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Abstract— Maximizing information gathered within a budget
is a relevant problem for information gathering tasks for robots
with cost or operating time constraints. This problem is also
known as the informative path planning (IPP) problem or
correlated orienteering. It can be formalized as that of finding
budgeted routes in a graph such that the reward collected by
the route is maximized, where the reward at nodes can be
dependent. Unfortunately, the problem is NP-Hard and the state
of the art methods are too slow to even present an approximate
solution online. Here we present Randomized Anytime Orien-
teering (RAOr) algorithm that provides near optimal solutions
while demonstrably converging to an efficient solution in run-
times that allows the solver to be run online. The key idea
of our approach is to pose orienteering as a combination of
a Constraint Satisfaction Problem and a Traveling Salesman
Problem. This formulation allows us to restrict the search
space to routes that incur minimum distance to visit a set of
selected nodes, and rapidly search this space using random
sampling. The paper provides the analysis of asymptotic near-
optimality, convergence rates for RAOr algorithms, and present
strategies to improve anytime performance of the algorithm.
Our experimental results suggest an improvement by an order
of magnitude over the state of the art methods in relevant
simulation and in real world scenarios.

I. INTRODUCTION

Data acquisition is relatively easy in the virtual world,
where the cost of accessing data can be equivalent to
accessing a memory block. But data gathering in physical
spaces, where it is impractical to have sensor networks is
not as trivial. Currently we rely on humans to carry or drive
sensors around to digitize the physical world to collect data.

Some examples of gathering data in the physical realm are
- examining oil pipelines for leaks, inspecting infrastructure
for faults, exploring water bodies to monitor the ecosystem
and surveying disaster scenarios for search and rescue. Using
humans to do such meticulous, tedious and often risky tasks
is far from ideal. Therefore, there is an urgent need to develop
autonomous robots capable of performing these tasks.

Consider a situation where a region is affected by floods.
There is an urgent need to locate survivors, provide supplies
and establish communication with them. We have at our
disposal a UAV with a camera that can fly up to a limited
distance of 1 km. Then the problem becomes that of locating
and counting as many survivors as possible while being
restricted to fly 1 km. The robot needs to reason about the
fact that it can gain a lot of information about the area by
gaining height and subsequently flying close to survivors to
get a more detailed picture.
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Thus the two salient characteristics of the problem are
1) Constraint on the total travel distance. Due to limita-

tions of fuel / battery, the length of the route taken by
the robot is limited.

2) Correlated nature of information. Equipped with cam-
eras, UAVs can view large areas from a distance to gain
information. This leads to reward of visiting different
locations being correlated.

The problem of planning routes to gain information is an
NP-hard problem [1]. The current state of the art systems
attempt to solve this problem using two lines of approach.
One approach is to apply a myopic strategy [2], [3] where
a set of sensing locations is identified and the system
travels to the most promising one. While such strategies are
computationally efficient, they fail to effectively account for
the constraint on traveling distance. As a result the computed
routes can lead to oscillatory behavior.

Another approach is to invoke a long horizon planner [4]–
[7]. However, these approaches are far from real-time.

The key contribution of this paper is an anytime, prov-
ably near-optimal algorithm, Randomized Anytime Orien-
teering(RAOr), that can efficiently solve for routes that
maximize correlated reward functions subject to constraints
on route length. The key ideas behind RAOr is to restrict the
search space to routes that incur minimum distance to visit
selected nodes, and rapidly search this space using random
sampling.

We provide empirical and theoretical analysis of RAOr.
We prove it to be near-optimal while providing convergence
rate analysis. Empirically the algorithm outperforms the state
of the art by more than an order of magnitude in terms of run
time required to solve benchmark problems near optimally.

In the next Section we formulate the problem and describe
the essential related work. In Section III we elucidate on
transforming Correlated Orienteering to a Constraint Sat-
isfaction Problem and a Traveling Salesman Problem. The
resultant algorithm (RAOr, Alg. 1) obtained by leveraging
the new formulation is described in Section IV with its
properties and drawbacks. These drawbacks are addressed
in Section V. The evaluation results and conclusions along
with scope of future work is presented in Section VI.

