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Abstract
Semantic segmentation is one of the essential and fundamental problems in com-

puter vision community. The task is particularly challenging when it comes to urban
street scenes, where the object scales vary significantly. Recent advances in deep
learning, especially deep convolutional neural networks (CNNs), have led to signif-
icant improvement over previous semantic segmentation systems. In this work, we
show how to improve semantic understanding of urban street scenes by manipulating
convolution-related operations that are better for practical use. First, we implement
dense upsampling convolution (DUC) to generate pixel-level prediction, which is
able to capture and decode more detailed information that is generally missing in bi-
linear upsampling. Second, we propose a hybrid dilated convolution (HDC) frame-
work in the encoding phase. This framework 1) effectively enlarges the receptive
fields of the network to aggregate global information; 2) alleviates what we call the
gridding issue caused by the standard dilated convolution operation. We evaluate our
approaches thoroughly on the Cityscapes dataset, and achieve a new state-of-art re-
sult of 80.1% mIOU in the test set. We also are state-of-the-art overall on the KITTI
road estimation benchmark and the PASCAL VOC2012 segmentation task.
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Chapter 1

Introduction

1.1 Background
Semantic segmentation aims to assign a categorical label to every pixel in an image, which
plays an important role in many real world applications, such as self-driving vehicles. The task
is particularly challenging when it comes to urban street scenes, where the object scales vary
significantly. Figure 1.1 shows the scale variation of objects in street.

The recent success of deep convolutional neural network (CNN) models [16, 20, 29] has
enabled remarkable progress in pixel-wise semantic segmentation tasks due to rich hierarchical
features and an end-to-end trainable framework [5, 18, 21, 24, 25, 35, 38]. Since the introduction
of FCN in [25], improvements on fully-supervised semantic segmentation systems are generally
focused on following perspectives: (1) a fully-convolutional network (FCN), first introduced
in [25], replacing the last few fully connected layers by convolutional layers to make efficient
end-to-end learning and inference that can take arbitrary input size; (2) Conditional Random
Fields (CRFs), to capture both local and long-range dependencies within an image to refine the
prediction map; (3) dilated convolution (or Atrous convolution), which is used to increase the
resolution of intermediate feature maps in order to generate more accurate predictions while
maintaining the same computational cost; (4) combining features from different stages of a CNN
to get more precise dense prediction.

1.2 Contributions
We are pursuing further improvements on semantic segmentation especially for urban scene un-
derstanding from another perspective: the convolutional operations for both decoding (from in-
termediate feature map to output label map) and encoding (from input image to feature map)
counterparts. We design DUC and HDC to make convolution operations better serve the need of
pixel-level semantic segmentation. The technical details are described in Chapter 3. We show
that our approaches achieve a new state-of-the-art result of 80.1% mIOU in the Cityscapes pixel-
level semantic labeling task. We also are state-of-the-art overall on the KITTI road estimation
benchmark and the PASCAL VOC2012 segmentation task.

In decoding (prediction), most state-of-the-art semantic segmentation systems simply use
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Figure 1.1: Sample images in Cityscapes dataset: the scale of objects varies significantly.

bilinear upsampling (before the post-processing stage such as CRF) to get the output label map
[5, 21, 24]. Bilinear upsampling is not learnable and may lose fine details. We propose a method
called dense upsampling convolution (DUC), which is easy to implement and can achieve pixel-
level accuracy: instead of trying to recover the full-resolution label map at once, we learn an
array of upscaling filters to upscale the downsized feature maps into the final dense feature map
of the desired size. DUC naturally fits the FCN framework by enabling end-to-end training,
and it increases the mIOU of pixel-level semantic segmentation on the Cityscapes dataset [7]
significantly, especially on objects that are relatively small.

For the encoding part (feature learning), dilated convolution recently became popular [5, 33,
35, 39], as it maintains the resolution and receptive field of the network by in inserting “holes”in
the convolution kernels, thus eliminating the need for downsampling (by max-pooling or strided
convolution). However, an inherent problem exists in the current dilated convolution framework,
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which we identify as “gridding”: as zeros are padded between two pixels in a convolutional
kernel, the receptive field of this kernel only covers an area with checkerboard patterns - only
locations with non-zero values are sampled, losing some neighboring information. The problem
gets worse when the rate of dilation increases, generally in higher layers when the receptive field
is large: the convolution kernel is too sparse to capture any local information, since the non-
zero values are too far apart. Information that contributes to a fixed pixel always comes from
its predefined gridding pattern, thus losing a huge portion of information. Here we propose a
simple hybrid dilation convolution (HDC) framework as a first attempt to address this problem:
instead of using the same rate of dilation for the same spatial resolution, we use a range of
dilation rates and concatenate them serially the same way as “blocks”in ResNet-101 [16]. We
show that HDC helps the network to alleviate the gridding problem. Moreover, choosing proper
rates can effectively increases the receptive field size and improves the accuracy for objects that
are relatively big.
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Chapter 2

