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Abstract
Autonomous outdoor localization is a challenging but important task for rovers.

This is especially true in desert-like environments such as those on Mars, where fea-
tures can be difficult to distinguish and GPS is not available. This work describes a
localization system called MeshSLAM, which requires only stereo images as inputs.
MeshSLAM uses the spatial geometry of rocks as landmarks in a GraphSLAM algo-
rithm. These landmarks are termed “constellations,” and this work will present and
compare methods of generating, describing and matching constellations. Motion is
estimated through visual odometry.

This work will also present two new methods of detecting rocks in an image —
one that uses superpixel clustering and ground plane fitting, and another that uses
a convolutional neural network. The analysis of feature descriptors and descriptor
matching that follows will show that accurate landmark matching can be achieved
by systematically building convex hull boundary descriptors in each image, and re-
jecting outliers using RANSAC and motion-invariant rock features.

Several thousand stereo images were collected by the rover Zoë from the Ata-
cama Desert in Chile, and these are used to validate the system. On these desert
images containing only rocks, MeshSLAM was able to achieve 100% precision in
landmark association and less than 2% localization error across a 360 meter path.
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1 Introduction

This work presents a method for rover localization in challenging GPS-denied environments
where travel distances are large and features are sparse. One such environment is Mars, where it
is desirable on science missions to accurately navigate to targets of interest and GPS is unavail-
able or inadequate. It would also be useful to autonomously keep track of locations of interest
and potentially return to them. An accurate vision-based localization and mapping system could
provide both of these capabilities.

This thesis describes the design and development of such a system, called MeshSLAM. It
uses simultaneous localization and mapping (SLAM) techniques with landmarks formed from
rocks, termed constellations. This work will discuss the full pipeline of the MeshSLAM system
which requires only a set of stereo images to estimate a rover’s state.

The primary goal of this work is to demonstrate that localization using collections of rocks
as landmarks can be effective in barren environments. The image datasets used to test the system
were obtained from the Atacama Desert in Chile in 2015 by a set of stereo cameras on the rover
Zoë [7]. For comparison, images from the Atacama desert are shown alongside Mars scenes in
Figure 1.

Figure 1: Scenes from Mars [29] (left) and the Atacama Desert [10] (right).
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1.1 Motivation
The rovers on Mars have limited bandwidth and data transmission rates; it can take several hours
to send 100 megabits of data directly to Earth. Additionally, the rotation of Mars periodically
obscures the rover from Earth’s view. When Earth is visible, the rover’s power and thermal
limitations allow direct-to-Earth transmissions for at most three hours a day. An alternative,
more efficient means of transmitting data is through orbiters, since they are in view of Earth for
most of the day and have access to more solar power. However, the Mars rover Curiosity can
only trasmit data to the orbiter for the eight minutes per sol it takes to pass over the rover [1].

Thus, autonomy is an important capability for planetary rovers, allowing them to achieve
science and engineering goals without communication from scientists on Earth. Increasing the
number of actions a Mars rover can perform autonomously increases the amount of data and
useful results that can be returned to scientists. Currently, Mars rovers estimate their position
through dead reckoning, fusing data from an IMU, heading sensor, and sun tracker. When error
inevitably accumulates on the position estimate, it becomes necessary to transmit stereo images
back to Earth and manually correlate stereo points within images. This is a costly and inefficient
procedure. Given the limited lifespan of Mars rovers and the cost of a Mars mission, it is crucial
to attain maximum efficiency in data collection, which is possible through autonomy.

Rovers have demonstrated several autonomous navigation capabilties on Mars. Visual odom-
etry was first shown to be effective on the rovers Spirit and Opportunity, where it was used to
detect slip, improve position knowledge, ensure accurate science imaging, and improve vehicle
safety on slopes [46]. Rovers have also had success with local terrain mapping and planning
algorithms to reach points of interest while avoiding obstacles [47].

However, no autonomous localization system is currently being used on the Mars rovers, in
part because of the difficulty of distinguishing recognizable landmarks in the Mars landscape. A
successful SLAM system useable on Mars has implications for further autonomous possibilities.
By identifying loop closures, the rover gains an intelligent understanding of the actual topology
of its traverse, as opposed to filtering various odometry measurements. This gives it the possi-
bility of autonomously using shortcuts and backtracking. Additionally, autonomous localization
leads to more accurate traverses and less time spent correcting rover trajectories and transmitting
instructions.
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1.2 Overview
This thesis describes the MeshSLAM system and its effectiveness in localizing a rover within
the Atacama Desert. A graphical overview of the MeshSLAM system is shown in Figure 2. Em-
phasis is placed on the front-end SLAM processes outlined in red — rock detection and constel-
lation formation — as these are novel aspects of this work developed for the unique challenges
of desert-like environments.

Sections 2 and 3 will focus on rock detection, which provides the basis for forming robust
constellations. Section 4 will examine various methods of building up constellations from iden-
tified rocks and reliably matching them. In Section 5, the constellations are tested as landmarks
in the context of the full MeshSLAM system. In each of these sections, the relevant methods are
presented first, followed by an analysis of results. Finally, Section 6 provides a summary of all
results and contributions as well as potential areas for future work.

Figure 2: MeshSLAM system overview. The primary contributions of this work are outlined in
red.
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2 Rock Detection with Computer Vision-based Methods
In most SLAM systems, clearly identifiable and easily described objects are used as landmarks
— trees, doors, signs, etc. This is because recognizable landmarks can be accurately matched
between scenes, which in turn leads to accurate localization. In the case of deserts, the only
objects available with any consistency are rocks. However, following an unmodified SLAM
approach with rocks as landmarks will likely fail because individual rocks cannot generally be
considered recognizable landmarks. That is, trying to match individual rocks across many frames
under changing lighting conditions will almost certainly result in false positive matches and poor
localization.

In the MeshSLAM system, we intend to form recognizable landmarks from specific group-
ings of rocks and the term constellation will be used to distinguish this specific type of landmark.
The idea and details of forming constellations are discussed in depth in Section 4. For now, we
focus on the idea that a constellation can only achieve the same consistency of identification
as a typical landmark if each of its consituent rocks are reliably detected. Thus, accurate rock
detection is a key component to forming consistent constellation, as well as the first step in the
localization pipeline.

Rock detection has been attempted with a variety of computer vision algorithms. It remains
a challenging task due to the diversity of shapes, colors, materials, and textures that describe a
rock even within the same geographic region. Rocks often occlude each other or are themselves
occluded by the ground. They are ill-defined objects, and often the distinction between ground
and rock is unclear. Lighting and shadows can significantly affect the appearance of rocks.
Additionally, as rocks lack unique identifying characteristics, it is often challenging to track
them from one frame to the next, especially if the camera angle changes significantly.

Figure 3 shows a random sample of scenes from the Atacama Desert, and illustrates some of
the difficulties involved in rock detection.

Figure 3: Landscapes and scenes vary significantly even within the same desert.
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2.1 Related Work
Rock detection is an important task for planetary rovers, as it is useful for obstacle avoidance,
path planning, and sample selection.

Current methods for rock detection vary widely. Thompson and Castaño provide an overview
and performance comparison of several earlier rock detection methods [64]. One such method is
the Rockfinder algorithm, which uses denoising and smoothing filters with a multi-scale pyramid
edge detector [11]. Another that uses stereo camera information fits a ground plane to the image
and performs segmentation on the resulting height map [23]. The Marsokhod Shadow Detector
searches for candidate points that lie on the edge of illuminated and shadowed rock regions,
based on knowledge of the sun angle and a spherical lighting model [25]. The Smoothed Quick
Uniform Intensity Detector (SQUID) removes terrain texture with a bilateral filter, and then
identifies contiguous regions with similar pixel intensity as rocks [64]. This simple, intuitive
algorithm was developed primarily for synthetic images, which generally contain less ambiguous
rock features than real images.

Thompson and Castaño also looked at using support vector machines (SVM) to classify each
pixel by first characterizing the pixels as feature vectors of local intensity values [64]. Dunlop
took this a step further and used an SVM with feature vectors composed of numerous automat-
ically extracted rock characteristics, including roundness, convexity, circularity, compactness,
and various colorspace metrics [18].

More recent work by Wagstaff et al. in 2013 classifies rocks based on texture analysis, and
can be used for onboard image processing by an instrument called TextureCam [69]. It makes
use of a random forest classifier, in which decision trees are trained on subsamples of a labeled
dataset. Training involves allowing the decision trees to progressively grow and split until they
determine the tests that optimally distinguish between the various provided labels (e.g. sky,
ground, rock). The strengths and weaknesses of TextureCam will be explored in more depth in
Section 2.2.2.