II. PROBLEM FORMULATION

Let us formally define the problem of maximizing the
reward in a given experiment while respecting a traveling
budget B. Let V = [v1, v2, v3, ..., vn] be the set of all sensing
location in the workspace. Let the robot start from node
vs ∈ V and end at node ve ∈ V . Let r = [vs, v

r
1, ..., v

r
m, ve]



be an ordered set of the sensing locations where, r : r ⊆
V . For each r, let I(r) be the reward gained by visiting
each location in r. Let the cost of traversal be given by
C(r) =

∑
i=1:|r|−1 C(v

r
i , v

r
i+1), where vi is the ith element

in r , ∀i ∈ [1, |r|]. The problem then is defined by equation 1.

argmax
r⊆V

I(r) subject to C(r) ≤ B (1)

The Orienteering Problem (OP) [8] is closely related to
the exploration problem. In the Orienteering Problem reward
at nodes are defined to be independent of each other or in
other words the the reward function is modular. Algorithms
that provides a solution of constant approximation ratio of
(2 + ε), where ε is a small number, were given by [9], but
such guarantee is unsatisfactory in practice. On the other
hand Mixed Integer Programing(MIP) based solutions exist
for OP and related problems [10]. But these solutions fail
to capture the reward relationship amongst nodes, leading to
sub-optimal paths.

[1] established that information gain is sub-modular and
monotonic. Nemhauser in 1978, [11] provided an efficient
method to optimize submodular functions. Unfortunately
adding the traveling budget constraint makes the problem
non-submodular and non-monotonic. [5], [12] suggested
using a recursive-greedy to find approximate solutions for the
orienteering problem if the reward function is submodular.
Due to large run-times none of these solutions scale well to
real world problems. The runtimes of most of the algorithms
exceed 3 minutes on a standard desktop PC for a graph of
more than 100 nodes.

The MIP based methods solve for linearly relaxed versions
of the problem and then impose integer constraints, [4]. This
results in the method spending most of its time finding partial
solutions that do not meet the budget constraints. Also, the
state of the art algorithms optimize for the nodes to visit and
the sequence in which to travel those nodes together. This
leads to the algorithms searching a huge space of solutions
for which the sequence of nodes traversed is sub-optimal.

The large run times and the failure to model the reward
relationships amongst nodes, necessitates the development
of better exploration planning algorithms for efficient au-
tonomous information gathering systems. In the following
section we propose reformulating the problem as a com-
bination of Constraint Satisfaction and Traveling Salesman
Problem to overcome these limitations.

III. FROM ORIENTEERING TO SET SELECTION AND TSP

The solution to the correlated orienteering problem is a
route in a graph, such that the reward attained by the route
is maximized while the path cost stays within a specified
value. We break the problem of finding the route, into finding
the set of locations to visit and then finding the optimal
order in which to visit those locations. Since, we assume
the reward function is independent of the order in which
the set is visited. This allows the set selection and set
order optimization to run independently, without affecting the
reward attained by a set. The set selection problem can be

Input: G = [V,E], vs, ve, B, Tr
Output: The best route found in run-time Tr

1 S = SampleSet(V ) // Random set is picked such
that it contains vs and ve

2 r = TSP (S, vs, ve)
3 rbest = φ
4 if RouteLength(r) <= B ∧Reward(r) > Reward(rbest) then
5 rbest = r
6 end
7 for i = 1 : 3|V | do
8 vnew = Sample(V ) // sample a node
9 if IsInRoute(r, vnew) then

10 r = DeleteFromRoute(r, vnew)
11 end
12 else
13 r = AddToRoute(r, vnew)
14 end
15 if RouteLength(r) <= B ∧Reward(r) > Reward(rbest)

then
16 rbest = r
17 end
18 end
19 return r
Algorithm 1: Randomized Anytime Orienteering(RAOr)

formulated as a Constraint Satisfaction Problem (CSP) and
finding the optimal order for the selected set is studied as the
Traveling Salesman Problem (TSP). In the following we pose
the correlated orienteering as a combination of CSP and TSP.
Treating set selection and order optimization as independent
problems allows us to exploit efficient TSP solvers to
search an exponential search space efficiently in polynomial
time. The resulting algorithm (RAOr) is presented in 1 and
described in IV

A. Constraint Satisfaction Problem

In this section we describe how the Correlated Orien-
teering problem can be viewed as a Constraint Satisfaction
Problem. Let r∗ be the solution to equation 1. Let, V ∗ be
the set of nodes that are present in r∗. Let, ar ∈ {0, 1}|V |
signify the presence of the nodes in a route r, such that
air = 1 if vi ∈ r and air = 0, otherwise. In order to
solve the correlated orienteering problem we want to find the
assignment ar∗ and then the optimal order in which nodes
belonging to r∗, should be visited.

