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ABSTRACT

A significant challenge for unmanned aerial vehicles is flying long distances in the presence of wind. The presence
of wind, which acts like a forcing function on the system dynamics, significantly affects control authority and flight
times. While there is a large body of work on the individual topics of planning long missions and path planning in
wind fields, these methods do not scale to solve the combined problem under real-time constraints. In this paper, we
address the problem of planning long, dynamically feasible, time-optimal trajectories in the presence of wind for a
full-scale helicopter. We build on our existing algorithm, kI TE , which accounts for wind in a principled and elegant
way, and produces dynamically-feasible trajectories that are guaranteed to be safe in near real-time. It uses a novel
framework to decouple path optimization in a fixed ground frame from velocity optimization in a moving air frame.
We present extensive experimental evaluation of KITE on an autonomous helicopter platform (with a human safety
pilot in the loop) with data from over 23 missions in winds up to 20m /s and airspeeds up to 50m/s. Our results not
only shows the efficacy of the algorithm and its implementation, but also provide insights into failure cases that we
encountered. This paves the way forward for autonomous systems to exhibit pilot-like behavior when flying missions

in winds aloft.

NOTATION

We make use of the following notation in this work. The sub-
script g is used to indicate the ground-frame equivalent of the
trajectory variables defined below.

Table 1: Notation

Symbol Description

x x-coord in air frame
y y-coord in air frame
¢ roll in air frame
v yaw in air frame

1 airspeed

a acc in air frame

J jerk in air frame
c traj in air frame

3 path in air frame

s arc distance

T index

Fig. 1: A modified Bell 206 with onboard computation serves
as our full-size autonomous helicopter platform.

INTRODUCTION

Autonomous, full-size helicopters are increasingly required
to fly long missions in the presence of wind. Missions can
be ~ 500km long, with the helicopter flying at airspeeds of
50m/s (Refs. 1-5). The success of these missions depends
on the ability of the helicopter to plan smooth flight-profiles
that are time-optimal, respect constraints such as dynamics
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and safety envelopes, and additionally explicitly account for
disturbances caused due to wind (which results in a moving
reference frame). We will explain these requirements with an
anecdotal example.

Consider a full-scale helicopter as shown in Fig. | flying a
long distance mission between two airports. A ground sta-
tion specifies a flight corridor that keeps the system out of re-
stricted airspace (Fig. 4). The system has to plan a trajectory
that stays within this flight corridor. Firstly, the trajectory has
to satisfy the dynamic constraints on the helicopter’s pose and
derivatives of the pose (say, bank and bank-rate). Secondly,
the trajectories are incentivized to be smooth. A primary rea-
son for this is to emulate pilot-like behavior - we gathered
from discussions with pilots that while executing turns, it is
desirable to maintain small changes in bank angle and bank
rates. Smooth trajectories also ensure that the helicopter oper-
ates well within its control margin, and can therefore respond
to unforeseen circumstances without compromising on safety.

Thirdly, constraining the trajectory to lie inside the flight cor-
ridor is a major challenge in the presence of wind, which
acts like a forcing function causing deviations from the in-
tended ground track. The trajectory generation process, or
planner, must explicitly account for this disturbance, or the
aircraft might fly into potentially hazardous airspace. Rea-
soning about wind (a moving reference frame) also becomes
important because the dynamic limits of helicopters (such as
maximum airspeed, maximum bank rate and jerk) are speci-
fied in this moving airframe. Lastly, changing environmental
conditions or mission requirements might necessitate replan-
ning on the fly, requiring a near real-time trajectory planner.
Hence, we tackle the problem of generating smooth, time-
optimal trajectories for aircraft such as full-scale autonomous
helicopters flying through a pre-defined safe corridor defined
by waypoints, in the presence of wind.

In (Ref. 6), we presented an algorithm, kITE (Curvature (k)
parameterization Is very Time Efficient), to efficiently solve
this optimization problem, and here we present experimental
results from real-world flight tests. The key ideas behind the
effectiveness of the algorithm are -

1. We decouple the trajectory optimization problem into a
path optimization problem in ground frame and velocity
optimization in airframe. This decoupling is done in such
a way so as to ensure that when the individual outputs are
fused together, the trajectory is guaranteed to be feasible.