2.2 Method
Various rock detection strategies are shown below. Keypoint descriptors and the TextureCam
method in Sections 2.2.1 and 2.2.2 are used to motivate a novel method for rock detection that is
based on superpixel clustering and stereo information, presented in Section 2.2.3.

2.2.1 Keypoint Descriptors

Keypoints decriptors are the simplest types of feature descriptors and are shown here for quali-
tative comparison to the later methods of rock detection. The three point descriptors tested are
Speeded up Robust Features (SURF) [4], Gilles keypoints [22], and Laplacian of Gaussian (LoG)
[42].

SURF is a fast and commonly used algorithm for computing point descriptors. The algorithm
detects points where the determinant of the Hessian matrix is maximized in some local region,

5



Figure 4: Point descriptors. Left column shows SURF features, middle column shows Gilles
features, and right column shows Laplacian of Gaussian features.

indicating large local change. This is done at multiple scales efficiently via a Laplacian pyramid.
The next step of SURF is generally to build a descriptor around each keypoint by summing the
Haar wavelet responses that describe the intensity distribution in the neighborhood of a point,
but only the keypoint extraction step is of interest here.

Gilles keypoints are based on the idea that complexity in natural images is rare and so loca-
tions of high complexity are salient features that can be extracted as keypoints. Gilles uses the
Shannon entropy of the grayscale values in an image region to measure the complexity of that
region. A high-complexity image region in this sense can also be understood as a region with a
flatter grayscale histogram.

The Laplacian of Gaussian filter can be used to detect points where rapid intensity changes
occur, such as edges. As one might expect, many points of rapid intensity change can be found
in a scene of rocks.

6



2.2.2 TextureCam

TextureCam is software developed at Jet Propulsion Laboratory for the purpose of automatically
classifying geologic features. It can be used as a rock detector by training it to distinguish be-
tween manually labeled ground and rock class regions on an image. Figure 5 shows examples of
training images, their labels, and the output probability heatmaps of TextureCam on test images.
In the training images in the middle column, red is drawn over pixels that should be classified as
“ground” and blue is drawn over pixels that should be classified as “rock.” In the probability heat
maps in the right column, yellow pixels have a higher probability of being in the “rock” class.

TextureCam works well in distinguishing high-contrast rocks, especially with uniform back-
grounds. It tends to find visually distinct features, such as dark cracks or shadows. Shadows and
sparser scenes are more likely to be mislabeled. Some failure cases are shown in Figure 6. Here,
the pixels with the top 5% highest probabilities are shown in red. The three causes of failure
shown are the rover’s own shadow, cracks in the ground, and the rover tracks.

Figure 5: TextureCam images, training labels and rock probability heat maps. In the training
labels, rock pixels are colored blue and ground pixels are colored red. In the heat maps, yellow
pixels indicate higher probability of rock classification.
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Figure 6: TextureCam results with failure cases in the top 5% most confident rock classifications.

2.2.3 Relative Height of Clustered Superpixels (RHoCS)

Above we showed that keypoint descriptors tend to focus on rock edges without identifying rock
boundaries, and TextureCam can identify likely rock regions but fails on darker ground regions.
To fix these problems, we developed a method of identifying edge boundaries and avoiding dark
regions on the ground by using the Relative Height of Clustered Superpixels (RHoCS). It is
based on the idea that the two characteristics that most reliably distinguish rocks are their edge
boundaries and their height above their surrounding ground.

RHoCS can be thought of as an expansion of the SQUID algorithm described in Section 2.1.
While the SQUID algorithm developed for synthetic images captures the intuitive idea of a rock
as a contiguous region of similar pixel intensities, it fails on more ambiguous real-world images.
Real-world desert images contain shadows and colored patches of ground, both of which satisfy
the continguous pixel intensity criterion. RHoCS can handle these cases by incorporating stereo
camera information.

First, superpixels are computed to form boundaries and identify regions of similar color.
In this work, supervised linear iterative clustering (SLIC) [2] was chosen for its computational
speed as the method to generate superpixels. SLIC is similar to k-means clustering with two main
differences: only cluster centers within some local region are searched to maintain semi-regular
regions of pixels as clusters, and distance comparisons consider both distance in the Euclidean
space and distance in the L*a*b* colorspace.

The superpixels are clustered using density-based spatial clustering of applications with noise
(DBSCAN) [19]. DBSCAN was primarily chosen as the clustering method for its robustness to
outliers and its reliance on only two intuitive parameters – the minimum points needed to form
a cluster and the maximum distance of separation between pixels belonging to the same cluster.
DBSCAN combines mutually similar superpixels into larger clusters. A size filter removes trivial
clusters or clusters that would represent the sky or ground, leaving only rock candidates outlined.

To find the height of each rock candidate, a ground plane is fit to each rock candidate’s local
region. Here, Random Sample Consensus (RANSAC) [20] is used on the 3-D point clouds to
fit the ground plane, and the region of interest used is the bounding box of the rock expanded to
three times its width and length. If the mean height of the 3-D points within a rock candidate
region is greater than some threshold τrock above its local ground plane, the candidate is identified
as a rock.

8



Algorithm 1 provides more details of the method. Figure 7 shows the steps visually for
two scenes. Note that spurious rock candidates can be picked up in the second step that iso-
lates superpixels. This is because non-rock objects can be uniformly similar in color. In desert
environments, the only such spurious rock candidates that can be expected are shadows or dis-
colorations on the ground. Both of these are flat and thus ideal for being filtered out by a local
height map. Setting a higher minimum height threshold increases precision at the cost of recall.

The parameters used by RHoCS are:

m Relative weighting between spatial proximity and color proximity used by
SLIC. Lower values cause superpixels to adhere more strongly to edges but
increase computational cost.

k Approximate number of superpixels to generate in SLIC.

tol Distance threshold in L*a*b* units that determines which superpixels should
be merged in DBSCAN.

τrock Difference between the mean height of a rock candidate and its ground plane
required to label it a rock.

inlier thresh RANSAC threshold used to determine number of inliers at each iterations.

Algorithm 1 Pseudocode for RHoCS
01. /* Get superpixel label image */
02. Sp = SLIC(image, m, k)

03. /* Get clustered label image */
04. C = DBSCAN(Sp, tol)

05. /* Check that each cluster meets height threshold */
06. For cluster k in C
07. pk = get_3d_points(k, left_image, right_image)
08. rk = ransac_fit_plane(pk, inlier_thresh)
09. hk = height_above_plane(k, rk)

10. If hk > τrock
11. k.isRock = TRUE
12. EndIf
13. EndFor
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Figure 7: Overview of RHoCS algorithm. The top image shows SLIC superpixels marked. The
second image shows the clustering of these superpixels to form the initial rock candidates. The
third image show the bounding boxes (expanded three times) around each rock candidate, which
are used to fit a ground plane and determine local pixel heights. The bottom image shows the
rocks that meet the height threshold set by the user. As desired, shadows do not meet the height
threshold. 10



2.3 Results
To determine the accuracy of RHoCS, the output labels can be compared against a set of ground
truth images with rocks manually identified.

2.3.1 Ground Truth

Collecting ground truth labels for rocks, especially at the pixel level, is a difficult task. This is
largely due to the ambiguous nature of rocks in most scenes. Whereas rocks of a certain size
may be worth noting in some sparse scenes, in other scenes rocks of that same size can be found
covering the ground. Compared to many common semantic segmentation tasks, e.g. identifying
roads, trees, or cats, the identification of rocks is highly subjective.

For that reason, instead of comparing the output of RHoCS against a set of images with all
rocks labeled, it is compared against a set of images with only a few highly distinguishable rocks
marked. Specifically, the results here give the recall of the algorithm in identifying the centroids
of rocks most humans would identify in a scene. This is useful for two reasons: (1) the centroids
of the rocks will be used to form constellations and (2) the highly distinguishable rocks are the
most useful in forming recognizable constellations.

Since the terrain varies significantly throughout the Atacama Desert, four sets of represen-
tative ground truth images will be considered. Centroids are manually marked. The four image
sets are labeled A, B, C, and D. Image sets A and B both contain 30 images. Set C contains 11
images and set D contains 60 images. All images are of size 640x480 pixels.

2.3.2 Recall Results

Example outputs from the RHoCS algorithm and ground truth centroids are shown in Figures 8 -
11 for the four image sets. The overall recall results from these scenes is given in Table 1. These
values are the percentage of the labeled ground truth centroids detected by RHoCS. The specific
parameters used to obtain these results are given in Table 2.

Table 1: Recall results of RHoCS

Image Set RHoCS recall
A 75.0%
B 62.4%
C 68.1%
D 52.3%

Avg 64.5%

Table 2: RHoCS parameters

Parameter Value
m 10
k 1500
tol 10
τrock 0.04 (m)

inlier_thresh 0.025 (m)

2.4 Discussion
The results in Figures 8 through 11 illustrate some of the strengths and weaknesses of the RHoCS
algorithm. It performs best in image sets A and C where scenes are uniformly flat, and rocks
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Figure 8: Image set A: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RHoCS-computed centroids in red.

