
A κITE in the Wind: Smooth Trajectory Optimization in a Moving
Reference Frame

Vishal Dugar1, Sanjiban Choudhury1 and Sebastian Scherer1

Abstract— A significant challenge for unmanned aerial vehi-
cles capable of flying long distances is planning in a wind field.
Although there has been a plethora of work on the individual
topics of planning long routes, smooth trajectory optimization
and planning in a wind field, it is difficult for these methods
to scale to solve the combined problem. In this paper, we
address the problem of planning long, dynamically feasible,
time-optimal trajectories in the presence of wind (which creates
a moving reference frame).

We present an algorithm, κITE , that elegantly decouples
the joint trajectory optimization problem into individual path
optimization in a fixed ground frame and a velocity profile
optimization in a moving reference frame. The key idea is to
derive a decoupling framework that guarantees feasibility of
the final fused trajectory. Our results show that κITE is able
to produce high-quality solutions for planning with a helicopter
flying at speeds of 50 m/s, handling winds up to 20 m/s and
missions over 200 km. We validate our approach with real-
world experiments on a full-scale helicopter with a pilot in the
loop. Our approach paves the way forward for autonomous
systems to exhibit pilot-like behavior when flying missions in
winds aloft.

I. INTRODUCTION

There has recently been extensive research on unmanned
aerial vehicles (UAVs) such as helicopters and fixed-wing
aircraft that can travel large distances [1], [19], [8], [25], [12].
The commercial success of such systems depends heavily on
their ability to produce high-performance flight profiles that
optimize time while strictly adhering to constraints imposed
by the control system, flight dynamics and performance
charts [20], [10]. In conjunction with these requirements,
these systems must be cognizant of the effect of wind on
flight profiles [10], [21], [18], [22]. We therefore address the
problem of planning time-optimal trajectories that are dy-
namically feasible in a moving reference frame, and remain
in a specified safe flight corridor as shown in Fig. 1b.

Consider the problems faced when planning in a moving
reference frame. Planning a dynamically feasible path in this
frame results in a drifting ground frame path that might
violate the safe flight corridor. On the other hand, if planning
is done in the ground frame, the dynamics constraints are no
longer stationary and vary along the path. In addition to wind,
the other main challenges are satisfying non-holonomic
constraints due to vehicle dynamics and scaling to large
distances. This results in a complex multi-resolution, non-
convex planning problem. Finally, the optimizer is required
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Fig. 1: The trajectory optimization problem given corridor constraints,
dynamic limits and wind. (a) Our full-size helicopter platform.

to have near real-time behavior. The need to re-plan a
trajectory potentially extending over hundreds of kilometers
online (within a minute or two) can be caused due to change
in wind conditions or high-level mission requirements.

We present an algorithm, κITE (Curvature (κ) parame-
terization Is very Time Efficient), to efficiently solve this
optimization problem. We summarize the key ideas behind
the effectiveness of the algorithm as follows -

1) We decouple the trajectory optimization problem into
a path optimization problem in ground frame and
velocity optimization in airframe. This decoupling is
done in such a way so as to ensure that when the
individual outputs are fused together, the trajectory is
guaranteed to be feasible.

2) We use an efficient piecewise curvature polynomial pa-



rameterization to solve the path optimization problem
that can scale with distance and waypoints

3) We use a two-step velocity profile optimizer to solve
efficiently for a coarse profile and subsequently refine
it with piecewise velocity polynomials.

The paper is organized as follows - we explore related
work and precisely define the problem. We then describe
our approach, and show results from both simulations and
experiments on a full-size helicopter. We conclude with a
discussion of our work.

II. RELATED WORK

The problem of generating feasible trajectories for UAVs
has previously been explored in the literature. [2] builds
on the Dubins solution and uses fixed-radius arcs to link
straight segments with constant speed. [14] proposes an
online, corridor-constrained smoothing algorithm that uses
B-spline templates to generate paths, but not time profiles.
Sampling-based techniques like [11], [15] are quite popular,
but do not scale well with problem size. There has also
been some work that deals with trajectory optimization in
the presence of wind. The classic Zermelo–Markov–Dubins
problem has been studied in [3], [22] and [4] to characterize
optimal solutions, but they use sharp turns and constant
speed, neither of which are practical. [18] also uses a
bounded turning radius assumption to yield minimum-time
trajectories with constant speed. [23] uses a bounded roll-rate
to construct smooth, continuous-curvature paths between two
states in the presence of wind. However, it again assumes
constant speed and does not provide a mechanism to extend
the method to variable-speed trajectories. Since practical
trajectory planning problems are extremely hard, it is often
necessary to decouple the problem into an initial path-finding
stage and a subsequent velocity-optimization process ([6],
[5], [13]). We use concepts from previous work done on
optimizing velocity profiles given a fixed path and a finite set
of velocity bottlenecks ([17], [24]) to compute time-optimal
velocity profiles.

