approaches

Unscented filtering ideas have been also adapted for non-Gaussian filters for pose

estimation. Henebeck et. al. have recently developed a Bingham distribution-based

recursive filtering approach for orientation estimation [32]. Glover et. al. [33] use

Bingham distribution to describe the orientation features, while Hanebeck et. al. use

this distribution for planar pose estimation [31]. Our work takes inspiration from these

works for modeling the uncertainty in the orientation using Bingham distribution.

The use of Bingham distribution to model uncertainties in rotation parameters is a

very valuable tool that has been largely under-utilized by the robotics community,

as also noted by [33]. One of the important reasons for this, is the difficulty in

computing the normalization constant as well as performing expensive convolution

operation over the distributions [14]; which are both avoided in our approach. To the

best of our knowledge the approach presented in this chapter, is the first of its kind

that uses the BF for 6 DoF pose estimation.

Alternate Parameterizations for Filtering

Prior work also has looked at several parameterizations of SE(3) that would improve

the performance of the filters. In [39] the state variables are confined over a known

Riemannian manifold and a UKF is used to estimate the pose. Quaternions are used

to parametrize SO(3) and the state is estimated using an EKF in [75] and UKF

in [62]. An iterated EKF with dual quaternions to parameterize the pose has been

used in [34].

Linear Filtering Approach

Srivatsan et. al. [111] have recently developed a linear Kalman filter for pose estima-

tion using dual quaternions and pairwise measurement update. While this method

has been shown to be robust to errors in initial state estimate and sensor noise, it
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has a few drawbacks: (1) The uncertainty in the quaternions used for orientation es-

timate were modeled using Gaussians which do not consider the antipodal symmetry

of unit-quaternions (i.e., q̃ and −q̃ represent the same rotation). (2) The filter by

itself does not produce unit-quaternion estimates and hence after each estimate, a

projection step is used to normalize the state. Such a projection would be difficult to

implement if the estimated state had a near zero norm. (3) The approach only per-

forms pairwise measurement update. However, in many practical applications such

as image registration, several (≈ 104) measurements are available for processing in

each update step; and a pairwise update could be very inefficient. The approach

presented in this chapter uses a Bingham distribution to model the state, which can

capture the antipodal symmetry of unit-quaternions while always filtering explicitly

on a unit hypersphere, thus addressing drawbacks (1) and (2) of [111]. In addition

we provide an approach to address the drawback (3) by not only processing multi-

ple simultaneous measurements but also using normal measurements in addition to

position measurements.

5.2 Problem Formulation

In this chapter we consider pose estimation applications that use: 1) position measure-

ments and 2) position and surface-normal measurements. The measurement model

for both these cases are typically non-linear [12]. Inspired by [111], we derive linear

models for both these cases.

5.2.1 Position Measurements

Let ai, bi ∈ R3, (i = 1, . . . , n) be the locations of n points in two different reference

frames whose relative pose is to be estimated. The relation between points ai and bi,

is given by

ai = Rbi + t, i = 1, . . . , n, (5.1)
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where R ∈ SO(3) and t ∈ R3. In an application such as point-registration, ai are

points in CAD-model frame and bi are points in sensor frame respectively.

Update Model

First consider the scenario where points in the sensor frame are obtained one at a

time in a sequential manner, as typically observed in the case of robotic probing [109].

Similar to [111], the equations for updating the pose estimate given a pair of mea-

surements, are derived. From Eq. 3.4, Eq. 5.1 can be rewritten as

ã1 = q̃ � b̃1 � q̃∗ + t̃, (5.2)

ã2 = q̃ � b̃2 � q̃∗ + t̃, (5.3)

where q̃ is as defined in Eq. 3.3 and t̃ = (0, t). Subtracting Eq. 5.3 from Eq. 5.2 gives

ã1 − ã2 = q̃ � (b̃1 − b̃2)� q̃∗,

⇒(ã1 − ã2)� q̃ = q̃ � (b̃1 − b̃2), (5.4)

since q̃ is a unit-quaternion. Using matrix form of quaternion multiplication shown

in Eq. 3.1, Eq. 5.4 can be rewritten as

Hq = 0, where (5.5)

H =

 0 −(av − bv)T

(av − bv) (av + bv)
×

 ∈ R4×4, (5.6)

a12
v = a1 − a2 and b12v = b1 − b2. Notice that Eq. 5.5 is a linear equation in terms of

q and is independent of t. Upon obtaining the q which lies in the null space of H , t

can be obtained by adding Eq. 5.2 and Eq. 5.3,

ã1 + ã2 = q̃ � (b̃1 + b̃2)� q̃∗ + 2t,

⇒t =
(ã1 + ã2)− q̃ � (b̃1 − b̃2)� q̃∗

2
. (5.7)
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Figure 5-1: Blue points (left) indicate ai and red points (right) indicate bi. Our
approach constructs vectors aijv = (ai − aj) and bijv = (bi − bj) as shown by black
arrows. The Bingham filter estimates the orientation between aijv and bijv . The
translation is then obtained as difference between the centroids. Horn’s method [44]
on the other hand constructs vectors shown by green dashed arrows, joining the
centroid to the points, and then estimates the orientation. While the black vectors
can be constructed online as the point measurements are received sequentially, the
green-dashed vectors can be constructed only after all the data is collected.

Eq. 5.5 and Eq. 5.7 were derived in [111] using dual quaternions, however, no

geometrical intuition was provided. Fig. 5-1 provides the geometrical intuition behind

the decoupled estimation of q and t. Estimating the pose between ai and bi, can be

reduced to first estimating the orientation of vectors ajv and bjv and then estimating

the translation between the centroids of the points. A similar idea is commonly used
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in Horn’s method [44]. The key difference is that Horn’s method is a batch processing

approach, while our approach processes data online. As a result, instead of forming

vectors av = a1 − a2 and bv = b1 − b2, Horn’s method uses av = a1 − ac and

bv = b1 − bc, where ac and bc are the centroids of ai and bi respectively.

Linear Filter

In order obtain an estimate of q from Eq. 5.5, we use a Bingham distribution to model

the uncertainty in q,

p(q) =
1

N1

exp(qT M k−1Zk−1M
T
k−1︸ ︷︷ ︸

D1

q). (5.8)

If the pose was changing with time, then a suitable process model can be employed as

shown in [32]. In this work, we focus on static pose estimation and hence do not need

a process model to evolve the pose estimate over time. Position measurements are

obtained, which are in turn used to update the pose estimate. The pose is updated

once for every pair of measurements received. Unlike the state vector, q, which

has a bimodal distribution and a unit-norm constraint, the position measurements

are unimodally distributed and do not have any constraints. Hence the uncertainty

in the measurements is modeled using a Gaussian distribution, and not a Bingham

distribution.

From Eq. 5.5, the pseudo-measurement model used is zk = Hqk + εk, where

ε = N(0, Qk) and pseudo-measurement zk = 0. The uncertainty associated with

the pseudo-measurement Qk, is obtained analytically as shown in Sec. 4.2.3. The

following is the probability of obtaining a pseudo-measurement zk, given the state qk,

p(zk|qk) =
1

N2

exp

(
−1

2
(zk −Hqk)TQ−1k (zk −Hqk)

)
, (5.9)

=
1

N2

exp

(
−1

2
(Hqk)

TQ−1k (Hqk)

)
,

=
1

N2

exp
(
qTkD2qk

)
, (5.10)
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where D2 = 1
2

(
−HTQ−1k H

)
. Since Qk is a positive definite matrix (as required by

a Gaussian), D2 is a negative definite matrix. As a result, we obtain an important

result: p(zk|qk) is a zero-mean Gaussian distribution (Eq. 5.9), when considered in

an unconstrained space, but it is an unnormalized Bingham distribution in qk when

considered constrained to a unit-hypersphere.

Assuming the measurements are all independent of each other, the updated state

given the current state estimate and measurement can be obtained by applying Bayes

rule,

p(qk|zk) ∝ p(qk)p(zk|qk)

∝ 1

N1

exp
(
qTkD1qk

) 1

N2

exp
(
qTkD2qk

)
(5.11)

∝ exp
(
qTkM kZkM

T
k qk
)
. (5.12)

And thus it can bee seen that p(qk|zk) is a Bingham distribution, where M kZkM
T
k

is obtained from the product of Binghams as shown in Eq. 3.12. As mentioned in

Sec. 3.3, the mode of the distribution qk, is the first column of M k.

After updating qk, tk is calculated from Eq. 5.7. The uncertainty in tk can be

calculated as shown in Sec. 4.2.3. Hence, the state is updated once for every pair of

measurements received, until a convergence condition is reached, or maximum number

of updates is reached.

5.2.2 Surface-normal Measurements

In some applications, in addition to position measurements, surface-normal measure-

ments may also be available [109]. The following equation relates the surface-normals
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in the two frames,

nai = Rnbi , i = 1, . . . , l

⇒ñai = q̃ � ñbi � q̃
∗

⇒ñai � q̃ = q̃ � ñbi

⇒Giq = 0, where

Gi =

 0 −(nai − nbi)T

(nai − nbi) (nai + nbi)
×

 ,
where nai are surface-normals in CAD-model frame and nbi are surface-normals in

the sensor frame. Similar to the derivation in the case of position measurements (see

Eq. 5.14), we obtain,

p(zk|qk) =
1

N4

exp(qTkD4qk), (5.13)

where D4 = 1
2

∑
i

(
−GT

i S
−1
k Gi

)
+ 1

2

∑
j

(
−HT

j Q
−1Hj

)
, Sk is the measurement un-

certainty of the pseudo-measurement. Thus, we have

p(qk|zk) ∝
1

N1

exp(qTkD1qk)
1

N4

exp(qTkD4qk),

∝ exp(qTkM kZkM
T
k qk).

5.2.3 Simultaneous Multi-measurement Update

So far we have considered only the case where the state is updated once per pair of

measurements. However, such an approach can be inefficient when applied to pose es-

timation from stereo cameras or Kinect
TM

. In such applications, one typically obtains

several position measurements at each time instant and processing the measurements

in a pairwise manner can be time consuming. In order to address this situation, we
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can rewrite Eq. 5.5 as:

Hjq = 0, j = 1, . . . ,m.

Hj has the form as shown in Eq. 7.1, where av, bv are obtained from points-pairs

constructed by subtracting random pairs of points or subtracting each point from the

centroid (similar to [44]). Since the measurements are assumed to be independent,

we have

p(zk|qk) =
m∏
j=1

1

N j
2

exp

(
−1

2
(Hjqk)

TQ−1(Hjqk)

)
,

=
1

N3

exp(qTkD3qk), (5.14)

where D3 = 1
2

∑
j

(
−HT

j Q
−1Hj

)
and N3 =

∏m
j=1N

j
2 . Eq. 5.11 can be rewritten as

p(qk|zk) ∝
1

N1

exp
(
qTkD1qk

) 1

N3

exp
(
qTkD3qk

)
∝ exp

(
qTkM kZkM

T
k qk
)
, (5.15)

where M kZkM
T
k is obtained from Bingham multiplication. qk and tk are obtained

as shown in Sec. 5.2.1.

5.3 Results: Sequential Estimation with Known

Data Association

Known correspondence considers the case, where for each point in the sensor frame

bi, the corresponding point ai on the prior model is known. Hand-eye calibration is

an example of application where correspondence is typically known [27].

In this chapter, we assume that we have no prior information about the pose

and for all the experiments we choose the following values, M 0 = I4×4, Z0 =

diag(0, 1, 1, 1) × 10−300 1, which represents an uninformative prior with high initial

110−300 is the smallest positive normalized floating-point number in IEEE R© double precision.
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uncertainty. The measurements are modeled according to a Gaussian distribution

with 0 mean and standard deviation of 0.2 mm. We restrict the maximum number

of state updates to 100.

In this section, we assume that the correspondence between points ai ∈ R3 and

bi ∈ R3 are known, and estimate the pose between the frames that these two point

sets lie in. The coordinates of the data set ai is produced by drawing points uniformly

in the interval [ -250 mm, 250 mm]. To create the noiseless data set bi, a random

transformation is applied to ai. This transformation is generated by uniformly draw-

ing the rotational and translational parameters in the intervals [−90◦, 90◦] and [−90

mm, 90 mm], respectively. In Experiment 1, no noise is added to bi. In Experiment 2

and Experiment 3, a noise uniformly drawn from [-2 mm, 2 mm] and [-10 mm, 10

mm] respectively, is added to each coordinate of bi. Next, the linear Bingham filter

(BF) is used to estimate the pose.

Table 5.1: Comparing mean RMS errors over 500 experiments for different filtering
methods when using position measurements with known correspondence

RMS (mm) RMS (mm) RMS (mm)
(Expt. 1) (Expt. 2) (Expt. 3)

BF 0.00 2.29 12.12
DQF 6.14 7.70 70.99
UKF 2.67 4.91 12.25
EKF 94.65 21.97 56.52

This procedure is repeated 500 times with different datasets and different transfor-

mation that are randomly generated. The results are compared with dual quaternion

filter (DQF) [111], UKF [76] and EKF [85]. Table 5.1 shows the RMS errors for all

the filtering methods considered 2.

Fig. 5-2 shows the histogram of errors for Expt. 3. For Expt. 3, the average run

time for the BF is 0.05s, compared to 0.04s of DQF, 2.23s of UKF and 0.10s of EKF.

The BF always estimates the pose with the lowest RMS error. The RMS error of

UKF is small, but larger than the BF and it takes much longer to estimate (≈50

2All the calculation are carried out using MATLAB R2015a software from MathWorks, running
on a ThinkPad T450s computer with 8 GB RAM and intel i7 processor.
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Figure 5-2: Histogram shows the RMS errors for the Bingham filter (BF), dual quater-
nion filter (DQF), unscented Kalman filter (UKF) and extended Kalman filter (EKF).
The results shown are for Expt. 3, where the sensed points have a noise uniformly
drawn from [-10 mm 10 mm]. The BF is most accurate with an average RMS error
of 12.12 mm.

times slower). DQF and EKF often get traped in local minima, which has also been

noted earlier in [76, 110]. The performance of EKF and DQF can be improved by

adopting an approach similar to [110], but the estimation time would also increase.