Related Work

2.1 Deeper FCN models
Significant gains in mean Intersection-over-Union (mIoU) scores on PASCAL VOC2012 dataset
[11] were reported when the 16-layer VGG-16 model [29] was replaced by a 101-layer ResNet-
101 [16] model [5]; using 152 layer ResNet-152 model yields further improvements [33]. This
trend is consistent with the performance of these models on ILSVRC [27] object classification
tasks, as deeper networks generally can model more complex representations and learn more
discriminative features that better distinguish among categories.

2.2 Dilated Convolution
Dilated Convolution (or Atrous convolution) was originally developed in algorithme à trous for
wavelet decomposition [17]. The main idea of dilated convolution is to insert “holes”(zeros)
between pixels in convolutional kernels to increase image resolution, thus enabling dense feature
extraction in deep CNNs. In the semantic segmentation framework, dilated convolution is also
used to enlarge the field of convolutional kernels. Yu & Koltun [35] use serialized layers with
increasing rates of dilation to enable context aggregation, while [5] design an “atrous spatial
pyramid pooling (ASPP)”scheme to capture multi-scale objects and context information by plac-
ing multiple dilated convolution layers in parallel. More recently, dilated convolution has been
applied to a broader range of tasks, such as object detection [8], optical flow [28], and audio
generation [32].

2.3 Feature Decoding
In the pixel-wise semantic segmentation task, the output label map has the same size as the input
image. Because of the operation of max-pooling or strided convolution in CNNs, the size of fea-
ture maps of the last few layers of the network are inevitably downsampled. Multiple approaches
have been proposed to decode accurate information from the downsampled feature map to label
maps. Bilinear interpolation is commonly used [5, 21, 24], as it is fast and memory-efficient.
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Another popular method is called deconvolution, in which the unpooling operation, using stored
pooling switches from the pooling step, recovers the information necessary for feature visual-
ization [36]. In [25], a single deconvolutional layer is added in the decoding stage to produce
the prediction result using stacked feature maps from intermediate layers. In [10], multiple de-
convolutional layers are applied to generate chairs, tables, or cars from several attributes. Noh
et al. [26] employ deconvolutional layers as mirrored version of convolutional layers by using
stored pooled location in unpooling step. [26] show that coarse-to-fine object structures, which
are crucial to recover fine-detailed information, can be reconstructed along the propagation of the
deconvolutional layers. Fischer at al. [12] use a similar mirrored structure, but combine informa-
tion from multiple deconvolutional layers and perform upsampling to make the final prediction.

2.4 Prediction Refinement
People use Conditional Random Fields (CRFs) to capture both local and long-range dependen-
cies within an image to refine the prediction map. This includes applying fully connected pair-
wise CRFs [19] as a post-processing step [5], integrating CRFs into the network by approximat-
ing its mean-field inference steps [21, 24, 38] to enable end-to-end training, and incorporating
additional information into CRFs such as edges [18] and object detections [2].

2.5 Mixed Feature Representation
Some researchers also explored various architecture to make use of features from different stages
of CNN. The original FCN [25] models make predictions based on the combination of features
from both early layers and subsequent layers. [30] proposed a module, called mixed context
network to make use of features from different layers. The recent PixelNet [3] also suggested
to use multiscale convolutional features as an intermediate representation for general pixel level
prediction problems.
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Chapter 3

Methods

3.1 Overall Architecture
As we mentioned before, the main challenge for semantic segmentation in urban street scenes
is that the scale of objects can vary tremendously. Solving this task requires both object-level
information and pixel-level accuracy. Thus, we argue that an ideal convolutional neural network
designed for dense pixel-labeling in street scenes should be able to: (1) capture high-level global
context and (2) identify fine-grained local structure. A FCN style model could be divided into
two parts: an encoder to extract semantic features from raw image, and a decoder to get category
predictions for each pixel. We will discuss the design decisions for each part that consider both
receptive field and feature resolution. The main idea is: (1) In encoding phase we try to balance
receptive field and resolution by carefully using dilated convolution; (2) In decoding phase we
use simple but effective way to make predictions.