Figure 9: Image set B: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RHoCS-computed centroids in red.
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Figure 10: Image set C: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RHoCS-computed centroids in red.

Figure 11: Image set D: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RHoCS-computed centroids in red.
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are uniformly colored and topographically prominent. There are four notable scenarios in which
RHoCS performs poorly, each of which breaks an assumption of RHoCS:

Uneven surface If the local ground around a rock varies, then an accurate ground
plane may not be fit, and the resulting height measurement of the
rock will be incorrect.

Many nearby rocks If multiple rocks are near enough to be within each others’ local
region then neither rock may be considered prominent enough to
be identified as a rock. More specifically, the ground plane around
each rock would include the other rock.

Rocks with varied colors If a rock is varied enough that multiple regions of the same rock
form their own superpixels and DBSCAN clusters, a ground plane
will be fit around each of these parts of the rock. The local region
around each rock candidate could then include other parts of the
same rock.

Non-rock objects RHoCS assumes the only contiguous regions of similar color above
the ground will be rocks. Other non-rock objects such as people
and cars can have these characteristics and would be identified as
rocks.

Image set D (Figure 11) in particular shows some of these difficulties. These images are collected
around a road, where clumps of dirt make the terrain uneven. The variance in height of some
parts of the ground exceeds the height of rocks of interest. Set D also shows that trucks and
people can be identified as rocks, as they have similarly colored regions above the ground. Large
rocks pose difficulties because of the high chance of containing different-colored regions. Large
rocks create shadows or have a shadowed side, and each of these regions will be considered as a
separate rock candidate, often with a poorly-fit ground planes.

For the RHoCS outputs shown above, the same height threshold was used for all scenes (4
cm). A possible avenue for future exploration is to adapt the threshold based on the size or
number of rocks in each scene.

In terms of computation time, there are three main considerations: SLIC, DBSCAN, and
RANSAC. SLIC has linear computational complexity O(N) for N pixels and DBSCAN has
complexity O(k2) for k superpixels. In practice, SLIC is the main bottleneck, taking upwards of
10 seconds in MATLAB. DBSCAN and 100 iterations of RANSAC take approximately 1 second
each. The CPU used for timing comparisons is an Intel Xeon E5-1620 v3 at 3.50 GHz.

A compiled language will undoubtedly produce much faster results, and incorporating hard-
ware optimization may provide further speedups. For example, the Oxford Active Vision Library
provides a CUDA-based GPU implementation of SLIC called “gSLICr” with a reported 3.4 ms
runtime on a single 640x480 image with a GTX Titan X GPU [52]. However, even without
computational concerns, the issues with RHoCS discussed above indicate that a more robust
approach to rock detection should be considered.
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3 Rock Detection with CNNs

In this section we approach rock detection from a machine learning perspective to mitigate some
of the failure cases discussed in the previous section.

Convolutional Neural Networks (CNNs) have been under continued study since the 80’s [38],
but only in recent years with the advent of powerful commercial GPUs and a better understanding
of neural network architecture has there been a resurgence in their use. Now, CNNs have been
shown to excel, and are often shown to be state-of-the-art, in various image recognition and image
understanding tasks. This will be the first work to use them in the context of rock detection.

The advantage of using a CNN for rock detection over other computer vision methods is its
generalizability and computational speed. Once the CNN has been trained on a large and varied
enough dataset, it could theoretically detect rocks in any lighting or terrain. Instead of a user
teaching a system and iteratively testing various image features to determine their effectiveness,
a CNN can identify the ideal rock detection parameters on its own from the raw pixels. This
can also be potentially disadvantageous as well, since it makes it difficult to determine which
features the CNN has learned and why it might be failing in some cases.

With regard to computational speed, the prior RHoCS detection method can produce suitable
results but relies heavily on CPU time. The RHoCS algorithm was not tested specifically on
mission hardware or in a compiled language but it is reasonable to assume that the highly paral-
lelizable series of matrix multiplications used by a CNN could be better hardware-optimized. For
a CNN, the computation time is front-loaded during training but, once complete, the resulting
prediction model can be quickly executed on an image.

3.1 Background and Related Work

Artificial neural networks and multilayer perceptrons were inspired by biological neural net-
works — series of interconnected neurons that fire given various stimuli. In other words, a
biological neural network has “learned” to produce a response given a specific stimulus. The
same idea applies to artificial neural networks, which are trained to produce a response for spe-
cific inputs. The convolutional neural network was developed initially to expand the multilayer
perceptron to work efficiently with images, a type of input which has a large number of starting
nodes (pixels).

The resurgence of CNN’s primarily began in 2012 with Krizhevsky, Sutskeer, and Hinton
[36], who used a large CNN to classify 1.2 million images in the ImageNet database into 1000
different classes. The result beat the previous state-of-the-art on ImageNet recognition and relied
on two GTX 580 3GB GPUs. The work also introduced a new network architecture and various
intermediate layers, some of which are still used today.

In 2014, Simonyan and Zisserman [57] methodically tested various ConvNet configurations
and achieved first and second place results in the localization and classification tasks in the
ImageNet Challenge 2014. They focused on consistently using small 3x3 convolutional filters
and increasing the number of convolutional layers, or network depth. Simonyan and Zisserman
also showed that their best configurations, using small 3x3 filters and 16 layers, generalized well
to many other classification tasks and databases, including Caltech-101, Caltech-256, PASCAL
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VOC-2012 action classification. This 16 layer network called VGG-16 will be used as the final
model for rock detection in this work.

CNN architecture and the types of layers used will only briefly be discussed here, as they have
been thoroughly described in many other papers [36, 39]. The architecture of a CNN can vary
significantly between models, but the layers generally used to reduce an input image to a label
or a vector of labels are convolutional layers, fully connected layers, and max pooling layers. A
nonlinear activation function is used between layers, and is analagous to the activation energy
required for a biological neuron to fire. The most commonly used nonlinear activation function
is the rectified linear unit (ReLU), defined as f(x) = max(0, x). These activation functions are
crucial as they allow the CNN to learn a nonlinear function of its inputs.

In the convolutional layer, N kernels of varying sizes k × k are convolved with each of the
M previous layers to produce a new set of layers. In the max pooling step, the max values of a
2x2 or 3x3 window slid across each layer is used to produce a new set of reduced layers. A fully
connected layer connects each of the neurons of the previous layer to each neuron of a smaller
single-width layer. It can be thought of as a convolutional layer with a kernel of size 1× 1 and is
similar to a layer of a multilayer perceptron.

3.1.1 Software background

Three different CNN frameworks – CN24 [6], Caffe [30], MatConvNet [67] – were tested. While
results should theoretically be similar, in practice difficulties arose. These three CNN frame-
works were chosen due to their capability of assigning a label to each pixel that identifies it as
either “rock” or “ground.” This is commonly called pixel-wise labeling or semantic segmenta-
tion.

The first training set contained approximately 10,000 images. As it was infeasible to label
this data by hand, these images were instead labeled by the RHoCS method. While slow, the
RHoCS method has enough precision to generate the training labels for the CNN. The CNN can
then generalize the results to produce an accurate rock detector. Because a separate detection
algorithm was used to label this training set, it is not an ideal ground truth and does produce
some false positives and false negatives.

The second training set is composed of 60 images labeled using LabelMe [55] and augmented
to a dataset of 1800 images with a series of affine transformations.

Caffe [30] A general purpose deep learning framework. While some have had success with
semantic segmentation using Caffe [43], it was used here primarily for scene classification.

CN24 [5] A software framework designed specifically for pixel-wise labeling. It allows the
user to design a convolutional neural net architecture, then uses a “convolutional patch network”
to produce the semantic segmentation [6]. The convolutional patch network is trained to identify
each pixel’s label by the patch of pixels around it.

The convolutional patch network can take advantage of prior spatial knowledge of labeled
pixels. For example, a road in a scene tends to show up more commonly in certain parts of the
image and that prior probability can improve the CNN results. However, for a typical desert
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scene, the positions of rocks in a scene are randomly distributed, so prior spatial information
cannot be used.

MatConvNet [68] A MATLAB toolbox for implementing CNNs. It provides a VGG-16 model
and the primary CNN tools used in the final iterations of this work.

3.2 Classifying Terrain Types with Caffe
One of the provided models in Caffe, CaffeNet[16], was trained on the 10,000 image Atacama
dataset. For each scene, CaffeNet produced a 1000 element vector. K-means clustering was used
on these 1000 element vectors to produce 20 cluster means, each of which effectively represents
a terrain type. This same method can then be used to produce a feature vector to represent any
new desert image, and the nearest cluster center to that vector, in terms of cosine similarity, can
be used to determine its terrain classification.