The BF provides accurate estimates because the filter is defined in the true space

of the pose parameters. DQF is also a linear filter, but it performances poorly when

the state uncertainty is high. The BF is also faster than other EKF and UKF as it is

a linear filter with no Jacobian or sigma point computations.

5.3.1 Registering Camera and Robot Frame

Fig. 5-3 shows an arm of a da Vinci R© surgical robot (Intuitive Surgical Inc., Mountain

View, CA) mounted on a table, and a stereo camera (ELP-1MP2CAM001 Dual Lens)

mounted on a rigid stand. The relative pose between the robot’s frame and the

camera’s frame is fixed, and needs to be estimated. To estimate this pose, the robot is

telemanipulated in arbitrary paths and the location of tip of the robot ai is computed

in the camera frame by segmenting the tip from the stereo image and estimating its

center. The position of the tip in the robot frame, bi is obtained from the kinematics

of the robot. The pose between the points ai and bi can be obtained as shown in

79



Sec. 5.3.

Figure 5-3: A spherical tool tip is attached to the daVinci robot. The tip is tracked
using a stereo camera, which is held in a fixed position.As the robot is telemanipu-
lated, the spherical tool-tip is tracked using the stereo camera, and the relative pose
between the camera frame and the robot frame is estimated.

Table 5.2 shows the pose as estimated by our Bingham filtering approach using

pairwise updates, using 20 simultaneous measurements per update (abbreviated as

BFM in the Table) as well as by Horn’s method. Fig. 5-4 shows the RMS error ver-

Table 5.2: Comparing results of Bingham filter with one pair of measurements per
update (BF), Bingham filter with 20 measurements per update (BFM) and Horn’s
method

x y z θx θy θz RMS Time
(mm) (mm) (mm) (rad) (rad) (rad) (mm) (ms)

BF 28.91 -128.91 250.45 171.49 15.05 -144.76 8.93 25.8
BFM 6.27 -143.76 269.32 174.40 5.52 -139.25 5.91 2.1
Horn 2.66 -136.25 265.25 173.59 4.81 -141.75 4.88 56.8

sus number of measurements used. The BFM takes 40 measurements to converge as

opposed to the BF and Horn’s method, which take 90 measurements. The concentra-

tion matrix of the Bingham filter, Z, provides the uncertainty in the state estimate,

which serves as an indication for convergence of the state. Upon convergence, no
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Figure 5-4: Bingham filter using 20 simultaneous measurements per update (BFM)
converges at 40 measurements. In comparison, Horn’s method and Bingham filter
with pairwise update (BF), both take ≈ 90 measurements to converge.

more measurements need to be collected. There exists no such mechanism to indicate

convergence in Horn’s method. Hence Horn’s method needs to be run repeatedly with

all the measurements collected thus far. As a result the total run time till convergence

of the BF and BFM is much lower than Horn’s method. The RMS error of the BF

is higher than the BFM, because multiple simultaneous measurements, help smooth

out the effect of the noise in the position measurements.

5.4 Results: Sequential Estimation with Unknown

Data Association

Unknown correspondence is commonly encountered while performing registration [85],

where we are given points bi and aj in two reference frames and their correspondence

is unknown. While the pose estimation is convex when correspondences are known,

unknown correspondences result in a nonconvex problem [110].
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5.4.1 Rigid Registration

In this section we assume that the points ai and surface-normals nai are the vertices

and normals respectively, of a triangulated mesh. Fig. 5-5 shows the triangulated

mesh in the shape of a bunny [121], which has 86,632 triangles.

Figure 5-5: (a) Triangulated mesh of Stanford bunny [121] is shown in green. Blue
arrows represent initial location and red arrows represent estimated location of points
and surface-normals. (b) Zoomed up view shows that the estimated location of points
accurately rests on the triangulated mesh and the estimated direction of the surface-
normals aligns well with the local surface normal. The Bingham filter takes 1.4s in
MATLAB and 0.08s in C++ to estimate the pose.

We randomly pick 5000 points from the triangulated mesh and to each coordinate

of the points, add a noise uniformly drawn from [-2 mm, 2 mm]. For each (bi,n
b
i ),

the correspondence is obtained by finding the closest point-normal pair (ai,n
a
i ) on

the triangulated mesh. We estimate the pose using the BF with simultaneous multi-

measurements as described in Sec. 5.2.3. Fig. 5-6 shows the RMS error vs number of

simultaneous measurements used. Update based on one pair of measurements results

in a local optimum (RMS error is ≈ 70 mm as shown in Fig. 5-6). However, the

performance drastically improves when > 10 simultaneous measurements are used.
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Figure 5-6: Plot shows RMS error upon convergence versus number of simultaneous
measurements used. The more the number of simultaneous measurements used, the
lower is the RMS error.

Table 5.3: Comparing the pose parameters as estimated by dual quaternion filter
(DQF), iterative closest point (ICP), Bingham filter with 20 position measurements
per update (BFM) and Bingham filter with 20 position and surface normal measure-
ments per update (BFN).

x y z θx θy θz Time RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm) (s)

Actual 44.83 -50.45 7.15 -12.01 -21.49 -28.14 – –
DQF 42.02 -53.95 6.63 -13.18 -19.86 -30.69 2.02 13.02
ICP 44.52 -49.16 6.32 -9.05 -19.11 -30.40 2.04 77.83
BFM 44.45 -50.38 7.65 -12.14 -21.75 -28.10 0.54 1.06
BFN 44.23 -50.44 7.21 -12.08 -21.23 -28.21 0.53 1.43
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Figure 5-7: Plot shows the RMS error in the pose vs number of state updates as
estimated by the Bingham filter using 20 simultaneous position and normal measure-
ments in each update. The estimate converges around 40 iterations.

The penultimate row of Table 5.3 shows the pose parameters as estimated by the

BF using 20 simultaneous position measurements (This experiment is abbreviated as

BFM). We also estimate the pose using 20 simultaneous surface-normal and position

measurements (abbreviated as BFN in Table 5.3). The RMS error for the BFN is

slightly better than the BFM. However, the time taken by the BFN is slightly higher

because surface-normals are used in addition to point locations when finding the

correspondence. Fig. 5-5(a) shows the initial position of the surface-normals and point

locations with blue arrows and the BFN estimated surface-normals and point locations

with red arrow. The zoomed up image Fig. 5-5(b) shows that BFN accurately registers

the points as well as aligns the surface-normals to the triangulated mesh. Table 5.3

also shows the pose parameters as estimated by ICP [9] and a modified version of

DQF [110]. BFM and BFN are orders of magnitude faster and more accurate than

both these methods. Fig. 5-7 shows the RMS error at the end of each update step

for BFN. The RMS error reduces to < 0.6mm at around 40 state updates. To obtain

the same accuracy as DQF and ICP (≈ 2mm), both BFM and BFN take ≈ 30 state

updates, which takes 0.28s.
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Figure 5-8: (a), (b), are two RGB-D images obtained from Kinect
TM

, with some
overlapping region.(c) The point cloud model estimated by aligning the point clouds
in (a) and (b) using the Bingham filter. The Bingham filter takes 0.21s to estimate
the pose with an RMS error of 4.4cm, as opposed to ICP, which takes 0.46s with an
RMS error of 6cm.

5.4.2 Point-cloud Stitching

Stereo imaging devices such as the Microsoft Kinect
TM

offer colored point cloud data

(RGB-D: color and depth data), which is generated using a structured light based

depth sensor. The Kinect
TM

is widely used in robot navigation [57] and object ma-

nipulation [25]. In this work, we align a pair of point cloud data obtained from the

Kinect
TM

, using the Bingham filter, to develop a point-cloud model of the environ-
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ment. It is assumed that there is some overlap between the two point clouds. We

demonstrate the bingham-filter-based pose estimation approach on RGB-D images

taken from the ‘Freiburg1-Teddy’ dataset of [114]. Fig. 5-8(a), (b) shows the snap-

shots of the images. Fig. 5-8(d) shows the final model of the room as generated by

BFM. We use 20 simultaneous measurements and the same initial conditions as in

the previous cases. BFM takes ≈ 0.21s for estimating pose, which is twice as fast

as ICP which takes ≈ 0.46s. In order to improve the speed we have implemented a

C++ version of the Bingham filter, which takes only ≈ 2 ms 3. The RMS error of

BFM is 4.4cm, which is of the order of the accuracy of the sensor itself [57] and is

better than the RMS error of ICP, 6cm.

5.5 Conclusion and Discussions

In this chapter, a Bingham distribution-based linear filter (BF) was developed for

online pose estimation. Bingham distribution captures the uncertainty associated

with bimodal and unit norm constrainted rotation quaternion. By adapting the lin-

ear measurement model developed by Srivatsan et. al. [111], a linear BF has been

developed that updates the pose based on a pair of position measurements. Further

the filter is extended to process surface-normal (BFN) as well as multiple simultane-

ous measurements (BFM), for applications such as image registration and point-cloud

stitching.

It has been shown through simulations and experiments that the BF is capable

accurate pose estimation with less computation time compared to state-of-the-art

methods. It is empirically observed that using multiple simultaneous measurements

per update helps avoid local optima, when the correspondences are unknown. We

also observe that position measurements reduce the RMS error to such an extent

that using surface-normal measurements in addition offers very little improvement.

One drawback of the BF approach, as with most filtering based approaches, is

that the estimate can be trapped in a local minima. This problem is more prevalent

3Source code is available in the supplementary material
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when point correspondences are unknown. Using a high initial uncertainty and more

number of simultaneous measurements helps alleviate this problem. However, in

some applications only pairs of measurements may be available per update, and the

correspondences may be unknown (ex. robotic probing [109]). In such situations,

better correspondences using a probabilistic metric as described in [12], can improve

the estimate. Another approach to resolve this issue is to use a global optimizer for

filtering-based methods such as [110].

In the future we plan to use the estimate of the concentration matrix of the Bing-

ham distribution to guide where to collect the next set of measurements to improve

the registration. While we limit ourselves to static pose estimation in this work, the

approach can be easily adapted for dynamic pose estimation. If the sensor provides

multiple position measurements at a high frequency rate, then a series of static online

pose estimation can be performed to track the pose. Depending on the application,

one could also develop a process model to capture the dynamics, and utilize an un-

scented Bingham filter [32] if this model is nonlinear.

5.6 Contribution

The contribution from this chapter is:

1. Development of a Bayes filter using a combination of Bingham and Gaussian

distributions for fast, accurate and robust pose estimation. This approach can

provide sequential pose estimates with serial or batch measurements.

5.7 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan, Mengyun Xu, Nicolas Zevallos and Howie Choset, “Bingham

Distribution-Based Linear Filter for Online Pose Estimation, in the proceedings

of Robotics: Science and Systems, Boston, USA, July 2017.
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Chapter 6

Multiple Start Branch and Prune

Filter

Chapter 6 discussed probabilistic approaches for pose estimation when the data asso-

ciation between the measurements were known. In this chapter we present a filtering

approach for pose estimation when the data association in unknown. The method

is generic enough to be applied to other nonconvex optimization problems which are

analytical and yet each function evaluation is expensive and have a relatively low

dimensional (< 20) parameter space.

In various engineering applications such as automatic control systems, signal pro-

cessing, mechanical systems design, image registration, etc., we encounter problems

that require optimization of some objective function. While many efficient algorithms

have been developed for convex optimization, dealing with nonconvex optimization

remains an open question [79]. In this work, we introduce a new method for noncon-

vex optimization, called multiple start branch and prune filtering algorithm (MSBP).

Compared to popular methods, branch and bound [63], simulated annealing [15], ge-

netic algorithms [41], etc., MSBP only has a few parameters to tune and can provide

fast online estimates of the optimal solutions.

We believe that Kalman filter-based methods for nonconvex optimization [116]

suffer less from issues surrounding computational efficiency and parameter tuning.

Multi-hypothesis filtering [89] and the heuristic Kalman algorithm (HKA) [117, 116]
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are two popular choices for filtering based methods for nonconvex optimization. Both

these methods, as well as MSBP, fall under the category of population based stochas-

tic optimization techniques. MSBP was developed for nonconvex optimization prob-

lems where the objective function is available in an analytical form and yet is expen-

sive to evaluate ( for example the case of point registration).

Unlike the HKA which starts with one initial state estimate, MSBP starts with

multiple such estimates. These are further branched, updated and then pruned to

explore the search space efficiently while avoiding premature convergence to a local

minimum. A major advantage of MSBP over other methods is the high success rate

of estimating all the minima in problems with multiple local/global minima. The

MSBP requires tuning of only three intuitive parameters, which makes it easy for a

non-expert to use the method.

In this work we evaluate and compare the efficiency of MSBP to other methods on

the Griewank function, which is a standard test for nonconvex optimization methods.

We also test MSBP on point set registration. This application is specifically chosen

to test our algorithm because of its analytical and yet expensive function evaluation

which offers practical challenges to most of the existing algorithms for nonconvex opti-

mization. MSBP is tested in the presence of high initial error, multiple global minima,

noisy data and incomplete data. In all these cases, MSBP accurately estimates the

global minima with a high success rate over multiple runs of the algorithm.

6.1 Related Work

In a general setting, an optimization problem consists of finding input variables within

a valid domain that minimize a function of those variables. An optimization problem

can be represented as

minimize h(x), x ∈ Rnx (6.1)

subject to gi(x) ≤ 0, i = 1, . . . , nc

ej(x) = 0, j = 1, . . . , ne.
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In Eq. 6.1, x is the nx dimensional input variable, also known as the optimization

variable, h is the objective function to be minimized, gi(x) and ej(x) are the inequality

and equality constraints respectively and nc and ne are the number of inequality and

equality constraints respectively.

Nonconvex optimization problems

We often encounter optimization problems that have a number of locally optimal so-

lutions which are optimal only within a small neighborhood but do not correspond

to the globally optimal solution that minimizes the function in the function domain.

Such problems are termed “nonconvex” optimization problems, in contrast to “con-

vex” optimization problems where any local minimum is also a global minimum.