III. PROBLEM DEFINITION

In this section, we introduce the trajectory optimization
problem we wish to solve. We first provide some context
into the desired nature of the optimizer. The motion planning
system typically consists of two modules - the global planner
and the local planner. The global planner is responsible
for producing a nominal trajectory that has guarantees with
respect to the overall mission such as ensuring the vehicle
can stay in a designated safe flight corridor, respect speed
limits along segments and can feasibly transition between
corridors in presence of wind. The local planner is respon-
sible for locally (few kilometers) repairing the trajectory to
avoid sensed obstacles. Since the global planner’s trajectory
is executed under nominal circumstances, it is imperative
that the trajectory be of high quality in terms of time and
feasibility. The local planner can sacrifice quality to ensure
safety of the aircraft. In this work, we focus on the former
and refer the reader to [7] for the latter.
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Fig. 2: The fixed ground frame G and moving reference frame A. The
velocity vector in airframe v is added to the windspeed vector vw to produce
a velocity vector in groundframe vg . The heading in G is ψg while in
airframe is ψ

A. Notation

TABLE I: Notation

Symbol Description Symbol Description

x x-coord in air frame xg x-coord in ground frame
y y-coord in air frame yg y-coord in ground frame
φ roll in air frame φg roll in ground frame
ψ yaw in air frame ψg yaw in ground frame
v airspeed vg groundspeed
a acc in air frame ag acc in ground frame
j jerk in air frame jg jerk in ground frame
σ traj in air frame σg traj in ground frame
ξ path in air frame ξg path in ground frame
s arc distance τ index

B. Dynamics of a Fixed Wing UAV in Wind

Aircraft such as helicopters and fixed-wing planes that
execute coordinated turns can be described by the fixed-
wing UAV model with zero side-slip. In order to describe the
dynamics of a fixed-wing UAV in wind, we need to define
two coordinate frames -A and G as shown in Fig. 2. The state
space dynamics are defined in A. A state space trajectory in
A can be projected to G using the wind.

Let the R7 state space defined in airframe A be X =
[x, y, v, a, ψ, φ, ω]

T . Let the R2 controlspace be U = [j, α]
T .

The dynamical equations are-

ẋ
ẏ
v̇
ȧ

ψ̇

φ̇
ω̇


=



v cosψ
v sinψ
a
j

g tanφ√
ẋ2+ẏ2

ω
α


(1)

We impose a set of bounds on the state and control vari-
ables {vmax, amax, jmax, φmax, φ̇max, φ̈max} (where |ω| ≤
φ̇max, |α| ≤ φ̈max).

Let σ (t) = {x(t), y(t), ψ(t), φ(t)} be a time param-
eterized trajectory defined on the time interval [0, tf ]
in the airframe A. The dynamics (1) and limits are
translated into higher order constraints and bounds on
σ (t). Without loss of generality, we assume the wind is
along the x-axis and has a magnitude vw. Let σg (t) =
{xg(t), yg(t), ψg (t) , φ (t)} be the trajectory in groundframe



g . Let σg (t) = Proj (σ (t) , vw) be a projection function
that is defined as follows-

ẋg(t) =
√
ẋ2(t) + ẏ2(t) cosψ(t) + vw

ẏg(t) =
√
ẋ2(t) + ẏ2(t) sinψ(t)

xg(t) =

ˆ t

0

ẋg(t) dt

yg(t) =

ˆ t

0

ẏg(t) dt

ψg(t) = tan−1
(
ẏg(t)

ẋg(t)

)
φg(t) = φ(t)

(2)

C. Input Mission

Let Vstart and Vgoal be the specified start and goal
velocities. The input mission consists of N waypoints
{w1, . . . , wN}. These waypoints define N − 1 segments. A
flight corridor is specified for each segment. The function
Ii (p) ∈ {0, 1} indicates if the x, y value of a configuration
p lies in corridor i. A maximum segment velocity is specified
for each segment Vst,i. If a configuration belongs to a
corridor, it must satisfy the segment velocity limit. The
corridors are either specified by a human, or are determined
by a route-planning module that is invoked prior to calling
κITE .

