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Abstract— This paper presents a robust localization approach
that fuses measurements from inertial measurement unit (IMU)
and a rotating laser scanner. An Error State Kalman Filter
(ESKF) is used for sensor fusion and is combined with a
Gaussian Particle Filter (GPF) for measurements update. We
experimentally demonstrated the robustness of this implemen-
tation in various challenging situations such as kidnapped robot
situation, laser range reduction and various environment scales
and characteristics. Additionally, we propose a new method
to evaluate localizability of a given 3D map and show that the
computed localizability can precisely predict localization errors,
thus helps to find safe routes during flight.

I. INTRODUCTION

There is a fast growing demand of small unmanned aerial
vehicles (UAVs) in industry for the purpose of autonomous
exploration and inspection. UAV’s compact form-factor, ease
of control and high mobility make them well suited for many
tasks that are difficult for humans due to limited space or
potential danger. However, this also requires the UAV system
to be robust enough to handle multiple tasks in challenging
situations such as lowlight, GPS-denied, cluttered or geomet-
rically under-constrained environments.

To achieve robustness, state estimation algorithms must
produce high quality results in challenging situations. A
common solution to this problem is increasing the redun-
dancy of the sensing system. A diverse set of sensors tend
to capture more useful information, especially if they are
different modalities. However, sensor redundancy creates
new problems of its own such as synchronization issues and
payload constraints. Therefore sensing system design must
be a trade-off between redundancy and payload cost. Our
robot localization system (see Figure 5) includes an IMU
and a rotating 2D laser scanner. IMU is able to capture
fast motion and the laser scanner could provide a global
pose reference. Combination of them makes a compact,
lightweight system that is robust to aggressive motion and
guarantees low drift.

Popular solutions for robot localization can be divided
into two categories: filtering based and optimization based
approaches. Filtering based approaches (e.g. Bayesian filter-
ing) infer the most likely state from available measurements
and uncertainties, while optimization based approaches try
to minimize reprojection error to find the optimal states.
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Fig. 1. An out door localization test. Original map is shown on the left
and plots on the right visualizes the reconstruction and estimated path.

Selection of these two methods depends on the type of prob-
lem. Our goal is to develop an online algorithm capable of
accurately localizing a UAV with limited onboard computing
power. Thus the filtering approach is preferred since it is
usually faster than iterative optimization procedures. Addi-
tionally, since our system deploys a rotating 2D laser scanner
to estimate robot pose in 3D, it is generally impossible to
find match between two consecutive scans. Although people
[1] [2] has proposed methods accumulating a sweep (laser
rotates for 180 degrees) of scans and then find match of two
sweep maps, it is still not robust enough to fast motion which
introduces large distortion in the sweep map.

This work has three main contributions. First, it presents
an implementation of ESKF-based localization algorithm
which is suitable for different sensing systems, e.g., cameras
or 3D LiDAR can be easily integrated into this framework.
Second, this paper proposes a novel method for real time
localizability estimation in 3D. This model is demonstrated
by observing a correlation between predicted localizability
and real pose estimation errors. Third, extensive tests are
conducted based on real data or simulation to evaluate the
robustness of ESKF localization algorithm and the correct-
ness of localizability model.

The rest of this paper is organized as follows: Section
II reviews prior work related to laser-based localization and
localizability estimation. Section III details the the ESKF
filtering procedures. Section IV introduces the localizability
estimation algorithm. And experimental results and demon-
strations regarding the introduced algorithms are presented
in section V. Finally, section VI concludes this paper and
examines possible future work.

II. PRIOR WORK

There are plenty of research and applications on laser
based localization. Here we include the most recent work
on this topic. For optimization based approaches, iterative



closest point (ICP) and its variants are the most popular
methods. For instance, Zhang [1] deploys a geometric feature
extraction before solving ICP thus substantially improved
the speed and accuracy. Extensions are achieved by fusing
monocular vision in [3]. [2] proposes a graph based ap-
proach to account for distortion in a local map. Although
both the methods in [1] [2] build high quality point cloud
map, as stated in the last section, they are not reliable to
aggressive motion. In the Bayesian filtering setting, laser
data is typically transformed into pose measurements by
Monte Carlo methods, such as [4], which is then used to
update the measurement. Our work differs from [4] in that
we are manipulating error states in both the prediction and
correction steps. Also, IMU bias are included in the system
states and estimated together with velocity and pose.