Randomized technique for efficient search for satisfying
assignment of a binary tuple was presented in 1999 in [13]
as a solution to the CSP problem. RAOr employs the same
technique to search for the optimal assignment of a = ar∗ ,
i.e. randomly flipping the assignment of one of |V | bits of
a.

B. Traveling Salesman Problem

Once the correct set of nodes are found, then finding the
optimal route just requires finding the order in which they
need to be visited. Traveling Salesman Problem solvers can
provide us with a near-optimal order in polynomial time,
[14]. Hence combining the TSP and CSP solvers allows us
to develop an algorithm to solve the correlated orienteering
problem near optimally and efficiently.

IV. RANDOMIZED ANYTIME ORIENTEERING

In this section we describe our algorithm (Alg.1) in detail.
We highlight its properties and drawbacks with examples. In
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Fig. 1: Illustration of drawbacks of RAOr algorithm. a) The problem shown in here consists of three high valued nodes and a budget just
sufficient to visit all three. The optimal solution is to visit all three nodes but very few routes exist that have a reward close to optimal.
The solution shown is found by running RAOr-G algorithm, Alg. 2. b) Shows the run time vs reward plot for the problem shown in (a)
for both RAOr-G and RAOr.RAOr can only attain approximately 66% of the optimal value, as it has a hard time selecting the correct set
of nodes. c) Illustrates the problem RAOr faces while running on problems with a small budget. Here a 5X5 grid of nodes, distributed
uniformly at a resolution of 1 with a budget of 15 is shown. The routes in red are routes sampled by RAOr that exceed the budget,
whereas routes in blue are routes that were sampled that do not exceed the budget. Visibly, red routes outnumber the blue routes. d) The
same problem leads to poor run times of RAOr for relatively low budget problems. Here we show the run times of RAOr and RAOr-G on
the 5X5 grid shown in (c) while varying the available budget. A runtime of 0 signifies that the algorithm did not converge. Clearly RAOr
did not converge for low budget problems in the allotted time. Highlighting the limitation of RAOr in dealing with low budget problems.

the next section we will discuss methods to overcome these
drawbacks.

The algorithm starts with uniformly sampling a set of
nodes S ⊂ V |vs, ve ∈ S (Alg. 1 Line 1). The order in which
S should be visited is computed using a TSP solver (Alg.
1 Line 2). Running a TSP solver searches an exponential
space of routes in polynomial time, leading to run time
reduction. The generated route is then checked for satisfying
the budget constraint and saved as the best available route if
it is admissible (Alg.1 Line 2-3).

The algorithm then uniformly samples a node vnew ∈ V
and changes it’s status of being in route r (Alg. 1 Line 6-12
). i.e if the node vnew was in route r, it is removed from
route r or if it was not in route r, it is added to it. The new
route obtained is checked for satisfying the budget and saved
as best available route, if it exceeds the value of rbest. This
process is repeated 3|V | times.

The algorithm described above is the standard probabilistic
algorithm for constraint satisfaction problem as suggested in
[13] changed to return the best route available in the budget.
We now list some of the properties and drawbacks of the
algorithm.

Theorem 1 (Optimality of Randomized Anytime Orienteer-
ing). Randomized Anytime Orienteering algorithm almost
surely finds the optimal route from start to end nodes, within
budget B, if there exists one, within a polynomial factor of
(2(1− 1/|V |))|V | repetitions.

The proof of the theorem is provided in the appendix.
Finding the optimal route for the TSP is an NP-Hard

in a space that is exponential in number of nodes. But,
polynomial time α approximation algorithms, where α ≥ 1,
for a TSP exist in literature [14]. We leverage the polynomial
time TSP solver to make Alg. 1 tractable.

Theorem 2 (α-Optimality of Randomized Anytime Orien-
teering). Randomized Anytime Orienteering algorithm al-

most surely finds the optimal route from start to end nodes,
within budget B/α, if there exists one, within a polynomial
factor of (2(1 − 1/|V |))|V | repetitions. Given that the TSP
solver in the inner loop is α-approximate.

