
Exploiting Robotic Swarm Characteristics for
Adversarial Subversion in Coverage Tasks

Navyata Sanghvi
Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA

nsanghvi@andrew.cmu.edu

Sasanka Nagavalli
Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA

snagaval@andrew.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA
katia@cs.cmu.edu

ABSTRACT
Multi-robot systems, such as swarms, with large number of mem-
bers that are homogeneous and anonymous are robust to deletion
and addition of members. However, these same properties that
make the system robust, create vulnerabilities under certain circum-
stances. In this paper, we study such a case, namely the insertion
by adversarial agents, called moles, that subvert the performance of
the system. The adversary monitors the swarm’s movements dur-
ing surveillance operations for the presence of holes, i.e. areas that
were left uncovered by the swarm. The adversary then adds moles
that get positioned in the swarm, in such a way as to deceive the
swarms regarding the existence of holes and thus preventing the
swarm from discovering and repairing the holes. This problem has
significant military applications. Our contributions are as follows:
First, to the best of our knowledge, this is the first paper that studies
this problem. Second, we provide a formalization of the problem.
Third, we provide several algorithms, and characterize them for-
mally and also experimentally.

Keywords
Swarms; Multi-Robot Systems; Swarm Vulnerabilities;

1. INTRODUCTION
In recent years, there has been significant interest in distributed

multi-robot systems whose members act based on information ac-
quired through local sensing and/or communication with other robots
in their spatial neighborhood. When these local interactions result
in global collective behaviors (e.g. rendezvous, flocking, disper-
sion), the system is known as a robotic swarm [3, 11]. Robotic
swarms are composed of a large number of agents that are homo-
geneous. Additionally, swarms are robust to addition or subtraction
of agents, which gives them the beneficial properties of scalability
and robustness to individual robot failure. However, these same
characteristics also make the swarm vulnerable to manipulation by
agents that could be inserted into the swarm by an adversary for the
purpose of subverting the swarm’s performance.

Swarms have great potential for many applications including search
and rescue, environmental monitoring, exploration, reconnaissance
and surveillance. Particularly for military applications, they have
the potential to be an excellent asset when employed by allied forces

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

or a dangerous threat when used by enemies. Robotic swarms are
envisioned to be composed of relatively inexpensive (even dispos-
able) robots such as commercially available quadrotors that only
cost tens or hundreds of dollars, which makes them easily accessi-
ble to many parties — even those with limited monetary resources.
Based on current trends [16], [14], it is reasonable to expect that
robotic swarms will continue to decrease in cost. Thus, it has been
argued [17] in the military literature that when defending against
a hostile swarm, it is not cost-effective to use traditional means to
disrupt or destroy the swarm (e.g. ammunition expended to destroy
swarm may be more expensive than swarm itself). In these situa-
tions, a better strategy would be to exploit swarm vulnerabilities to
insert adversarial agents for the purpose of disrupting swarm per-
formance, with the added advantage that the enemy still thinks its
swarm works correctly. Studying such deception strategies is also
necessary to guide development of counter-measures against dis-
ruption of swarm behavior by adversarial agents in friendly swarms.

In this paper, we study a scenario in which a hostile swarm is
performing surveillance operations. Each robot in the swarm is as-
sumed to have range-limited communication and sensing. A point
in the environment is considered “covered” for surveillance if it is
within the sensing disk of any swarm robot. As the swarm robots
slowly move ensuring that they maintain communication connec-
tivity, holes in coverage dynamically appear. The detection of “cov-
erage” holes in sensor networks using both topological approaches
[9] and metric approaches [20, 12] has been studied in the literature
[1]. One approach based on localized Voronoi diagrams [22] re-
quires only local information and one-hop communication between
members in the sensor network, so it is particularly applicable to
swarms and we assume the swarm under study uses this approach.
By monitoring the swarm’s movements, our goal is to periodically
identify the number and location where adversarial “mole” agents
must be inserted into the hostile swarm to prevent its original “citi-
zen” agents from detecting any holes in coverage.

The paper makes the following contributions. First, to the best of
our knowledge, this is the first paper that studies this problem. Sec-
ond, we provide a formalization of the problem. Third, we provide
several algorithms, and characterize them formally and also exper-
imentally. In Section 3, we formalize this problem. In Section 4,
we present and characterize several algorithms to find the required
number of moles and their insertion locations. Finally, in Section 5,
we present simulation results and discuss the effectiveness of each
algorithm.

2. RELATED WORK
The problem of coverage hole discovery in sensor networks has

been widely studied in the literature [1, 21]. A variety of ap-

Figure 1: Voronoi cells of 8 agents. Agent p’s cell is�v1v2v3v4v5.

proaches to coverage hole discovery have been considered for both
static and mobile networks including those based on computational
geometry [22, 12] and topology [9, 8]. Computational geometry
approaches typically involve computing the Voronoi diagram [2]
and then (for mobile sensor networks) following a simple motion
rule to heuristically minimize coverage holes [20] (e.g. moving
towards the furthest Voronoi vertex, minimizing the maximum dis-
tance of any point to the nearest Voronoi vertex). Topological ap-
proaches make minimal metric assumptions (e.g. the ability to dis-
tinguish ‘near’ and ‘far’ neighbors) and then use only information
based on the connectivity of the sensing graphs to find and repair
holes [7]. While the previous literature has studied hole discovery,
in this paper, we study the novel problem of how to place agents to
prevent hole discovery.