3.1.1 Decoding
In decoding part, most state-of-the-art segmentation systems like DeepLab [5] usually produces
a coarse score map (corresponding to log-probabilities) first, then use a simple bilinear interpola-
tion to produce final full resolution score map. In this way, some fine details in the image will not
be captured since the network is also trained with coarse ground truth label (downsampled by a
factor of 8 in DeepLab). This is particularly a problem in urban street scenes, where some small
objects like pole and pedestrians suffer from inaccurate coarse-grained predictions. To address
this problem, we propose a method called dense upsampling convolution (DUC) to better decode
feature map into dense pixel-level predictions.

3.1.2 Encoding
The encoder part is usually based on networks pretrained on ImageNet [27] classification task
since pixel-level annotations for segmentation task is very expensive and usually not enough for
training deep networks.

We choose ResNet-101[16] as our default base network for three reasons: (1) although re-
cently some new architectures[31, 34] claim to be better than ResNet, it’s still the state-of-art
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Figure 3.1: Illustration of our overall architecture with ResNet-101 network, Hybrid Dilated
Convolution (HDC) and Dense Upsampling Convolution (DUC) layer.

CNN model for visual recognition. (2) deeper model has larger effective receptive field, which
is one of the key factors in scene understanding; (3) the residual design in ResNet has similar
effect of fusing multi-stage feature, which proves to be useful in dense pixel-level prediction task
[3, 25].

We also use dilated convolution to enlarge receptive field. Due to the constraints of computing
resource, traditional CNN models designed for classification or detection tasks usually adopt
pooling or strided convolution operators to reduce feature map resolution. Theoretically, one can
arbitrarily enlarge the receptive field by using very large sampling rate in dilated convolution.
However, it’s not clear how to choose an appropriate dilation rate for each layer. Previous works
[5, 35] use dilation rate 2, 4, 8, 16 in multiple layers to achieve the same receptive field with
original network. We argue that it’s a suboptimal way and propose hybrid dilation convolution
(HDC) framework as a first attempt to address this problem, details will be covered in following
section. Figure 3.1 depicts the architecture of our overall architecture with ResNet-101 network,
Hybrid Dilated Convolution (HDC) and Dense Upsampling Convolution (DUC) layer.

3.2 Dense Upsampling Convolution (DUC)
Given an input image X , the goal of pixel-level semantic segmentation is to generate outputs
Y where each pixel is assigned a category label from {1, 2, ..., L} (L is the total number of
classes). Suppose the image has width W and height H , after feeding the image into a deep
FCN, a feature map fenc(X) (fenc is the encoder mentioned before) with dimension h × w × c
is obtained at the final layer before making predictions, where h = H/d, w = W/d, and d is
the downsampling factor. Instead of performing bilinear upsampling, which is not learnable, or
deconvolution, in which zeros have to be padded in the unpooling step before the convolution
operation, DUC applies convolutional operations directly on the feature maps to get the dense
pixel-wise prediction map.

The DUC operation is all about convolution, which is performed on fenc(X) from ResNet of
dimension h×w×c to get the output fdec(fenc(X)) of dimension h×w×(d2 × L). Each feature
from fdec(fenc(X)) produces the pre-activation score map for a neighboring region of size d× d.
Thus the dense convolution is learning the prediction for each pixel. The output feature map
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Figure 3.2: Correspondence between feature map and final score map. Channels omitted for
clarity.

is then reshaped to H ×W × L with a softmax layer, and an element-wise argmax operator is
applied to get the final label map. In practice, the “reshape” operation is not necessary, as the
feature map can be flatten to a vector to be fed into the softmax layer. Figure 3.1 illustrates the
correspondence between feature map and final score map. The final category label for a pixel
in location (i, j) (i = 1, ...,W , j = 1, ..., H) will be (To be clear, we adopt a MATLAB style
notation for matrix indexing) :

Y [i, j] = argmax
channel

fθ(X)

[⌈
i

d

⌉
,

⌈
j

d

⌉
, kL : (k + 1)L

]
(3.1)

where fθ(X) is the score map we get after applying softmax activation on feature map
fdec(fenc(X)). Index k = d · j (mod d)− d+ i (mod d) finds the location of softmax scores in
feature channel.