A. Drawbacks

1) Uniform Sampling of Sets: RAOr has low run-time for
the case where a large number of routes lie within the budget
and perform near optimally. But the problem scenarios where
the probability measure of near optimal paths is small the
runtime of the algorithm is unacceptable. Fig. 1 (a) and (b)
presents a problem where the route has to pass through the
three high value nodes to achieve close to optimal reward,
while the budget is just sufficient to do so. RAOr needs to be
able to sample from a highly restricted set of feasible near
optimal sets. This leads to large run times.

2) Sampling Inadmissible Sets: RAOr can potentially
spend a lot of time considering sets that are out of budget
if budget is small as compared to graph size. As is demon-
strated in Fig. 1 (c) and (d).

To alleviate the drawbacks of the problem we improve the
algorithm such that it still keeps its global solution finding
properties but improve its convergence properties in these
pathological cases. These improvements are defined in the
next section and the improved algorithm is described in
Alg. 2.

V. RANDOMIZED ANYTIME ORIENTEERING - GREEDY
(RAOR-G)

The RAOr algorithm (Alg. 1) uniformly samples in the
space of sets to find the optimal set of nodes that should be
in route. This provides with global solution optimality guar-
antees while sacrificing on run-times for some pathological
cases.

We augment the algorithm to improve its anytime prop-
erties by leveraging the problem structure in the following
ways -
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Fig. 2: An illustration how RAOr-G combines CSP and TSP solvers in combination with local greedy heuristics to explore the space of
routes rapidly, resulting in improvement of run times for finding near optimal solutions for the correlated orienteering problem. a) Using
the CSP algorithm the current admissible route is given by r = xstart, x1, x2, x3, xend. b) At the next step x4 is sampled, and is to be
added to the route. c) The exponential number of ways in which x4 can be added to r is reduced to a near optimal order in polynomial
time by the TSP solver. This step reduces an exponential search space with in polynomial computation costs. d) The new route obtained
is then improved by conducting a local search using greedy heuristics.

Input: G = [V,E], vs, ve, B, Tr
Output: The best route found in run-time Tr

1 rg = TSP (vs, ve) // Seed local search if no global
solution is found

2 R = rg
3 if RouteLength(rg) > B then
4 return ∅
5 end
6 S = SampleSet(V, vs, ve)
7 r = TSP (S, vs, ve)
8 if RouteLength(r) <= B then
9 R = R ∪ r

10 end
11 for i = 1 : 3|V | ∧ runtime < Tr do
12 vnew =WeightedSample(V )
13 if IsInRoute(r, vnew) then
14 r = DeleteFromRoute(r, vnew)
15 end
16 else
17 r = AddToRoute(r, vnew)
18 end
19 if RouteLength(r) <= B then
20 R = R ∪ r
21 end
22 R = GreedyLocalSearch(G, vnew, R,B)
23 end
24 return argmaxr∈R I(R)

Algorithm 2: RAOr-Greedy(RAOr-G)

1) Conducting local searches in the space of routes.
2) Restricting the local search to admissible sets.
3) Informed sampling to improve the likelihood of sam-

pling high value nodes.
The resulting algorithm is called Randomized Anytime Ori-
enteering - Greedy (RAOr-G) and is presented in Alg. 2, Fig.
2.

Since, the RAOr-G (Alg. 2)is very similar to RAOr (Alg.
1) we highlight the differences here. RAOr-G is seeded with a
route which consists of only vs, ve, Alg. 2, Line 1-2. The set
of nodes is sampled as in RAOr (Alg. 1) but if the resulting
route generated by running TSP on selected nodes lies within
budget it is added to the set of feasible routes R, Alg. 2, Line
8-10. R is then used by the local search algorithm as the
candidate set for running greedy local search, Alg. 2, Line
22. The GreedyLocalSearch function is presented in Alg

3 and described in Section V-A. Another major difference
is that instead of uniformly sampling for the node to add
or delete from the route, the sampling is weighted in order
to sample more valuable nodes often. The intuition behind
weighted sampling is described in Section V-B.