D. Trajectory Optimization Problem

min
σ(.),tf

tf

s.t

√
ẋ2(t) + ẏ2(t) ≥ vmin√
ẋ2(t) + ẏ2(t) ≤ vmax√
ẍ2(t) + ÿ2(t) ≤ amax√

...
x2(t) +

...
y 2(t) ≤ jmax

|φ(t)| ≤ φmax∣∣∣φ̇(t)
∣∣∣ ≤ φ̇max∣∣∣φ̈(t)
∣∣∣ ≤ φ̈max



Derivative
Bounds

ψ(t) = tan−1
(
ẏ(t)

ẋ(t)

)
ψ̇(t) =

g tanφ√
ẋ2(t) + ẏ2(t)

Dynamics
Constraints

√
ẋ2(0) + ẏ2(0) = Vstart√
ẋ2(tf ) + ẏ2(tf ) = Vgoal

N−1∑
i=1

Ii (Proj (σ (t) , vw)) > 0(√
ẋ2(t) + ẏ2(t)

)
Ii (σ (t)) ≤ Vst,i,

for i ∈ {1, . . . , N}


Route
Constraints

for t ∈ [0, tf ]
(3)

IV. APPROACH

To make the solution-search tractable, we decouple the
optimization problem into a path optimization and a ve-
locity profile optimization ([6], [5], [13]). The optimization
approach, summarized in Fig 3 proceeds in 4 stages:

1) Phase A: Path Optimization. This phase solves for
a path that is guaranteed to be feasible (in terms
of dynamics and route constraints) for a range of
constrained velocity profiles. The path is parameterized
as a sequence of sections which are either straight
lines or arcs. The optimizer solves for each section i
independently along with a corresponding Vlim,i, such
that the section is feasible for any velocity profile
limited by Vlim,i. In the interest of time-optimality, the
objective of this optimizer is to maximize the velocity
limit Vlim,i while keeping the total arclength of the
section small.

2) Phase B: Velocity Optimization. This phase optimizes
velocity at specific control points at the end of the sec-
tions to minimize time. By ignoring jerk constraints at
this stage and assuming a trapezoidal velocity profile,
we are able to solve this optimization very efficiently.

3) Phase C: Velocity Spline Fitting. This phase solves for
smooth velocity splines that introduce jerk limits.

4) Phase D: Ground Frame Trajectory Repair. This phase
combines the path from Phase A with the velocity
profile from Phase C to yield the final ground frame
trajectory.

For simplicity of exposition, we drop the z coordinate
from our formulation and note that the Z-profile is solved
independent of the X-Y profile while accounting for wind in
a similar manner as described in later sections.

A. Phase A: Path Optimization
Let ξ(τ) = {x (τ) , y (τ) , ψ (τ)} be a path defined over

τ ∈ [0, 1].
The first stage of the algorithm solves for a ground-

frame path ξg(τ) = {xg (τ) , yg (τ) , ψg (τ)}, τ ∈ [0, 1]
that respects corridor constraints. Path optimization is a
challenging problem because of a number of reasons - it must
guarantee that the path will be dynamically feasible when the
velocity profile is determined subsequently and reason about
time optimality. Moreover, the presence of wind as a forcing
function breaks the necessary decoupling between path and
time, and must be dealt with in a principled manner. Our
solution structure addresses these concerns.