While no ground truth terrain classifications were available, the classification qualitatively
appears to work well. Figure 12 shows 20 randomly selected images that were classified to four
different terrain types. This classifcation is not used in the final results of this work, but it is
shown here as a possible venue for future exploration. It indicates that CNNs are capable of
parsing out unique features from desert scenes.

One potential use for terrain classification is as a pre-processing check. A rover traveling in
the Atacama Desert, for example, would pass through these 20 varied terrain types, and could run
its images periodically through the CNN classifier to determine when the terrain type has shifted.
This could provide a pose constraint if prior knowledge of the terrain was known, or could allow
the rover to switch to a new rock detection algorithm tuned for that terrain type, enabling the use
of a CNN ensemble.

Figure 12: Random images selected from four terrain type clusters.
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3.3 Rock Detection with CN24
Rock detection was first attempted with the CN24 framework and a convolutional patch network
(CPN), which applies a CNN to patches of pixels at a time. Most of these trials were unsuccess-
ful, but are still provided here for completeness, as the failure cases give some insight into the
training data and CNN architecture necessary for successful rock detection.

Figure 13 shows the result of applying various CPN models to a simple synthetic image. One
of the original images is shown on the left. The training and test set were produced by applying
random affine augmentations to the original synthetic images. Results of the trained model on
three test images are shown in the right column.

Figure 13: Simple synthetic rock images to test various CPN architectures. Left shows original
image, middle shows affine augmentation inputs, and right shows the resulting labels for three
different CPN architectures. As demonstrated by the poor results at the top and middle images
of the right column, even simple synthetic images require some tuning of the CPN architecture.

The first result uses one convolutional layer with 12 kernels of size 13x13, one fully con-
nected layer with 120 neurons, and a final fully connected layer that will always have 1 neu-
ron for the binary classification of a single pixel. This architecture can be denoted more con-
cisely as C(12 − 13x13) → FC(120) → FC(1). The second result uses the architecture
C(12−7x7)→ C(6−5x5)→ C(48−5x5)→ FC(192)→ FC(3). The third result, which pro-
duces the correct labels, uses the architecture C(3− 5x5)→ C(3− 5x5)→ FC(20)→ FC(3).
The ReLU activation functions between each layer are left out for brevity. One key factor found
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to improve labeling on this type of synthetic image is the use of small kernel sizes of about size
5x5 in the convolutional layer.

A simple real desert scene is used to test the system next. It is a high-contrast, low-density
scenes, which makes it easy to generate an accurate ground truth label via adaptive thresholding.
Since there were not enough of these types of images to train a CNN, random affine transforma-
tions were again used to artificially augment the dataset.

Figure 14: Convolutional patch network results on a simple desert scene. Left shows affine
transformed inputs, middle shows ground truth, right shows CPN results.

The results in Figure 14 were produced with the architectures C(3− 5x5)→ C(3− 5x5)→
FC(20) → FC(3) and C(12 − 35x35) → FC(20) → FC(3), but neither proved successful.
Various other architectures were tested, but these also had difficulty with a real desert scene,
even using this high-contrast scene. A possible cause is the lack of distinguishable features in
the image and the inability to take advantage of spatial priors.

To determine if a different set of inputs might improve results, a CPN was trained on the raw
RGB images of the Atacama scenes as well as on variations of the 3-channel input, including
every combination of hue, saturation, brightness, disparity, and illumination-invariant images.
Some example inputs are shown in Figure 15, with the typical labels produced.

These results indicate that the input channel layer is ineffective at improving rock label ac-
curacy, often introducing noise that decreases accuracy. For example, parts of the image that
are more reflective or have increased illumination will become more prominent in the brightness
channel, which is not a desirable effect. Disparity can cause large portions of the image to stand
out due to the angle or position from which the rover obtained the image.

This lack of improvement is intuitively reasonable as well, since colorspace transformations
alone do not introduce new information for the CNN. The transformation required to go from
RGB from HSV, for example, could be learned by a CNN if it were truly useful to make that
colorspace transformation.
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Figure 15: The left column shows, from top to bottom, the original RGB image, hue-illumination-
invariant-disparity image, hue-saturation-disparity image, and saturation-value-illumination-
invariant image. The right column shows, from top to bottom, the ground truth label from RHoCS,
followed by the CPN label outputs.
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The training image sets used thus far were automatically labeled by the RHoCS algorithm
described in Section 2.2.3. Because of this, the ground truth labels used to train the CNN above
were not perfectly accurate. Additionally, the training sets sometimes contained objects or fea-
tures that were neither rocks nor ground. To eliminate the possibility that inadequate ground
truth labels were being used to train the CNN, a hand-labeled, 8-class dataset was created. The
LabelMe Toolbox was used to label this set of 60 images[13, 55]. The 8 classes defined were
rock, ground, sky, mountain, human, car, shadow, and road. A set of 30 affine transformations
were applied to each of the 60 images to produce a 1800 image training set. Figure 16 shows
some examples of 8-class ground truth label images.

Figure 16: Examples of 8-class training set images and their corresponding hand-labeled
ground truth.

21



CPN results with this near-ideal training set looked similar to earlier results. Though the
ground truth was hand-labeled, the distinction between rock and ground in some scenes is neb-
ulous, and it is likely there was some inconsistency in the labels. Additionally, several of the
8 class labels show up only rarely in the images, and may not have been sufficiently learned.
However, the most likely cause of failure is that convolutional patch networks are not suited for
a rock detection task.

3.4 Rock Detection with MatConvNet

The final rock detection implementation uses MatConvNet and one of the models it provides,
VGG-16. Using the notation described earlier, the VGG-16 model architecture is denoted:

C(64 − 3x3) → C(64 − 3x3) → M → C(128 − 3x3) → C(128 − 3x3) → M →
C(256− 3x3)→ C(256− 3x3)→ C(256− 3x3)→M → C(512− 3x3)→ C(512− 3x3)→
C(512−3x3)→M → C(512−3x3)→ C(512−3x3)→ C(512−3x3)→M → FC(4096)→
FC(4096)→ FC(1000),

whereM is a max pooling layer. Note that the model is much larger than the previous models
because MatConvNet uses the standard CNN approach, which uses all the pixels of the image as
the starting input as opposed to the small patches used by the convolutional patch network.

Figure 17: 16-layer VGGNet

3.4.1 Training a CNN for Rocks (RockNet)

A CNN using the 16-layer VGGNet was trained on an image set of 400 images augmented by
20 affine transformations to a set of 8,000 images. These transformations, shown in Figure 18,
help to prevent overfitting and improve generalization of the rock detection. They are especially
useful in this application where the goal of the rock detector is to detect the same rocks in a scene
from any viewing angle and location. The resulting trained model will be referred to as RockNet
in the following sections.

The “ground truth” labels were produced by the RHoCS algorithm described in Section 2.2.3,
based on the hypothesis that the CNN would be capable of generalizing the high-precision, low-
recall rock detection of RHoCS to produce a high-precision, high-recall rock detector that is also
significantly faster.
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The most important training parameter is the learning rate, which regulates the size of stochas-
tic gradient descent steps when optimizing the CNN weights. If set too high, the stochastic gra-
dient descent may never converge to an optimal value for the weights. A user should consider
setting the learning rate low initially, and only raising it based on training time constraints. A
learning rate factor of 0.0001 worked well for this training set.

Figure 18: Affine transformations were used to augment the dataset.

3.5 Results

Recall results against a ground truth set of manually labeled images is provided below. The
ground truth image sets are described previously in Section 2.3.1. As noted there, only the
centroids of highly distinguishable rocks were labeled in the ground truth image sets, so many
true positive rocks unlabeled in the ground truth may be correctly labeled in the CNN results.

3.5.1 Recall Results

Example outputs from RockNet and ground truth centroids are shown in Figures 8 - 11 for the
four image sets. Table 3 shows the recall of RockNet — the percentage of ground truth centroids
detected. The previous RHoCS results are shown again for comparison.

23



Figure 19: Image set A: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RockNet-computed centroids in red.

Figure 20: Image set B: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RockNet-computed centroids in red.
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Figure 21: Image set C: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RockNet-computed centroids in red.

Figure 22: Image set D: Top row, ground truth centroids in green, bottom row, detected rocks
shaded green with RockNet-computed centroids in red.
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Table 3: Recall of RockNet on image sets A through D, with RHoCS result also shown for
comparison.