A. Local Greedy Search Heuristic

Input: G = [V,E], vnew , R, B
Output: Updated set R after conducting local greedy search

1 rc = FindBestRouteInBudget(vnew, R)
2 if rc == ∅ then
3 rcn = Route(ve, vnew, vnew) // TSP
4 end
5 else
6 rcn = AddToBestRoute(vnew, rc)

// Run a TSP with vnew added to rc.
7 end
8 R = R− rc
9 rcn = AddNearByNodes(G, rcn, B, d, c)

10 R = R ∪ rcn
11 return R

Algorithm 3: GreedyLocalSearch

Local greedy search heuristic is used to improve the
runtime of RAOr algorithm and also to improve the anytime
performance of the algorithm. The greedy search takes as
input a set of feasible routes found so far, R and the sampled
node vnew. It finds the route rc ∈ R according to equation
2.

rc = argmax
r∈R

I(r ∪ vnew)− I(r)
RouteLength(r ∪ vnew)

subject to RouteLength(r ∪ vnew) ≤ B

(2)

The reward of the updated route is further improved by
adding nodes that are within distance d and increased the
reward gained by the route by at least c, while keeping it in
budget (Alg. 4).

The total computation cost of a single iteration of local
greedy search heuristic is O(|R||V |). In practice we have
found that the speedup achieved far outweighs the cost, Fig.
1.



Input: G = [V,E], rcn, B, d, c
Output: Updated set R after conducting local greedy search

1 forall the v ∈ V |DistanceFromRoute(v, rcn) <= d do
2 if (I(rcn ∪ v)− I(rcn)) ≥ c then
3 if DistanceFromRoute(v, rcn) ∗ 2 ≤

B −RouteLength(rcn) then
4 rcn = AddToRoute(v, rcn)

// Run a TSP with v added to rcn.
5 end
6 end
7 end
8 return rcn

Algorithm 4: AddNearByNodes

In the next Section we describe the intuition behind using
weighted sampling instead of uniform sampling and how it
affects the theoretical guarantees provided by the RAOr-G
algorithm (Alg 2).

B. Weighted Sampling

Weighted sampling, samples nodes with the probability
directly proportional to the reward they offer independently.
The intuition behind weighted sampling is that nodes with
high values tend to be the part of optimal routes. Unfortu-
nately weighted sampling adversely affects the theoretical
guarantees of the algorithm, but empirically it leads to
alleviating the problems caused by uniform sampling IV-A.1.

Theorem 3 (Optimality of Randomized Anytime Orienteer-
ing - Greedy). Randomized Anytime Orienteering - Greedy
algorithm almost surely finds the optimal route from start
to end nodes, within budget B/α, if there exists one in

polynomial factor of
(

2
1+ζ

)|V |
repetitions, where ζ =(

((|V |−Imin)Imin)β
(|V |−1)(β+1)

)
, Imin = minv∈V and I(v)6=0 I(v), β =

1
|V |−2 .

VI. RESULTS

We evaluate the computational performance of RAOr
on various benchmark examples against the state of the
art methods. Then, we apply the algorithm on a realistic
coverage scenario in simulation. All simulation computations
are performed on a computer equipped with Intel Core
i7-4870HQ using Matlab. We also deploy the algorithm
on a UAV and demonstrate its application for exploration
planning.

A. Computational Performance

The benchmark problem, Fig 3 consists of a graph with
nodes located in a grid at uniform resolution. The reward
for visiting each cell in the grid is 1. There is no reward
for visiting a cell twice. Table I shows the comparative run
times of state of the art algorithms vs RAOr-G for different
problem sizes and varying budgets. Both RAOr-G and eSIP
are anytime in nature. Each algorithm was stopped when
it reached 95% of the optimal value. RAOr-G outperforms
the state of the art in all the benchmark problems. RAOr-G
solves the problem with 400 nodes approximately 100 times
faster than the eSIP.
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Fig. 3: Illustrated here is 10X10 grid size benchmark problem with
RRO-G run. For all the benchmark problems the nodes are situated
in a uniform grid with 1 resolution. For this particular problem
RAOr-G is able to find a near-optimal solution in 6.9 seconds while
the state of the art takes 143.6 seconds for finding same quality of
solution.