While there is significant literature on security in sensor net-
works [4, 18], that work has focused on security in communications
based on (a) attacks on secrecy and authentication (e.g. unautho-
rized snooping on private communication channels), (b) attacks on
network availability (e.g. overloading the network to cause dis-
tributed denial of service) or (c) attacks on service integrity (e.g.
compromising a sensor in the network and injecting false data).
That work is not relevant to our work since we do not try to com-
promise network security, availability or integrity through commu-
nications. Instead, we exploit physical vulnerabilities intrinsic to
robotic swarms in order to insert the minimum number of mole
agents to prevent the hostile swarm from successfully detecting
coverage holes.

Previous work on Particle Swarm Optimization (PSO) [15] de-
fines ‘deception’ as the average proportion of optimization itera-
tions in which the selected and true neighborhood bests are differ-
ent due to noise in particles’ personal best objective values, leading
to sub-optimal particle propagation. The actions, beliefs and decep-
tion strategies of a deceiver robot against its mark have also been
studied using game theory [19], but in the context of two individu-
als’ interaction. In contrast to such prior work on robotic deception,
to the best of our knowledge, we are the first to form a deliberate,
structured attack on a citizen swarm through adversarial agent in-
sertion to subvert its performance. We demonstrate this attack in
the context of a swarm performing surveillance operations.

3. PROBLEM FORMULATION

3.1 Preliminaries
We present in this sub-section preliminary concepts, definitions and
assumptions used to define our problem.
Citizen and Mole Agents: Assume the hostile swarm is composed
of n citizen agents P = {p1,p2, ...,pn}, pi ∈ R2. We wish to
insert a set of adversarial mole agents Q = {q1,q2, ...}, qi ∈ R2

to disrupt the performance of the hostile swarm. Our goal is to
identify the quantity and locations of moles necessary to disrupt

swarm performance. We assume moles communicate identically
to citizens. That is, messages are exchanged between moles in the
same manner and format as between citizens.
Sensing, Communication and Agent Radius: We assume the
sensing range rs and communication range rc are identical for all
agents (P ∪ Q) (i.e. rs = rc = r). In addition, we assume
each agent occupies a disk of radius rmin. That is, ∀ui,uj ∈
(P ∪Q) : ‖ui − uj‖2 ≥ 2rmin. To make connectivity possible,
rmin ∈

(
0, r

2

]
. We assume the citizen swarm is connected. When

adding moles, we must ensure that the resulting network of agents
(P ∪ Q) is connected. If mole agents qi are added incrementally
one-by-one, the following condition is both necessary and suffi-
cient to ensure global connectivity: ∃v ∈ (P ∪Q) : ‖qi − v‖2 ≤
r.
Voronoi Partition [2]: Consider the R2 plane. Given the set of
citizen agent locations P ⊂ R2, a Voronoi partition of the plane
divides it into convex polygons known as Voronoi cells (one per
agent). A Voronoi cell corresponding to agent p ∈ P is the set
of all points closer to p than to any other agent. Formally, if
H(pi,pj) represents the half-plane defined by the perpendicular
bisector of the line segment joining agents pi,pj ∈ P and con-
taining pi, the Voronoi cell of pi is given by the following.

cellvd(pi) =
⋂

pj∈P\{pi}

H(pi,pj) (1)

Voronoi Vertices: We represent the Voronoi cell corresponding to
agent p ∈ P by its set of vertices Vp(P) generated by the Voronoi
partition of P . Figure 1 shows an example of a Voronoi partition
where, for agent p, Vp(P) = {v1, v2, v3, v4, v5}.
Boundary Agents: When the swarm includes both citizens P and
moles Q, boundary agents BQ(P) ⊆ P are the subset of citizens
at the edge of a coverage hole. Since Voronoi cells are defined as
the set of points closest to the corresponding agent, if any point is
within an agent’s Voronoi cell but outside its sensing range, that
point is not within any agent’s sensing range (i.e. there is a cover-
age hole and this agent is at the boundary of that coverage hole).
Since Voronoi cells are convex, a boundary agent is any citizen with
one or more Voronoi vertices outside of its sensing range r.

BQ(P) = {p ∈ P|∃v ∈ Vp(P ∪Q) : ‖v − p‖2 > r} (2)

Internal Agents: These are the subset of citizen agents IQ(P) ⊆
P which are not boundary agents (i.e. IQ(P) = P \ BQ(P)).

3.2 Problem Statement
Given a multi-agent configuration of citizen agentsP performing

an exploration and surveillance mission, our problem is identifying
near-optimally the number and insertion locations of mole agents
Q to prevent the discovery of coverage holes in a given state of the
citizen system. These insertion points are identified such that each
citizen agent (after the insertion) believes that it is not on the edge
of a hole (i.e. it is not a boundary agent) and thus, that the system
as a whole has achieved full coverage.

Consider unweighted undirected graph G = (V,E) with vertex
set V = P ∪ Q (i.e. citizens and moles are vertices of graph)
and edges E = {(i, j) | vi,vj ∈ V : ‖vi − vj‖2 ≤ r} (i.e. an
edge connects two agents if they are within sensing range of each
other). Let the Laplacian matrix for this graph be given by L(G).
It is known that the eigenvalues of this matrix are non-negative (i.e.
∀k : 0 ≤ λk ≤ λk+1). In addition, the second smallest eigenvalue
is non-zero (i.e. λ2 > 0) if and only if the graph is connected [13].
We must ensure this condition is true to ensure global connectivity
of our network of agents. If mole agents are incrementally inserted,
incorporating sensing and agent radius constraints from Section 3.1

Figure 2: In this figure, circles represent the sensing disk of each agent with radii equal to sensing ranges r, and solid disks (blue or red)
represent the physical area occupied by each agent with radii = rmin. The left panel shows the citizen agent formation in R2 and their
Voronoi cells. The area in pink represents holes in sensing. The right hand panel displays an example solution including citizens (in blue),
moles (in red), and mole agent placements and sensing disks (also in R2). The placement of the moles ensures that no citizen is a boundary
agent. This can be seen from the resulting Voronoi cells of citizens, shown via blue lines.