Image Set RHoCS recall RockNet recall
A 75.0% 98.9%
B 62.4% 92.5%
C 68.1% 100%
D 52.3% 69.1%

Avg 64.5% 90.1%

3.6 Discussion
It is clear that in terms of recall, RockNet performs better than the RHoCS algorithm, averaging
90.1% recall across the four image sets. However, it is not an ideal rock detector, as might be
expected from using a non-ideal training set. Some of the issues discussed in Section 2.4 can be
seen here as well, since the RHoCS algorithm provided the training set. This could explain why
some shadows are identified as rocks in image set D. Another possibility is that the CNN has
over-generalized its training set. The training set consisted of images from the same regions as
sets A and B, which averaged 95.7% recall compared to the 69.1% recall on image set D. Image
set C showed high recall results regardless due to the simplicity of those scenes.

Note that the majority of false positives in the RockNet results consist of very few pixels, e.g.
image 1 of Figure 21, and a simple filter on rock size could correct these.

To improve the CNN-based rock detector for future use, the training data should be thor-
oughly vetted, with images containing people, cars, and other anomalies removed. The training
set labels could also be verified against an illumination-invariant set of images with shadows re-
moved [12, 17, 45]. This would ensure that shadows are not passed to the CNN, while removing
the need for a shadow-removal preprocessing step during online localization. To account for
the possibility of over-generalizing rock features, a larger and more varied training set is also
recommended.

With a few filters on rock size, however, the output of RockNet appears to be robust enough
for constellation formation, which will be discussed in the following section.
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4 Constellations as Landmarks
This section discusses the formation of collections of rocks as useful and identifiable landmarks,
which we have termed constellations. The hypothesis that a constellation of rocks can be used
as a more reliable landmark than an individual rock stems from two main ideas. The first is
that individual rocks are difficult to distinguish from each other. This is an inherent property
of rocks, as they are low-complexity objects formed from the same materials and by the same
geologic processes. Secondly, even rocks that might appear distinct — in color, shape, or size —
can be difficult to recognize from different viewpoints or under different illumination conditions.
Rock constellations, on the other hand, allow one to take advantage of rock geometry, which is
invariant to viewpoint and illumination, and more distinguishable in a desert landscape.

A k-constellation uses the unique geometry of k rocks in 3-D space as a landmark. For exam-
ple, a 3-constellation would simply be a triangle. The sections below will discuss the methods of
describing and comparing constellations. First, related work in star tracking is discussed. Then,
in Section 4.2.1, several methods for generating constellations are presented, followed by meth-
ods of describing the geometry of those constellations in Section 4.2.2 and incorporating rock
features in Section 4.2.3. Once the set of constellations in a scene is adequately described, the
constellations can be matched to those of another scene to determine pose graph constraints, and
various such matching methods are described in Section 4.2.4.

In the results of Section 4.3 that follow, the methods for generating, describing, and com-
paring constellations will be compared in a simulation analysis to determine which combination
of methods provides high accuracy as well as high practicality. In particular, we will compare
similarity metrics (4.3.1) and constellation descriptors (4.3.4), and vary constellation size (4.3.5),
sensor noise (4.3.6), and the number of features per rock (4.3.7).

4.1 Related Work
To the best of this author’s knowledge, there is no prior literature on using groups of rocks as
landmarks. However, a similar problem of reliably matching groups of points occurs in identify-
ing stars. Star identification (Star-ID) is most commonly used for satellite attitude determination
[41], but can also be used on a spacecraft to estimate angular velocity [34] or to aid in navigating
to a specific landing site [66].

The CCD image sensor used for star tracking varies, but typically has a field of view (FOV)
of about 12x12 degrees and resolution of up to 500x500 pixels. A commonly used star database
is the NASA Sky2000 Master Sky Catalog, which has position, magnitude, and spectral infor-
mation for approximately 300,000 stars [48].

Early work in Star-ID in 1986 focused on triplets of stars and compared the inter-star angles
of a triplet to a database to find matches [24]. The inter-star angle is the angle between two
stars from the camera’s perspective. This matching process was made more efficient by first fil-
tering the search space by the area and sum of luminosities of each star triplet [56]. To reduce
the need to search different permutations of triplets, the triplets are commonly sorted by lumi-
nosity. In 1997, Padgett proposed a new Star-ID algorithm that involved mapping a collection
of stars onto the cells of a discrete grid, and searching for matches of the resulting grid pattern
against a database [50]. In 2000, a neural network was applied to star matching. The inter-star
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angles and luminosities were used as inputs into a neural network that identified the stars [27].
This method was very fast but its reliance on more sophisticated parallel computing hardware
compared to other methods makes it less practical on spacecraft that have limited power and re-
quire radiation-resistant hardware [60]. More modern methods continue to use the luminosities
and either inter-star angles or interior angles of small groups of stars, and focus on improving
database search efficiency [35, 71]. See [60] for further discussion of these various methods and
the improvements in runtime and reliability each makes.

While the problems of matching groups of rocks and matching groups of stars nominally
seem similar, several key differences are described below:

Stars can be compared against a known database or star catalog The most important
distinction between Star-ID and rock constellation matching in the context of SLAM is that the
database of stars is constant and known beforehand, while the database of rock constellations is
unknown at the start and updated as the rover moves. The star database can be stored as a binary
search tree or other efficient data structure, based on the feature extraction method to be used.
The star database is also often filtered to a set of 5,000 - 20,000 stars by removing stars with
lower magnitudes, uncertain color indexes, or other indications of unreliability [51, 71].

The ability to filter the database and determine beforehand the most uniquely identifiable
groups of stars makes reliable star matching much more feasible. For example, the most reliable
star groups can be pre-determined for each subregion of the sky based on a probability analysis
of which groups of stars are most unique. Then, in any orientation, a spacecraft could detect one
of these reliable star groups and know with high probability that the match is unique.

Star measurements are highly precise This is not to say that star detection itself is perfect
— there are numerous sources of possible errors in star detection, including sunlight reflected by
the spacecraft, exhaust gas from thrusters, optical device aberrations, and other celestial objects
(e.g. planets, comets, satellites). However, the relative positions of stars that are detected in the
FOV are known to a high degree of precision. In fact, when performing simulation analysis of
Star-ID methods, Zhang [71] considers measurement noise with standard deviation of at most 1
pixel (0.024 degrees). Compare this to rock detection where a measured centroid of the same
rock can vary as much as 0.5 meters depending on stereo measurement errors and the specific
pixels of the rock detected.

Stars are distant, planar points A star is measured as a single planar point, so inter-star
angle measurements of the same two stars from any position and orientation will produce the
same result, with no possibility of occlusion. In contrast, rocks are 3-D objects viewed in this
work from the elevated camera of a rover. Thus, rocks often occlude each other and measurement
errors vary depending on the rocks’ locations in the image. Since the exact center of a rock cannot
be measured in an image, the size of the rock itself can cause measurement errors.

Stars have few features Using a CCD camera, the only additional feature available for
each star is its luminosity. Rocks extracted from RGB images have a larger set of features
available.
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Star-ID is less prone to partial matches A partial match here refers to a match between
two sets of points, in which one of the sets is a subset of the other. This is unlikely for Star-
ID algorithms because the database fully describes each star. A partial match would need to
be caused by extracting a partial set of features from the FOV, which is avoidable. Consider
the following example of a typical Star-ID algorithm: a bright star in the FOV is selected to be
matched and its two nearest neighbors will be used to form three inter-star angle features. The
database has been set up so that each entry is the inter-star angles between a bright star and its two
nearest neighbors. The features in the FOV are matched to the nearest database entry to identify
the selected star. A partial match in this scenario could only occur if one of the nearest neighbors
of the selected star was outside of the FOV, which could be entirely avoided by selecting a star
away from the borders of the FOV.

In the rock constellation problem, there is no database to fully describe each rock so every
constellation is potentially a partial constellation. Also, most rocks are viewable for 3-4 frames,
so constellations are constantly being obscured as the rover moves.

Star-ID searches for a single match At each star tracker cycle, the star matching algorithm
attempts to identify a single star in the FOV, which can be used to compute an attitude estimate.
Every star above a desired magnitude will be stored in the database so a match is always guaran-
teed, provided no star detection errors. Rock constellation matching strives to identify as many
landmark matches as possible, as each match improves the localization estimate. No constella-
tions in a given scene are guaranteed to have a match.

With the precision of star detection, current Star-ID methods can achieve 98%-99% identifi-
cation accuracy in simulations [70]. Star trackers are the primary source of attitude information
in spacecraft today [61]. However, several key advantages — a known database, precise measure-
ments, and single points — are lost in transferring the problem to rock constellations. Because
of these differences, new approaches for rock constellation matching are investigated in the sec-
tions below, with a primary focus on handling partial matches and robustness to measurement
and detection errors.

4.2 Method
There are three components to constellation matching between two scenes: (1) the generation
of constellations (2) the choice of feature descriptor to describe each constellation and (3) the
method of comparing feature descriptors. This section will first describe each of these com-
ponents and their effects on matching accuracy and precision separately. Then, because they
are not entirely independent, their combined effects will also be discussed. All descriptors of
constellation shapes assume planar points, which is a reasonable assumption for desert images.