Nonconvex optimization problems are in general non-trivial to solve because it is dif-

ficult to guarantee that the solution returned by the optimizer is global rather than

local.

For these problems, a standard approach is to use convex optimizers that employ

different randomization techniques to choose multiple initial starts [98]. The drawback

of this approach is that for problems with a large number of local minima solutions,

a lot of computational effort may be needed to find the global optimum [79]. Branch

and bound methods are also commonly used, but the curse of dimensionality leaves

them ineffective in cases with many optimization variables [63].

Heuristic methods for nonconvex optimization problems

Several heuristic methods have been developed to estimate global minima in non-

convex optimization problems such as simulated annealing (SA) [15], particle swarm

optimization (PSO) [87], genetic algorithms (GA) [41] and more recently recursive

decomposition (RD) [28]. SA is widely considered as versatile and easy to imple-

ment, but there are two major drawbacks: 1) there are multiple unintuitive param-

eters that require tuning, and the results are known to be sensitive to the choice of

these parameters [46]; 2) the computation time is generally high for most practical
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applications [88]. PSO and GA are both categorized as population-based random-

search methods. PSO is more sensitive than GA to the choice of parameters, and is

known to prematurely converge unless the parameters are tuned well. Also, GA is

known to be computationally intractable for many high dimensional problems [102].

In contrast, RD decomposes the objective function into approximately independent

sub-functions, and then optimizes the simpler sub-functions using gradient based tech-

niques. The drawback of such a method is that not all functions can be decomposed

into sub-functions, in which case RD would perform similarly to a gradient descent

with multiple starts.

Filtering-based methods for nonconvex optimization problems

Due to their ease of use and small number of tuning parameters, Kalman filter-based

methods have also been used in optimization [100, 37, 117]. Typically such methods

adapt a Kalman filter to have a static process model with the state vector comprised of

the optimization variables x and an initial state uncertainty Σ spanning the domain of

the search space. The measurement model is taken to be an evaluation of the objective

function. The measurement is chosen to be the value of the minimum that we want the

objective function to attain. By definition, with each iteration of the Kalman filter,

the state vector is updated such that the difference between the measurement and

the measurement model is decreased [53], thus ensuring that the objective function is

minimized. The corresponding covariance also decreases as the number of iterations

increases. When the mean of the state stops changing over iterations, or when the

uncertainty decreases below a set threshold, we consider the state to be the optimal

estimate. Note that the measurement is not a true measurement obtained from

a physical sensor, but instead a value; thus it is commonly referred to as pseudo-

measurement.

As shown in Sec. 3.4, a Kalman filter can provide the optimal estimate of xk|k
1 such

1va|b is the estimate of v at the ath iteration given measurements upto b iterations.
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that

xk|k = argmax
x

p(x|zk,xk|k−1). (6.2)

The solution to Eq. 6.2 is derived in Sec. 3.4,

xk|k = argmin
x

(x− xk|k−1)TΣ−1k|k−1(x− xk|k−1)+

(zk − h(x))TR−1k (zk − h(x)). (6.3)

Note that Eq. 6.3 contains a nonlinear function h(x) instead of the linear model Hx

as in Eq. 3.17. h is the unconstrained objective function as defined in Eq. 6.1.

Let hmin be the smallest value that h can attain, which is attained at x = xmin.

Since there is uncertainty associated with x, we have hmin = h(xmin) = h(x) + v,

where v ∼ N (0,R(x)) is state dependent measurement noise drawn from a zero mean

distribution with covariance R. For an optimization problem as shown in Eq. 6.1, we

choose the following measurement model

zk = h(x) + vk(x).

We set the measurement zk = hmin, as the state x will then be updated such that

the value of h is close to hmin. If hmin is not known a priori, zk+1 can be set to

an arbitrarily small value. The uncertainty R(x) can be computed analytically as

shown in [48, pp. 90–91]. The resulting filter would provide an optimal estimate of x

as long as h is linear [53], as shown in Sec. 3.4. The following are the Kalman filter

equations modified for an optimization problem:

xk+1 = xk +Kk+1(hmin − h(xk)), (6.4)

Σk+1 = Σk −Kk+1Hk+1Σk, (6.5)

where the Kalman gain Kk+1 = ΣkH
T
k+1(Hk+1ΣkH

T
k+1 +R)−1 and h(xk) = Hkxk.

H is the Jacobian of the objective function h(x).
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If h is nonlinear, variants such as the extended Kalman filter (EKF), unscented

Kalman filter (UKF), etc. can be used. In the presence of constraint functions that

must be satisfied as shown in Eq. 6.1, equality or inequality constrained Kalman

filtering techniques can be applied [37, 105].

(a) (b) (c)

Figure 6-1: (a) Steps involved in one iteration of a multi-hypothesis filter with 2
initial start states. After each iteration the state with maximum likelihood estimate
is chosen as the best current estimate. (b) Steps involved in a particle filter with
3 particles. After updating the particles based on the measurement, resampling is
performed to remove particles with low weights. (c) Steps involved in one iteration
of the heuristic Kalman algorithm. In this example, the parent’s state is divided into
3 child states. The weighted sum of 2 child states with the lowest objective value is
used to obtain the pseudo measurement ξi+1.

In general, the Kalman filter only estimates the local minimum. A popular ap-

proach for nonconvex optimization problems is multi-start or multi-hypothesis filter-

ing as shown in Fig. 6-1(a) [89]. Multiple filters each having a different randomly

chosen initial start, are run in parallel, and after each iteration the estimate with

the maximum likelihood is chosen as the current best estimate. Such an implemen-

tation has a good chance of finding global minima but at the expense of increased

computation time.

Particle filters have also been adapted as a smart alternative to multi-hypothesis

filtering [71]. The resampling step in a particle filter ensures that states with low

94



weights are pruned while the others are retained ( see Fig. 6-1(b)). Particle filters and

multi-hypothesis filters both suffer from the curse of dimentionality. When estimating

high dimensional parameters (> 4), a large number of particles are needed to span

the search space to find the global optimum, which can be computationally expensive

especially if the function evaluation is not cheap.

The heuristic Kalman algorithm (HKA), introduced by Toscana et al. [116], is a

combination of Kalman filtering and population-based random-search methods (see

Fig. 6-1(c)). Starting with a parent state, HKA spans child states and evaluates the

function at the child states. A pseudo measurement and its uncertainty (ξi+1,V i+1)

are then obtained from the n best states with the smallest function value, and the

state (xi,Σi) is updated using the pseudo measurement. Even though the parent

state is divided into a number of child states, in each iteration of the algorithm

only a single state, is updated. Such an approach has been shown to be suitable in

situations where the function can only be evaluated using experimental simulations

and not analytically. For such problems, HKA is a good optimization tool with

very few parameters to tune and a good success rate of finding global minimum [117].

However, when an analytical form of the objective function is available, other methods

perform much better than HKA.

6.2 Problem Formulation

The basic framework of the MSBP is shown in Fig. 6-2. The various steps involved

in the MSBP implementation are as follows:

1. The algorithm is initialized with n initial parent states (xik,Σ
i
k), i = 1, 2, . . . , n,

where k denotes the iteration index (see Section 6.2.1 for information on how

to choose the initial states).

2. Each parent state is divided into m child states (xi,jk ,Σ
i
k), (j = 1, 2, . . . ,m), by

sampling from the distribution (xik,Σ
i
k). The parent state is always retained as

one of the m child states. The child states that are generated from the parent
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state can be viewed as perturbations being added to the states to overcome

local minima and to encourage exploration.

3. The child states are then updated using Eq. 6.4 to obtain (xi,jk+1,Σ
i,j
k+1).

4. From the n × m child states, the n states with the lowest innovation, i.e.,

zk+1 − h(xk|k+1) from Eq. 6.3 are chosen as parents for the next iteration.

5. Among the n parent states chosen, if the means of any states come within an ε

threshold of each other, the state with the lower innovation is retained and the

others are pruned (n decreases every time pruning happens).

6. Steps 2-5 are repeated until convergence or up to a fixed number of iterations.

Figure 6-2: Steps involved in one iteration of the MSBP. Parent states are shown in
bold ellipses and child states are shown in dashed ellipses. In this example, n = 2,
m = 3.

From Fig. 6-1(a) it can be noted that multi-hypothesis filtering is a special case of

MSBP with m = 1 and ε = 0. The multi-hypothesis filter requires a large number

of initial states to converge onto a global minimum, as a lack of perturbation can

result in premature convergence to a local minimum. Also lack of a pruning step

in the multi-hypothesis filter often results in duplication of estimates by multiple

filters. Particle filters prune states with lower probability during the resampling step

and offer an advantage over multi-hypothesis filter. However, particle filters lack the

perturbation step and the state update step present in MSBP, which helps in over

coming local minima and quick convergence to the optimal solutions. In comparison to
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other methods, such as GA, SA, PSO, etc., at each iteration in addition to evaluation

of the objective function at multiple states, the states themselves are updated by the

update model of the MSBP. While this could be viewed as additional computation,

the update step allows us to minimize the function faster and quickly identify the

minima compared to the other methods. MSBP provides a maximum of n estimates

after each iteration as opposed to a single estimate provided by HKA (see Fig. 6-

1(c)). This is a drawback for HKA in problems that have multiple global minima, as

HKA would tend to return an estimate that is at a location intermediate to both the

minima. Running the HKA multiple times with different initial states can improve the

success rate of finding the global minimum, but at the cost of increased computation

time.

Thus, the MSBP offers the advantage of reduced computational load and memory

storage in addition to a higher success rate of estimating the global minima, for

problems with analytical objective functions. The only shortcoming is that when

dealing with very high dimensional systems (typically > 20), the update step of the

Kalman filter can become expensive as it would involve inverting a high-dimensional

matrix.

6.2.1 Choice of Initial State and Parameters

In addition to the choice of initial states, there are three parameters that require

tuning in the MSBP: n, m and ε. This section describes the intuition behind selecting

these parameters and the initial states.

• Initial state: In most practical problems the domain of the search space for

optimization is known. Without loss of generality, the uncertainty of all the

initial states is chosen to be equal to each other. The uncertainty is chosen to

be a diagonal matrix with each diagonal element set to be equal to σ2, such that

6σ equals the span of the domain in that dimension. Such a choice for Σi
0 is

generally conservative, and restricts the uncertainty in each of the parent state

to the search domain. The mean of the states xi0 are randomly chosen from the
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valid search domain.

• Number of parent states n: n can be chosen based on prior knowledge of the

number of global minima present in the problem. If that number is not known

a priori, then a conservative estimate can be made. In practice we observe that

choosing a value of n greater than the number of global and local minima present

in the search domain improves the success rate of the algorithm. However,

increasing the value of n also increases the computation time.

• Number of child states m: m is the number of child states per parent state. If

the estimator is stuck at a local minima, the perturbations help get it out of

the local minima. Hence, the greater the value of m, the greater the chances

of MSBP capturing the global minima. However a higher m would also mean

increased computation time. As result m should be chosen depending on the

allowable computation time for the application.

• Choice of ε: ε is the parameter that decides the threshold between the parent

states. ε helps prevent unnecessary computation and encourages exploration. A

large value of ε can prune several parent states at once and can result in missing

some solutions. ε = 0 would not prune any parent state, resulting in unwanted

computation in cases where multiple parent states are identical. Depending on

the application, ε can be chosen to be a fixed number for all iterations or its

value can be varied over the iterations.

Section 6.3.2 describes in more detail how these parameters are tuned for a case

study on point set registration.

6.3 Results: Sequential Estimation with Unknown

Data Association

In this section, we first demonstrate the performance of MSBP by testing it on the

Griewank function. Following that, we do a case study of point set registration
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problem.

6.3.1 Numerical experiment with Griewank function

A number of standard functions are used to test the performance of nonconvex opti-

mization methods [99]. In this work, we choose to test the MSBP on the Griewank

function. Fig. 6-3(a) shows the plot of Griewank function for x ∈ [−60, 60]. In the

Figure 6-3: (a) A plot of the Griewank function. (b) A histogram showing the values
estimated by 21 parent states of MSBP over 100 runs. The Y axis of the plot shows
the number of runs that estimate a particular state and the X axis shows the estimated
value. A histogram of the estimated value over 100 runs is shown for the following
algorithms (c) Histogram showing values estimated by Genetic algorithm, Simulated
annealing, Multi-hypothesis filter, and HKA.

chosen domain, the function is known to have a global minima at x = 0 and twenty

local minima at ±6.28, ±12.56, ±18.84, ±25.12, ±31.45, ±37.55, ±43.93, ±50.3,

±56.67.

As mentioned in Section 6.2.1 in order to ensure that 99% of samples fall within

the search domain we choose the uncertainty of the initial states, Σ0 = σ2
0, such

that 6σ0 = 120. The mean of the initial parent states are sampled from the normal

distribution N (µ,Σ0), where µ = 5. We choose µ = 5, as it is closer to the local
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minima at x = 6.28 than the global minima at x = 0, and would be a more challenging

test for the optimization algorithm. For our implementation of MSBP, we use an EKF

since the function is non-linear. In addition we choose n = 21,m = 10, ε = 2. We run

all the algorithms until convergence. The algorithm is set to have converged when

the change in the estimate of the minima is < 10−6. We observe that the maximum

number of iterations required by any algorithm is generally under 20. For the sake of

a fair comparison, the values of the parameters for all the algorithms were tuned as

per the recommendation in [116] and the best results have been reported.

We repeat the experiment 100 times to observe the performance of the method

over multiple runs. Fig. 6-3(b) shows the histogram of the values estimated by MSBP

over 100 runs, all of which converged within five iterations. The global minimum is

estimated correctly at x = 0 each time, while the local minima solutions are accurately

predicted by the remaining twenty parent states. The order in which the other parent

states estimate the local minima varies in each run of the algorithm, but they are

tracked in all of them.