The key idea of DUC is to divide the raw image into equal d × d sub-regions, and the cor-
responding feature in fenc(X) is responsible to predict the label of each pixel in this region. We
are able to achieve this because the feature we obtained from CNN has encoded information of
a large neighboring region in raw image. The region is usually named ”receptive field”, refers
to the part of the image that is visible to one filter at a time. The receptive field increases as we
stack more convolutional layers. There are two major advantages of DUC:

1. It produces accurate dense pixel-level predictions. Since DUC is learnable, it’s capable of
capturing and recovering fine-detailed information that is generally missing in the bilinear
interpolation operation. For example, if a network has a downsample rate of 1/16, and
an object has a length or width less than 16 pixels (such as a pole or a person far away),
then it is more than likely that bilinear upsampling will not be able to recover this object.
Meanwhile, the corresponding training labels have to be downsampled to correspond with
the output dimension, which will already cause information loss for fine details. The pre-
diction of DUC, on the other hand, is performed at the original resolution, thus enabling
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pixel-level decoding. In addition, the DUC operation can be naturally integrated into the
FCN framework, and makes the whole encoding and decoding process end-to-end train-
able.

2. It is more efficient in computation and storage. DUC allows us to apply the convolution
operation directly between the input feature map and the output label maps without the
need of inserting extra values in deconvolutional layers (the “unpooling”operation). Thus
it avoids some overheads storing internal feature representations.

3.3 Hybrid Dilated Convolution (HDC)

In 1-D, dilated convolution is defined as:

g[i] =
L∑
l=1

f [i+ r · l]h[l], (3.2)

where f [i] is the input signal, g[i] is the output signal , h[l] denotes the filter of length L, and r
corresponds to the dilation rate we use to sample f [i]. In standard convolution, r = 1.

In a semantic segmentation system, 2-D dilated convolution is constructed by inserting ”holes”
(zeros) between each pixel in the convolution kernel. For a convolution kernel with size k × k,
the size of resulting dilated filter is kd×kd, where kd = k+(k−1) · (r−1). Dilated convolution
is used to maintain high resolution of feature maps in FCN through replacing the max-pooling
operation or strided convolution layer while keeping the same receptive field (or “field of view”in
[5]) of the corresponding layer. For example, if a convolution layer in ResNet-101 has a stride
s = 2, then the stride is reset to 1 to remove downsampling, and the dilation rate r is set to 2
for all convolution kernels of subsequent layers. This process is applied iteratively through all
layers that have a downsampling operation, thus the feature map in the output layer can maintain
the same resolution as the input layer. In practice, however, dilated convolution is generally ap-
plied on feature maps that are already downsampled to achieve a reasonable efficiency/accuracy
trade-off [5].

Although dilated convolution allows us to achieve a high resolution of feature map, we argue
that a lot of fine details of image are still lost by adopting a same dilation rate in consecutive
convolutional layers. For a feature pixel p in a dilated convolutional layer l, the information
that contributes to it comes from a nearby kd × kd region in layer l − 1 centered at p. Since
dilated convolution introduces zeros in the convolutional kernel, the actual number of pixels that
participate in the computation from the kd×kd region is just k×k. If k = 3, r = 2, only 9 out of
25 pixels in the region are used for the computation (Figure 3.3 (a)). Since all layers have equal
dilation rates r, then the receptive field for pixel p in the top dilated convolution layer ltop is:

RF = [2r(ltop − lbottom + 1) + 1]× [2r(ltop − lbottom + 1) + 1] (3.3)

where ltop− lbottom+1 is the number of layers. However, the number of pixels that p can see
is only:
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Figure 3.3: Illustration of the gridding problem. Left to right: the pixels (marked in blue) con-
tribute to the calculation of the center pixel (marked in red) through three convolution layers
with kernel size 3 × 3. (a) all convolutional layers have a dilation rate r = 2. (b) subsequent
convolutional layers have dilation rates of r = 1, 2, 3, respectively.

pixels = RF ×
[
r(ltop − lbottom + 1) + 1

2r(ltop − lbottom + 1) + 1

]2
(3.4)

As a result, pixel p can only view information in a checkerboard fashion, and lose a large
portion (at least 75% when r = 2) of information, which we refer it as the “gridding”problem.
When r becomes large in higher layers due to additional downsampling operations, the sample
from the input can be very sparse, which may not be good for learning because (1) local informa-
tion is completely missing; (2) the information can be irrelevant across large distances. Another
outcome of the gridding effect is that pixels in nearby r× r regions at layer l receive information
from completely different set of “grids” which may impair the consistency of local information.