Figure 3: Example of a citizen agent p1, its Voronoi cell
�v1v2v3v4, sensing disk sdisk(p1), protrusions protk(p1),
angle of protrusion ∠prot and pieced angles of protrusion
∠protk for k ∈ {1, 2}.

gives us our objective:

argmin
Q

|Q|

subject to BQ(P) = ∅
∀ui,uj ∈ (P ∪Q) : ‖ui − uj‖2 ≥ 2rmin

λ (L(G)) =
{
λ1, λ2, . . . , λ|P∪Q|

}
: λ2 > 0

In Figure 2, an example of a formation of citizen agents is shown
in the left panel, along with an example solution (i.e. the near-
optimal insertion locations of mole agents) in red in the right panel.
Also shown are the resulting Voronoi cells of the citizen agents af-
ter mole insertion, which are all within the respective agents’ sens-
ing ranges, thus making the system of citizen agents conclude that
there are no holes in sensing.

4. ALGORITHMS

4.1 Preliminaries
We introduce here some preliminary terminology, definitions and

theorems required to understand our algorithms.

4.1.1 Terminology
To illustrate the following concepts, consider the example bound-

ary citizen agent in Figure 3. We assume that the plane contains
citizens P and molesQ.

DEFINITION 1. Protrusions protk(p), k ∈ {1, 2, ..,K} from
a boundary agent p’s sensing disk sdisk(p) are disjoint regions in
its Voronoi cell cellvd(p) that are outside of its sensing range r.

DEFINITION 2. A boundary agent p’s protrusion angles∠protk,
k ∈ {1, 2, ...,K} are angles subtended by each protrusion protk(p)
at its center.

DEFINITION 3. A boundary agent p’s total protrusion angle
∠prottot is the minimum total angle subtended by all protrusions
protk(p) at its center. Note that ∠prottot ≥

∑
k

∠protk.

DEFINITION 4. A boundary agent p’s protrusion angle∠protk
is said to be flipped by the insertion of mole agents Qins iff all
points in protk(p) are covered by the sensing disk of at least one
q ∈ Qins after insertion.

DEFINITION 5. A boundary agent p’s total protrusion angle
∠prottot is said to be flipped by the insertion of mole agents Qins
iff all points in its protrusions are covered by the sensing disk of
at least one q ∈ Qins after insertion. Using Definition 1, this is
equivalent to saying that p is no longer a boundary agent.

DEFINITION 6. A boundary agent p is said to be flipped by the
incremental insertion of mole agents Qins iff its protrusion angle
∠prottot has been flipped by the insertion.

4.1.2 Mole Agents per Citizen Agent
Here we prove that the number of moles required to flip any cit-

izen boundary agent is bounded.

(a) A citizen boundary agent p, its
Voronoi cell before mole insertion, the
closest mole insertion location q (2rmin
from p), and the maximum half-plane
claimed by the insertion, flipping p.

(b) Illustration that when there
is only one citizen agent p1,
three moles are required to flip
it.

Figure 4: Mole agent insertion.

LEMMA 1. A protrusion angle ∠protk can be flipped by the
insertion of a single mole iff:

∠protk ≤ 2 cos−1 (rmin
r

)
(3)

PROOF. Given any boundary citizen p ∈ BQ (P) and its Voronoi
cell, a new mole q may be placed anywhere within p’s sensing
range r such that ∀u ∈ (P ∪Q) : ‖q− u‖2 ≥ 2rmin. The max-
imum reduction in size of Voronoi cell of p is achieved when q is
placed as close as possible to p (i.e. ‖q− p‖2 = 2rmin). Con-
sider Figure 4a. From congruent triangles 4s1ps3 and 4s3ps2,
this theorem must be true for∠protk = ∠s1ps2 = 2 cos−1

(
rmin
r

)
.

The insertion would result in new Voronoi edge s1s2. A smaller
protrusion angle, i.e., ∠protk ≤ 2 cos−1

(
rmin
r

)
would also re-

quire inserting only one mole to flip the citizen, but it would not re-
quire ‖q− p‖2 = 2rmin. A larger protrusion angle, i.e.,∠protk >
2 cos−1

(
rmin
r

)
would require more than one mole to flip. Hence,

proved that a single mole agent insertion can flip ∠protk iff
∠protk ≤ 2 cos−1

(
rmin
r

)
.

THEOREM 1. When there is only one citizen, at most three moles
are required to flip it.

PROOF. First, we show that no configuration of one or two moles
can flip the citizen. When we have only one citizen p1, its Voronoi
cell is the entire plane and it has one protrusion angle ∠prot1 =
∠prottot = 2π. From Lemma 1, adding one mole q1 cannot de-
crease the Voronoi cell of p1 such that it becomes an internal agent,
since rmin ∈ (0, r

2
] ⇒ ∠prot1 > 2 cos−1

(
rmin
r

)
. After inser-

tion of q1, the resulting ∠prot1 is minimized when q1 is placed
2rmin away from p1. That is,∠prot1 ≥ (2π−2 cos−1

(
rmin
r

)
) ∈

(π, 4π
3
] ⇒ ∠prot1 > π. This cannot be flipped by one more

mole q2, since, from Lemma 1, 2 cos−1
(
rmin
r

)
∈ [2π

3
, π) ⇒

∠prot1 > 2 cos−1
(
rmin
r

)
. Therefore, two moles cannot flip a

citizen in this scenario.
We now prove that three moles are sufficient to flip this citizen.