1) Parameterization: Solving for arbitrary path shapes is
intractable, especially with lots of waypoints and large seg-
ment lengths. We restrict our solution to the space of ground-
frame straight lines ξst and arcs ξarc with smooth curvature
profiles, where the path is a sequence {ξ1st, ξ1arc, ξ2st, ξ2arc . . .}.
Arc end-points of ξiarc lie on the lines defined by (wi, wi+1)
and (wi+1, wi+2) respectively. This parameterization also
scales well with problem size. Instead of searching for
individual points along the path, only the arcs need to
be explicitly determined, and the straight segments simply
connect their endpoints.
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Fig. 3: Overview of κITE

2) Arc Optimization: Arcs are determined for every or-
dered triple of waypoints (wi+1, wi+2, wi+3). Limits on
φ (roll), φ̇ and φ̈ become active along the arc, and
must be satisfied. These constraints directly limit the arc’s
curvature κ and its derivatives with respect to arclength
(κ′, κ′′). It is essential to note that these curvature limits
are not invariant - it can be shown that they also de-
pend on airspeed and acceleration according to the function
CurvLimit

(
vmax, φmax, φ̇max, φ̈max, amax

)
(proof at [9]):

κmax =
g tanφmax

v2max

, κ′max =
α

γ3
− β

γ2
, κ′′max =

gφ̈max

v4max(
α = gφ̇max, β = 2κmaxamax, γ =

3α

2β

)
(4)

Solving for a curvature profile that respects these limits
guarantees that the path will be dynamically feasible when
the velocity profile is subsequently optimized with the same
limits on airspeed and acceleration, which allows us to
effectively decouple solving for the path and velocity in a
principled way. Since these dynamic limits are defined in the
air-frame, our approach solves for these curvature profiles in
the airframe and projects them into the ground-frame.

Since curvature is constrained by airspeed, arcs function
as velocity bottlenecks. To enforce time optimality, we
determine the maximum airspeed at which we can perform

a turn with the least curvature, while respecting corridor
constraints. Finally, arcs are meant to carry out heading
changes in the ground frame. To convert between ψg and
ψ, we use the function HeadingInAir (ψg , v, vw):

ψ = acos

(
−vw sin(ψg)

v

)
− π

2
+ ψg (5)

Algorithm 1 captures this process, while the following
subsections explain how we determine arcs that effect a
required heading change.

3) Arc Parameterization: Let s be the arc-length of a path.
Let ξ(s) be an arclength parameterized path. Building on
[16], each arc ξiarc is represented as a C1 curvature spline
κ(s) comprising a degree-4 polynomial κ1(s), a constant-
curvature section κ2(s) = κtrans and another degree-4 poly-
nomial κ3(s). S1

f , S
2
f , S

3
f denote the arclengths of the three

sections, and Sf denotes the total arclength. At this stage
of the algorithm, we assume a constant velocity Varc,i along
the arc to determine its ground-frame shape. This velocity
serves as the upper limit for this segment in a subsequent
velocity optimization. We can recover a ground-frame path
ξg(s) from κ(s) using the function CurvPolyGnd (κ(s)):

ψ(s) =

ˆ s

0

κ(s)

x(s) =

ˆ s

0

cos(ψ(s)) +
vw
Vlim,i

ˆ s

0

ds

y(s) =

ˆ s

0

sin(ψ(s))

ψg(s) = tan−1
(
ẏ(s)

ẋ(s)

)
(6)

It is now trivial to carry out a change of index from s ∈
[0, Sf ] to τ ∈ [0, 1] by setting τ(s) = s/Sf and obtain
ξg(τ).

To solve for one of the segments of κ(s), we use
CurvPoly (κ0, κf , Sf , κmax, κ

′
max, κ

′′
max):

find κ(s)

κ(0) = κ0, κ(Sf ) = κf

κ′(0) = 0, κ′(Sf ) = 0

κ(s) ≤ κmax, κ′(s) ≤ κ′max, κ′′(s) ≤ κ′′max

(7)

Algorithm 1, lines 4 to 15 highlight how the spline is
constructed to satisfy the required ∆ψ.

We solve this problem as a Quadratic Program.
4) Final path and velocity limits: Once we have obtained

all the arcs, we concatenate straight segments and arcs to
yield the final ground-frame path ξg(τ). Each segment also
has an airspeed bound defined by the corresponding waypoint
definition for ξist, and the airspeed limit imposed by Phase
A for ξiarc. We thus have a set of airspeed limits Vlim =[
Vst,1 Varc,1 . . . Varc,N−2 Vst,N−1

]
, that are used by

Phase B.