2. We use an efficient piecewise curvature polynomial pa-
rameterization to solve the path optimization problem
that can scale with distance and waypoints

3. We use a two step velocity profile optimizer to solve effi-
ciently for a coarse profile and subsequently refine it with
piecewise velocity polynomials.

RELATED WORK

The problem of generating feasible trajectories for UAVs has
previously been explored in the literature. (Ref. 20) builds on

Fig. 2: The fixed ground frame ¢ and moving reference frame
&/. The velocity vector in airframe v is added to the wind-
speed vector v, to produce a velocity vector in groundframe
v,. The heading in ¢ is y, while in airframe is y

the Dubins solution and uses fixed-radius arcs to link straight
segments with constant speed. (Ref. 21) proposes an online,
corridor-constrained smoothing algorithm that uses B-spline
templates to generate paths, but not time profiles. Sampling-
based techniques like (Ref. 22), (Ref. 23) are quite popular,
but do not scale well with problem size. There has also been
some work that deals with trajectory optimization in the pres-
ence of wind. The classic Zermelo—Markov—-Dubins problem
has been studied in (Ref. 18), (Ref. 17) and (Ref. 19) to char-
acterize optimal solutions, but they use sharp turns and con-
stant speed, neither of which are practical. (Ref. 10) also uses
a bounded turning radius assumption to yield minimum-time
trajectories with constant speed. (Ref. 24) uses a bounded roll-
rate to construct smooth, continuous-curvature paths between
two states in the presence of wind. However, it again as-
sumes constant speed and does not provide a mechanism to
extend the method to variable-speed trajectories. Since prac-
tical trajectory planning problems are extremely hard, it is
often necessary to decouple the problem into an initial path-
finding stage and a subsequent velocity-optimization process
( (Ref. 7), (Ref. 8), (Ref. 9)). We use concepts from previous
work done on optimizing velocity profiles given a fixed path
and a finite set of velocity bottlenecks ( (Ref. 25), (Ref. 26))
to compute time-optimal velocity profiles.

PROBLEM SETUP

In this section, we formally define the constrained trajectory
optimization problem that we wish to solve. We reproduce
material from (Ref. 6) here for the sake of completeness.

Dynamics of a Fixed Wing UAV in Wind

Aircraft such as helicopters and fixed-wing planes that ex-
ecute coordinated turns can be described by the fixed-wing
UAV model with zero side-slip. In order to describe the dy-
namics of a fixed-wing UAV in wind, we need to define two
coordinate frames - ./ and ¢ as shown in Fig. 2. The state
space dynamics are defined in 7. A state space trajectory in
&/ can be projected to ¢ using the wind.

Let the R’ state space defined in airframe </ be X =

[x,y,v,a, l//,(i),a)]T. Let the R? controlspace be U = [j,oc]T.

The dynamical equations are-



We impose a set of bounds on the state and control variables
{Vma)namax;jmaxa¢maxa¢ma)n¢max} (where |(D| < ¢max, |O£| <

(Bmax) .

Leto (1) ={x(z),y(r), y(t),9(¢)} be a time parameterized tra-
jectory defined on the time interval [0,;] in the airframe ..
The dynamics (1) and limits are translated into higher order
constraints and bounds on & (r). Without loss of generality,
we assume the wind is along the x-axis and has a magnitude
V. Let 0, (1) = {xg(1),yg(1), W, (), ¢ () } be the trajectory in
groundframe g. Let o, (r) = Proj (o (t),v,) be a projection
function that is defined as follows-

t)cosy(t) + vy
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Input Mission

Let Viarr and Vgoq be the specified start and goal veloci-
ties. The input mission consists of N waypoints {wy,...,wy}.
These waypoints define N — 1 segments. A flight corridor is
specified for each segment. The function I; (p) € {0, 1} indi-
cates if the x,y value of a configuration p lies in corridor i.
A maximum segment velocity is specified for each segment
Viti. If a configuration belongs to a corridor, it must satisfy
the segment velocity limit. The corridors are either specified
by a human, or are determined by a route-planning module
that is invoked prior to calling KITE .