Clearly, it is sufficient to show one configuration of the three which
makes flipping possible. Consider Figure 4b, one arrangement of
p1, q1 and q2. In this case, both q1 and q2 are placed at 2rmin
from p1. They are arranged such that ∠s1p1s2 = ∠s2p1s3 =
∠s3p1s4 = ∠s4p1s5 = cos−1

(
rmin
r

)
. The resulting angle of

protrusion is ∠s1p1s5 = 2π - 4 cos−1
(
rmin
r

)
. Applying Lemma

1, for another mole q3 to flip this citizen, we need 2π - 4 cos−1
(
rmin
r

)
≤ 2 cos−1

(
rmin
r

)
. This is true whenever rmin ≤ r

2
, which is al-

ways true since rmin ∈
(
0, r

2

]
. Therefore, three moles are required

to flip a single citizen agent.

Figure 5: One-flippable citizen agent: Parameterization of possible
insertion locations of a mole.

Applying arguments from Theorem 1, it is clear that a maximum
of three moles are required to flip any boundary citizen.

4.1.3 Input, Output and Constraints
Each of our algorithms takes as input the citizen agent locations
P , agent sensing range r and agent radius rmin, and outputs mole
agent locations Q. They all insert moles incrementally one at a
time. At any step, if the previously inserted moles isQ, a potential
new mole q must satisfy the following feasibility constraints. The
first constraint prevents physical interference between agents and
the second guarantees swarm connectivity.

∀u ∈ (P ∪Q) : ‖q− u‖2 ≥ 2rmin (4)
∃u ∈ (P ∪Q) : ‖q− u‖2 ≤ r (5)

4.2 Random Scatter Algorithm

Algorithm 1 Random Scatter Algorithm

1: procedure SCATTERINSERTION(P, r, rmin)
2: Q ← ∅
3: while BQ(P) 6= ∅ do
4: q ∼ U{x ∈ R2 |

(
∃y ∈ BQ(P) : ‖x− y‖2 ≤ r

)
∧(

∀z ∈ (P ∪Q) : ‖x− z‖2 ≥ 2rmin
)
}

5: Q ← Q∪ {q}
6: while ∃q ∈ Q : BQ\{q}(P) = ∅ do
7: Q ← Q \ {q}
8: returnQ

Algorithm 1 has two stages: (a) randomly insert moles one at
a time at valid insertion locations until no citizens are boundary
agents (lines 3–5) and (b) remove unnecessary moles one at a time
until no more moles can be removed without making a citizen a
boundary agent (lines 6–7). Since this algorithm randomly sam-
ples from all valid insertion locations during the first stage, the al-
gorithm will find a solution (i.e. the algorithm is probabilistically
complete).

4.3 Grid Search Algorithm
We develop a protrusion-based parameterization for the possible

insertion locations of moles to flip citizens in Section 4.3.1 and
present grid-search based algorithms in Sections 4.3.2 and 4.3.3.

4.3.1 Mole Agent Insertion

Figure 6: Two-flippable citizen agent: Usage of {s1, s3} as sec-
ondary protrusion points and ∠s1pis3 as a secondary protrusion
angle.

THEOREM 2. When the swarm is connected and contains more
than one citizen, only two moles are required to flip a protrusion
angle of any boundary citizen agent.

PROOF. In a connected network with more than one agent, every
agent is within the sensing disk of at least one other agent. This
means that the maximum protrusion angle occurs when an agent p1

is within sensing range of only one other agent and is on the edge
of the other’s sensing disk (i.e. ∠prot1 = 4π

3
). From Lemma 1

and arguments in Theorem 1, it is clear that inserting a mole q1

at 2rmin from p1 can result in a ∠prot1 ≤ 2π
3

, which allows the
citizen to then be flipped by just one more mole q2.

Now, having established each boundary agent’s protrusion an-
gles are either one-flippable or two-flippable, we examine each case
individually. Assume the swarm is composed of multiple citizens.
One-Flippable Protrusion Angle: For boundary agent pi, we
call its protrusion angle ∠protk one-flippable if it satisfies Equa-
tion (3). We define a point on the edge of pi’s sensing disk as
visible from another point on the edge if the line segment joining
the two does not intersect the disk with radius rmin. In Figure
5, ∠s1pis2 = ∠prot. Segments s2s,1 and s1s,2 are tangents to

the disk occupied by pi. Each point sarc on arcs
_
s1s

,
1 and

_
s2s

,
2

has corresponding visible points on the other arc. Each sarc has a
corresponding arc

_
sviss1 which represents its visible points. Each

such pair of visible points defines a line segment that would be part
of a Voronoi edge within pi’s sensing disk if a mole was appro-
priately inserted. Let ∠S represent half the angle such a segment
subtends at pi. Let ∠P be the angle pisarc forms with the y−axis.
Observe, ∠P ∈ [∠s3pis2,∠s3pis′2]. For a particular ∠P , from
Figure 5 (right), ∠S ∈ 1

2
[∠s1pisarc,∠svispisarc]. Then we

have:

∠P ∈
[∠prot

2
, 2 cos−1 (rmin

r

)
− ∠prot

2

]
(6)

∠S ∈ 1
2

[
∠P + ∠prot

2
, 2 cos−1 (rmin

r

)]
(7)

Note that the parameterization described above is symmetric about
the y-axis. The inserted mole location (xins, yins) should be
along the perpendicular from pi onto the corresponding new Voronoi
edge to flip the protrusion angle, so:

xins = ±2r cos(∠S) sin(∠P − ∠S)
yins = 2r cos(∠S) cos(∠P − ∠S)

Two-Flippable Protrusion Angle: From Equation (3) and Theo-
rem 2, if protrusion angle ∠protk > 2 cos−1

(
rmin
r

)
, then it re-

quires two moles to flip it and we call ∠protk two-flippable. In
Figure 6, ∠prot1 = ∠s1pis2. To flip ∠prot1 with two moles, the
protrusion angle must first be made one-flippable (i.e. we must find
a mole insertion point such that the resulting protrusion angle is less
than 2 cos−1

(
rmin
r

)
). The resulting pair of protrusion points s3

and s2 must, at worst, be as shown. To ensure that this is the result-
ing protrusion point pair, we treat {s1, s3} as secondary protrusion
points, with ∠protsec = ∠s1pis3 as the secondary protrusion an-
gle (which will always be less than ∠s2pis3 = 2 cos−1

(
rmin
r

)
).