In comparison, HKA was implemented with initial state (x0,Σ0) = (5, 400), 20

divisions, 2 best candidates, and a slow down coefficient of 0.7 . Fig. 6-3(c) shows the

histogram of values estimated by HKA over 100 runs. We observe that the algorithm

correctly estimates the local minima only 10% of the time. In 8% of the runs, HKA

estimates the local minima at x = 6.28 and x = −6.28, which are closest to the mean

of the initial state, x0 = 5. SA also estimates the global minimum only 15% of times

and rest of the times it gets stuck at nearby local minima (see Fig. 6-3(c)).

A multi-hypothesis filter was also implemented, where we choose the same initial

states as those for MSBP with n = 21,m = 1, ε = 0. Fig. 6-3(c) shows the histogram

of estimated values over 100 repeated runs. More than 50% of the time, the algorithm

estimates the global minimum correctly. The rest of the times it estimates values close

to the global minimum or one of the two local minima closest to the global minimum

similar to the GA ( Fig. 6-3(c)).
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6.3.2 Rigid Registration

Rigid registration is the process of finding a spatial transformation that aligns the

elements of two point sets. Point set registration is frequently encountered in robotic

applications, such as computer vision [66], localization and mapping [47], surgical

guidance [71], etc. When the correspondence between the points in the two point sets

is known, rigid registration can be solved analytically as shown in [43]. However, when

point correspondences are unknown, finding the optimal transformation becomes a

nonconvex optimization problem with several local minima solutions. Besl et al.

came up with the popular iterative closest point (ICP) method that recursively finds

correspondences and minimizes the alignment difference between point sets [8]. Over

the years several variants of the ICP have been developed [92], and also filtering

based solutions have been developed that are better at handling noise in the data

and provide online estimates [77].

Most of the point registration methods mentioned above use tools that are not

designed for nonconvex optimization and so often converge to local minima. Branch

and bound based technique has been developed to avoid this problem [126]. However,

this methods has high computation time and is not suitable in real time applications.

In this work, we use the MSBP for registration of point sets and demonstrate that it

is able to find accurate estimates with low computation times. We perform multiple

case studies with different conditions using different standard 3D shape datasets to

show the versatility of our algorithm.

We use a dual-quaternion based Kalman filter (DQF) for estimating the registra-

tion parameters [112]. The MSBP can also be used with other filtering implemen-

tation for registration estimation such as [77, 54]. The DQF uses dual-quaternion

representation for pose and reposes the originally nonlinear estimation problem as a

linear estimation problem and hence Eq. 6.4 is readily used for estimating the optimal

registration parameters (see [112] for more information on the expression for objective

function used). In each iteration of the MSBP, closest point correspondence is found

between a pair of points (as opposed to finding correspondence for all the points in
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Figure 6-4: (a)CAD model of a Stanford bunny. The initial position of 1000 points
in shown in blue-diamond markers, the position estimated by MSBP is shown in
red-circular markers. (b) Histogram of the estimated translation parameters, (c)
histogram of the estimated rotation parameters over 100 runs of the algorithm. In
(b) and (c), the Y axis shows the percentage of runs that return a particular value and
the X axis shows the estimated value returned by the parent state with the smallest
innovation. MSBP has a high success rate of estimating the optimal parameters.

the case of methods such as ICP). The correspondence found using the parent states

is retained for the child states as well. Since the number of different correspondences

that can be formed between the two point sets is combinatorial, we expect many

local minima solutions. Hence, we choose a large value for n in all the applications

below. When the state uncertainty reduces below a desired threshold, we end the

estimation process and stop collecting measurements. Thus, compared to batch pro-

cessing methods such as the ICP (in which we wait for all the measurements to be

collected before estimating the optimal registration), the DQF has the advantage of

faster computation using fewer point measurements [112].

Large initial transformation error

Fig. 6-4(a) shows the CAD model of a Stanford bunny [121]. The CAD model is geo-

metrically discretized using a triangular mesh with 43318 triangle vertices. We collect

1000 random samples of points from the CAD model and apply a known transforma-

tion to those points. We then estimate the applied transformation with the MSBP.

The values of various parameters used are n = 40,m = 10, ε = 1. The experiment
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is repeated 100 times to note the statistical performance of our method. Fig. 6-4(a)

shows the MSBP estimated points lie on top of the CAD model indicating accurate

registration. On an average our algorithm converges after using 120 measurements.

Table 6.1 shows the actual registration parameters and the estimated values. The

algorithm is compared with HKA, multi-hypothesis filtering, ICP, SA and GA. The

SA and GA implementation we use for the sake of comparison are as described in [67,

102], which are a modified form of the original implementations of SA and GA with

internal ICP computations. The authors of [67, 102] show that even though their

approaches are expensive per iteration, they result is requirement of fewer iterations

over all for convergence, and hence are faster and more accurate at estimating the

registration parameters (These observations have been independently verified by us

and hence we do not report results for vanilla implementations of SA and GA in this

work).

While MSBP and multi-hypothesis filter estimate the registration parameters in

a dual-quaternion space, we convert the estimated values into Cartesian coordinates

and Euler angles for easy comparison with other methods. The penultimate column

and the last column of Table 6.1 show the RMS error and time taken for various

algorithms 2.

For multi-hypothesis filtering, we use the same set of initial states as MSBP. For

HKA, ICP and SA we use a 4× 4 identity matrix as the initial transformation. The

bounds on the search space are [−100, 100] for translation and [−π, π] for rotation

around each axis. For HKA we use 40 divisions, 4 best candidates and a slow down

coefficient of 0.4. For GA we use an initial population of 100, cross-over probability

of 0.7 and mutation probability of 0.2. These values for the parameters are tuned as

per [117] and the best results are reported.

Fig. 6-4(a) shows that the displacement between the initial position of the points

and their true position on the CAD model, is quite high and ICP does not perform

well for such high initial errors. We notice that HKA also does not estimate the

2The computational time taken is calculated for script written in MATLAB R2015a software
from MathWorks, running on a ThinkPad T450s (20BX0011GE) laptop from Lenovo with 8 GB
RAM and intel i7 processor.
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Table 6.1: Comparison of pose parameters as estimated by different registration meth-
ods for a case with large initial transformation error

x y z θx θy θz RMS Time
Case1 (mm) (mm) (mm) (deg) (deg) (deg) (mm) (sec)

Actual 30 -40 15 -55 80 -20 – –
MSBP 29.89 -39.84 14.67 -58.57 80.59 -23.31 0.48 28
ICP 42.04 -35.22 8.52 17.83 19.21 33.26 35.06 5.82
Multi-hyp 59.79 -20.66 15.26 53.08 -45.58 30.29 18.25 404.62
HKA -3.97 -17.69 17.45 31.39 31.69 -22.05 53.44 201.97
SA 29.16 -38.34 13.97 -51.75 81.67 -14.49 2.36 353.67
GA 30.08 -39.93 15.05 -54.59 79.92 -19.51 0.08 1051.00

transformation accurately, presumably because it gets stuck at a local minimum.

MSBP, SA and GA accurately estimate the transformation, however, SA and GA

take much more time than MSBP to estimate. Since each function evaluation consists

of an iteration of ICP internally, SA and GA both have higher estimation time than

MSBP.

The MSBP algorithm is run 100 times and a histogram of the estimated translation

and rotation parameters are shown in Fig. 6-4(b) and Fig. 6-4(c), respectively, which

show that there is a > 85% chance of MSBP converging to the correct value. In

comparison with MSBP, GA has a success rate of 10% and SA has a success rate of

20%. Thus, the MSBP produces accurate and repeatable results with high success

rate, despite large errors in initial registration.

Multiple global minima

In this example, we consider a snowflake as shown in Fig. 6-5(a), which has ro-

tational symmetry about an axis passing through its center and perpendicular to

its plane. The object is symmetric to its original shape when rotated about this

axis by ±60◦,±120◦ and 180◦. We sample 100 points from the CAD model of

the snowflake and transform those points by a known transformation: (x, y, θz) =

(15mm, 30mm, 45◦). We then use MSBP to estimate the applied transformation.

Since the snowflake is 2-dimensional, we restrict ourselves to in-plane registration.
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(f)

(c)

(e) (g)
(15, 30, 45o)

(14.99, 30, 45o) (18.5,-27.9,-74.9o)

(33.6,1.76, -15.34o)

(-18.4,28.14, 104.7o)

(-33.16,-2.69, 165.9o) (-15.4,-28.1, -131.4o)

Initial 

MSBP

Figure 6-5: (a) CAD model of a snowflake.The initial position of 100 points and the
position estimated by MSBP are shown in blue-diamond and red-circular markers
respectively. The actual transformation between the points and the CAD model is
(15, 30, 45◦). (b)-(g) The first six parent states of MSBP. The estimated registration
parameters are given below the figure. Note how the rotation angles are 45◦±n×60◦,
(n = 0, 1, 2) due to the 6 way symmetry in the shape of the snowflake. Snowflake
CAD model courtesy of Thingiverse CAD model repository

We use the following parameter values for MSBP: n = 100,m = 10, ε = 5. After 100

iterations, the number of surviving parent states is 16. Fig. 6-5(b)-(g) show the posi-

tion of the points after applying a transformation given by the first six parent states as

estimated by the MSBP. The first six parent states of the MSBP accurately capture

the six global minima (Note that we limit our search domain to [−180◦, 180◦] and

hence there are 6 global minima in the search domain upto the rotational periodicity).

Noise in the input data

In order to test the robustness of the registration using MSBP in the presence of

noise in one of the point sets, we consider the example of Fertility as shown in Fig. 6-

6. 200 Points are sampled from the CAD model and a Gaussian noise N (0, σ2
n) is

applied to each of the points. The standard deviation σn is kept constant for all the

points, but is gradually increased from 1 to 20 in increments of 1 over several runs

(For reference, the CAD model can be fit in a box of size 300 × 200 × 100 units).

Left hand side of Fig. 6-6(a)-(c) shows that CAD model and the initial position of
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the points in blue-diamond markers for 3 different values of σn. The right hand side

of Fig. 6-6(a)-(c) shows the CAD model and the location of the points after applying

the transformation as estimated by MSBP.

Figure 6-6: CAD model of Fertility and 100 points sampled from it and a noise
N (0, σ2

n) is added to the points. (a) the plot for σn = 1 (b) the plot for σn = 10
(c) the plot for σn = 20. CAD model of Fertility courtesy of AIM@SHAPE model
repository

Note how the MSBP is able to successfully register the points for all the three

cases shown in the figure. Also note how after registration, the points appear to be

lying on the CAD model for lower σn and appear to be spread out of the CAD model

for the case with higher σn.

Robustness to incomplete data

Figure 6-7: CAD model of a Stanford Armadillo man [121] and set of initial points
sampled from parts of the model. The points are not sampled uniformly from all over
the CAD, but have regions of missing information. (a) and (b) show two instances of
incomplete data registered accurately to the CAD model using MSBP.

A number of practical applications that require registration involve partial or

incomplete datasets [47]. In order to test the performance of MSBP for such appli-

cations, we consider an example of Stanford Armadillo man [121] (see Fig. 6-7). 500

points are sampled from the CAD model. In each run of the algorithm, one point

is picked from the point set at random and the selected point along with 250 of its
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nearest neighbors are removed from the point set. The rest of the points are then

used for registration with the original CAD model.

We observe that in spite of the lack of complete point set information, MSBP is

able to correctly register the points to the CAD model. Fig. 6-7 shows two arbitrary

runs of the algorithm with different sets of points missing in each. In both the cases,

the MSBP correctly registers the points to the CAD model as shown in Fig. 6-7(a)-

(b).

6.4 Conclusion and Discussion

In this chapter, we developed the multiple start branch and prune filtering algorithm

(MSBP), a Kalman filter based method for nonconvex optimization. We show that

using multiple initial states along with branching, updating and pruning, allows us

to efficiently search for the optimal solution(s) in the domain of the search space

without prematurely converging to a locally optimal solution. MSBP requires tuning

of three parameters, the intuition behind which has been described and empirically

verified with several examples. We show that the standard multi-hypothesis filter is

a computationally less efficient, special case of the MSBP. With an example of point

registration, MSBP is also compared with popular methods for nonconvex optimiza-

tion and is found to estimate the optimal solutions accurately with a higher success

rate especially when: 1) the objective function is available in an analytical form, 2)

each function evaluation is expensive, 3) there are multiple global/local minima, and

4) the parameter space is relatively low dimensional (< 20).

Future work will involve an intermediate step to cluster the updated child states

instead of using an ε threshold. By using an information filter instead of a Kalman fil-

ter, the expensive matrix inversion operation step in the state update can be avoided.

This would allow us to extend the MSBP for problems involving high dimensional

parameter spaces. Validating the effectiveness of MSBP on a variety of nonconvex

problems with different functional complexities, different number of parameters, and

studying parameter sensitivity, will be a part of our future publication.
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6.5 Contribution

The contribution from this chapter is:

1. Development of a filtering approach for nonconvex optimization. The approach

can be used for probabilistic pose estimation with unknown data association.

6.6 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan and Howie Choset, “Multiple Start Branch and Prune Fil-

tering Algorithm for Nonconvex Optimization, accepted for publication in pro-

ceedings of the Workshop on the Algorithmic Fundamentals of Robotics, San

Francisco, USA, December 2016.
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Chapter 7

Sparse Point Registration

In several applications of engineering, medicine and especially robotics, one often en-

counters the need to perform registration. In a typical registration problem, the

spatial transformation between the geometric model of the object-of-interest and

point measurements of the object’s surface (see Fig. 7-1), needs to be estimated.

In most applications, the point clouds obtained from sensors such as LIDAR, Kinect,

feature rich stereo-images, etc, contain hundreds of points. Several methods have

been developed to perform registration when dense point measurements are ob-

tained [9, 94, 101, 76, 12]. However, these methods do not scale well as the number

of available point measurements, and hence in this work we develop a method for

robust sparse point registration (SPR).

Figure 7-1: (a) Geometric model of the object (b) Point measurements in sensor frame
(c) Point measurements registered to the geometric model

Sparse point registration is of critical importance in surgical applications, where a

109



surgeon probes the visible anatomy using a robot in order to register the anatomy to

its preoperative model obtained from CT scan or MRI. In such applications, there is

a cost associated with probing more points and the goal is to quickly and accurately

register with a fewer number of measurements. Prior work either uses greater than 100

measurement points for reliable registration [5, 76, 12], or uses a priori knowledge of

anatomical landmarks to hand-pick a small number of probing locations [106, 69, 71].