Trajectory Optimization Problem

min tr
G(.),l‘f f

Derivative
Bounds

S.t

Dynamics
Constraints
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APPROACH

To make the solution-search tractable, we decouple the opti-
mization problem into a path optimization and a velocity pro-
file optimization ( (Ref. 7), (Ref. 8), (Ref. 9)). The optimiza-
tion approach, reproduced from (Ref. 6) and summarized in
Fig 3 proceeds in 4 stages:

1. Phase A: Path Optimization. This phase solves for a path
that is guaranteed to be feasible (in terms of dynamics
and route constraints) for a range of constrained veloc-
ity profiles. The path is parameterized as a sequence of
sections which are either straight lines or arcs. The opti-
mizer solves for each section i independently along with
a corresponding Vjim i, such that the section is feasible
for any velocity profile limited by Vjjm ;. In the interest
of time-optimality, the objective of this optimizer is to
maximize the velocity limit Vji, ; while keeping the total
arclength of the section small.

2. Phase B: Velocity Optimization. This phase optimizes ve-
locity at specific control points at the end of the sections
to minimize time. By ignoring jerk constraints at this
stage and assuming a trapezoidal velocity profile, we are
able to solve this optimization very efficiently.
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Fig. 3: Overview of KITE

3. Phase C: Velocity Spline Fitting. This phase solves for
smooth velocity splines that introduce jerk limits.

4. Phase D: Ground Frame Trajectory Repair. This phase
combines the path from Phase A with the velocity profile
from Phase C to yield the final ground frame trajectory.

For simplicity of exposition, we drop the z coordinate from
our formulation and note that the Z-profile is solved indepen-
dent of the X-Y profile while accounting for wind in a similar
manner as described in later sections.

Phase A: Path Optimization

Let £(7) = {x(7),y(7),w¥ (1)} be a path defined over T €
[0,1].

The first stage of the algorithm solves for a ground-frame path
Eo(T) = {xg(7),y4 (7), W, (T)}, T €[0,1] that respects corri-
dor constraints. Path optimization is a challenging problem
because of a number of reasons - it must guarantee that the
path will be dynamically feasible when the velocity profile
is determined subsequently and reason about time optimality.
Moreover, the presence of wind as a forcing function breaks
the necessary decoupling between path and time, and must
be dealt with in a principled manner. Our solution structure
addresses these concerns.

Parameterization Solving for arbitrary path shapes is in-
tractable, especially with lots of waypoints and large segment
lengths. We restrict our solution to the space of ground-frame
straight lines &y and arcs &, with smooth curvature pro-
files, where the path is a sequence {&},EL . E2 E2 ..}, Arc
end-points of &/ lie on the lines defined by (w;,w;i;;) and
(Wit1,wit2) respectively. This parameterization also scales
well with problem size. Instead of searching for individual
points along the path, only the arcs need to be explicitly de-
termined, and the straight segments simply connect their end-
points.

Arc Optimization Arcs are determined for every or-
dered triple of waypoints (wiy1,wit2,wiy3). Limits on ¢
(roll), ¢ and ¢ become active along the arc, and must
be satisfied.  These constraints directly limit the arc’s
curvature kK and its derivatives with respect to arclength
(x’,k"). Tt is essential to note that these curvature lim-
its are not invariant - it can be shown that they also de-
pend on airspeed and acceleration according to the function

CurvLimit (Vmaxa Omax; (i)maxa (ﬁmamamax) (proof at (Ref. 11)):

. = gtan Pmax ;) o B o 8 Omax
max — — 5 BNmax — 737 o Mwmax —
V%nax ’}/3 yz V?nax (4)

) 3a
(a =g0max, B =2Knaxdmax, Y= 213)

Solving for a curvature profile that respects these limits guar-
antees that the path will be dynamically feasible when the ve-
locity profile is subsequently optimized with the same limits
on airspeed and acceleration, which allows us to effectively
decouple solving for the path and velocity in a principled way.
Since these dynamic limits are defined in the air-frame, our
approach solves for these curvature profiles in the airframe
and projects them into the ground-frame.

Since curvature is constrained by airspeed, arcs function as
velocity bottlenecks. To enforce time optimality, we deter-
mine the maximum airspeed at which we can perform a turn
with the least curvature, while respecting corridor constraints.
Finally, arcs are meant to carry out heading changes in the
ground frame. To convert between Y, and y, we use the func-
tion HeadingInAir (W, v,vy):

Y = acos (_vwm(%)) —g-i-l//g 4

\4

Algorithm 1 captures this process, while the following sub-
sections explain how we determine arcs that effect a required
heading change.