Here we propose a simple solution- hybrid dilated convolution (HDC), to address this theo-
retical issue. Instead of using the same dilation rate for all layers after the downsampling occurs,
we use a different dilation rate for each layer. The assignment of dilation rate follows a sawtooth
wave-like fashion: a number of layers are grouped together to form the “rising edge”of the wave
that has an increasing dilation rate, and the next group repeats the same pattern. For example, for
all layers that have dilation rate r = 2, we form 3 succeeding layers as a group, and change their
dilation rates to be 1, 2, and 3, respectively. By doing this, the top layer can access information
from a broader range of pixels, in the same region as the original configuration (Figure 3.3 (b)).
This process is repeated through all layers, thus making the receptive field unchanged at the top
layer.
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Another benefit of HDC is that it can use arbitrary dilation rates through the process, thus
naturally enlarging the receptive fields of the network without adding extra modules [35], which
is important for recognizing objects that are relatively big. One important thing to note, however,
is that the dilation rate within a group should not have a common factor relationship (like 2,4,8,
etc.), otherwise the gridding problem will still hold for the top layer. This is the key difference
between our HDC approach and the atrous spatial pyramid pooling (ASPP) module in [5], or the
context aggregation module in [35], where dilation factors that have common factor relationships
are used. In addition, HDC is naturally integrated with the original layers of the network, without
any need to add extra modules as in [5, 35].
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Chapter 4

Evaluation

We report our experiments and results on three challenging semantic segmentation datasets:
Cityscapes [7], KITTI dataset [13] for road estimation, and PASCAL VOC2012 [11]. We use
ResNet-101 or ResNet-152 networks that have been pretrained on the ImageNet dataset as a
starting point for all of our models. The output layer contains the number of semantic categories
to be classified depending on the dataset (including background, if applicable). We use the cross-
entropy error at each pixel over the categories. This is then summed over all pixel locations of the
output map, and we optimize this objective function using standard Stochastic Gradient Descent
(SGD). We use MXNet [6] to train and evaluate all of our models on NVIDIA TITAN X GPUs.

4.1 Cityscapes Dataset
The Cityscapes Dataset is a large dataset that focuses on semantic understanding of urban street
scenes. The dataset contains 5000 images with fine annotations across 50 cities, different sea-
sons, varying scene layout and background. The dataset is annotated with 30 categories, of which
19 categories are included for training and evaluation (others are ignored). The training, valida-
tion, and test set contains 2975, 500, and 1525 fine images, respectively. An additional 20000
images with coarse (polygonal) annotations are also provided, but are only used for training.

4.1.1 Baseline Model
We use the DeepLab-V2 [5] ResNet-101 framework to train our baseline model. Specifically, the
network has a downsampling rate of 8, and dilated convolution with rate of 2 and 4 are applied
to res4b and res5b blocks, respectively. An ASPP module with dilation rate of 6, 12, 18, and 24
is added on top of the network to extract multiscale context information. The prediction maps
and training labels are downsampled by a factor of 8 compared to the size of original images,
and bilinear upsampling is used to get the final prediction. Since the image size in the Cityscapes
dataset is 1024 × 2048, which is too big to fit in the GPU memory, we partition each image
into twelve 800× 800 patches with partial overlapping, thus augmenting the training set to have
35700 images. This data augmentation strategy is to make sure all regions in an image can be
visited. This is an improvement over random cropping, in which nearby regions may be visited
repeatedly.
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We train the network using mini-batch SGD with patch size 544 × 544 (randomly cropped
from the 800×800 patch) and batch size 12, using multiple GPUs. The initial learning rate is set
to 2.5× 10−4, and a “poly”learning rate (as in [5]) with power = 0.9 is applied. Weight decay is
set to 5× 10−4, and momentum is 0.9. The network is trained for 20 epochs and achieves mIoU
of 72.3% on the validation set.