In an attempt to keep the formulation general, in this work we do not assume any

prior knowledge of anatomical segments.

Our approach to SPR is developed as an iterative procedure and in each iteration,

the current best pose estimate is perturbed to obtain several poses. Each of the ob-

tained pose will hereby be referred to as a ‘pose particle’. The amount of perturbation

is reduced in each iteration to balance exploration and exploitation. By evaluating a

cost function, the best pose particle is selected and used as initial seed for an opti-

mization problem that computes a locally optimal pose. This process is then repeated

for a fixed number of iterations or until convergence. The optimizer used for com-

puting the locally optimal pose can be deterministic or probabilistic and depending

on the requirement of the problem, two variants have been developed: deterministic

SPR (dSPR) and probabilistic SPR (pSPR). The dSPR uses iterative closest point

algorithm (ICP) [9], while the pSPR uses dual quaternion filtering (DQF) [111] to

estimate the pose. The dSPR is computationally faster than pSPR, but requires the

perturbation related parameters to be set manually. The pSPR on the other hand

uses uncertainty information to automatically set these parameters.

In Sec. 7.3, the dSPR and pSPR are evaluated in simulation over a number of

standard data sets and compared against popular registration methods. The results

show that the SPR typically takes less than 20 points to accurately and robustly

estimate the registration and is more robust to initial registration errors (≈ 30◦

orientation and ≈ 30mm translation). In Sec. 7.3, a general guideline is provided on

how to automatically probe the object to get a good spread of sparse points. Sec. 7.3

also shows the experimental results where a robot automatically probes several objects

and accurately registers them to their geometric models.
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7.1 Related Work

Registration is the process of finding the spatial transformation that aligns a point

cloud to a geometric model, defined in different reference frames. When the corre-

spondences between the points in the two reference frames are known, Horn et. al.

developed a least squares based approach to find the spatial transformation [44].

However, in most practical applications, the correspondence is unknown. By iter-

atively finding the best correspondence and the optimal transformation given that

correspondence, Besl et. al. developed the iterative closest point (ICP) [9].

Several variants of the ICP have since been developed that use surface normal

information [94, 115], incorporate uncertainty in measurements [101], incorporate un-

certainty in finding correspondence [12], are robust to outliers [119, 86], are globally

optimal [30, 74, 125], etc. The computation time for most of the ICP-based meth-

ods is high and in order to address this, Kalman filtering-based variants have been

developed [85, 76, 39, 111, 110].

In applications where only a small number of sparse point measurements are avail-

able due to high cost of measurement, conventional registration approaches do not

perform reliably. For example, in a surgical application of probing-based registra-

tion using any of the Kalman filtering variants, the computation time might be

low [76, 109, 111], but the time taken to obtain greater than 100 point measure-

ments can be high.

Prior work such as [106, 69, 70], register using a small number of carefully chosen

probing points. These points are selected based on optimization of a stiffness-based

quality metric [70]. Since, these works were inspired by surgical applications, they

assume a priori knowledge of the location of anatomical features in the robot-frame.

Such an assumption is very limiting in its nature and reduces the scope of approach.

Firstly, the workspace constraints of the robot might restrict the robot from locat-

ing all the anatomical segments. Secondly, when applied to a non-surgical domain,

defining an equivalent of anatomical feature is non-trivial.

The work of Ma et. al. [71] comes closest to our approach. In [71], an unscented
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particle filter (UPF) is used to register an object using a small number of point

measurements without relying on prior knowledge of any landmarks or segments.

While the UPF uses a small number of measurements, it uses a large number of pose

particles ≈ 2000 in each iteration, resulting in a large computation time. Also [71]

only presents results when the initial registration guess is within 10◦ of orientation

and 10mm of translation. Moreover [71] does not provide any guidelines on how to

probe the object. Such a guideline is important because for a given number of probed

points, the improvement in registration would be minimal if they are located close by

as opposed to spread over the surface of the object.

7.2 Problem Formulation

7.2.1 Batch Dual Quaternion Filter

Dual quaternion filtering (DQF) is a linear Kalman filtering based approach for on-

line pose estimation [111]. Unlike ICP, DQF is not a batch processing algorithm. It

is more similar to a Kalman filter since it uses measurement information as it be-

comes available, but with one small difference– the DQF uses pairs of measurements

to update the registration estimate. Compared to other filtering based registration

methods such as [85, 76, 39], the DQF is preferred because it is a truly linear filter

without any approximations or linearizations, resulting in accurate estimates which

are quickly obtained. The transformation T ∈ SE(2) is parameterized using the unit

dual quaternion x = (q,d)T , where q ∈ R4 is a unit quaternion that parameter-

izes the rotation, d is the dual component of x, d =
(
(0, t)T � q

)
/2 and � is the

quaternion multiplication operator, t ∈ R3 is the translation vector.
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Using a pair of measurements, Srivatsan et. al. [110] show that

Hq = 0, H ∈ R4×4 (7.1)

H =

 0 −(c1 − c2 − b1 + b2)
T

(a1 − a2 − b1 + b2) (a1 − a2 + b1 − b2)×

 , (7.2)

t =
a1 − a2

2
−Real

(
q � b1 − b2

2
� q∗

)
, (7.3)

where q∗ is the conjugate quaternion and [ ]× is the operator that converts a vector

to a skew-symmetric matrix.

The update equations for the Kalman filter are:

qk = qk−1 −KkHkqk−1,

Σq
k = (I −KkHk)Σ

q
k−1, where,

Kk = Σq
k−1H

T
k (HkΣ

q
k−1H

T
k +Qk)

−1

where Σq
k is the uncertainty in the quaternion qk and Qk is the pseudo-measurement

uncertainty. The translation vector tk is obtained from qk using Eq. 7.3. For the

sake of brevity, the derivation for Qk = g(Σq
k,Σ

bj
k ,Σ

cj
k ) and Σt

k = f(Σq
k,Σ

bj
k ,Σ

cj
k )

representing the uncertainty in the translation, are omitted here. The expressions

along with their derivation can be obtained from Sec. 4.2.3.

The standard implementation of DQF requires ≈ 100 measurements for reliable

registration estimation [111]. In this work, the DQF is modified to a batch processing

variant, which updates using all the m measurements collected, instead of a single

pair per iteration. We shall henceforth refer to this variant as batch-DQF (bDQF).

As shown in Sec. 7.3, bDQF requires fewer measurements for accurate estimation

compared to the standard DQF.

We modify Eq. 7.1 as

Gq = 0, G ∈ Rα×4,

G = [H1, . . . ,Hα],
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where H i ∈ R4×4 is as defined in Eq. 7.2 and α = b
(
m
2

)
c. The update equations of

the filter remain the same. The algorithm for bDQF is shown in Alg. 2.

Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: q0 ∈ R4, t0 ∈ R3,
Output:
q ∈ R4, t ∈ R3 that aligns A and B
Σq ∈ R4×4,Σt ∈ R3×3

Initialize: k = 1
while not converged do

Correspondence:
T k−1(bj) = tk−1 +Real(qk−1 � bj � q∗k−1)
cj = FindClosestPoint(T k−1(bj)), cj ∈ A,
State Update:
qk = (I −KkGk)qk−1
Σq
k = (I −KkGk)Σ

q
k−1

tk = 1
m

(∑m
j=1 cj −Real

(
qk �

∑m
j=1 bj � q∗k

))
Σt
k = f(Σq

k,Σ
bj
k ,Σ

cj
k )

k = k + 1
end

Algorithm 2: Batch Dual quaternion filtering

7.2.2 Steps Involved

Fig. 7-2 shows the basic framework of our SPR approach. The various steps involved

are as follows:

1. The algorithm 3 is initialized using an initial pose (see Fig. 7-2(b)).

2. The current best pose is perturbed and p perturbed poses are obtained. In

Fig. 7-2, p = 3 is chosen. The amount of perturbation is reduced over the

iterations. Refer Sec. 7.2.3 and Sec. 7.2.4 for more information on how to

choose the amount of perturbation.

3. A cost function is evaluated for each of the perturbed poses. The cost function

is the sum of the closest distance between the point measurements and the
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geometric model:

Oj =
m∑
i=1

||T̃ j(bi)− ci||, j = 1, . . . , p,

where T̃ j ∈ SE(2) and ci ∈ A is the closest point in the A. In this step, we

use an approximate geometric model A∗ instead of A, to quickly evaluate the

cost function. Depending on the format of the geometric model, several existing

simplification techniques can be applied, such as [84, 21]. For example, when

working with a triangulated mesh model, a quadric mesh simplification can be

used [29] as shown in Fig. 7-2(c).

4. The pose T̂ = argminT̃ j Oj, is chosen as the initial guess for a locally optimal

pose estimation using ICP or bDQF. In Sec. 7.3 we discuss the advantages and

limitations of using ICP over bDQF.

5. Steps 2-4 are repeated until convergence or up to a

fixed number of iterations.

7.2.3 Deterministic Sparse Point Registration (dSPR)

In the dSPR, ICP as described in Sec. 3.5 is used to find the locally optimal pose

(Step 4 of SPR). There are three tunable parameters:

1. Number of perturbations: Perturbations help the optimizer move out of a local

minima. The higher the number of perturbations, the faster the convergence to

the optimal estimate is. But higher perturbations also imply higher computa-

tion times. In this chapter we choose the number of perturbations p = 10.

2. Amount of perturbation: The amount of perturbation helps balance exploration

and exploitation. Higher perturbation encourages exploration while lower per-

turbation encourages exploitation. We start with a high perturbation amount

and decrease the perturbation over iterations. In this chapter we set the initial
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Figure 7-2: Figure shows the steps involved in an example of sparse point registration.
In this example, two iterations of the algorithm are shown. The best pose estimate
in each iteration is perturbed to obtain three pose particles. (a) Point measurements
(b) Geometric model of the object (c) The geometric model in different perturbed
poses. An approximate geometric model is used in this step. The number of triangle
vertices in the original model is 259,896 and the number of vertices in the approximate
model is 88. (d) The best pose from the perturbed poses is selected and a locally
optimal pose is obtained by using ICP or bDQF and the original geometric model.
(e) The best pose estimated from the previous iteration is perturbed to obtain three
new poses. The perturbation in this step is lower than the previous iteration. (f) The
locally optimal pose obtained after using ICP or bDQF. Note that the pose estimated
in the second iteration provides an improvement over the previous iteration.
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Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: T 0 ∈ SE(2)
Output: T ∈ SE(2) that aligns A and B
Initialize: T ← T 0, k = 0, ε = inf
while k <MaxIterations OR ε >Threshold do

Perturbation: T̃ j = T k +N (0,Σk), j = 1, . . . , p
Evaluate Cost Function: Oj =

∑m
i=1 ||T̃ j(bi)− ci||

Locally Optimal estimate:
T̂ k = argminT̃ j Oj

T k = ICP (A,B, T̂ k) or
T k = DQF (A,B, T̂ k)
εk =

∑m
i=1 ||T k(bi)− ci||

if εk < ε then
T = T k

ε = εk
end
k = k + 1

end
Algorithm 3: Sparse Point Registration

perturbation in orientation to be drawn from a normal distribution with zero

mean and a standard deviation of 10◦. The initial perturbation in translation is

drawn from a normal distribution with zero mean and a standard deviation of

10mm in translation. The perturbation is decreased linearly until it is reduced

to zero after a maximum of 30 iterations.

3. Termination criteria: The procedure can be terminated when the number of

iterations reaches a set limit or when the RMS error between A and B is lower

than a set threshold. In this chapter, we set the maximum number of iterations

to be 30 and the RMS error threshold to be 0.5mm. In addition the maximum

number of iterations of each ICP step is set to 20.

The choices of parameters made in this chapter for dSPR are based on manual tuning

over several standard data sets; and are not meant to exhibit any optimal behavior.

117



7.2.4 Probabilistic Sparse Point Registration (pSPR)

In the pSPR, bDQF as described in Sec. 7.2.1 is used to find the locally optimal pose.

There are two tunable parameters:

1. Number of perturbations: Since we use a Gaussian distribution-based filter, the

number of perturbations are be chosen to be equal to the number of sigma-

points. In the case of bDQF, there are 15 sigma points. Unlike the dSPR,

the amount of perturbation need not be set manually, but can be chosen from

a normal distribution with zero mean and standard deviation matching the

standard deviation of the current state estimate.

2. Termination criteria: In this chapter, we set the maximum number of iterations

to be 12 and the RMS error threshold to be 0.5mm. The number of iterations

in each bDQF step is set to 50.

7.3 Results: Batch Estimation with Unknown Data

Association

7.3.1 Simulation Results: Probing-based Registration

We perform a number of simulation experiments on standard shape data sets to

systematically study the dSPR and pSPR. The results are compared with ICP, bDQF

and UPF [71]. For all the simulation experiments, the objects are scaled to fit in a

cube of edge length 100mm, for a fair comparison of the registration errors. All the

computations are carried using MATLAB R2015a software from MathWorks, running

on a ThinkPad T450s computer with 8 GB RAM and intel i7 processor.

Minimum Number of Points Required

Different shapes need different number of points for reliable registration estimates. In

theory, if the point correspondences are known, four points not lying on a plane are

sufficient to unambiguously find the pose [44]. If the correspondences are unknown,
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there may exist multiple valid solutions for the pose when only a small number of

points are available (see Fig. 7-3). While the authors are not aware of any prior

work that describes the lower limit on the number of random points required to

reliably estimate the pose, the works of Simon et. al. [106] (later extended by El-

lis et. al. [70]) comes closest to answering this question. Given the geometry of the

object, Simon et. al. find a small number of feature points in the frame of the geo-

metric model, which when probed helps provide reliable registration estimates. But

in order to probe these points, their locations need to be known in the robot frame.

Thus their approach produces good results only when the initial registration guess is

close to the true registration.