Arc Parameterization Let s be the arc-length of a path.
Let £(s) be an arclength parameterized path. Building on
(Ref. 10), each arc &/ . is represented as a C1 curvature spline
k(s) comprising a degree-4 polynomial xj(s), a constant-
curvature section K () = Kyqus and another degree-4 polyno-
mial 3 (s). S},S;-,S} denote the arclengths of the three sec-
tions, and Sy denotes the total arclength. At this stage of the



algorithm, we assume a constant velocity V.. ; along the arc
to determine its ground-frame shape. This velocity serves as
the upper limit for this segment in a subsequent velocity op-
timization. We can recover a ground-frame path &,(s) from
Kk(s) using the function CurvPolyGnd (k(s)):

Vw
Viim,i

S
/ds
0

(6)

) —an' (3)

-

10

It is now trivial to carry out a change of index from s € [0,S] 11

to 7 € [0, 1] by setting 7(s) = s/S and obtain &, (7).

2
To solve for one of the segments of k(s), we use R

K K

CurvPoly(KO,Kf,SﬁKmax, s ,’,’mx)

find «(s)
K(0) = w0, K(85) = 5y ”
K'(0)=0,&'(Sf) =0
K(5) < Kimar, K (5) < Kpps K7 (8) < K

Algorithm 1, lines 4 to 15 highlight how the spline is con-
structed to satisfy the required Ay.

We solve this problem as a Quadratic Program.

Final path and velocity limits Once we have obtained all
the arcs, we concatenate straight segments and arcs to yield
the final ground-frame path &,(7). Each segment also has
an airspeed bound defined by the corresponding waypoint
definition for &, and the airspeed limit imposed by Phase

A for Ei .. We thus have a set of airspeed limits Vi, =
Vo1 Vare.l VareN—2  Vin—1], that are used by Phase
B.

Phase B: Time Optimization

Time Optimization Problem This phase determines an op-
timal scheduling of speeds along a finite set of control points
belonging to &, (7). The 2N — 4 control points are the start
and end points of each turn segment, which divide &,(7) into
a sequence of straight segments £ and turns £/ .. We obtain
the segment velocity limits V};,, from Phase A, along with the
air-frame path lengths S; for each segment. We further assume
an acceleration dmax = amax — Eo) Which is lower than the ac-
celeration limit of the system. While the current phase ignores
jerk, using a lower acceleration at this stage allows us to fit a
jerk-limited velocity spline at a later stage. The optimization
problem now is to determine the control-point velocities {V;}

14
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Algorithm 1: ArcOpt (w;, wit1,Wit2,Vy)

for v < [Vmax, Vmin] do

(Kmax, Kr/naw Kr/r;ax) —
CurvLimit (V, Pmax, (Ismaxa émax; amax)

Ay < HeadingInAir (Z(wiy1,wit2)) —
HeadingInAir (Z(wi,wi+1))

for x < [Knin, Kinax) o

K (s) =K

for S} « [P, S7*] do

k1 (s) + CurvPoly (O, K, St Kimax, K, K,anx)

max’
if k1 (s) € 0 then
L break

3 1
Sf<—Sf

K3(s) CurvPoly (K 0 Sf, Kinaxs K Kf;;ax)
s}

Ay— fo Kl fo K3(s)

S} =
if S2 >0 then
L break

K(s) < [mls) mls) ()
(s) < CurvPolyGnd (k(s))

4
arc gnd

if Z I; (ém end (8 )) > 0 then
L break

return v, &, (5), &b ana (5)

which minimize time (where Vo = Vsmrt,VNH = Vaoal):

minimize ¢ ({V;},{Si}, dmax)
subject to Vi < Vi, (8)
Wi =Vl _ g
2dmax
The total time 7 is defined as follows-
tr= Zl‘,’ )
i

Given a pair of consecutive point velocities \7,-,\7,-+1, t; can be
computed according to the following-

20 maxSi +V +V
Vinia = min \/ = ) H_l tht (10)
2Wia —Vie1 = V;
t = ldé\ i+1 z+ (11)
max
S — W= Vi -V 1 (12)
1
20max Vinid