Considering this secondary protrusion angle, we insert a mole as
we would in the one-flippable case. This ensures that the result-
ing protrusion angle is one-flippable and is subsequently treated as
such. This secondary protrusion is symmetric about the y-axis and
thus two such pairs of secondary protrusions exist.

4.3.2 Protrusions Grid Search Insertion

Algorithm 2 Protrusions Grid Search Algorithm

1: procedure PROTGSINSERTION(P, r, rmin)
2: Q ← ∅, d← 2π

180
3: while BQ(P) 6= ∅ do
4: G ← {},Sall ← {}
5: for all p ∈ BQ(P) do
6: Sall ← Sall ∪ PROTS(p,Vp(P ∪Q), r)
7: G ← G ∪ GETGRID(BQ(P),Sall, r, rmin, d)
8: Grank ← RANKGRID(G,Sall, r, rmin)
9: Q ← Q∪ {RAND

(
BEST(G,Grank)

)
}

10: returnQ

Algorithm 2 does the following: (a) collects protrusion angles
of all boundary citizens (lines 5–6), (b) generates grid of potential
mole insertion locations with discretization d = 2π

180
in each param-

eter ∠P,∠S for each collected angle (line 7), (c) ranks locations,
with rank proportional to total sum of protrusion and secondary
protrusion angles flipped simultaneously (line 8), (d) adds mole at
one of the locations with highest rank (line 9), (e) repeats steps (a)–
(d) iteratively until there are no more boundary citizens. Since this
algorithm considers all possible insertion locations to flip each pro-
trusion angle, it is resolution complete (i.e. it is complete for the
chosen level of discretization d).

4.3.3 Randomized Grid Search Insertion
Since Algorithm 2 evaluates all possible insertion locations for

each protrusion angle, it takes significantly more time than Algo-
rithm 1 to execute. Since the parameterization developed in Sec-
tion 4.3.1 is applicable to any protrusion angle, including total pro-
trusion angle ∠prottot, we now attempt to improve the execution
time of Algorithm 2 by modifying it to use only the total protrusion
angle and randomly choose, at each step, one boundary citizen to
flip.

This modification results in Algorithm 3 which (a) identifies
boundary citizens L1flip for which ∠prottot is one-flippable (line
4), (b) chooses a random citizen from L1flip, generates its pa-
rameterized grid of potential mole insertion locations, and inserts a
mole according to highest number of agent conversions until there
are no more one-flippable agents (line 5), (c) identifies bound-
ary citizens L2flip for which ∠prottot is two-flippable (line 6),
(d) chooses a random citizen from L2flip, generates its parameter-
ized grid of potential mole insertion locations, and inserts a mole
according to highest number of agent conversions (line 7), and

Algorithm 3 Randomized Grid Search Algorithm

1: procedure RANDGSINSERTION(P, r, rmin)
2: Q ← ∅, d← 2π

180
3: while BQ(P) 6= ∅ do
4: L1flip ← GETFLIP(P,Q, r, rmin)
5: Q ← FLIPL(P,Q, r, rmin, d,L1flip)
6: L2flip ← BQ(P)
7: Q ← FLIPL(P,Q, r, rmin, d,L2flip)

8: returnQ
9: procedure FLIPL(P, Q, r, rmin, d, L)

10: while L 6= ∅ do
11: p← RAND(L)
12: S ← TOTPROT(p,Vp(P ∪Q), r)
13: G ← GETGRID(p, S, r, rmin, d)
14: Grank ← RANKGRID(G, S, r, rmin)
15: if Grank 6= ∅ then
16: Q ← Q∪ {RAND

(
BEST(G,Grank)

)
}

17: else
18: q ∼ U{x ∈ R2 |

(
‖x− p‖2 ≤ r

)
∧(

∀z ∈ (P ∪Q) : ‖x− z‖2 ≥ 2rmin
)
}

19: Q ← Q∪ {q}
20: L ← GETFLIP(P,Q, r, rmin)
21: returnQ

Figure 7: Situation where boundary citizen is incorrectly identified
as one-flippable by Algorithm 3 because it considers total protru-
sion angle rather than individual protrusion angles.

(e) repeats (a)–(d) until there are no more boundary citizens. Here,
“agent conversions” are from one-flippable to internal or two- to
one-flippable.

However, this approach is not complete. There are some situa-
tions (e.g. Figure 7) where considering the total protrusion∠prottot
rather than each protrusion angle ∠protk individually results in in-
terference with an existing agent at the potential mole insertion lo-
cation. In these situations, to enable the algorithm to proceed, the
mole is inserted at a random valid location (lines 18–19) similar to
Algorithm 1.

4.4 Discrete Arc Cover Algorithm

4.4.1 Algorithm Description
Previous work in [10] proposes boundary node detection in a

sensor network based on finding parts of the perimeter of nodes’
sensing disks which are not covered by sensing disks of other nodes.
It is straightforward to see that, with uniform sensing ranges across
nodes, such ‘exposed’ arcs form the boundary of coverage holes.