As for localizability estimation, there are multiple threads
of research on this topic with similar objective but differing
perspectives. Coastal navigation [5] is the earliest attempt
to model information content, i.e. information gain, in the
environment such that a planner can request a path maxi-
mizing accumulated information gain. Localizability has also
been evaluated as a metric for planning by Merali et al. [6]
for vehicles using landmark based localization and is simply
calculated by counting the number of visible landmarks.
Censi et al. [7] proposed an information matrix approach
to evaluate the achievable accuracy using Cramér-Rao lower
bound theorem which does not rely on feature matching or
landmarks. Specifically, the eigenvalues and corresponding
eigenvectors of the information matrix at a certain point
indicates how well it is constrained along each direction with
given measurements. Liu et al. [8] applied this approach
in a 2D case and their planner aimed at maximizing the
determinant of computed information matrix. [9] proposed
a learning based approach to predict covariance matrix of a
sensing system based on available informative features. Our
paper differs from those prior work in that it develops a
localizability model for 3D range sensors.

III. ESTIMATION FORMULATION

Fig. 2. Localization algorithm overview.

The problem setting is as follows: given a pre-bulit map
and the initial pose of the robot, its current pose, velocity
and IMU biases are estimated immediately when a new set
of range data is available. The localization is achieved by
combining an ESKF with a GPF as shown in Figure 2. This
section gives a description of the propagation and update
procedures and more details can be found in [4] [10].

An error state representation, compared to a nominal
state representation, has several benefits [11]. First of all,
error states are always close to zero, thus making it valid
to approximate R(δθ) as I + [δθ]×, where [δθ]× is the
skew-symmetric operator. This approximation makes the
derivatives of an exponential map easy to compute. Second,
in an error state, the rotation error is represented as a 3D
vector, which is more intuitive than other types of rotation
representations such as matrix or quaternion. Besides, a 3D
vector is straight forward to be put in a state vector, while
a rotation matrix does not fit and a quaternion requires
additional efforts to propagate its uncertainties. Finally, as
the rotation error is always close to zero, it is far from a
singular configuration.

A. Error States

The state vector of the system contains

v: velocity in global frame
p: position in global frame
R: rotation matrix
ab: accelerometer bias
ωb: gyroscope bias

The true state, predicted state and error state are represented
as x, x̂ and δx respectively and satisfy

x = x̂⊕ δx (1)

Here ⊕ indicates a generic composition. Also note that in
error state, angle vector δθ is represented by a 3× 1 vector
as a minimal representation of rotation error.

B. Error Dynamics

The system error dynamics are derived from nominal state
dynamics.

˙̂x =


˙̂v
˙̂p
˙̂
R
˙̂ab
˙̂ωb

 =


R̂(am − âb) + g

v̂

R̂[ωm − ω̂b]×
0
0

 (2)

δx =


δv̇
δṗ

δθ̇
δȧb
δω̇b

 =


−R̂[am − âb]×δθ − R̂δab − R̂an

δv
−[ωm − ω̂b]×δθ − δωb − ωn

aw
ωw

 (3)

where am, ωm is the acceleration and angular velocity mea-
surements, an, ωn denote accelerometer and gyroscope noise,
and aw, ωw is the Gaussian random walk noise of biases.

C. Propagation

The propagation step contains the estimate state propaga-
tion and the error covariance propagation. The estimate state
is propagated through a direct Euler integration of (2). And
the error covariance is propagated by linearizing the error
state dynamics. Discrete propagation rule is shown in Eqn.
(4) and (5) respectively.




v̂t+1

p̂t+1

R̂t+1

âb(t+1)

ω̂b(t+1)

 =


v̂t + [R̂t(am − âb(t)) + g]∆t

p̂t + v̂t∆t+ 1
2 [R̂t(am − âb(t)) + g]∆t2

R̂tR
{

(ωm − ω̂b(t))∆t
}

âb(t)
ω̂b(t)


(4)