Algorithm for Initialization Algorithm 2 is used to feasibly
initialize the nonlinear optimization problem above, which re-
sults in significant improvements in convergence rates. It uses
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Algorithm 2: Velopt(vgouh Vitart {Vlim,i}; {Si}7 a)

{Vz} — {Vstarta {th,i} >Vgoal} ; Visited < {O}N+2;
Vi < MakeFeasible (‘70,\71 ,a,Sl) ;

Vy < MakeFeasible (VNH 7\71\/,(1,.5‘1\/);
Visited[0] <— 1; Visited[N + 1] < 1;
repeat
i < Minimum ({V;}) s.t. Visited|i] = 0;
if Visited[i — 1] = O then

L Vi_| < MakeFeasible (\7,-,‘7,-_1,41,5,-)
if Visited[i+ 1] = 0 then

L ‘7i+1 <— MakeFeasible (\A/l, V
Visited([i] < 1;
until Visited[0.N+ 1] = 1;

i+laaaSi+l)

the function MakeFeasible (Vy,V5,a,S), defined as:

‘72 = \/V12+2aS

13)

Phase C

This stage operates on {V;} and fits a smooth, jerk-limited
spline V; (1) between each V; and V,,|. V;(¢) is derived by
integrating a C1 acceleration spline a(z) comprising a degree-
3 polynomial a; (), a constant-acceleration section a; () =
@;rans and another degree-3 polynomial as (1). t},t]%,t; denote
the time spanned by the three sections, and ¢; denotes the total
time of the spline. Each acceleration spline segment effects a
velocity change from some V; to Vi1, and is exactly analogous
in structure to the curvature spline described earlier. We omit
the details of computing these splines, since they are the same
as for the curvature splines.

Once all the spline segments have been computed, they are
combined to yield the final airspeed spline V (¢), r € [0,z7]. It
is important to note that time has been used here merely as a
suitable parameter to compute these splines, and that it does
not represent the actual time profile of the trajectory. V (¢) is
thus converted to V (7) by setting T = fo’ and consistency of
7 with Phase A is maintained by construction. The next stage
computes the final time-parameterized trajectory.

RESULTS

Our algorithm is currently part of the C++-based motion plan-
ning architecture running on board the full-scale autonomous
helicopter with a human pilot-in-the-loop described previ-
ously. The heliopter is equipped with a scanning laser for per-
ception, along wth inertial sensors and GPS. Its 6D pose and
velocity are estimated with the help of both GPS and inertial
sensors. KITE serves as a global planner, and computes the
entire trajectory from takeoff to landing in real-time whenever
the wind conditions or mission requirements change. A local
planner (Ref. 12) is responsible for following this trajectory
in the nominal case, and for performing obstacle avoidance
should the need arise. The algorithm receives real-time infor-
mation about wind from an on-board pitot tube, and re-plans

SAFE CORRIDOR

*

START GOAL

WAYPOINT_, %

Fig. 4: Overview of the problem, showing waypoints and the
safe flight corridor.

whenever the wind changes significantly. Fig. 4 depicts the
inputs to the algorithm.

Performance In Wind

Fig. 5 shows the mission waypoints and planned trajectory
for a flight test performed with our system in a ~ 20 knots
wind blowing towards 270°N. Fig. 6 shows the speed (a),
heading (b) and roll (c) profiles for the same mission. The
groundspeed and heading were tracked fairly well, while en-
suring that the commanded airspeed respected acceleration
and jerk constraints of 0.1g. The commanded roll and roll-
rates are within the system limits indicated by the dashed red
line. The plots also indicate the direction in which the he-
licopter must be pointed (i.e the crab angle) such that the
desired ground-frame heading can still be maintained in the
given wind regime. It is to be noted that with zero wind, the
airspeed would equal groundspeed, as would crab angle and
desired heading. Fig. 7 shows similar speed and heading per-
formance plots for another flight test with a ~ 19 knots wind
blowing towards 80°N.

Our system has thus far been tested in 23 flights under winds
upto 40 knots, where the algorithm failed to compute a feasi-
ble trajectory in 3 cases. The failures were due to very tight
corridors, where the algorithm could not keep the trajectory in
safe airspace under the corresponding wind conditions. KITE
accepts the waypoints and corridors as inputs, and does not
compute them.