Figure 7-3: Four different poses of the liver contain the same set of four point mea-
surements, shown in green. When a very small number of point measurements are
available, and the point correspondence is unknown, pose estimation is ambiguous.

In an attempt to empirically find the minimum number of point measurements

required for reliable registration, we perform an experiment where p random points

from the model are selected. A known transformation is applied to these p points. The

applied transformation and RMS error are estimated using dSPR. The applied trans-

formation is parameterized by Cartesian coordinates (x, y, z) ∈ R3 and Euler angles

(θx, θy, θz) ∈ R3. Each translation parameter is uniformly drawn from [−30, 30]mm

and each orientation parameter is uniformly drawn from [−30, 30]◦. The experiment

is repeated 100 times and the mean error is calculated. This process is repeated for

different values of p, where p ∈ {4, 5, . . . , 36}. We perform this experiment for sev-

eral shapes namely, Bunny, Armadillo, Dragon, Happy Buddha, Lucy, Thai Statue–

obtained from the Stanford Point Cloud library [121], Fertility obtained from the
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AIM shape repository [2], femur bone, liver obtained from https://grabcad.com and

pelvis bone obtained from https://www.thingiverse.com/.

Figure 7-4: Plot of RMS error vs number of points used for registration, when using
dSPR. For each integer element on the X axis, mean error is computed over 100
experiments. Most of the shapes considered need ≈ 20 measurements for accurate
registration.

It is observed that some shapes like pelvis and Bunny require only 16 points, while

others like the Dragon require 36 points. Most of the shapes need ≈ 20 points. Given

a new shape, similar experiments can be run to empirically find out the minimum

number of random points required for reliably registration estimate.

Robustness to Noise

Fig. 7-1(a) shows the CAD model of a femur bone. The CAD model has 44,688

triangle vertices.

The dashed lines in Fig. 7-5 show the mean error for dSPR and pSPR over 100
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Figure 7-5: Plot of the RMS error vs number of measurements used for dSPR and
pSPR, with a without noise in the measurements. In the absence of noise, dSPR
takes 12 measurements and pSPR takes 18 measurements to converge to zero RMS
error. In the presence of a uniform noise of 2mm, both pSPR and dSPR converge to
an RMS error of < 2mm after 20 measurements.
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experiments versus the number of measurements used. The RMS error for both dSPR

and pSPR decreases to zero after 12 and 18 measurements respectively. The experi-

ments were repeated under identical conditions, with a noise uniformly drawn from

[−2, 2]mm added to each coordinate of the point measurements. Fig. 7-5 shows that

the mean error for dSPR and pSPR both converge to less than 2mm after 20 mea-

surements. The performance of both dSPR and pSPR are very similar– with and

without measurement noise. Table 7.1 shows the RMS error for dSPR and pSPR as

well as the estimation time, for varying levels of noise, using 20 point measurements

and 100 measurements. When using 100 measurements, as expected, dSPR, pSPR,

standard ICP, bDQF and UPF accurately estimate the registration. However, when

using 20 measurements, dSPR and pSPR outperform the other methods. UPF takes

the most computation time compared to all the other methods because of the need

to iterate over ≈ 2000 pose particles (other researchers have also noticed the high

computation time of UPF [76]). In this work, we do not present comparisons with

other popular registration methods such as generalized ICP [101], UKF-based regis-

tration [76], DQF [111], iterative most likely point [12], etc. as those methods are not

designed to work with less than 100 measurements and hence the comparison would

be unfair.

Even though the RMS error is similar, the time taken by pSPR is greater than

dSPR. This is because each ICP evaluation in dSPR internally takes ≈ 20 iterations,

while each bDQF evaluation in pSPR internally takes ≈ 50 iterations for convergence

to a local minima. The benefit of using pSPR however, lies in the fewer parameters

that require tuning.

Point Selection Criteria

If an operator has visual information about the environment and telemanipulates the

robot, then it is trivial to pick points on the object spread across the surface of the

object. But if the robot is autonomously collecting point measurements then it is

critical to ensure that the points are randomly distributed over the surface. To this

effect, two strategies that have been developed in this work. For both the strategies,
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Table 7.1: Femur bone: Registration of few sparse points in the presence of noise

No noise 2mm noise 5mm noise

RMS Time RMS Time RMS Time
20 points (mm) (sec) (mm) (sec) (mm) (sec)

dSPR 0 0.08 1.08 0.44 1.79 0.46
pSPR 0 0.07 1.63 1.009 1.66 0.99
ICP 4.72 0.01 2.92 0.01 6.69 0.01

bDQF 2.84 0.05 2.19 0.09 7.83 0.09
UPF 7.13 161.77 22.12 159.83 24.23 242.38

100 points

dSPR 0 0.03 0.59 0.51 1.12 0.53
pSPR 0 0.13 0.64 2.53 1.07 3.10
ICP 0 0.01 0.72 0.01 0.93 0.01

bDQF 0 0.08 0.38 0.19 1.55 0.24
UPF 4.82 1891.1 8.06 1843.3 14.29 1594.0

first find the location and dimensions of a cuboid in the workspace of the robot,

within which the object lies. The object can be probed from 5 faces of the cuboid

(Assuming the object rests on a table and cannot be probed from the bottom face).

The guidelines for probing the object to obtain point measurements are:

1. Choose a face of the cuboid at random, pick a point on this face at random

and probe along the direction joining the chosen point and the center of the

bottom face of the cuboid ( as shown in Fig. 7-6(a)). Stop moving the robot,

once it makes contact with the object. Repeat this process to collect more

measurements.

2. If the object is relatively flat (the smallest face of the cuboid is < 30% of the

largest face), then the previous strategy would result in most of the probed

points lying on the face with the largest area. So an alternate strategy is

followed, where a random point is chosen on the face with largest area. The

robot is moved in the direction of the surface normal of this face, until contact

is made with the object (see Fig. 7-6(b)). This process is repeated to collect

more points.
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Figure 7-6: A cuboid is selected in the workspace of the robot that conservatively
estimates the location of the object. (a) Different probing paths for the robot are
selected such that the probed points are spread across the surface of the object. The
colors of the path show the face of the cuboid that the paths originate from. (b) Point
collection strategy for relatively flat object. Some paths do not produce a point on
the object. If the robot does not make contact with the object during the course of
its path except at the last point, then the point is considered to be outside the object
and is not included in the registration.
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It is observed that such a strategy ensures that the points probed are spread evenly

over the surface of the object. It is also observed that sometimes the robot might

pass through holes in the object and make contact with the environment instead of

the object. Such points are not considered in the computations in this work.

7.3.2 Experimental Results: Localization of Tool-tip

In order to test our approach to SPR with real data, an experimental setup as shown

in Fig. 7-7 is used. The setup consists of a 6-DOF robot Foxbot R© equipped with an

ATI Nano17 force sensor at the end-effector. The object of interest is clamped in

front of the robot and is probed using the strategies described in Sec. 7.3.1.

The objects chosen for this experiment are: Femur bone, pelvis bone and Stanford

bunny. Using the information obtained from Fig. 7-4, we collect 18, 20 and 20 points

respectively for the femur, pelvis and bunny respectively.

The blue circles in Fig. 7-8 show the initial guess for the location of the point

measurements and the red circles show the location as estimated by dSPR. Note that

the estimated location of the points lie on the model of the objects. The RMS error

for the location estimated by dSPR and pSPR are shown in Table 7.2.

Table 7.2: Experimental results for registration of few sparse points

Pelvis Femur Bunny

RMS Time RMS Time RMS Time
(mm) (sec) (mm) (sec) (mm) (sec)

dSPR 2.17 1.5 1.38 1.56 5.00 1.76
pSPR 2.21 3.38 2.33 3.01 4.91 3.95

7.4 Conclusion

In this chapter, a sparse point registration (SPR) method for robust registration using

a small number of sparse point measurements was developed. The approach can be

implemented in a deterministic manner (dSPR) or a probabilistic manner (pSPR).
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Figure 7-7: Experimental set up consists of a robot manipulator from Foxconn R©,
equipped with a force sensor. The object that is to be registered is clamped and held
in place.
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Figure 7-8: Blue circles represent the initial location of the point measurements and
red circles represent the registered location of the points. (a) Pelvis bone is probed at
18 points. (b) Femur bone is probed at 20 points. (c) Bunny is probed at 20 points.
dSPR and pSPR accurately register the points to the model of the objects.
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The dSPR is faster but has more parameters to tune than pSPR. pSPR has the

added advantage over dSPR of providing the uncertainty in the registration estimate.

Another contribution of this work is the development of a batch processing variant

of the dual quaternion filter [111], which is used in the pSPR.

Through simulations and robot experiments, both dSPR and pSPR are found to

be robust and accurate compared to state-of-the-art methods. Even in the presence of

noise, our approach to SPR accurately estimates the registration compared to popular

deterministic and probabilistic approaches for registration. The computation time

was ≈ 1s for dSPR and ≈ 3s for pSPR. A C++ implementation would greatly reduce

the computation time. Through a number of simulations, it is empirically found that

most shapes require ≈ 20 points for reliable registration. Future work would explore

a more theoretical approach for finding the lower bound on the number of random

points required for registration.

Only rigid objects were considered in this work. In the future, we plan to extend

the formulation to flexible objects that can deform upon contact. Prior work such

as [109] can be used to estimate the local deformation introduced by forceful contact.

Future work will also explore using surface-normal in addition to point measurements

for registration.

7.5 Contribution

The contributions from this chapter include:

1. Development of a probabilistic registration approach with few sparse point mea-

surements.

7.6 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan, Prasad Vagdargi and Howie Choset, “Sparse Point Regis-

tration, submitted to the IEEE/RSJ International Conference on Intelligent
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Robots and Systems, 2017.
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Chapter 8

Complementary Model Update

8.1 Related Work

When the anatomy is rigid, registration yields the homogeneous transformation ma-

trix that relates points in the anatomy’s frame to the frame of its a priori model.

One of the most popular techniques for rigid registration is the iterative closest point

(ICP) [10]. Improvements over the original ICP have been developed which deal

with outlier detection[93], fast computation [124] and handling noise in data [77] and

overcoming local minima solutions [126].

When dealing with anatomy that is flexible, we observe discrepancy between the

model of the source and the target due to the global deformation of the target caused

by swelling or organ shift due to gravity and positioning of the patient. Non-rigid

registration techniques, that are popularly referred to as “deformable registration”

methods, have been developed to address this issue. Prior work such as [78, 107] and

the references therein describe techniques to perform deformable registration. The

majority of previous works relies on non-contact based methods to produce geometric

data for registration. Techniques such as [96] use organ geometry and image process-

ing to perform registration, but perform poorly when the visible organ is obfuscated

with blood and also respond adversely to change in lighting.

Other imaging modalities such as intraoperative ultrasound (US) based registra-

tion for soft bodies [61, 90] deal with registering the preoperative model to the US
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image, instead of the surgical tool. Methods such as [68] require a pre-registration

step where either fiducial markers are used or an expert manually chooses points of

interest from the US image to provide a good initial guess for the registration al-

gorithm. Techniques such as [49] present a fiducial free way for registration using

3D ultrasound (3DUS). Such methods depend heavily on finding distinctive 3DUS

features which may not be successful in every surgical scenario.

To the best of our knowledge, the only work that uses contact/force based blind

exploration data to perform registration is our previous approach for SCAR [97].

An iterated extended Kalman filter (IEKF) was used to simultaneously estimate

the registration parameters and generate a stiffness map of the environment. In

Section 8.2 we discuss some of the drawbacks of our previous implementation of

SCAR and motivate the need for a more robust formulation.

Problem statement and assumptions

Given an a priori geometric model of an organ as well as the measurements of the

tool tip positions and associated contact forces, (i) the surgical tool needs needs to

be registered to the frame of the model, and (ii) the stiffness distribution over the

organ’s surface needs to be estimated. We make the following assumption in this

chapter:

1. The true shape of the organ is not globally deformed but instead experiences

local deformations only due to interaction with the tool.

2. The tool-tip’s position can be measured accurately.

3. The tool has force sensing capability so that it can be servoed in a hybrid

position-force control manner.

4. The forces applied by the tool are within the admissible range (typically ≈ 1N)

in which the organ only undergoes a small deformation that allows it to realize

its undeformed state when the force is removed.
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5. The friction between the tool tip and the surface of the soft body is negligible.

8.2 Problem Formulation

Now, we describe the complementary model update (CMU) to simultaneously esti-

mate the variation of stiffness over the surface as well as register a flexible environment

to its a priori model. Our group had earlier developed a filtering approach for SCAR

that was reported in [97]. For the rest of this paper, the old implementation of SCAR

using IEKF will be referred to as SCAR-IEKF-old. SCAR-IEKF-old uses a geometric

prior represented in the form of a triangular mesh and therefore each triangle was

assigned its own stiffness values. The state vector xk consisted of six registration

parameters and the stiffness values associated with each triangle of the triangular

mesh. The update step involved using sensed position and force measurements to

minimize the following objective function:

h1(xk) = −(nCj )
T (dpCj −u pCj ) (ci)xk + fj, (8.1)

where dpCj = T xk
(
dpRj

)
. (8.2)

The position of the jth deformed point is dpRj , measured in the robot frame 1 and

the corresponding sensed force is fj. The corresponding closest point on the CAD

model is upCj and the normal vector is nCj . The objective function h1(xk) is the

difference between the estimated force and the measured force. The objective function

is minimized over xk and as mentioned above, T , the homogeneous transformation

matrix and ci, the stiffness associated with triangle i (see notations in Table 8.1)

are obtained from xk and hence are updated simultaneously. Fig. 8-1 shows the

true location of the deformed point d∗pC1 which is at a depth d∗ along the normal nC1 .