4.2.1 Generating Constellations

For the purpose of defining a rock constellation, each rock is first reduced to a single point. In this
work, the rock detector produces a binary image, where rock pixels are labeled white and ground
pixels are labeled black. A group of connected white pixels is assumed to be a single rock, and
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the centroid of those pixels defines the centroid of the rock. Thus, a scene of N rocks produces
a set of N points which will be used as the input to a constellation generator. A k-constellation
is defined as any set of k centroids in the scene, where k ≤ N . Any means of producing a set
of these k-constellations is a valid constellation builder. However, with the objective of accurate
and precise constellation matching in mind, it is possible to judge the quality of a constellation
builder based on several factors, namely:

1. The repeatability of constellation generation.

2. The number of constellations generated.

3. The robustness to small changes in the point set.

The first consideration is crucial to obtain any reasonable accuracy. Consider the extreme case
of a random constellation builder. Presented with the exact same scene it will produce different
constellations, making it unusable for data association.

The second consideration focuses on the computational aspect of comparing constellations.
The maximum number of unique k-constellations that can be obtained from N points is

(
N
k

)
which grows factorially to unmanageable numbers fairly quickly. For constellations greater than
order 3 it is necessary to find a more efficient set of constellations.

The third consideration is of practical concern, as it is a common occurrence for rocks to be
introduced into a scene as the rover moves. For example, a smaller rock can be added to the point
set only when the rover moves near enough for it to be identified by the rock detection sensor
and algorithm.

The constellation-building methods examined here are full 3-constellation generation, De-
launay triangulation, connected Delaunay triangulation, and convex hull boundaries.

Full Constellation Generation The naïve approach to k-constellation generation is to use ev-
ery combination of k points. In practice, the Atacama dataset used in this work has scenes with
at mostN = 40 rocks. Generating every possible 4-constellation would produce 91, 390 constel-
lations. But with this rock limit it is still possible to consider all 3-constellations, which will be
explored in Section 4.3. The advantage of this method is that it is highly robust to small changes
in the point set. If a point is added, the previous constellations will be unchanged. With ideal
measurement accuracy, it will achieve perfect recall. However, this is at the cost of precision, as
the chance of a false positive match is very high for a complete set of constellations.

Delaunay Triangulation A Delaunay triangulation is a triangulation of all the points P in the
scene, such that each triangle’s minimum angle is maximized. This gives it favorable features,
such as avoiding sliver triangles. Given the same scene and Delaunay algorithm, the same De-
launay triangulation will always be produced. The number of constellations generated will be
at most 2N − 5, making it much more computationally feasible than the

(
N
3

)
triangles of a full

3-constellation generation.
However, small changes to the point set can alter the triangulation. A point that appears

within the circumcircle of a triangle will alter that triangle, and a single point can appear in
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Figure 23: All 3-constellations of an Atacama Desert scene, each shown in a different color.

Figure 24: Full Delaunay triangulation of an Atacama Desert scene, with each triangle shown
in a different color.

multiple overlapping circumcircles. Additionally, if more than three points lie on a circumcircle,
multiple triangulations of those points are valid. While there will never be more than 3 points
exactly on a circumcircle in real numerical data, the error in centroid measurements and transient
rock issue can potentially cause two views of the same scene to produce different Delaunay
triangulations. This makes the use of 3-constellations with Delaunay triangulations non-robust
— small changes in the point set alter the set of constellations generated.

Connected Delaunay Triangulation (CDT) An approach to improve the robustness of Delau-
nay triangles was developed in this work and coined “connected Delaunay triangulation” (CDT).
While Delaunay triangles themselves are non-robust, higher-order constellations created by con-
necting Delaunay triangles that share an edge can be robust, or resistant to small changes in the
point set. Additionally, the CDT algorithm is deterministic and for N rocks, produces at most
N ∗ 2k−2 k-constellations, making it an ideal constellation generator for higher-order constella-
tions.

Algorithm 2 describes how a set of k-constellations can be created from a Delaunay triangu-
lation.
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Algorithm 2 Method for connecting Delaunay triangles to from a k-constellation
Let a constellation made of k points be denoted as Ck.
01. Compute the Delaunay triangulation to form T triangles Ci

3

for i = 1 to T .
02. Compute the T × T adjacency matrix A between all C3 that

share an edge Eij, where Aij is the point in Cj
3 that is not

in Eij.
03. Let UA(Ci

k) be an operation that uses A to produce, for
a list of n edges in Ci

k, the set of n new constellations
{S1

k+1, . . . , S
n
k+1}.

04. For c in 3 . . . k
05. For i in 1 . . . T
06. Si

c−→UA (Ci
c)

07. EndFor
08. Cc−→Unique (Sc)
09. EndFor

An added advantage of this method is that locally defined constellations can be easily en-
forced by removing triangles with edge lengths above some distance threshold DE from the
original Delaunay triangulation, before constructing the adjacency matrix.

Figure 25 below shows the full set of 3-, 4-, 5- and 6-constellations produced by connecting
Delaunay triangles for the set of points on the left.

Convex Hull Boundaries (CHB) The connected Delaunay triangulations can be taken a step
further by finding the convex hull of each connected Delaunay triangulation and using the k
points on the boundary of a convex hull as a k-constellation. This can reduce the order of a con-
stellation, so it is necessary to re-sort each convex hull boundary into the correct k-constellation
size so that the desired sizes of constellations can be matched. Boundary points are sorted in
counterclockwise order to increase efficiency when comparing two CHB descriptors.

CHBs have the same advantages as CDTs, but with a reduced set of descriptors and increased
robustness to noisy points. A rock that intersects many circumcircles of a Delaunay triangulation
can drastically alter that triangulation. However, when taking the convex hull boundaries of the
CDT set, those inner noisy points are ignored entirely.

Figure 26 shows an example set of CHB constellations produced by (1) Finding the set of
connected Delaunay triangles (2) Computing the convex hull boundaries and (3) Re-sorting the
resulting constellations based on size.
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Figure 25: Connected Delaunay triangles

Figure 26: Convex hull boundaries of connected Delaunay triangles
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4.2.2 Describing Constellation Geometry

After the constellations have been generated, a feature descriptor must be produced for each one.
For a k-constellation, the feature descriptor must

1. Be deterministic.

2. Contain at least 2k − 3 independent variables.

3. Produce the same descriptor after any planar rotation or translation.

The first condition is a basic requirement to ensure that two congruent constellations can be
correctly matched every time. The second condition requires a descriptor to have the minimum
number of variables needed to uniquely identify a set of k points. This ensures that only one
shape can be described by the descriptor. The third condition ensures that the same constellation
on a plane in real-world coordinates can be matched from different viewing locations, which is
the basis for data association in the desert.

Pairwise Distances A set of pairwise distances meets the three conditions and produces a
descriptor of length k(k − 1)/2. To be deterministic, the distances are sorted.

Polar Coordinates The polar coordinates of the points produces the minimal feature descriptor
of length 2k − 3. This meets the three conditions if a consistent, rotation invariant frame of
reference for computing the polar coordinates can be found. One method that accomplishes this
is to (1) Select as the origin P the most isolated point (largest mean pairwise distance) (2) Select
the nearest neighbor to this origin Q (3) use the vector PQ as the X-axis with which to compute
polar coordinates. The descriptor values are then sorted by increasing angle, with the origin
coordinate and angle to Q excluded.

Convex Hull Boundary Points For a convex hull boundary descriptor, the CHB points them-
selves can be used to produce a feature descriptor of length 2k2 — the k pairs of x and y values,
all shifted and rotated k times to use each point and its counterclockwise neighbor as the ori-
gin and X-axis. This will always produce the same descriptor after any planar motion, but the
ordering is not guaranteed to be consistent.

4.2.3 Incorporating Rock Features

So far we have only described the constellation geometries based on the centroids of rocks.
However, the pixel-wise labeling outputted by the rock detector also allows us to use information
about each rock in the original image. Requiring a match between rock features in addition
to constellation geometry further safeguards against false positive constellation matches. Each
point added to a k-constellation increases the number of independent variables by two, but each
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additional rock feature added to the constellation increases the number of independent variables
by k. This makes accurate and consistent rock features especially desirable.

An ideal rock feature is one that is invariant to planar rotation and translation, as well as to
lighting conditions. Some features that were tested include

Height The local height of a rock above its surrounding ground. This is found
by using RANSAC on the 3-D points around the labeled rock to obtain
a ground plane and then taking the mean height above the plane. This
is invariant to planar motion, but was often unable to be computed
because the stereo point computation failed for most of the featureless
desert ground plane.