Grid Size Budget eSIP MIQP RAOr-G

5X5 30
cost 29.8 29.6 29.4

utility 24 25 24
time(s) 6.8 15.3 0.5

7X7 60
cost 56.6 57.3 56.1

utility 48 49 48
time(s) 26.7 1358.5 2.4

10X10 100
cost 99.0 99.8 98.9

utility 87 92 87
time(s) 143.6 15330 6.9

20X20 100
cost 99.7 - 99.2

utility 87 - 87
time(s) 763.7 - 7.2

TABLE I: Comparative run time analysis of state of the art v/s
RAOr-G. RAOr-G consistently outperforms the state of the art in
terms of run times for achieving near-optimal solutions. All the
solutions obtained are atleast 95% of the optimal.

B. Correlated Rewards

In the first scenario we compared the computational per-
formance against algorithms that promise optimality but on
a simple case, where rewards of the nodes were independent.
Here we evaluate RAOr-G’s performance against algorithms
that can potentially work on-board robots given their rela-
tively low runtimes.

The algorithm has to find a route given start and end lo-
cations such that the reward collected is maximized. Reward
at a node is defined by the region visible from a 25o field of
view, downward facing camera. Viewpoints exist on grid of
4m, at a height of 10m and at a uniform distance of 20m at
a height of 55m. Resulting a total of 650 nodes/viewpoints.
The area is randomly strewn with 5 high value objects,
covering those from lower viewpoints results in a 10 times
higher reward than other locations. Two distance metrics
are implemented, Case 1 Euclidean distance and Case 2
Euclidean distance with travel along z-direction costing 3
times more vs. traveling in x-y plane, see figure 4. Since
nodes/viewpoints are distributed in a uniform fashion, greedy
solutions are able to perform near optimally in Case 1.
RAOr-G performs comparably to the greedy solutions, while
incurring a bit more runtime. In Case 2, greedy solutions
are clearly stuck in a local maxima, leading to a much



worst performance than RAOr-G. In both cases RAOr-G
outperforms RIG algorithm both in runtimes and solution
quality, see figure 4.

C. Robotic Exploration

The algorithm was deployed on an autonomous UAV
system described in this link-https://goo.gl/bNr6Du.
It ran at 3Hz on an Odroid-C2. Figure 5 describes the vehicle
mission. The vehicle is deployed to scout for cars and collect
high resolution data if a car is found. The exploration reward
function is weighted probability distance between current
robot’s belief and expected updated belief and a fixed reward
of 20000 is allocated to scanning a car, for more details see
following link-https://goo.gl/bNr6Du.The algorithm
is run adaptively as the vehicle’s representation is updated
and is able to guide the vehicle to explore the environment
and locate and map both the cars, see figure 5.

VII. CONCLUSION

The paper presents RAOr-G, an anytime, near-optimal,
randomized algorithm for solving correlated orienteering
problems. Preliminary results presented in the paper demon-
strate the algorithm to be an order of magnitude faster than
state of the art. Infact, the run-times of the RAOr-G algorithm
allowed us to deploy the algorithm on-board a UAV for the
purpose of budgeted data gathering.

Future work will involve rigorous bench marking of the
algorithm against the state of the art methods. We will also
test the algorithm as the information gathering planner on
more complex scenarios on the UAV. Since, RAOr-G is the
global exploration planning algorithm, we will implement
a local data gathering algorithm similar to [15] and ensure
vehicles safety as described in [16].

VIII. APPENDIX

Proposition 1 (Returning optimal route on optimal set selec-
tion). If RAOr finds the optimal set of nodes to visit during
it’s run-time, it is guaranteed to return the corresponding
optimal route, if an optimal TSP solver is used.

Proof. In every iteration, RAOr (Alg. 1) checks if the set
of nodes selected in that iteration can be visited within the
budget constraint. The optimal order to visit the selected set
is given by a TSP solver. If the selected set can be visited
within the budget, it is stored as the best set encountered if
it is more rewarding than the previous best set encountered.
The most rewarding set encountered in the budget is returned.
Therefore, if set V ∗ is encountered it is guaranteed that
r∗ will be found and returned, given we have an optimal
TSP solver. Hence, if RAOr finds the optimal set of nodes
to visit during it’s run-time, it is guaranteed to return the
corresponding optimal route, if an optimal TSP solver is
used.

We next compute the probability of finding the optimal
assignment or equivalently the optimal path using RAOr.

Proposition 2 (Probability of finding the correct path). Ran-
domized Anytime Orienteering algorithm finds the optimal

route from start to end nodes, within budget B, if there exists

one, with a probability of at least
(

1
2

(
1 + 1

|V |−1

))|V |
in one

run.