Σ̄t+1 = FxΣtF
T
x + FnQnF

T
n (5)

where

Fx =


I3 0 −R̂t[am − âb(t)]×∆t −R̂t∆t 0
I3∆t I3 0 0 0

0 0 RT
{

(ωm − ω̂b(t))∆t
}

0 −I3∆t
0 0 0 I3 0
0 0 0 0 I3


Fn =

R̂t 0
0 0
0 I9



Qn =


(σan∆t)2I3 0 0 0

0 (σωn∆t)2I3 0 0
0 0 (σaw

∆t)2I3 0
0 0 0 (σωw

∆t)2I3


D. Measurement Update

In this step, a pseudo pose error measurement δy ∈ R6 is
used to update full error state vector δx ∈ R15 in a normal
KF fashion. δy is called pseudo measurement since it is not
acquired from sensors directly but recovered using a GPF.

1) Observation Model: With error state representation,
the observation model is simply linear.

δy = Hδx =

[
0 I3 0 0 0
0 0 I3 0 0

]
δx (6)

2) Recover Pseudo Measurement: Intuitively, the pseudo
measurement δy can be thought as measured by an imagery
sensor. Actually, it is computed by following steps: First,
based on pose priors δx̄mt+1 ∈ R6, Σ̄m

t+1 ∈ R6×6, particles
are drawn and weighted using the likelihood field model
[12]. Second, the pose posterior δxmt+1 ∈ R6,Σm

t+1 ∈ R6×6

are computed as the weighted mean and covariance of the
particles. Third, a pseudo measurement δymt+1 and pseudo
noise Cm

t+1 is recovered by inversing the KF measurement
update

Cm
t+1 = (Σm

t+1
−1 − (Σ̄m

t+1)−1)−1 (7)

δymt+1 = (Km)
−1

(δxmt+1 − δx̄mt+1) + δx̄mt+1 (8)

where Km = Σ̄t+1H
mT (HmΣ̄t+1H

mT + Cm
t+1)−1 is the

pseudo Kalman gain. We refer readers to [4] for more details
on inversing KF update.

3) Correction: Once the pseudo measurements are com-
puted, it is used to update the full error states by a normal
KF update. The Kalman gain is

K = Σ̄t+1H
T (HΣ̄t+1H

T + Ct+1) (9)

Note K ∈ R15×6 is different to Km ∈ R6×6. And full error
state posterior and covariance are updated as

δxt+1 = K(δyt+1 −Hδx̄t+1) (10)
Σt+1 = (I15 −KH)Σ̄t+1 (11)

E. Reset Nominal States

The updated errors are integrated into the normal state by
adding the error state to the estimate state.

v̂t+1

p̂t+1

R̂t+1

âb(t+1)

ω̂b(t+1)

 =


v̂t + δvt+1

p̂t + δpt+1

R̂t ·R(δθt+1)
âbt + δab(t+1)

ω̂bt + δωb(t+1)

 (12)

It is important to note that before the next iteration, the error
states are set to zero.

IV. LOCALIZABILITY

Given a map of the environment, in the form of a point-
cloud, we would like to determine if the localization will con-
sistently produce accurate results if the robot was in a certain
configuration. To do this, we estimate the localizability of a
given pose in a map to predict the localization performance.
Localizability is a measure of a map’s geometric constraints
available to a range sensor from a given pose. Regions of
high localizability should correspond to low state estimation
errors and regions of low localizability should correspond
to higher state estimation errors. In order to calculate this,
we first make a key assumption that for a given point
measurement, we can determine the corresponding surface
normal based on the map. Next, we estimate surface normals
for every point in the map. Then a set of visible points from
the given pose is determined and finally, we accumulate the
normals and analyze the constraints in each direction.

A. Position Constraints

Each valid measurement from the sensor provides a con-
straint on the robot’s pose. Specifically, by approximating
surfaces as a plane locally, a measurement point pi lying on
the plane is constrained by

nTi (pi − pi,0) = 0 (13)

where ni is the surface normal, and pi,0 is a point on the
plane. Additionally, the sensor measurement provides the
offset between the robot’s position x and pi as x+ ri = pi,
where ri is ray vector of this measurement. By substitution
we have

nTi (x+ ri − pi,0) = 0⇒ nTi x = nTi (pi,0 − ri) = di (14)

where di is a constant vector. When combining all the
constraints imposed by a set of measurement points, we have

n1x n1y n1z
n2x n2y n2z

...
...