Online Re-planning

Give changing wind conditions or mission requirements, it is
essential for the motion planning architecture to respond and
re-plan in near real-time. Fig. 8a shows plots of wind di-
rection and magnitude from one of our test flights, and com-
pares the spatial profile of the trajectory (b) and commanded
airspeed and crab angle (c) for two different wind regimes
encountered during the test - 38 knots, 170°N and 16 knots,
90°N. Such situations are commonly encountered when the
helicopter takes off, where the wind conditions at ground level
can be quite different from wind conditions at cruising alti-
tude. While KkITE accepts estimates of wind (say, from a
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Fig. 5: Results from a test conducted on our full-size heli-
copter with a ~ 20 knots wind blowing towards 270°N. (a)
shows the complete trajectory overlaid on a map along with
the mission waypoints; (b) shows the XY spatial profile of the
trajectory (left), along with the vertical profile (right). Way-
points are shown in blue, the start point in green and the final
point in black. This is a complete trajectory from takeoff to
landing. The safe flight corridor has not been shown due to
scale.

weather station) all along the mission to compute a feasible
trajectory, it is essential for it to re-compute its trajectory on-
line when the measured wind deviates significantly from the
original estimates. In all our tests, kI TE returns a solution (or
failure code in the three runs mentioned above) within 5 — 7s.

CONCLUSIONS

Our conclusions can be summarized as follows-

1. Our algorithm effectively plans smooth, dynamically-
feasible trajectories that explicitly account for wind. It
is near real-time, which is essential for practical deploy-
ment on aerial vehicles such as our autonomous heli-
copter.

2. Decoupling path optimization from velocity optimiza-
tion is an extremely effective strategy to make the highly
non-convex problem tractable. Our derivation of appro-
priate curvature limits, taking into account all appropri-
ate dynamic limits of the system (roll and its derivatives,
airspeed and acceleration) is the key ingredient that al-
lows us to decouple path from velocity in a principled
manner. This is an especially difficult problem given the
presence of wind, which automatically introduces time-
dependence even in the path optimization stage.
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Fig. 6: Speed, heading and roll profiles for the flight test
shown in Fig. 5. (a) shows the commanded airspeed, com-
manded groundspeed and the measured groundspeed. Note
that in the absence of wind, airspeed and groundspeed would
be equal; (b) shows the commanded and executed heading
profile (left), along with the crab angle necessary for main-
taining heading in the given wind environment (right); (c)
shows the commanded roll and roll-rate profile for the entire
trajectory (left), with a magnified view from a section of the
trajectory (right). The roll limits are represented by the dashed
red line.

3. We have demonstrated the effectiveness of our algorithm
with 20 successful real-world flight tests using both on-
board wind measurements and estimates from weather
stations, and analyzed the 3 cases where it failed to find
a feasible trajectory.

4. xITE is currently constrained to lie on the polyline de-
fined by the mission waypoints. Including the problem of
determining turn end-points in the optimization process
is an area of future work.
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Fig. 7: Results from another test flight in the presence of a
a ~ 19 knots wind blowing towards 80°N. Once again, we
compare commanded airspeed, commanded groundspeed and
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Fig. 8: Results from a flight test showing online re-planning
when the measured wind changes from 38 knots, 170°N to
16 knots, 90°N (a) shows a plot of wind speed and direc-
tion estimated in real-time with an on-board pitot tube; (b)
shows the full trajectory from start (green) to goal (black) for
a moment when the measured wind is 38 knots along 160°N
(left), and compares spatial profiles of a turn under the two
wind regimes; (c¢) compares the commanded airspeed (left)
and commanded crab angle (right) for the two wind regimes.

5. KITE also determines whether it is safe to takeoff/land
in the current wind regime, and aborts before takeoff if
the conditions are adverse to safe flight.

6. While we have not currently tested with very long mis-
sions (> 100km), our simulation results indicate that
KITE scales gracefully with mission length and the num-
ber of waypoints. For example, kI TE computes a trajec-
tory for a ~ 500km mission in ~ 7s.

7. We have open-sourced a MATLAB implementation of
KITE at https://bitbucket.org/castacks/
kite_optimizer.

Author contact: Vishal Dugar (vdugar@andrew.cmu.edu),
Sanjiban Choudhury (sanjibac @andrew.cmu.edu), and Sebas-
tian Scherer (basti@andrew.cmu.edu).
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