Proof. The proof of this theorem is taken from the work
on probabilistic algorithm for constraint satisfaction problem
[13].

Given ar∗ is the optimal solution, we want estimate the
lower bound on the probability that Alg. 1 finds ar∗ . Once we
have found this success probability p, the expected number
of independent repetitions of the procedure until we find the
optimal solution is 1/p.

Now, we calculate p. It is clear that the random variable
X that counts the number of bits in which the random
assignment a and the fixed assignment ar∗ disagree (i. e.
the Hamming distance between a and ar∗ ) is binomially
distributed. That is, Pr(X = j) =

(|V |
j

)
2−|V |. If the system

is in state 0, this means, an optimal assignment has been
found.

At any given point in the algorithm, if a is not the optimal
assignment then there must be atleast one vertex out of |V |
that needs to be flipped (included or excluded from the
set selection) to reduce the hamming distance of a to ar∗

reduces by 1. Selecting the correct vertex would mean that
the current state transfers j to transfers to state j − 1 with
probability at least 1/|V |, and transfers to state j + 1 with
probability at most |V |−1|V | . This markov chain is the same as
described in [13]. We present the proof of value of p here
for completeness.

Given that the process has initially transferred into state j,
we calculate the probability qj that the process reaches the
absorbing state 0. For this to happen the process needs at
least j steps. We consider the case that the random walk
takes i ≤ j steps in the ”wrong” direction and i + j
steps are required toward the ”right” direction so that the
process stops in state 0 after j + 2i steps. To calculate this
probability requires us to calculate the number of paths on
a rectangular grid (which represents the possible movements
over the Markov chain over the time scale) which transfers
the process from state j to state 0 while exactly i steps in the
”wrong” direction. Using the ballot theorem from [17], page
73, it can be seen that this number is

(
j+2i
i

)
. j
j+2i . Therefore,

the probability can be estimated as follows.

qj ≥
j∑
i=0

(
j

j + 2i

)
.

j

j + 2i
.

(
|V | − 1

|V |

)i
.

(
1

|V |

)i+j
qj ≥

1

3

j∑
i=0

(
j

j + 2i

)
.

(
|V | − 1

|V |

)i
.

(
1

|V |

)i+j (3)

Further we can lower bound the above sum by its largest
term as follows. We use the following fact [18].

(
n
βn

)
∼

2h(β)n =
(

1
β

)βn (
1

1−β

)(1−β)n
where h(β) = −β log2 β −

(1 − β) log2(1 − β) is the binary entropy function. In
particular, the two functions(

(1 + 2β)j

βj

)
and

[(
1 + 2β

β

)β
.

(
1 + 2β

1 + β

)1+β]j
(4)

https://goo.gl/bNr6Du
https://goo.gl/bNr6Du
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https://goo.gl/bNr6Du
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Fig. 4: a)RAOr-G planned path with a 500m budget on the 100X100 area for Case2. Red marks the sensor footprint, if the vehicle
flies low, the sensor footprint is small. Notice how the path visits high value regions, displayed in black. Grey paths show all the paths
searched by RAOr-G. b) and c) Case 1 is displayed in dashed line, Case 2 in solid lines. RAOr-G is competitive with greedy algorithms
in Case 1 and dramatically outperforms greedy and RIG for Case 2, where greedy algorithms are stuck in local maxima.
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indicate absence of cars and red squares presence of cars. Shades of grey and red signify certainty. Once the car is recognized, a 360
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are within polynomial factors of each other. We lower bound
the above estimation for qj by setting β = 1

|V |−2 .

qj ≥
1

3

j∑
i=0

(
j

j + 2i

)
.

(
|V | − 1

|V |

)i
.

(
1

|V |

)i+j
≥
[(

1 + 2β

β

)β
.

(
1 + 2β

1 + β

)1+β( |V | − 1

|V |

)β
.