4.1.2 Dense Upsampling Convolution (DUC)
We will examine the effect of DUC on the baseline network first since it can be applied to any
semantic segmentation framework. In DUC the only thing we change is the shape of the top
convolutional layer. For example, if the dimension of the top convolutional layer is 68× 68× 19
in the baseline model (19 is the number of classes), then the dimension of the same layer for a
network with DUC will be 68 × 68 × (r2 × 19) where r is the total downsampling rate of the
network (r = 8 in this case). The prediction map is then reshaped to size 544× 544× 19. DUC
will introduce extra parameters compared to the baseline model, but only at the top convolutional
layer. We train the ResNet-DUC network the same way as the baseline model for 20 epochs, and
achieve a mean IOU of 74.3% on the validation set, a 2% increase compared to the baseline
model. Visualization of the result of ResNet-DUC and comparison with the baseline model is
shown in Figure 4.1

Figure 4.1: Effect of Dense Upsampling Convolution (DUC) on the Cityscapes validation set.
From left to right: input image, ground truth (areas with black color are ignored in evaluation),
baseline model, and our ResNet-DUC model.

From Figure 4.1, we can clearly see that DUC is very helpful for identifying small objects,
such as poles, traffic lights, and traffic signs. Consistent with our intuition, pixel-level dense
upsampling can recover detailed information that is generally missed by bilinear interpolation.

Ablation Studies We examine the effect of different settings of the network on the perfor-
mance. Specifically, we examine: 1) the downsampling rate of the network, which controls the
resolution of the intermediate feature map; 2) whether to apply the ASPP module, and the num-
ber of parallel paths in the module; 3) whether to perform 12-fold data augmentation; and 4)
cell size, which determines the size of neighborhood region (cell× cell) that one predicted pixel

14



projects to. Pixel-level DUC should use cell = 1; however, since the ground-truth label generally
cannot reach pixel-level precision, we also try cell = 2 in the experiments. From Table 4.1 we
can see that making the downsampling rate smaller decreases the accuracy. Also it significantly
raises the computational cost due to the increasing resolution of the feature maps. ASPP gener-
ally helps to improve the performance, and increasing ASPP channels from 4 to 6 (dilation rate
6 to 36 with interval 6) yields a 0.2% boost. Data augmentation helps to achieve another 1.5%
improvement. Using cell = 2 yields slightly better performance when compared with cell = 1,
and it helps to reduce computational cost by decreasing the channels of the last convolutional
layer by a factor of 4.

Network DS ASPP Augmentation Cell mIoU

Baseline 8 4 yes n/a 72.3
Baseline 4 4 yes n/a 70.9

DUC 8 no no 1 71.9
DUC 8 4 no 1 72.8
DUC 8 4 yes 1 74.3
DUC 4 4 yes 1 73.7
DUC 8 6 yes 1 74.5
DUC 8 6 yes 2 74.7

Table 4.1: Ablation studies for applying ResNet-101 on the Cityscapes dataset. DS: Downsam-
pling rate of the network. Cell: neighborhood region that one predicted pixel represents.

Bigger Patch Size Since setting cell = 2 reduces GPU memory cost for network training,
we explore the effect of patch size on the performance. Our assumption is that, since the original
images are all 1024 × 2048, the network should be trained using patches as big as possible in
order to aggregate both local detail and global context information that may help learning. As
such, we make the patch size to be 880 × 880, and set the batch size to be 1 on each of the 4
GPUs used in training. Since the patch size exceeds the maximum dimension (800 × 800) in
the previous 12-fold data augmentation framework, we adopt a new 7-fold data augmentation
strategy: seven center locations with x = 512, y = {256, 512, ..., 1792} are set in the original
image; for each center location, a 880 × 880 patch is obtained by randomly setting its center
within a 160 × 160 rectangle area centered at each center. This strategy makes sure that we
can sample all areas in the image, including edges. Training with a bigger patch size boosts the
performance to 75.7%, a 1% improvement over the previous best result.

Compared with Deconvolution We compare our DUC model with deconvolution, which
also involves learning for upsampling. Particularly, we compare with 1) direct deconvolution
from the prediction map (dowsampled by 8) to the original resolution; 2) deconvolution with
an upsampling factor of 2 first, followed by deconvolution with an upsampling factor of 4. We
use the ResNet-DUC bigger patch model to train the networks. The above two models achieve
mIOU of 75.1% and 75.0%, respectively, lower than the ResNet-DUC model (75.7% mIoU).

Conditional Random Fields (CRFs) Fully-connected CRFs [19] are widely used for im-
proving semantic segmentation quality as a post-processing step of an FCN [5].
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We follow the formation of CRFs as shown in [5]. We perform a grid search on parameters on
the validation set, and use σα = 15, σβ = 3, σγ = 1 , w1 = 3, and w2 = 3 for all of our models.
Applying CRFs to our best ResNet-DUC model yields an mIoU of 76.7%, a 1% improvement
over the model does not use CRFs.