Algorithm 4 Discrete Arc Cover Algorithm

1: procedure ARCCOVERINSERTION(P, r, rmin)
2: Q ← ∅,Sall ← ∅,m← ∅, d← π

180
3: ol← r sin(d), t← 1.5r sin(d)
4: for all p ∈ BQ(P) do
5: Sall ← Sall ∪ PROTS(p,Vp(P ∪Q), r)
6: A ← GETARCPTS(Sall,P,BQ(P), d, r)
7: Vins ← GETVALIDINS(P, r, rmin)
8: while BQ(P) 6= ∅ do
9: Mins ← {v ∈ Vins | ‖v −m‖2 ≤ r}

10: vins ← argmax
v∈Mins

|{a ∈ A | ||v − a||2 ≤ r}|

11: Q ← Q∪ {vins}
12: Ac ← {a ∈ A | ||vins − a||2 ≤ r}
13: Oc ← {ac ∈ Ac |

(
||vins − ac||2 ≥ r − ol

)
∧(

min
a∈A
||a− ac||2 ≤ t

)
}

14: m← argmin
o∈Oc

(
min

a∈A\Ac

||o− a||2
)

15: A ← A \ Ac ∪ Oc
16: Vins ← {v ∈ Vins | ||v − vins||2 ≥ 2rmin}
17: returnQ

Algorithm 5 Greedy Arc Cover Algorithm

1: procedure GREEDYACINSERTION(P, Q, r, rmin)
2: perform ARCCOVERINSERTION(P, Q, r, rmin) with

no mandatory overlap point, i.e., m← ∅ in every incremental
insertion

This algorithm places moles such that ‘exposed’ arcs along the
perimeter of boundary agents are covered, so that boundary agents
become internal agents. In Figure 3, arcs

_
s1s2 and

_
s3s4 (i.e. the

arcs corresponding to protrusion angles ∠protk for the agent p1)
are the exposed parts of the sensing disk sdisk(p1) which must be
covered by sensing disks of moles to make p1 an internal agent.
Our algorithm discretizes the exposed arcs and the valid domain of
insertion satisfying feasibility conditions (4) and (5) and searches
over this domain to maximize the number of such ‘arc points’ cov-
ered. However, rather than a simple greedy approach, we also des-
ignate a mandatory point of overlap between consecutively inserted
mole agents’ sensing disks to both (a) minimize redundancy in cov-
ering of arc points and (b) ensure complete coverage of exposed
arcs despite discretization.

Algorithm 4 does the following: (a) collects protrusion angles
of all boundary agents and corresponding arc points A (lines 4-6),
(b) computes set of valid mole insertion locations Vins (line 7), (c)
inserts mole at the best insertion location (lines 9-11), (d) computes
overlap arc points O (lines 12-13), (e) computes next mandatory
arc point (line 14), (f) updates A and Vins and (lines 15-16) (g)
repeats steps (c)-(f) until there are no more boundary citizens.

4.4.2 Greedy version
Algorithm 5 is the greedy version of Algorithm 4 where, unlike

Algorithm 4, a mandatory overlap point is not considered in order
to ensure minimum redundancy. Instead this performs ARCCOV-
ERINSERTION() such that line 9 results in considering Mins =
Vins in every incremental insertion — a simple greedy approach.

4.4.3 Bounds on Sub-optimality
Algorithm 5 approaches our problem in a manner that provides

guaranteed bounds on its sub-optimality. Given the set of uncov-

Algorithm Deterministic Completeness Speed Strategy Domain Performance
1 SCATTER No Probabilistically Complete Fast Random Sampling Continuous Very low
2 PROTGS No Resolution Complete Moderate Protrusion Grid Search Discrete Medium
3 RANDGS No Not Complete* Fast Protrusion Grid Search* Discrete* Medium
4 ARCCOVER Yes Resolution Complete Slow Arc Cover Search Discrete High
5 GREEDYAC Yes Resolution Complete Very slow Arc Cover Search Discrete Low

Table 1: Algorithm Properties. Here, speed is in terms of wall-clock time, and performance is in terms of number of moles inserted (higher
performance for lower number of moles). (*): RANDGS will switch strategies to random sampling over a continuous feasible domain in
case of situations such as in Figure 7 to combat non-completeness.

ered discretized arc points A when no moles have been inserted,
let Vins be the discretized set of potential mole insertion locations.
Then, for any v ∈ Vins, the subset of arc points covered by a mole
insertion at v would be Acov(v) =

{
a ∈ A | ‖a− v‖2 ≤ r

}
.

Each potential mole insertion location has a corresponding subset
ofAwhich would be covered in case of an insertion at that location.
Therefore, our problem is a set-covering problem, where given a set
of arc pointsA and a finite number of subsetsAcov(v) correspond-
ing to each potential mole insertion location v, our goal is to select
the minimum subset of mole insertion locations Q ⊆ Vins so that
A =

⋃
v∈QAcov(v). It is a geometric version of the set-covering

problem with discrete unit disks, which is NP-hard [6]. Let the opti-
mal solution to this problem beQopt. A greedy heuristic, as applied
in Algorithm 5, instead incrementally chooses the subset with the
maximum number of yet-uncovered arc points until all arc points
A are covered, resulting in a corresponding mole agent set Qg ⊆
Vins. Note that A =

⋃
v∈Qopt

Acov(v) =
⋃

v∈Qg
Acov(v). A

well-known result for the greedy heuristic in solving set-covering
problems is presented in [5], which proves:

|Qg|
|Qopt|

≤ ln

(
max

v∈Vins

|Acov(v)|
)

Therefore, Algorithm 5 has a bound on the sub-optimality of the
number of moles inserted in terms of the maximum size subset of
arc points which may be covered by a mole insertion.