(
1

|V |

)1+β]j
where β =

1

|V | − 2

=

(
1

|V | − 1

)j
(5)

where the last inequality holds up to some polynomial factor.
Therefore, up to some polynomial factor, using the binomial

theorem, we obtain the following estimate for success prob-
ability p

p ≥ (
1

2
)|V |

|V |∑
j=0

(
|V |
j

)(
1

|V | − 1

)j
=

(
1

2

(
1 +

1

|V | − 1

))|V | (6)

Theorem 1 (Optimality of Randomized Anytime Orienteer-
ing). Randomized Anytime Orienteering algorithm almost
surely finds the optimal route from start to end nodes, within
budget B, if there exists one, within a polynomial factor of
(2(1− 1/|V |))|V | repetitions.

Proof. According to Proposition 2 the RAOr algorithm



finds the optimal set with probability atleast p ≥
( 12 )
|V |∑|V |

j=0

(|V |
j

) (
1

|V |−1

)j
=
(

1
2

(
1 + 1

|V |−1

))|V |
. The

expected number of independent repetitions of the RAOr
algorithm are 1/p. The probability that RAOr will not find a
satisfying assignment after h repetitions is at most (1−p)h ≤
e−ph. Therefore, to achieve acceptable chance of missing the
optimal path, say e−50, we can choose h = 50/p. So the
complexity is within a polynomial factor of 1/p. Therefore,
Randomized Anytime Orienteering algorithm almost surely
finds the optimal route from start to end nodes, within
budget B, if there exists one, within a polynomial factor
of (2(1− 1/|V |))|V | repetitions.

Theorem 2 (α-Optimality of Randomized Anytime Orien-
teering Algorithm). Randomized Anytime Orienteering al-
gorithm almost surely finds the optimal route from start to
end nodes, within budget B/α, if there exists one, within
a polynomial factor of (2(1− 1/|V |))|V | repetitions. If the
TSP solver in the inner loop is α-approximate.

Proof. If the TSP solver is α optimal, if V ∗ is encountered
during set selection, the length of the route covering the set
may not fit inside the budget constraint.

Although, if V ∗b is the most rewarding set that can be
visited in B

α , then it can be guaranteed that if V ∗b set
is selected, it will be returned as the most rewarding set
by RAOr. The probability of finding V ∗b is presented in
equation 6 and hence the RAOr algorithm almost surely
finds the optimal route from start to end nodes, within budget
B/α, if there exists one, within a polynomial factor of
(2(1− 1/|V |))|V | repetitions. If the TSP solver in the inner
loop is α-approximate.

Theorem 3 (Optimality of Randomized Anytime Orienteer-
ing - Greedy). Randomized Anytime Orienteering - Greedy
algorithm almost surely finds the optimal route from start
to end nodes, within budget B/α, if there exists one in

polynomial factor of
(

2
1+ζ

)|V |
repetitions, where ζ =(

((|V |−Imin)Imin)β
(|V |−1)(β+1)

)
, Imin = minv∈V and I(v)6=0 I(v), β =

1
|V |−2 .

Proof. RAOr−G relies on the same process as RAOr for
its global convergence characteristics. The random variable
X that counts the number of bits in which the random
assignment ar and the fixed assignment ar∗ disagree (i. e.
the Hamming distance between a and ar∗ ) is binomially
distributed. That is, Pr(X = j) =

(|V |
j

)
2−|V |. If the system

is in state 0, this means, an optimal assignment has been
found.

At any given point in the algorithm, if a is not the optimal
assignment then there must be atleast one vertex out of |V |
that needs to be flipped to reduce the hamming distance of a
to ar∗ reduces by 1. Selecting the correct vertex would mean
that the current state transfers j to transfers to state j − 1
with probability at least Imin|V | and transfers to state j+1 with
probability at most 1− Imin

|V | . The change in probabilities is

due to the weighted sampling of nodes instead of uniform
sampling.

Substituting these values in equation 5 and following the
algebra we get the following.

qj ≥

(
((|V | − Imin)Imin)β

(|V | − 1)(β+1)

)j
= ζj (7)

where the inequality holds up to some polynomial factor.
Therefore, up to some polynomial factor, using the binomial
theorem , we obtain the following estimate for success
probability p

p ≥ (
1

2
)|V |

|V |∑
j=0

(
|V |
j

)
ζj =

(
1

2
(1 + ζ)

)|V |
(8)

Hence the number of repetitions required for RAOr − G
to find the optimal route is given by a polynomial factor of(

2
1+ζ

)|V |
. Where ζ is given by

(
((|V |−Imin)Imin)β

(|V |−1)(β+1)

)
.
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