4.1.3 Hybrid Dilated Convolution (HDC)
We use the best 101 layer ResNet-DUC model as a starting point of applying HDC. Specifically,
we experiment with several configurations of the HDC module:

1. No dilation: For all ResNet blocks containing dilation, we make their dilation rate r = 1
(no dilation).

2. Dilation-DeepLab: For res4b, we keep dilation rate r = 2. For res5b, we use r = 5. These
follows the settings in DeepLab[16].

3. Dilation-HDC-var1: For all blocks contain dilation, we group every 2 blocks together and
make r = 2 for the first block, and r = 1 for the second block.

4. Dilation-HDC-var2: For the res4b module that contains 23 blocks with dilation rate r =
2, we group every 3 blocks together and change their dilation rates to be 1, 2, and 3,
respectively. For the last two blocks, we keep r = 2. For the res5b module which contains
3 blocks with dilation rate r = 4, we change them to 3, 4, and 5, respectively.

5. Dilation-HDC-var3: For res4b module, we group every 4 blocks together and change their
dilation rates to be 1, 2, 5, and 9, respectively. The rates for the last 3 blocks are 1, 2, and
5. For res5b module, we set the dilation rates to be 5, 9, and 17.

The result is summarized in Table 4.2. We can see that increasing receptive field size generally
yields higher accuracy. Figure 4.3 illustrates the effectiveness of the ResNet-DUC-HDC model
in eliminating the gridding effect. A visualization result is shown in Figure 4.2. We can see our
best ResNet-DUC-HDC model performs particularly well on objects that are relatively big.

Network Dilation Assignments mIoU

No dilation r=1 72.9
Dilation-DeepLab res4b, r=2; res5b, r=4 74.7

Dilation-HDC-var1 res4b = 1,2; res5b = 1,2 75.0
Dilation-HDC-var2 res4b, r=1,2,3; res5b, r=3,4,5 75.4
Dilation-HDC-var3 res4b, r=1,2,5,9; res5b, r=5,9,17 76.4

Table 4.2: Result of different variants of the HDC module.

4.1.4 Test Set Results
To make the most of the models we have trained so far, we create an ensemble model to further
improve the expressiveness of our framework. Specifically, we use CRF-processed ResNet-
152-Deconv model, ResNet-101 HDC+DUC model, and ResNet-152 HDC+DUC model. For a
given image, we first stack the label map of all models as a multi-channel representation. We
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Figure 4.2: Effect of Hybrid Dilated Convolution (HDC) on the Cityscapes validation set. From
left to right: input image, ground truth, result of the ResNet-DUC model, result of the ResNet-
DUC-HDC model.
then use the SLIC algorithm (50000 superpixels per example, color ratio M = 0 )[1] to gather
the superpixels of the example, and merge nearby superpixels that have the same label. Using
the merged superpixels, we traverse all possible label combinations (“rules”) of all channels on
selected categories that lead to performance improvement on a subset of images from validation
set, and only adopt the rules that generalize well on the other images in validation set to avoid
overfitting. We then apply these rules on the test set to get the final prediction result.

Our results are summarized in Table 4.3. There are separate entries for models trained using
fine-labels only, and using a combination of fine and coarse labels. Our single ResNet-DUC-
HDC model achieves 76.1% mIoU using fine data only, and the ensemble method boosts the
performance to 77.6%. Adding coarse data help us achieve 78.5% mIoU.

In addition, inspired by the design of the VGG network [29], in that a single 5 × 5 convo-
lutional layer can be decomposed into two adjacent 3 × 3 convolutional layers to increase the
expressiveness of the network while maintaining the receptive field size, we replaced the 7 × 7
convolutional layer in the original ResNet-101 network by three 3 × 3 convolutional layers. By
retraining the updated network, we achieve a mIoU of 80.1% on the test set using a single model
with multiscale testing, without CRF post-processing, or model ensemble procedure described
above. Our result achieves the state-of-the-art performance on the Cityscapes dataset. Compared
with the strong baseline of Chen et al. [5], we improve the mIoU by a significant margin (9.7%),
which demonstrates the effectiveness of our approach.