...
nkx

nky
nkz

x =


d1
d2
...
dk

⇒ Nx = D (15)



B. Evaluating Localizability
In order to accurately localize the robot, the sensor needs

to be able to adequately constrain its pose in the three
translational dimensions. The matrix N describes the set
of observable constraints from the given pose. Preforming a
principal component analysis (PCA) on the row vectors of N ,
provides an orthonormal basis spanning the space described
by the constraints from the surface normals. Furthermore, we
can examine the singular values of N with SVD as UΣV T .
Here Σ describes the cumulative strength of the constraints
form each corresponding basis vector. Theoretically, we
should be able to localize as long as all three of the singular
values are non-zero. However, this proves to be unreliable
in practice so we calculated localizability as the minimum
singular value of N . More specifically: L = min(diag(Σ)).
This sets localizability equal to the strength of the constraints
in the minimally constrained direction. Furthermore, this
analysis also allows us to determine the minimally con-
strained direction as the singular vector corresponding to the
minimal singular value.

C. Examples
The following figures depict several results of this local-

izability algorithm near the outside of a building and around
a bridge. In the case of the building, the sensor range was
artificially reduced to 5m and 10m respectively. In these fig-
ures, blue regions correspond to areas with low localizability
while red regions correspond to higher localizability.

1) Building: The left diagram in Figure 3 shows the
localizability with the range limited to just a 5m radius.
It becomes very difficult to localize outside of the spots
nearest to the corners. Increasing the range to 10m allows
the robot to localize in significantly larger area. However,
the localization is expected to fail if the robot was to enter
the open space in the middle section since the walls at either
end are both well out of the 10m range.

Fig. 3. The localizability of the area surrounding the outside of a building
calculated across a 0.5m grid for both a 5m and 10m sensor ranges. In these
pictures, the robot is also oriented facing the building

2) Bridge: The localizability around the bridge, depicted
in Figure 4, is much more complex due to its 3D structure
and large scale. Here localizability is estimated for sensors
full 30m radius. In this case, localization is expected to
perform poorly in the open space on top of the deck of the
bridge since all of the surfaces in the map are parallel to the
roadway.

Fig. 4. The figure above demonstrates the localizability in 3D around a
bridge. Each of the green arrows point in the minimally constrained direction
which is given by the singular vector corresponding to the minimum singular
value of N .

V. EXPERIMENTS
A. System Overview

Fig. 5. The customized robot platform with on board computation and
sensing system (rotating laser scanner and IMU). The front camera is for
inspection thus is not used for state estimation.

A customized quadrotor, as shown in Figure 5, was used
to test our localization algorithms. The quadrotor carries an
onboard computer (Quad-core, 2GB RAM) which is respon-
sible for all of the computations, an IMU (100 Hz), and a
Hokuyo 2D laser scanner (270◦FOV, 0.25◦ angle resolution,
40Hz) mounted on a continuously rotating motor (about 30
RPM). A motor encoder is used to project laser range data
into body frame (z-axis downward, x-axis forward), which
is defined to coincide with IMU frame.

B. Indoor and Outdoor Tests

Figure 6 shows an indoor test conducted around an office
area. Prior map is acquired by a LiDAR SLAM algorithm
[1] and then converted into an occupancy map with Octomap
[13]. The occupancy map has a scale of approximately
15×20×5m, with 0.05m resolution. The robot is hand-held
passing through corridors, a conference room, coffee lounge
and eventually returns to the start point. The maximum
translational velocity is about 1.2 m/s. In Figure 6, the
reconstructed map aligns nicely with the original map, which
implies the estimated poses are accurate.