B. Phase B: Time Optimization

1) Time Optimization Problem: This phase determines an
optimal scheduling of speeds along a finite set of control
points belonging to ξg(τ). The 2N − 4 control points are



Algorithm 1: ArcOpt (wi, wi+1, wi+2, vw)

1 for v ← [vmax, vmin] do
2 (κmax, κ′max, κ

′′
max)←

CurvLimit
(
v, φmax, φ̇max, φ̈max, amax

)
3 ∆ψ ← HeadingInAir (∠(wi+1, wi+2))−

HeadingInAir (∠(wi, wi+1))
4 for κ← [κmin, κmax] do
5 κ2(s) = κ
6 for S1

f ← [Smin
f , Smax

f ] do

7 κ1(s)← CurvPoly
(

0, κ, S1
f , κmax, κ

′
max, κ

′′
max

)
8 if κ1(s) ∈ ∅ then
9 break

10 S3
f ← S1

f

11 κ3(s)← CurvPoly
(
κ, 0, S3

f , κmax, κ
′
max, κ

′′
max

)
12 S2

f =
∆ψ−

´S1
f

0 κ1(s)−
´S3

f
0 κ3(s)

κ

13 if S2
f ≥ 0 then

14 break

15 κ(s)←
[
κ1(s) κ2(s) κ3(s)

]
16 ξiarc,gnd(s)← CurvPolyGnd (κ(s))

17 if
i+1∑
j=i

Ij
(
ξiarc,gnd(s)

)
> 0 then

18 break

19 return v, ξiarc(s), ξiarc,gnd(s)

the start and end points of each turn segment, which divide
ξg(τ) into a sequence of straight segments ξist and turns ξiarc.
We obtain the segment velocity limits Vlim from Phase A,
along with the air-frame path lengths Si for each segment.
We further assume an acceleration âmax = amax−εtol which
is lower than the acceleration limit of the system. While the
current phase ignores jerk, using a lower acceleration at this
stage allows us to fit a jerk-limited velocity spline at a later
stage. The optimization problem now is to determine the
control-point velocities {V̂i} which minimize time (where
V̂0 = Vstart, V̂N+1 = Vgoal):

minimize
{V̂i}

tf

(
{V̂i}, {Si}, âmax

)
subject to V̂i ≤ Vlim,i

|V̂ 2
i+1 − V̂ 2

i |
2âmax

≤ Si

(8)

The total time tf is defined as follows-

tf =
∑
i

ti (9)

Given a pair of consecutive point velocities V̂i, V̂i+1, ti can
be computed according to the following-

Vmid = min

√2âmaxSi + V̂ 2
i + V̂ 2

i+1

2
, Vlim,i

 (10)

ti =
2Vmid − V̂i+1 − V̂i

âmax
+ (11)(

Si −
2V 2

mid − V̂ 2
i+1 − V̂ 2

i

2âmax

)
1

Vmid
(12)

Algorithm 2: VelOpt(Vgoal, Vstart, {Vlim,i}, {Si}, a)

1
{
V̂i

}
←
{
Vstart, {Vpt,i} , Vgoal

}
; V isited← {0}N+2;

2 V̂1 ← MakeFeasible
(
V̂0, V̂1, a, S1

)
;

V̂N ← MakeFeasible
(
V̂N+1, V̂N , a, SN

)
;

3 V isited[0]← 1; V isited[N + 1]← 1;
4 repeat
5 i←Minimum

({
V̂i

})
s.t. V isited[i] = 0;

6 if V isited[i− 1] = 0 then
7 V̂i−1 ← MakeFeasible

(
V̂i, V̂i−1, a, Si

)
8 if V isited[i+ 1] = 0 then
9 V̂i+1 ← MakeFeasible

(
V̂i, V̂i+1, a, Si+1

)
10 V isited[i]← 1;
11 until V isited[0..N + 1] = 1;

2) Algorithm for Initialization: Algorithm 2 is used to
feasibly initialize the nonlinear optimization problem above,
which results in significant improvements in convergence
rates. It uses the function MakeFeasible

(
V̂1, V̂2, a, S

)
,

defined as:

V̂2 =

√
V̂ 2
1 + 2aS (13)

C. Phase C

This stage operates on {V̂i} and fits a smooth, jerk-limited
spline Vi (t) between each V̂i and V̂i+1. Vi (t) is derived
by integrating a C1 acceleration spline a(t) comprising a
degree-3 polynomial a1 (t), a constant-acceleration section
a2 (t) = atrans and another degree-3 polynomial a3 (t).
t1f , t

2
f , t

3
f denote the time spanned by the three sections, and

tf denotes the total time of the spline. Each acceleration
spline segment effects a velocity change from some V̂i to
V̂i+1, and is exactly analogous in structure to the curvature
spline described earlier. We omit the details of computing
these splines, since they are the same as for the curvature
splines.