4.2 KITTI Road Segmentation
The KITTI road segmentation task contains images of three various categories of road scenes,
including 289 training images and 290 test images. The goal is to decide if each pixel in images
is road or not. It is challenging to use neural network based methods due to the limited number
of training images. In order to avoid overfitting, we crop patches of 320 × 320 pixels with a
stride of 100 pixels from the training images, and use the ResNet-101-DUC model pretrained
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Figure 4.3: Effectiveness of HDC in eliminating the gridding effect. First row: ground truth
patch. Second row: prediction of the ResNet-DUC model. A strong gridding effect is observed.
Third row: prediction of the ResNet-DUC-HDC model.

from ImageNet during training. Other training settings are the same as Cityscapes experiment.
We did not apply CRFs for post-processing.

Results We achieve the state-of-the-art results without using any additional information of
stereo, laser points and GPS. Specifically, our model attains the highest maximum F1-measure
in the sub-categories of urban unmarked (UU ROAD), urban multiple marked (UMM ROAD)
and the overall category URBAN ROAD of all sub-categories, the highest average precision
across all three sub-categories and the overall category by the time of submission of this paper.
Examples of visualization results are shown in Figure 4.4. The detailed results are displayed in
Table 4.4 1.

4.3 PASCAL VOC2012
The PASCAL VOC2012 segmentation benchmark contains 1464 training images, 1449 valida-
tion images, and 1456 test images. Using the extra annotations provided by [15], the training
set is augmented to have 10582 images. The dataset has 20 foreground object categories and 1
background class with pixel-level annotation.

Results We first pretrain our 152 layer ResNet-DUC model using a combination of aug-
mented VOC2012 training set and MS-COCO dataset [23], and then finetune the pretrained

1For thorough comparison with other methods, please check http://www.cvlibs.net/datasets/kitti/eval road.php.
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Method mIoU

fine
FCN 8s [25] 65.3

Dilation10 [35] 67.1
DeepLabv2-CRF [5] 70.4

Adelaide context [21] 71.6
RefineNet [22] 73.6

ResNet-DUC-HDC-single (ours) 76.1

fine + coarse
LRR-4x [14] 71.8
PSPNet [37] 80.2

ResNet-DUC-HDC-msc (ours) 80.1

Table 4.3: Performance on Cityscapes test set.

MaxF AP

UM ROAD 95.64% 93.50%
UMM ROAD 97.62% 95.53%
UM ROAD 95.17% 92.73%

URBAN ROAD 96.41% 93.88%

Table 4.4: Performance on different road scenes in KITTI test set. MaxF: Maximum F1-measure,
AP: Average precision.

network using augmented VOC2012 trainval set. We use patch size 512 × 512 (zero-padded)
throughout training. All other training strategies are the same as Cityscapes experiment. We
apply CRF as a postprocessing step. We achieve mIOU of 83.1% on the test set using a single
model without any model ensemble or multiscale testing, which achieves state-of-the-art result.
2. The detailed results are displayed in Table 4.5, and visualizations of the results are shown in
Figure 4.5.

Method mIoU

DeepLabv2-CRF[5] 79.7
CentraleSupelec Deep G-CRF[4] 80.2

FCN MCN [30] 80.6
ResNet-DUC-CRF (ours) 83.1

Table 4.5: Performance on the Pascal VOC2012 test set.

2Result link: http://host.robots.ox.ac.uk:8080/anonymous/LQ2ACW.html
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Figure 4.4: Examples of visualization on Kitti road segmentation test set. The road is marked in
red.

Figure 4.5: Examples of visualization on the PASCAL VOC2012 segmentation validation set.
Left to right: input image, ground truth, our result before CRF, and after CRF.
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Chapter 5

Conclusion

5.1 Summary
We propose simple yet effective convolutional operations for improving semantic segmentation
systems. We designed a new dense upsampling convolution (DUC) operation to enable pixel-
level prediction on feature maps, and hybrid dilated convolution (HDC) to deal with the gridding
problem, effectively enlarging the receptive fields of the network. Experimental results demon-
strate the effectiveness of our framework on various semantic segmentation tasks.

5.2 Future Work
Although hybrid dilated convolution (HDC) is a simple solution to of “gridding”problem, we
still can’t determine the best dilated rate of each layer. Recently, some researchers propose a
learning-based method to dynamically determine the shape of convolution kernel and achieve
promising results [9]. It would be interesting to work on this direction and avoid more hand-
crafted designs.
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