Outdoor spaces are wider open and pre-built maps have
larger grid size (0.1m) than indoor ones, resulting in fewer



Fig. 6. Localization results in office area. Point clouds on the left and
upper right are reconstructed with estimated pose trajectory (blue lines).
Original reference map is shown at the lower right for comparison with
reconstructed map.

details of structure to be captured for localization. This will
cause an increase in estimation noise and uncertainties. Fig-
ure 1 visualizes the localization results in an inter-building
area. The map is of size 15×28×9m. The robot is controlled
flying laterally with a maximum speed at about 0.8 m/s while
yawing between −45◦ and 45◦ before returning to the origin
(as indicated by Figure 10, upper plots). By observation, one
can tell that overall estimation is quite accurate except some
reconstructed building edges are slightly ‘fuzzy’ due to the
estimation noise.

C. Robustness Tests

The robustness of localization algorithm is measured by
its capacity to recover from errors. It is tested in various
settings using simulated or real data and also compared to
an implementation of nominal state EKF. The two algorithms
are sharing identical parameters such as sensor noise, map
resolution and so on. We show that the ESKF outperforms
the EKF in terms of robustness.

Fig. 7. A simulation of robot localization under a bridge model.

The first robustness experiment is a kidnapped robot test in
simulation (see Figure 7). In this test, the algorithm assumes
robot starts at the origin, however actual initial height is set
with different values (from 0.5m to the maximum error that
still converges to zero). As shown in Figure 8, the ESKF
implementation has an error tolerance of about 4 meters
while the EKF implementation can only handle error no
larger than 0.6 meter. Additionally, ESKF converges faster
than the EKF. For instance, it takes about 2 seconds for the
ESKF algorithm to recover from an error of 0.5 meter, while
the EKF algorithm needs more than 8 seconds to converge.
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Fig. 8. Kidnapped robot test. The initial error tolerance is found by
increasing the initial error until the algorithm diverges. Note that diverging
cases are not visualized here.

The second experiment is designed to compare the local-
ization algorithms on real world data. In this experiment,
the robot orientation is kept pointing to the wall, while
moving laterally towards right and then left. The effective
range of laser is artificially reduced from 30m to 10m,
which eliminates some useful structures for localization and
degrades the state estimate. The 30 meter state estimates are
then used as ground truth. Figure 9 shows the localization
error of the two algorithms. We can observe that the ESKF
algorithm recovers from some small errors (about 0.7m at
maximum), while the EKF algorithm diverges at the end.
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Fig. 9. Localization error in y-axis with reduced range laser measurements.

D. Localizability Model Validation

To evaluate the proposed localizability model, we make
use of the same outdoor dataset in Figure 1 and reduced the
effective laser range to 10 meters.

When moving from left to right, the robot orientation is
fixed. Thus at some places most of the captured data points
lie on the wall and ground (as shown by the range plot in
Figure 10), which weakens the constraints along the direction
of motion. This results in large pose errors (blue lines of
lower plots in Figure 10).

When moving from right back to left, the robot pointed at
nearby structures. Since the robot has a rotating 2D laser, its
measurements are densest along the axis of rotation. (denoted
as thick line in Figure 10). The second path is predicted to
have higher localizability which is followed by a decrease in
positioning error as can be seen in Figure 10. Furthermore,
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Fig. 10. Range plot (upper) shows the robot trajectories and sensor ranges.
Correlation plot (lower) shows the correlation between localizability and
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Fig. 11. Localization Error vs. Localizability at 10m range.

we collected additional data to provide further verification
of the localizability estimation. Figure 11 compares the
localization errors to the localizability estimates as the robot
moved around the colored region shown in Figure 1. Full
sensor range at 30m was used for ground truth pose and
then we artificially reduced the range to 10m for pose esti-
mates and the resulting error was compared to the predicted
localizability at that pose. From the plot, we can tell that the
proposed localizability estimation method provides a valid
prediction of actual localization performance.

VI. CONCLUSIONS

This paper presents a robust localization approach fusing
IMU and laser range data into an ESKF framework. The

algorithm is tested in an online setting and it is robust
in various environments with different characteristics and
scale. Additionally we provide a new method for estimating
localizability to predict localization performance in 3D based
on map geometry. Experimental results have shown its ac-
curately predicts areas where localization can be unreliable.

In future work, we plan to develp a localizability based
planner that would allow a robot to avoid unlocalizable areas
or plan localzability optimal routes. Overall, this should
allow for significantly more robust behavior resulting in safer
autonomous UAV operations.
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