Once all the spline segments have been computed, they are
combined to yield the final airspeed spline V (t) , t ∈ [0, tf ].
It is important to note that time has been used here merely as
a suitable parameter to compute these splines, and that it does
not represent the actual time profile of the trajectory. V (t) is
thus converted to V (τ) by setting τ = t

tf
, and consistency

of τ with Phase A is maintained by construction. The next
stage computes the final time-parameterized trajectory.

D. Phase D

At this stage, we have a ground-frame path ξg(τ) (Phase
A), a ground-referenced heading profile ψg (τ) (Phase A)
and an airspeed profile V (τ) (Phase C). We obtain a ground-
referenced, time-parameterized trajectory σg (t) according to
the following-

1) Obtain a groundspeed profile:

vg(τ) =

√
V (τ)

2 − v2w sin2(ψg (τ)) + vw cos(ψg (τ))

(14)
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Fig. 4: Comparing the spatial, roll, speed and acceleration profiles of κITE (top) with the baseline (bottom). Corridors are highlighted in yellow, and limits
are represented by red lines. A blowup of (bottom left) the spatial profiles (top left) shows κITE in black and the baseline in red.

2) Obtain the ground-frame distance profile:

Sg(τ) = Sg(x(τ)) =

ˆ x(τ)

0

√
1 + y′(x)2dx, y′ =

dy

dx
(15)

3) Compute the time profile:

t (τ) =

ˆ Sg(τ)

0

dSg

vg(τ)
(16)

At this point, it is trivial to replace τ with t (τ), and
obtain a time-parameterization.

4) Compute the air-referenced yaw profile:

ψ (t) = atan

(
vg(t) sin(ψg (t))

vg(t) cos(ψg (t))− vw

)
(17)

5) Compute the roll profile:

φg (t) = φ (t) = atan

(
V (t) ψ̇ (t)

g

)
(18)

The final ground-frame trajectory σg (t) =
{xg(t), yg(t), ψg (t) , φg (t)} is now complete.

V. RESULTS

A. Implementation

We have open-sourced a MATLAB implementation
of κITE at https://bitbucket.org/castacks/
kite_optimizer. We compare κITE against a baseline
that uses constant-curvature arcs to turn, while trying to
maintain as high a speed as possible without violating the
roll limit.

B. Solution Quality

1) Respecting dynamic limits
Fig. 4 shows how κITE is able to respect limits
on speed, acceleration, jerk, roll, roll-rate and roll-
racceleration. This is essential for stable trajectory
tracking, especially in the presence of disturbing forces
such as wind that might cause the system to exceed its
control margin and enter into a potentially hazardous
state. Fig. 4 compares the output of κITE with the

baseline.
2) Performance With Wind

Fig. 5 shows a scenario where a helicopter is flying
in the presence of a 20m/s wind directed along the
+ve X-axis. As Fig. 5(b) shows, a feedback controller
that attempts to follow the trajectory computed without
taking wind into account (red trajectory in Fig. 5(a))
would have to exceed roll and roll-rate limits at the
same airspeed. Wind-cognizant κITE , on the other
hand, generates a trajectory that is dynamically feasible
in this wind regime. One can see how κITE makes
use of wind by generating sharper-looking turns into
the wind direction. Similarly, Fig. 5(c) shows that the
naive baseline must slow down considerably to execute
dynamically feasible turns in this wind regime, while
κITE is able to maintain high speeds.

C. Scalability and versatility

κITE can handle very long routes with a variety of
segment length ratios. The solution structure is trivially able
to accommodate long, straight segments, while algorithms
without this structure would struggle to compute such routes
in a reasonable amount of time. Fig. 6 shows one such
situation, in which κITE computes a ∼ 290 km with a
mixture of long and short segments.