Isolation A spatial descriptor for a rock that measures its isolation from all other
rocks. Various isolation metrics are possible. For example, the dis-
tance to the nth-nearest neighbor or the mean of a rock’s distance to
all other rocks could be used. This is invariant to planar motion and
lighting, but because it relies on knowledge of other rocks’ locations
and not all rocks are guaranteed to be detected, it is not a robust mea-
surement.

Color The simplest feature to consider, but due to the lack of variety, general
sameness of rock and ground color, and significant changes caused by
lighting and shadows, this feature adds little information.

Pixel Area The number of connected labeled rock pixels for a given rock. This
is not invariant to planar motion and depends on consistent rock de-
tection in various lightings. It is not useful for generalized constella-
tion matching but is fairly consistent in consecutive scene matching.
Across a single frame (approximately 1 meter of motion) the pixel size
does not alter drastically.

Visible Surface Area The approximate visible surface area in square meters of a detected
rock. This is estimated by finding the largest diameter of the rock in
pixels, and multiplying this diameter by a value that relates the number
of horizontal meters per pixel to the range from the camera to the
rock’s centroid. Then πr2 can be used to estimate the surface area. It
is invariant to scale changes (moving toward or away from a rock) but
not guaranteed to be invariant to viewing a rock from a different angle.
However, rocks do tend toward a spherical shape so it can be useful in
this application.

None of the rock features described above meet the ideal invariant conditions described, but they
still provide a useful approximation that can filter out moderate to severe mismatches.
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4.2.4 Matching Constellations

Once a set of constellation descriptors is built for two scenes, the constellations are compared
to determine if there are matched landmarks between the scenes. This is the well-known data
association problem in SLAM [65]. If a correct match is found, a measurement constraint can
be added to the pose graph to improve the estimate of the rover’s state. This matching process
varies depending on the type of feature descriptor used, so they are categorized below into vector
descriptors, where the feature is represented as a vector of values, and point set descriptors,
which are all the 2-D points of a constellation.

Vector Descriptors To match vector descriptors, we need some form of similarity metric that
assigns a value from 0 to 1 based on how similar two constellations appear. Then, if a user-
defined similarity threshold is met, the constellations are considered matched. The vector de-
scriptors should be normalized in some way so that features with different units can be weighted
equally.

Cosine distance The cosine distance between two vectors A and B is defined as the cosine of
the angle θ between them:

similarity = cos (θ) =
A ·B
‖A‖ ‖B‖

Since we deal only with positive values in our feature vector this will give a value from 0
to 1.

Ratio Here, the ratio between two vectors A and B is defined as

similarity =

∑n
i=1

min(Ai,Bi)
max(Ai,Bi)

n

which is simply the mean of the smaller values in the feature vector after normalizing by
the larger values.

CHB Point Set Descriptors

Describing sets of points requires a different approach because the points are not necessarily in
sorted order, so it becomes necessary to find a best-fitting match. However, because it uses all the
information about both sets it is also the most flexible method of matching descriptors, allowing
two constellations of different sizes to be matched. The problem is defined below for the specific
case of convex hull boundary points sorted in counterclockwise order.

Given two sets of pointsAk1 andBk2 , of sizes k1 and k2 respectively, with k1 ≤ k2, determine
if Ak1 can be translated and rotated such that a point in Ak1 is within some error e in Euclidean
distance away from exactly one point inBk2 . This is accomplished by computing the coordinates
of the points in k1 different reference frames, using each point and its counterclockwise neighbor
as a frame of reference. Call this k1 length set of transformed point sets SA. The same is done
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for the k2 points of Bk2 to produce SB. Then k1 ∗ k2 comparisons are made between each of the
point sets of SA and SB. If any of these comparisons have exactly k1 points matching, then Ak1

and Bk2 are considered matches.
If a constellation match is found, care must be taken to keep track of the pairs of points that

matched so that rock features can be correctly compared.
For efficiency, the sets of shifted and rotated points SA and SB can be computed and stored

at the time of constellation generation rather than when matching. This way, the computation is
done only once.

Figure 27: A 4-constellation is shifted and rotated 4 times to produce a 16 point descriptor.

Setting Error Thresholds The error threshold e between two points requires some care in
setting. While a single value can be used to determine all point matches, this is not ideal because
of the increase in stereo measurement error for points further away. Instead, it is more accurate
to assign each rock a measurement error based on its range from the camera. Then, assuming
measurement error is approximately normally distributed, the Euclidean distance between two
points p1 and p2 with associated errors σp1 and σp2 should be compared against the threshold
given by propagating uncertainty:

ep12 =

√
(σp1)

2 + (σp2)
2

where σp1 = εmp1range and σp2 = εmp2range

The value εm used in this work was experimentally approximated from the actual variances
in the images. In theory, εm should be based on both stereo error and rock detection error, but
the nature of CNN rock detection makes the latter difficult to determine.
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Figure 28: Estimated errors of each rock

Comparing Different Sizes of Constellations When comparing two scenes, each with con-
stellations of varying sizes, the order in which to compare different sizes of constellations is an
important consideration. For example, consider the following scenario:

Suppose one chooses to connect up to 5 Delaunay triangles (7 points), and then use 4-, 5-,
and 6-constellations (denoted hereafter as 4-5-6-constellations) of convex hull boundary points
to describe each scene of rocks. When comparing these 4-5-6-constellations in a scene A to the
4-5-6-constellations in a scene B, there are 9 combinations of comparisons to consider: {(4,4),
(4,5), (4,6), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6)}. The sequence of comparisons matters because
a 4-constellation could be a subset of a larger constellation that has already been matched. If 4
points in scene A match with 4 points in scene B, and the 4 points in both scenes are subsets of
5-6-constellations, we would find 9 matches of the same 4 rocks.

The subsets of larger constellations cannot simply be removed, since partial matches are a
common occurrence. For example, sceneAmight contain a unique 6-constellation CA

6 and scene
B might view the same scene with two of the rocks obscured, mismeasured, or undetected. The
4-constellation CB

4 that is visible in scene B should still be matched to the 4-constellation in
scene A that is a subset of CA

6 .
To account for both multiple matches and partial matches, the comparison sequence can be

adjusted so that constellations with the least difference in size are compared first, and then as
a tie-breaker, consider the largest constellations first. The order in the above example would
then be {(6,6), (5,5), (4,4), (6,5), (5,6), (5,4), (4,5), (6,4), (4,6)}. Then, for any constellation
that has been matched, remove all subsets of that constellation from consideration in the current
scene comparison. With this method, a constellation will not be matched if a superset of that
constellation has already been matched, and, if a match exists, only the minimal set of matching
points will be found.

The subsets of a constellation can be easily determined during constellation generation since
constellations are built sequentially from their subsets.
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Algorithm 3 RANSAC on initially matched constellations
Given two sets of N constellations C1 and C2, and an inlier
threshold ei

01. Initialize num_inliers → 0

02. For i . . . max_iterations
03. Randomly select 2 pairs of matching constellations Cr1

and Cr2.
04. Use SVD to determine the least-squares rigid transform

(R, t) that aligns the points of Cr1 to the points of
Cr2[59].

05. Apply the rigid transform (R, t) to all the points of C1

to produce a projected set of constellations C ′2.
06. Find the N sums of squared errors between each

constellation in C ′2 and its corresponding match in C2.
07. Let I be the constellations with SSE < ei and M be the

length of I.

08. If M > num_inliers
09. num_inliers = M
10. best_inliers = I
11. EndIf
12. EndFor

13. Return best_inliers

RANSAC Outlier Rejection

Random Sample Consensus [20] is a commonly used method for outlier rejection. It is used here
to determine the points of initially matched constellations between two scenes that are consistent
with each other, as described in Algorithm 3.

In step 3, two constellations are used to fit the rigid transform model because a rigid transform
has six degrees of freedom and two constellations guarantee at least six points. In step 8, ties in
the number of inliers found can be broken by comparing the mean inlier error. For computational
efficiency, the algorithm can also be exited early if some minimum number of constellation inliers
is found. The inliers returned by RANSAC can be verified further by comparing the similarity
between rock features. This produces the final set of matched constellations that can be defined
as landmarks in the GraphSLAM optimizer.
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Figure 29: Constellation matching process.
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4.3 Results
Determining an optimal constellation matching strategy among the many possible variations dis-
cussed above is of prime importance to the success of the overall MeshSLAM algorithm. A
visualization of the options and variables at each stage of the matching process is shown in Fig-
ure 29. A simulation analysis will be used to compare these options under varying scene-specific
conditions (shown in orange ovals in Figure 29). In particular, results are shown for the follow-
ing:

• Comparing feature vector similarity metrics

cosine similarity and ratio similarity for uniform and exponentially distributed fea-
tures.