While we do not prove bounds on the sub-optimality of Algo-
rithm 4, we note that the greedy heuristic used by Algorithm 5
does not exploit the inherently contiguous structure of arc points
on the edge of sensing holes, which Algorithm 4 does, by desig-
nating a mandatory overlap point in sensing to space consecutively
inserted moles such that redundancy is reduced. Thus, we expect
Algorithm 4 to perform much better than Algorithm 5, and indeed,
from results presented in the next section, it does.

5. RESULTS AND DISCUSSION
We ran extensive experiments in simulation on a computer with

dual Intel Xeon CPUs (E5-2660v3, 10 cores @2.60GHz with Hyper-
Threading) and 128GB RAM. We varied the number of citizens
(|P| ∈ {10, 20, ..., 100}), the configurations of citizens (10 differ-
ent configurations for each case of |P|) and the ratio of agent radius
to sensing radius rmin : r (r = 30, rmin ∈ {14, 10, 6, 3, 1}). In
total, 500 different trials were conducted per algorithm. Table 1
presents a summary comparing the algorithm properties based on
our analysis and empirical results from simulation.

Algorithm 1 was used as a baseline against which the perfor-
mance of other algorithms was evaluated. Since some of the al-
gorithms were non-deterministic, they were executed 10 times per
trial and the result was averaged across the 10 runs.

In any trial, let moles inserted by Algorithm 1 be Qscat and for
Algorithms 2, 3, 4, 5 be Q(algo) ∈ {QPGS ,QRGS , QACI ,Qg}

respectively. We define the ‘algorithm advantage’ of Algorithms 2,
3, 4, 5 as the corresponding difference:

(
|Q(algo)| − |Qscat|

)
.

For each of the trials: (i) The average algorithm advantage is
plotted against the average number of boundary agents in Figure 8
and (ii) The log ratio of average run time of each algorithm to Al-
gorithm 1 against average number of boundary agents is displayed
in Figure 9.

5.1 Algorithm Advantage
From results in Figure 8 and as noted in Table 1, performance

in terms of algorithm advantage over Algorithm 1: GREEDYAC <
PROTGS ≈ RANDGS < ARCCOVER and this trend holds for all
values of rmin : r considered. Interestingly, Algorithm 2 and 3
both seem to perform better than greedy Algorithm 5, for which
we have proven bounded suboptimality. This is due to the pref-
erence for simultaneously flipping as many protrusion angles as
possible with a single insertion and a degree of implicit redun-
dancy prevention built into the algorithms. Although Algorithm
2 is more informed at each iteration than 3 since it considers all
citizen agents and a total sum of protrusion angles flipped (whereas
Algorithm 3 simply picks a random citizen agent’s ∠prottot and
considers total number of agents flipped), the two have nearly the
same performance. Algorithm 4 is by far the best performer in ev-
ery case with an average algorithm advantage of ≈ 21 mole agents
for |B∅(P)| ≈ 54, when rmin = 1. Its dominance is expected, as
both Algorithms 2 and 3 have limited implicit handling of redun-
dancy in arc coverage. Observe the general decrease in advantage
across all algorithms in going from rmin = 14 to 10, and the grad-
ual increase from rmin = 6 to 1, indicating an advantage ‘valley’
between the rmin : r ratios of 1:3 and 1:5.

5.2 Run-time Ratio
From results in Figure 9 and as noted in Table 1, performance in

terms of run time ratio against Algorithm 1: GREEDYAC < AR-
CCOVER < PROTGS < RANDGS. Algorithm 1 runs in 0.05-1.5
seconds for r = 30, rmin ∈ {14, 10} and in 0.1-2.3 seconds for
r = 30, rmin ∈ {6, 3, 1} with increasing |B∅(P)|. Interestingly,
Algorithm 3 is fastest after Algorithm 1 due to randomization, with
the run-time log ratio falling almost to 0 as rmin decreases. Al-
gorithm 2 comes in next, with nearly constant ratios across rmin
values. In fact, with large rmin : r ratio and low |B∅(P)|, Algo-
rithm 2 and Algorithm 3 perform similarly. Algorithm 4 is an order
of magnitude slower. However, even for the most computationally
expensive case of rmin = 1, |B∅(P)| ≈ 54, its run time was under
2 minutes. Greedy Algorithm 5 is slowest, as this considers every
remaining valid point of insertion in each iteration. By contrast, Al-
gorithm 4 only considers those insertion locations which are within
r of its mandatory overlap point in each iteration.

5.3 Overall Observations
It is surprisingly apparent among Algorithms 2, 3, 4, 5 that bounded

(a) rmin = 14 (b) rmin = 10 (c) rmin = 6 (d) rmin = 3 (e) rmin = 1

Figure 8: Mean advantage of Algorithms over SCATTER vs. mean number of boundary agents for r = 30, rmin ∈ {14, 10, 6, 3, 1}.

(a) rmin = 14 (b) rmin = 10 (c) rmin = 6 (d) rmin = 3 (e) rmin = 1

Figure 9: Log mean run time ratio of Algorithms to SCATTER vs. mean number of boundary robots for r = 30, rmin ∈ {14, 10, 6, 3, 1}.

sub-optimal Algorithm 5 is the worst empirical performer under
both measures. Algorithm 4 affords the best algorithm advantage
in terms of number of moles required, whereas Algorithm 3 is an
order of magnitude faster, running in only a few seconds in every
case. Interestingly, among the protrusions-based grid search algo-
rithms, despite the fact that Algorithm 3 has no completeness guar-
antees, it is generally faster than Algorithm 2 and inserts a similar
number of moles, indicating that randomization plays a beneficial
role in improving speed without negatively affecting performance
(in terms of algorithm advantage). In fact, it is only similar to Al-
gorithm 2 in run time at large rmin : r ratios and low |B∅(P)|,
where randomization does not provide as much advantage.