We also tested a C + + implementation of κITE on 100
randomly generated problems across three runs with 10, 25
and 50 waypoints respectively. Individual segment lengths
range from 300m to 5000m, and are randomly chosen
for each waypoint, as are the angles between segments. A
pre-computed lookup table is used for quickly determining
both curvature and acceleration spline primitives, which
allows vastly improved execution times. We report the
average execution times for different phases of κITE for
both runs (Table II) :
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Fig. 5: Demonstrating the importance of wind-cognizance in the trajectory
planning stage. (a) compares the spatial profiles of wind-aware κITE (black)
with a wind-agnostic variant of κITE (red) in the presence of a 20m/s
wind along the x-axis. A feedback controller used to follow both trajectories
in this wind violates roll and roll-rate limits (b) with the wind-agnostic
trajectory. (c) shows how the naive baseline (right) has to slow down to
execute feasible turns in this wind regime, while κITE (left) is still able to
maintain high speeds.
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Fig. 6: A ∼ 290 km trajectory computed by κITE . The problem has both
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cutout shows. κITE ’s solution structure allows it to efficiently deal with
such problems. Again, the corridor is highlighted in yellow.
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Fig. 7: Results from a test conducted on a full-size helicopter with a ∼
10m/s wind blowing towards 110◦N. (a) shows the complete trajectory
along with the waypoints; (b) shows a simulation of the evidence grid, and
a view from the cockpit; (c) shows tracking performance for groundspeed
and ground-frame heading, along with the desired airspeed. This trajectory
was computed in real-time onboard the helicopter. κITE serves as a global
planner in our planning architecture, and reasons about the entire mission
at once. It feeds into a local planner that accounts for contingencies like
sensed obstacles.

TABLE II: Execution times (in ms) of all the stages of κITE

Num Waypoints Phase A Phase B Phase C Phase D

10 203.00 93.26 0.12 1095.84
25 496.10 1054.00 0.23 1067.83
50 1241.41 4785.82 0.48 7121.01

D. Real-world experiments

κITE currently runs on our autonomous full-scale heli-
copter, where it re-computes trajectories online whenever the
wind conditions (sensed with a pitot tube onboard) change.
It functions as a global planner in our C++ architecture, and
feeds into a local planner which deals with real-time obstacle
avoidance. Fig. 7 shows results from one of our flight
tests, where the system was able to track the commanded
trajectory while remaining within its control margins at all
times, in the presence of a ∼ 10m/s wind blowing towards
110◦N (measured with the onboard pitot tube). Non-smooth,
wind-agnostic trajectories that violate dynamic limits are
hazardous for such systems, and necessitate the use of a
method that guarantees nominal feasibility. So far, we have
successfully tested κITE in 23 flights with winds up to
20m/s.



VI. DISCUSSION

We have presented κITE , a decoupled trajectory opti-
mization approach for UAVs that computes feasible, time-
optimal trajectories while explicitly accounting for distur-
bance due to wind. Our path optimizer (Phase A) generates
paths that satisfy corridor constraints in the presence of wind
while executing the smoothest possible turns (i.e. turns with
minimum curvature) at the maximum possible airspeeds.
These paths are guaranteed to be dynamically feasible after
subsequent velocity optimization, which makes the decou-
pling possible in the first place. We then formulate and
solve a nonlinear velocity optimization problem (Phase B)
that minimizes time while scheduling feasible control-point
velocities. Since the number of control points are limited
(2N − 4), this allows us to quickly compute a time-optimal,
pointwise velocity profile. We then generate a smooth, jerk-
limited velocity profile for the entire path (Phase C). Our
final stage combines the path and velocity profile to produce
the final time-parameterized trajectory (Phase D).

While we have assumed a constant wind for the sake of
presentation, it is trivial to extend the system to more realistic
scenarios where the wind varies along different segments of
the mission, as long as the wind estimate varies smoothly.
The entire optimization process is near real-time. We have
demonstrated the robustness and quality of our approach with
both simulation results and real-world experiments on a full-
size helicopter, and κITE is currently implemented in its
onboard planning architecture. To our knowledge, there is
no other existing approach that demonstrably optimizes for
path and velocity for UAVs in the presence of wind, and
generates smooth, dynamically feasible trajectories. Finally,
we have also released open-source MATLAB code for the
optimizer.
κITE is currently constrained to lie close to the poly-line

defined by the mission waypoints. A future area of work
deals with cases where the aircraft is only required to stay
within the safe corridor and not along the given poly-line. It
would be appropriate to solve for optimal turn end-points to
maximize time-efficiency in such cases.
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