Let the location of the deformed point obtained from the registration estimate of

previous iteration be d
k−1p

C
1 as shown in Fig. 8-1. The subscript k − 1 indicates that

the coordinates are transformed using the registration estimate from the previous

1We assume that the tool is rigidly attached to the robot and hence transformation between the
robot’s frame and the tool’s frame can be carried out trivially by a precomputed rigid transformation.
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Table 8.1: Notations

Symbol Description

[·]R Entities defined in robot’s frame
[·]C Entity defined in model’s frame
n Normal vector
dp Coordinates of deformed point
up Coordinates of undeformed point
T Homogeneous transformation matrix
f Force magnitude
c Stiffness
d Deformation depth
φ CAD model

Figure 8-1: Schematic shows ambiguity in single measurement based update

iteration. After applying the state update using Eq. 8.1, the updated position of the

deformed point is dkp
C
1 , which is at a depth d along the normal (see Fig. 8-1). The filter

estimates the stiffness value to be ci =
fj
d
6= fj

d∗
= c∗i . As can be observed from Eq. 8.1,

substituting ci and d
kp

C
1 yields h1(xk) = 0. Substituting c∗i and d∗

kp
C
1 in Eq. 8.1 also

yields h1(xk) = 0. This results in an ambiguity in registration along the normal and

an incorrect stiffness estimation. We make an observation that when the registration

is updated based on a pair of observations, the ambiguity in registration is resolved.

Let us select two points, upC1 and upC2 , on the undeformed surface of the organ that
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are spatially close to each other. Since the points are close to each other, we assume

that the normals nC and the stiffness c at both locations are the same. Let us apply

a force of magnitude f1 and f2 respectively at upC1 and upC2 . Upon application of the

force, the surface would deform by depths:

di =
fi
c
, i = 1, 2. (8.3)

From Eq. 8.3, we have:

c =
f2 − f1
d2 − d1

, when d2 6= d1. (8.4)

Let the coordinates of the deformed points be dpR1 and dpR2 . From Eq, 8.4, stiffness

c = f2−f1
||dpR2 −dpR1 ||

. We can now relate the deformed and undeformed probed points from

the linear stiffness model (see Fig. 8-1):

upC1 − nCd1 =d pC1

⇒upC1 − nC
f1
c

= T (dpR1 ), (8.5)

where T (p) transforms p from tool-frame to CAD model-frame. The LHS of Eq. 8.5

is the estimated position of the deformed point in the CAD model frame based on the

estimated stiffness c and the RHS is the coordinates of the sensed deformed points

transformed to the CAD model frame.

Based on Eq. 8.5, we can form a new objective function for obtaining the best

registration as follows:

h2(T ) =
m∑
j=1

∥∥∥∥∥upCj − nCj (fβ)j

cj
− T ((dpRβ )j)

∥∥∥∥∥
2

, (8.6)

where (fβ)j and (dpRβ )j are the force and position measurements obtained by palpating

the jth undeformed points and m is the total number of underformed points being

probed. β ∈ {1, 2, ..., l} (l ≥ 2) is the index of the measurement taken from the set of

measurements at the jth undeformed point.
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The stiffness cj is estimated from a pair of force-position measurements obtained

by probing the undeformed point upCj . The stiffness is estimated first from a pair of

force-position measurements and then used to optimize h2(T ). The objective function

h2(T ) is the difference in the squared norm of the distance between the estimated

location of the deformed point and the sensed location of the deformed point.

It is to be noted from Eq. 8.6 that h2(T ) only updates the registration and Eq. 8.4

updates the stiffness, unlike h1(xk) that is used to update both stiffness and registra-

tion (see Eq. 8.1). This results in an accurate stiffness estimate eliminating the issue

of ambiguous registration estimate that we observe in [97].

If there are more than a pair of palpation points at the undeformed point upCj ,

then we have the following:

c =
fk
dk
, k = 1, 2, ...l (l ≥ 2)

⇒c =
fi − fj
di − dj

, i, j ∈ {1, 2, ..., l} and i 6= j. (8.7)

From Eq. 8.7, stiffness c linearly relates the depth (di − dj) to the applied force

(fi − fj). Thus we have c = L(di − dj, fi − fj), where L is the function that returns

the slope of the best line fit through a regression on the data {(di − dj), (fi − fj)}.

Fig. 8-2 shows a flowchart that provides an overview of the various steps described

so far.

The various steps involved in the CMU are listed below:

1. Collection: In the collection step, pairs of force-position measurements which

satisfy the following conditions are grouped together in the same set:

(a) The force magnitudes are different.

(b) The direction of normals fall within a threshold of each other.

(c) The position measurements fall within a threshold of each other.

The three conditions stated above imply that position measurements correspond

to the same undeformed point being probed with different forces, and forming a
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Figure 8-2: Flowchart describing the inputs and outputs for complementary model
update (a) Flexible environment with embedded stiff features is probed by a robot
(b) Location of probed points are sensed (c) Compatible force-position measurements
are collected (d) complementary model update estimates the registration and stiffness
map (e) Robot frame and model frame are registered (f) Stiffness map is generated
(g) Prior geometric model and the initial registration guess
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compatible set. Given the measurements (dpRi , fi), i = 1, 2, ..., n obtained so far,

we collect compatible sets, {((dpR1 )j, (f1)j), ((
dpR2 )j, (f2)j), ...}, j = 1, 2, ...,m,

where m is the total number of distinct sets obtained.

2. Stiffness estimation: For each of the compatible sets that have at least one pair

of force-position measurements, we estimate the local stiffness assuming a linear

stiffness model as shown in Eq. 8.7.

3. Correspondence: The points (dpRβ )j are transformed using the best registration

estimate available to obtain (dpCβ )j. We then find,
(
upCj ,n

C
j

)
= M

(
(dpCβ )j,φ

)
,

where M is the rule that finds the closest point upCj ∈ φ to (dpβ)Cj and the

corresponding normal nCj . Other alternates for M include methods such as [13,

95].

4. Minimization: The objective function described in Eq. 8.6 is minimized using

a least squares solver [43, 4] or can be used in the update step of a Kalman

filter [77] to estimate the registration.

5. We loop between the Correspondence and Minimization step until convergence

or upto a fixed number of iterations, upon obtaining T .

In the rest of this paper, we present results from an implementation of CMU that

uses [4] for minimization; and we refer to such an implementation as SCAR-LSQ-CMU.

We have also implemented a filtering approach using CMU, which will be referred to

as SCAR-IEKF-CMU. But we do not present results of SCAR-IEKF-CMU due to

space constraints.

The minimization step would only return a local minima when using a filter or

least squares solver. One way to find global minima is to use a branch and bound

technique as described in [126].
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Input:
dpRi ∈ R3, i = 1, 2, ..., n
fi ∈ R, i = 1, 2, ..., n
A priori CAD model: φ
Initial transformation: T 0 ∈ SE(3)
Output: Transformation T that aligns dpRi with φ
Collection: Collect points satisfying compatibility criteria:
{
(
(dpR1 )j, (f1)j

)
,
(
(dpR2 )j, (f2)j

)
, ...}

Stiffness estimation: Estimate the linear stiffness
cj = L

(∥∥(dpRβ )j − (dpRγ )j
∥∥ , ((fβ)j − (fγ)j)

)
Optimize Initialize: T ← T 0

while not converged do
Correspondence:

(
upCj ,n

C
j

)
= M

(
T (dpRβ )j,φ

)
Minimization: T = argmin

T

m∑
j=1

∥∥∥upCj − nCj (fβ)j

cj
− T (dpRβ )j

∥∥∥2
end

Algorithm 4: Complementary Model Update

8.3 Results: Batch Estimation with Unknown Data

Association

8.3.1 Comparison of SCAR-LSQ-CMU with SCAR-IEKF-old

In Fig. 8-3 we compare the results of SCAR-LSQ-CMU with SCAR-IEKF-old for a

simulated case of a pyramid shaped organ with an embedded stiff feature that was

probed at 250 uniformly spaced points. The CAD model of the organ is represented

in the form of a triangular mesh with 524 faces. We choose an initial guess for

registration which is displaced along the Z direction by 4mm.

SCAR-LSQ-CMU accurately estimates the true registration after palpation of

about 20 points. While SCAR-IEKF-old correctly estimates the translation compo-

nents of registration (albeit not better than SCAR-LSQ-CMU), there is significant

rotational error even after probing 250 points (see Table 8.2).

The estimated stiffness map from SCAR-LSQ-CMU (see Fig. 8-3(b)) looks very

similar to the ground truth stiffness map (see Fig. 8-3(a)), unlike the stiffness map

estimated by SCAR-IEKF-old (see Fig. 8-3(c)). This example demonstrates how the

CMU overcomes the ambiguity described in section 8.2 and provides better estimates
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Table 8.2: Comparison of registration results between SCAR-LSQ-CMU and SCAR-
IEKF-old

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 0 0 0 0 0 0 –
SCAR-LSQ-CMU 0 0 0 0 0 0 0
SCAR-IEKF-old 0.32 0.12 2.46 -4.45 -1.03 1.22 5.66

compared to SCAR-IEKF-old.

(a) (b) (c) 

Figure 8-3: Stiffness in N/mm (a) Ground truth (b) Estimated by SCAR-LSQ-CMU
(c) Estimated by SCAR-IEKF-old

8.3.2 Evaluation of Robustness to Sensor Noise

In order to test the robustness of the proposed algorithm to the presence of noise

in the sensor measurements, we develop simulation data in which we artificially add

noise to the measurements. We take the case of an organ whose shape is as shown in

Fig. 8-6(a) with a synthetic ground truth stiffness map as shown in Fig. 8-4(a). The

CAD model has 1311 triangle faces and is probed at 341 uniformly spaced points.

At each palpated point, we record 10 measurements by probing along the normal up

to a depth of 3mm in increments of 0.3mm. An artificial noise selected uniformly

from [0, 0.1]mm and [0, 0.1]N is added to the sensed position and force respectively.

Fig. 8-4(b) shows the stiffness map as estimated using SCAR-LSQ-CMU on this data.

The stiffness map reveals the stiff features present in the ground truth. Following this
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we increase the noise in the sensed position, by selecting uniformly from [0, 0.3]mm.

The stiffness estimation as shown in Fig. 8-4(c) demonstrates that SCAR-LSQ-CMU

can reveal the stiff features even in the presence of high sensor noise.

(a) (b) (c) 

Figure 8-4: Stiffness in N/mm(a) Ground truth (b) Estimated under low sensor noise
(c) Estimated under high sensor noise

Table 8.3: Registration results for different noise levels

x y z θx θy θz RMS
Low noise level (mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 7 -12 15 -11.46 5.72 8.59 –
SCAR-LSQ-CMU 6.99 -11.94 14.99 -11.46 5.73 8.56 0.02
ICP 6.40 -11.32 17.39 -11.28 5.35 8.36 2.33
DICP 8.69 -13.63 17.12 -11.22 5.89 8.53 3.00

High noise level

SCAR-LSQ-CMU 6.99 -11.96 15.00 -11.48 5.72 8.56 0.02
ICP 7.15 -13.14 17.14 -11.44 5.80 9.06 2.35
DICP 8.59 -14.05 17.42 -11.30 5.94 8.87 3.24

Table 8.3 shows the comparison of the results as estimated by SCAR-LSQ-CMU

with ICP [10], one of the most popular registration methods. Since ICP does not con-

sider local deformations in its formulation, we create a modified formulation of the

ICP to compensate for the local deformations (which we term deformation compen-

sated ICP or DICP), so that we can provide a fair comparison to SCAR-LSQ-CMU.

In DICP we estimate the local deformation from the stiffness data and then displace

the probed points along the sensed normal by the deformation depth to estimate the
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undeformed points. Upon estimating the undeformed points, we use the original ICP

to estimate the registration. In addition to finding the registration estimates, we also

find the root mean square (RMS) error between the estimated positions and true

positions, over all the probed points.

We assume the initial registration guess is T 0 = I, where I is an identity matrix.

As expected, estimating local deformations results in SCAR-LSQ-CMU performing

better than ICP and DICP in both the cases. DICP is affected by noise in sensed

normal data resulting in a poor registration estimate, while SCAR-LSQ-CMU uses

normal from the CAD model.

8.3.3 Evaluation of Robustness to Initial Registration Error

For the simulated example presented in Section 8.3.2 with lower sensor noise, we

evaluate the registration estimates for two different initial registration errors. The

initial registration error for Case 1 is lower than that for Case 2. From Table 8.4 we

observe than SCAR-LSQ-CMU estimates registration accurately even in the presence

of high initial registration error.

Table 8.4: Evaluation of registration-robustness to initial conditions

x y z θx θy θz RMS
Case1 (mm) (mm) (mm) (deg) (deg) (deg) (mm)

Initial 7.30 -12.10 15.61 -10.91 5.25 8.39 –
Actual 7 -12 15 -11.46 5.72 8.59 –
SCAR-LSQ-CMU 6.95 -11.94 14.99 -11.45 5.68 8.56 0.03
ICP 7.07 -12.25 16.26 -11.40 5.79 8.73 1.31
DICP 7.69 -11.86 16.21 -11.32 5.89 8.42 1.22

Case 2

Initial -13.31 -2.42 32.18 -30.76 -9.74 36.98 –
SCAR-LSQ-CMU 6.97 -11.91 15.01 -11.47 5.70 8.54 0.02
ICP 7.07 -12.25 16.26 -11.40 5.79 8.73 1.31
DICP 8.93 -11.93 16.51 -14.93 6.05 8.66 3.67
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Figure 8-5: (a) Cartesian robot setup for experiments (b) Contact location and surface
norm estimation

8.3.4 Experimental Validation

To evaluate our CMU algorithm we have used a custom designed Cartesian robot with

an open architecture controller (see Fig. 8-5(a)). The robot end-effector was equipped

with an ATI Nano43 F/T sensor. A target machine using Matlab Simulink R© Real-

Time operating system was used for the low level control at a control frequency

of 1 KHz. For the probing and environment exploration, a hybrid motion/force

controller was implemented as in Khatib [56] . The motion control was accomplished

using proportional derivative inverse dynamics controller with a 5th order polynomial

trajectory generator. A proportional integral control law was used for force control.

The force and motion reference commands were generated on a host machine which

communicated with the low-level target machine using UDP.