We now discuss different scenarios of mole insertion. In our for-
mulation, all algorithms operate on static snapshots of the citizen
agent swarm. However, as mentioned in Sections 5.2 and 5.3 and
visible by comparison in the plots, Algorithms 1, 2, and 3 have a
run-time within hundreds of milliseconds - this would enable us
to recompute and update insertion locations in near-real-time for
moving goals on the fly in dynamic multi-agent systems. All algo-
rithms are also applicable to static sensor networks, with Algorithm
4 being most applicable in such cases and in cases of high cost per
mole, since performance would then be more important than run-
time. Furthermore, for citizen swarms operating in a 2D plane in
a 3D world, the third dimension may be used for mole insertion.
For example, in an aerial swarm or a swarm operating on the ocean
surface, moles may be inserted from a different elevation or sub-

merged moles may rise to the surface.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel problem for robotic swarms.

We identified a swarm vulnerability and studied how an adversary
can take advantage of this vulnerability to find the best locations
to insert mole agents so as to prevent the original swarm from dis-
covering and repairing faulty performance (in our case the faulty
performance consists of leaving holes in area coverage in a surveil-
lance mission). To the best of our knowledge, this is the first paper
that studies this problem. We formalized the problem and devised
supporting theory and algorithmic solutions. Furthermore, we ex-
perimentally evaluated our algorithms, and presented and discussed
their different efficiency, performance characteristics and tradeoffs.

In future work, we plan to (a) identify ways for the swarm to pro-
tect itself from such mole insertions, and (b) identify any additional
swarm vulnerabilities.

7. ACKNOWLEDGMENTS
This research has been sponsored in part by AFOSR Grant FA9550-

15-1-0442 and an NSERC PGS D scholarship.

REFERENCES
[1] N. Ahmed, S. S. Kanhere, and S. Jha. The holes problem in

wireless sensor networks: a survey. ACM SIGMOBILE

Mobile Computing and Communications Review, 9(2):4–18,
2005.

[2] F. Aurenhammer. Voronoi diagrams – a survey of a
fundamental geometric data structure. ACM Computing
Surveys (CSUR), 23(3):345–405, 1991.

[3] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo.
Swarm robotics: a review from the swarm engineering
perspective. Swarm Intelligence, 7(1):1–41, 2013.

[4] X. Chen, K. Makki, K. Yen, and N. Pissinou. Sensor network
security: a survey. IEEE Communications Surveys &
Tutorials, 11(2):52–73, 2009.

[5] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3):233–235, 1979.

[6] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nickerson.
On the discrete unit disk cover problem. In International
Workshop on Algorithms and Computation, pages 146–157.
Springer, 2011.

[7] J. Derenick, V. Kumar, and A. Jadbabaie. Towards simplicial
coverage repair for mobile robot teams. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on,
pages 5472–5477. IEEE, 2010.

[8] S. Funke. Topological hole detection in wireless sensor
networks and its applications. In Proceedings of the 2005
joint workshop on Foundations of mobile computing, pages
44–53. ACM, 2005.

[9] R. Ghrist and A. Muhammad. Coverage and hole-detection
in sensor networks via homology. In Proceedings of the 4th
international symposium on Information processing in
sensor networks, page 34. IEEE Press, 2005.

[10] C.-F. Huang and Y.-C. Tseng. The coverage problem in a
wireless sensor network. Mobile Networks and Applications,
10(4):519–528, 2005.

[11] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and
M. Lewis. Human interaction with robot swarms: A survey.
IEEE Transactions on Human-Machine Systems, 46(1):9–26,
2016.

[12] P. Kumar Sahoo, M.-J. Chiang, and S.-L. Wu. An efficient
distributed coverage hole detection protocol for wireless
sensor networks. Sensors, 16(3):386, 2016.

[13] B. Mohar, Y. Alavi, G. Chartrand, and O. Oellermann. The
laplacian spectrum of graphs. Graph theory, combinatorics,
and applications, 2(871-898):12, 1991.

[14] M. E. Nisser, S. M. Felton, M. T. Tolley, M. Rubenstein, and
R. J. Wood. Feedback-controlled self-folding of autonomous
robot collectives. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, pages
1254–1261. IEEE, 2016.

[15] J. Rada-Vilela, M. Johnston, and M. Zhang. Population
statistics for particle swarm optimization: Resampling
methods in noisy optimization problems. Swarm and
Evolutionary Computation, 17:37–59, 2014.

[16] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A low cost
scalable robot system for collective behaviors. In Robotics
and Automation (ICRA), 2012 IEEE International
Conference on, pages 3293–3298. IEEE, 2012.

[17] P. Scharre. Robotics on the battlefield part ii: The coming
swarm. Center for a New American Security, 6, 2014.

[18] J. Sen. A survey on wireless sensor network security.
International Journal of Communication Networks and
Information Security (IJCNIS), 1(2), 2009.

[19] A. R. Wagner and R. C. Arkin. Acting deceptively:

Providing robots with the capacity for deception.
International Journal of Social Robotics, 3(1):5–26, 2011.

[20] G. Wang, G. Cao, and T. F. La Porta. Movement-assisted
sensor deployment. IEEE Transactions on Mobile
Computing, 5(6):640–652, 2006.

[21] M. Younis and K. Akkaya. Strategies and techniques for
node placement in wireless sensor networks: A survey. Ad
Hoc Networks, 6(4):621–655, 2008.

[22] C. Zhang, Y. Zhang, and Y. Fang. Localized algorithms for
coverage boundary detection in wireless sensor networks.
Wireless networks, 15(1):3–20, 2009.