Robot Automatic Probing Procedures

Given a target region for exploration, the host machine generates a uniformly dis-

tributed grid map (uniform spacing in the x̂ − ŷ plane of the robot) for probing
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locations. Given a particular reference probing location xp, the robot repeats the

following steps to obtain the force-position measurements:

1. Making high force contact: The robot is first commanded to move to a desired

position xp and then to move along the Z direction until a force magnitude 0.5N

is reached.

2. Estimating surface norm: The surface normal n̂ is computed as the direction of

the sensed force: n̂ = fs/‖fs‖. The location of the contact point on the surface

can be computed as: xcont = xEE − n̂r (see Fig. 8-5(b)).

3. Finding low force surface contact point: The robot first retrieves swiftly away

from the surface along the direction of the estimated normal and then moves

slowly towards the surface along the normal till the sensed force reaches a thresh-

old.

4. Probing and recording: The force and position measurements are recorded as

the robot moves up to a preset depth into the organ under position control.

Results of probing silicone model with stiff features

We use a silicone phantom organ with embedded stiff features as shown in Fig. 8-6(a)

to test the performance of SCAR-LSQ-CMU. The phantom is probed at 1010 uni-

formly spaced points. The stiffness map as estimated from SCAR-LSQ-CMU reveals

all four stiff features (see Fig. 8-6(b)). Table 8.5 shows the registration estimates from

SCAR-LSQ-CMU, ICP and DICP. From Fig. 8-6(c) we notice that SCAR-LSQ-CMU

has a lower RMS error than ICP and DICP after about 25 iterations. We also ob-

serve that the estimate converges with as few as 100 points for SCAR-LSQ-CMU

as opposed to ICP and DICP (see Fig. 8-6(d)). This suggests that even though

we have 1010 probed points, for an accurate registration estimation we only need

to probe about 100 points. A Bayesian optimization-based procedure to optimally

choose these points to probe, has been recently developed by Ayvali et al [6].
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Table 8.5: Registration results for experimental data

Silicone model x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 5 -7 10 5.73 5.73 -8.59 –
SCAR-LSQ-CMU 4.96 -7.07 10.07 5.71 5.70 -8.50 0.11
ICP 4.96 -7.05 10.76 5.71 5.71 -8.51 0.80
DICP 6.67 -6.86 10.83 5.56 5.79 -8.79 1.87

Ex vivo organ

Actual 7 8 -10 -5.73 -5.73 8.59 –
SCAR-LSQ-CMU 7.45 7.80 -9.81 -5.73 -5.48 8.69 0.28
ICP 5.56 7.39 -7.66 -0.43 -6.2 8.62 4.15
DICP 6.36 7.59 -9.66 -0.48 -5.84 8.52 3.49

Number of probed points Number of iterations 

(a) (b) 

(c) (d) 

Figure 8-6: (a) Top view of the silicone organ (b) Stiffness map as estimated by
SCAR-LSQ-CMU (Stiffness in N/mm) (c) Comparison of RMS error vs number of
iterations (d) Comparison of RMS error vs number of probed points
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Results of probing ex vivo organ
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Figure 8-7: (a) An ex vivo porcine liver with artificially embedded tumor (b) Posi-
tion of probed points on the surface of the organ (c) Stiffness map as estimated by
SCAR-LSQ-CMU (Stiffness in N/mm)(d) Variation of applied force with deformation
depth at three arbitrarily points chosen in (c)

In order to validate the proposed work in a more realistic scenario, we palpate

a porcine liver and use SCAR-LSQ-CMU for registration and stiffness estimation.

A triangular plastic inclusion is artificially placed inside the organ and sutured as

shown in Fig. 8-7(a). We palpate a region of interest on the liver at 196 equally

spaced points. In order to obtain the location of the inclusion, we manually probe

the organ with an optical marker and track the position using a Polaris Vicra optical

tracking system. We then place an optical marker on the tool tip to compare the

position of the tool-tip in the tracker’s frame as well as in the robot’s frame to obtain

the ground-truth registration.

We obtain a stiffness map as shown in Fig. 8-7(c), which clearly shows the stiff

inclusion. Fig. 8-7(d) shows linear variation of force with depth at three arbitrarily

chosen locations on the surface, validating our assumption of a linear stiffness model.
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Table 8.5 shows the registration estimates for an initial registration guess of T 0 = I.

The accuracy of registration as required for clinical applications generally depends on

the size of the smallest tumor that needs to be removed and the resection margin [65,

122]. In this example, the size of the tumor is 2cm and the registration accuracy

obtained is 0.28mm. Hence we can safely say that the obtained registration accuracy

is sufficient to discern the tumor.

8.3.5 Evaluation in Presence of Stiffness Priors

A rotationally symmetric object has multiple solutions for rotation and/or translation,

resulting in an ambiguity in registration [3]. In other applications, this ambiguity is

usually resolved by introducing an additional dimension such as surface texture [50],

surface reflectance [16], etc.

In order to develop a formulation for registration that works reliably for any organ

geometry, we extend the CMU formulation by using a stiffness prior in addition to

the geometric prior for resolving the ambiguity in registration.

A prior stiffness map can be generated using elastography, physics based simula-

tions or other complementary methods. In this work we generate the prior stiffness

using a physics based simulation that assumes a linear stiffness model. The stiffness

values are normalized and classified into two discrete levels, high and low stiffness,

using Otsu method [82].

The only modification to the CMU formulation happens in the correspondence

step. In order to ensure that a point corresponding to a high stiffness region on the

model-frame is mapped to a point with high stiffness in the robots frame, we normalize

and classify the estimated stiffness map using [82] (Fig. 8-8(c) was generated from

Fig. 8-8(a)). We choose the point on the preoperative model that is closest and also

has the same discrete stiffness level in the prior stiffness map.

The stiffness map estimated by CMU using stiffness prior is shown in Fig. 8-8(a).

Note that the two stiff inclusions are clearly visible in the stiffness map. In Fig. 8-

8(d), black-diamond markers show the 180 points that were probed in the region of

interest. Green-square markers show the initial guess for the location of the probed
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Figure 8-8: (a) Estimated stiffness map (stiffness in N/mm). (b) and (c) Prior stiff-
ness map and estimated stiffness map respectively, normalized and stiffness values
classified to high and low stiffnesss levels. (d) Initial and true location of probed
points. (e) Estimated location probed points.
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points. In Fig. 8-8(e), blue-star markers show the position as estimated by CMU

without using a stiffness prior. Red-circular markers show the position estimated by

CMU using the stiffness prior.

Table 8.6 shows the RMS error for ICP and CMU with and without stiffness prior,

for a representative example. CMU with stiffness prior estimates the registration

parameters very accurately and the RMS error is within clinical requirements [65].

Table 8.6: Registration Evaluation in Presence of Stiffness Prior

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Initial 0 0 0 0 0 0 –
Actual -20 15 15 -10 11.46 -8.59 5.73 –
CMU with stiffness prior -21 16.73 -9.1 11.28 -8.6 5.23 2.19
CMU without stiffness prior -16.4 19.9 -14.8 15.45 5.84 8.16 7.74
ICP -18.9 20.5 -15.4 16.21 7.35 6.5 7.77

8.4 Conclusion

We have presented a new and robust formulation that uses mechanical palpation to

simultaneously estimate the stiffness distribution and register preoperative models to

visible anatomy. We believe the proposed model update is not a replacement but

instead complementary to existing intraoperative registration methods. The perfor-

mance of the new update method to several initial conditions, different geometries,

stiffness profiles as well as sensitivity to sensor noise was evaluated and its robust-

ness was demonstrated by a number of examples. We also introduce deformation

compensated ICP (DICP) as an improvement over ICP, to provide a more fair com-

parison to SCAR-LSQ-CMU. We show that SCAR-LSQ-CMU performs better than

SCAR-IEKF-old, DICP and ICP. We also show that the performance of CMU can

be further improved by using stiffness priors.

While we presented an implementation of this update model with a least squares

optimizer in this paper it must be noted that the update model can be used with other

optimizers as well as filtering approaches such as [97, 77], which forms part of future
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work. In this work, we use a simple experimental setup for evaluating our method,

while avoiding additional sources of error such as robot deflection and positional errors

typically seen in existing surgical systems. However, we plan to deploy our algorithm

on research platforms that address key issues of surgical access constraints during

MIS and offer force sensing capabilities.

8.5 Contribution

The contributions from this chapter include:

1. Development of a complementary model update that simultaneously estimates

stiffness map and registration.
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Chapter 9

Proposed Work

9.1 Task 1: Scale-invariant Pose Estimation

Pose estimation when used in applications such as structure from motion (SFM),

monocular SLAM (also known as bearing-only SLAM) are only valid up to a scale

factor, unless the size of an object in the scene is known a priori and is used to

initialize the system [40, 118, 81, 58, 45]. In literature, the absolute scale is estimated

by fusing multi-modal measurements, such as monocular and inertial measurements,

or measurements from two monocular cameras, etc., through a non-linear Kalman

filter by adding the scale factor as an additional variable to the state. The drawback

of such an approach is the convergence behavior is strongly dependent on proper

initialization of the filter [81, 58, 51].

In this thesis we propose to use a linear update model for estimating pose and

the scale along with their uncertainties. In order to do so, we will follow an approach

similar to [44]. First the rotation from translation will be decoupled as shown in

Fig. 5-1. Following this, instead of finding the rotation between the vectors obtained,

the vectors will be normalized first. This will enable us to estimate the rotation

independent of the scaling. Once the rotation is estimated, scaling between the aligned

vectors can then be estimated by a linear Kalman filter.
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9.2 Task 2: Planar Pose Estimation using Gilitschen-

ski Distribution

Recently, Gilitschenski et. al. [31] developed a novel way to represent uncertainty

on the Lie group of rigid-body motions in the plane. They used dual quaternions

for representing an SE(2) element and proposed a probability distribution from the

exponential family of distributions that inherently respects the underlying structure

of the representation, similar to how Gaussian respect the structure of translation

parameters and Bingham respects the structure of rotation parameters. We refer to

this distribution as Gilitschenski distribution.

In this thesis we propose to develop a Bayes filter using the Gilitschenski dis-

tribution for estimating 2D pose with linear update models, without resorting to

linearization or any other approximation. We suspect that such an approach would

enable fast and accurate SE(2) estimation, avoiding the need for using pairs of mea-

surement as required by our Bingham-filter or dual quaternion filter. We will also

explore extending the Gilischenski distribution to SE(3). An important challenge in

extending the distribution to SE(3) is to handle the additional constraint imposed

by dual quaternions, i.e., q̃Tr q̃d = 0 (refer to Eq. 3.8); which is trivially satisfied for

SE(2).

9.3 Task 3: Pose Estimation with Probabilistic

Data Association

Most of the research in pose estimation, uses a deterministic rule to find the measure-

ment correspondences. The most popular choices are– finding the closest point [9],

using point-to-plane distance [101], using normally aligned closest points [19] etc. De-

terministic data association seeded with a bad initial condition results in local minima,

which affects the performance of the pose estimator. In addition, noise in measure-

ments and outliers result in wrong data associations, resulting in poor estimation.
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Probabilistic data association techniques have been shown to out-perform determin-

istic techniques,as they are less affected by noise and outliers [35, 11, 12]. Probabilistic

techniques associate a match-probability to each available measurement, and use the

probability information in the optimization. Granger et. al. [35] developed expec-

tation maximization ICP (EM-ICP) that use all the probability associated with all

measurements as opposed to using only the most probable match as in iterative most

likely oriented point registration (IMLOP) introduced by Billings et. al. [11, 12]. This

results in IMLOP being computational faster than EM-ICP. Further, unlike the other

methods IMLOP considers position and surface normal measurements.

In this thesis we propose to utilize the probabilistic matching technique of IM-

LOP, to estimate the pose using our linear filtering approach. We believe that the

probabilistic matching would improve the results of the Bingham filter for cases with

unknown data association.

9.4 Task 4: Generalized Batch Pose Estimation

The batch pose estimation approach presented in Chapter 7 uses a dual quaternion

filter to process batches of measurements. We propose to develop a batch processing

approach using the Bingham filter, to better capture the structure of the space of

rotations by following a procedure similar to the one described in Sec. 7.2.1. The

probabilistic match from Task 3 will be utilized in the batch estimator. We suspect

that the resulting formulation will serve as a generalization of IMLOP [11], generalized

ICP (G-ICP) [101], ICP [9] as well as Horn’s method [44].

9.5 Task 5: Dynamic Pose Estimation

So far this thesis has largely only looked at static pose estimation problem. While

static pose estimation can be very helpful in a number of applications, the ability to

perform dynamic pose estimation can drastically improve the scope of application.

Unlike static pose estimation, dynamic pose estimation may involve velocity and
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other higher order derivatives in its state vector. Further, the process model could

be nonlinear depending on the motion of the object. As a result of these factors,

one may not be able to use the Bingham-filter as is it for dynamic pose estimation;

without resorting to approximations.

In this thesis we will restrict ourselves to dynamic pose estimation problems where

the object moves slowly and motion derivatives do not appear in the process model,

such as pose-graph SLAM [36, 52, 91]. A pose-graph SLAM problem involves con-

structing a graph whose nodes represent robot poses and in which an edge between

two nodes encodes a sensor measurement that constrains the connected poses. Upon

constructing such a graph, the crucial problem is finding the configuration of nodes

that is maximally consistent with the measurements. We propose to use our proba-

bilistic approach to find the successive relative poses and then use the optimization

routine introduced by Kaess et. al. [52] to find the loop closure constraints. Such

an approach could be fast and accurate for applications such as object tracking and

SLAM.

9.6 Timeline

May June July August September October November December

Task 1

Task 2

Task 3

Task 4

Task 5
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9.7 Dissemination

We plan to submit our research results to various conferences and journals. The

estimated timeline and a summary of submission contents is shown below.

Table 9.1: Timeline and details of publications.

Venue Date Contents
ISRR June 2017 Results of Task 1 and Task 2
IEEE T-RO or
IJRR

July 2017 Journal paper on DQF + MSBP

IEEE T-RO or
IJRR

August 2017 Journal paper on Bingham Filtering for Pose
estimation + Task 1.

ICRA September 2017 Task 3 and Task 4
RSS Jan 2018 Task 5
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