• Generating constellations

Generating all constellations vs generating CHB constellations
• Describing constellations

Comparing pairwise vs polar vs CHB point descriptors

− For varying sizes of constellations

Varying the number of features per rock

− For uniform and exponentially distributed features

Comparing precision and recall when measurement noise is added

− For varying measurement errors
• Computation of CHB matching

For varying numbers of rocks and constellation sizes

In the results below, a heavy emphasis is placed on robustness to false positives, as this is the pri-
mary measure of effectiveness for a constellation landmark. False data associations in the factor
graph can easily cause dramatic failures in the optimizer, and preventing them is undoubtedly the
main challenge of using rocks as landmarks. However, we intend to show that by selecting appro-
priate constellation descriptors and matching methods, rocks can indeed by used as landmarks
with low false positive rate.

Due to the highly parameterized nature of the constellation matching problem, it will be
necessary to make some simplifying assumptions, which we provide the basis for below. The
section will close with a discussion of these results and their applicability.

4.3.1 Comparing Similarity Metrics

The two similarity metrics described in Section 4.2.4 are compared in Figures 30 and 31. In
Figure 30, a set of 5000 random vectors of length 4, 8, and 12 were generated from a uniform
distribution and compared pairwise against each other, using either the cosine similarity metric
(blue) or ratio similarity metric (red). These random vectors simulate the features associated
with rocks in a constellation. The sizes 4, 8, and 12 correspond to a 4-constellation with 1, 2,
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or 3 features per rock. Probability density functions are shown on the left and the corresponding
cumulative density functions are shown on the right.

An ideal similarity metric provides a large separation in score between a true and false pos-
itive match. This means that, on average, two randomly selected feature vectors should have
a low similarity score. Highly unique similarity metrics correspond to a lower likelihood of
a constellation’s set of features incorrectly matching with another constellation’s set of fea-
tures, thus decreasing the false positive rate. In the plots below, a unique similarity metric has
a longer right-sided tail in the probability density function, indicating that a smaller propor-
tion of feature vectors match strongly. Equivalently, the cumulative density function of a more
robust similarity metric should have higher value of cdf(x) for the same value of x. That is,
If cdfmetric1(x) > cdfmetric2(x), metric1is the more robust similarity metric.

In Figure 30, the cosine similiarity metric performs better for all numbers of features and for
all similarity thresholds. Figure 31 shows similar plots but samples the random features from
an exponential distribution. The result is that the ratio similarity metric performs better in this
case for similarity thresholds greater than about 0.4, though this value varies depending on the
number of features used.

We can conclude that features distributed uniformly should be compared using the cosine
similarity metric while features distributed exponentially should be compared with the ratio sim-
ilarity metric when higher similarity score thresholds are desired. In practice, most features are
distributed exponentially and the similarity threshold will almost always be set higher than 0.4,
so the ratio metric is preferred and will be used where relevant in the rest of the results.
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Number of Features: 4

Number of Features: 8

Number of Features: 12

Figure 30: Probability density functions (left) and cumulative density functions (right) when using
cosine and ratio similarity metrics to compare uniformly distributed random feature vectors of
size 4, 8, and 12 from top to bottom.
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Figure 31: Probability density functions (left) and cumulative density functions (right) when using
cosine and ratio similarity metrics to compare exponentially distributed random feature vectors
of size 4, 8, and 12 from top to bottom.
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4.3.2 Monte Carlo Simulations

In the following results, a Monte Carlo simulation is used to model constellation matching. The
specific procedure varies depending on the values being analyzed but the general procedure is as
follows:

1. Generate 5,000 pairs of scenes with a field of view of 20x20 meters, each containing 20
rocks uniformly and randomly distributed.

2. Build constellations up to a max order of 8, and form constellation descriptors.

3. Make 5,000 comparisons between the constellations in each pair of scenes.

4. Model the number of constellation matches that occur between a pair of scenes as a Poisson
distribution p(k), where the λ to be estimated is the average number of constellations that
match between two randomly selected scenes.

5. Compute the probability of at least one match between two random selected scenes as
1− p(0).

The above process makes several assumptions based on the specific Atacama dataset under study.
The size of the field of view is approximately 20x20 meters for the stereo camera and viewing
angle used by Zoë. It’s also assumed that 20 rocks can be seen in each frame. This is an upper
bound assumption since most scenes contain far fewer. The boxplots in Figure 32 show the
distribution of the number of rocks in each frame for 6 sample datasets from the Atacama Desert
of varying terrain types. Nearly all scenes contain fewer than 20 rocks as can be seen by the
dashed green line above 5 of the 6 boxplot whiskers. Atacama Desert scenes contain on average
7 rocks, so the 20 rock assumption can be safely made without overestimating the robustness of
constellation matching.

The Poisson distribution is a reasonable approximation of the distribution of constellation
matches. Each pair of scenes compares a large number of constellations and each constellation
comparison can be considered a Bernoulli trial with very low probability. Thus, by the law of
rare events, the Poisson distribution can be safely applied to constellation matches [9].

All error bars shown are 95% confidence intervals based on the approximation of the value
λ, unless otherwise noted.
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Figure 32: Variation in number of rocks between scenes in 6 different sample datasets from the
Atacama Desert.

4.3.3 Generating All Constellations

The method of generating all possible combinations of 3-constellations in a scene is used as a
baseline metric for analyzing false positive rates. Intuition suggests that the sheer number of con-
stellations generated by this method makes it susceptible to large numbers of false positives and
the results appear to agree. Figure 33 shows the probability of at least one false positive match
between two randomly selected scenes with 20 rocks each when every possible 3-constellation
is generated. The CHB point set method is used to match the constellations (Section 4.2.4).
The probability of a false positive match is shown as a function of measurement error, which is
a factor multiplied by the range of a rock to determine that rock’s position error, as described
in Section 4.2.4. For example, a rock 15 meters away with 1% measurement error would have
position error of 0.15 meters.

The plot shows that even for measurement errors as low as 0.3%, the chance of a false positive
match between two random scenes is 95%.
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Figure 33: Probability of at least one false positive match vs. the measurement error as a
percent of rock range when generating all possible 3-constellations.

4.3.4 Comparing Constellation Vector Descriptors

The two vector descriptors — pairwise and polar descriptors (Section 4.2.2) — are compared in
Figure 34. The top images show the unmagnified and magnified results of constellation matching
using pairwise descriptors. The bottom images show the unmagnified and magnified results of
using polar descriptors. The probability of at least one false positive match is plotted against the
descriptor similarity threshold for varying sizes of constellations. The ratio similarity metric, de-
scribed in Section 4.2.4, was used to measure constellation similarity. The similarity threshold is
the percentage of similarity from 0% to 100% between two constellations for them to be consid-
ered matches. In general, a high similarity threshold decreases the likelihood of a constellation
match.

An ideal constellation vector descriptor would achieve low false positive rates at low similar-
ity thresholds. Lowering similarity thresholds increases recall, which is desired as long as false
positive rate remains low. Similarity thresholds set very high will guarantee no false positives
but may not accept matches at critical loop closure points. As always, the primary tradeoff is
between precision and recall.

For the pairwise descriptor, the figure shows an interesting crossover for the plots of different-
sized constellations. This is caused by the many redundant variables used by the pairwise de-
scriptor. For large k-constellations, the number of pairwise descriptors given by k(k − 1)/2
is much larger than the number of independent variables needed to describe the constellation
2k − 3, and the distribution of ratio similarity scores from matching a large number of variables
tends toward a normal distribution, as can be seen in Figure 30. Thus, at lower thresholds, larger
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constellations with their many features become less unique than smaller onstellations, which are
described by fewer variables.

In the bottom plots showing the same results for a polar constellation descriptor, we note
a simple trend — larger constellations can achieve the same false positive probability rate as
smaller constellations but at lower thresholds. As might be expected, larger constellations are
more unique than smaller ones. However, the plot also shows diminishing returns on the reduc-
tion of false positives, so the benefit of large constellations should be balanced against the extra
computational cost.

Figure 34: Comparison between pairwise (top) and polar (bottom) descriptors, showing the
probability of at least one false positive match vs. the measurement error as a percentage
of rock range for different sizes of constellations. The right column only shows similarity
thresholds of 95% or greater.
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4.3.5 Varying the Sizes of Convex Hull Boundary Descriptors

Results in Figure 35 show the probability of a false positive match plotted against the measure-
ment error for varying sizes of convex hull boundary descriptors. The results are plotted only for
measurement errors up to 5% of rock range, as beyond this is an unrealistic amount of error in
the measurement of the rock position. A rock at 20 meters with 5% measurement error would
have 1 meter in position error, which is a large tolerance for stereo images, even considering the
addition of error from the rock detector.

We note again that for the same measurement error, larger constellations achieve lower false
positive rates, although here there are no diminishing returns.

It would seem robustness can be achieved simply by using very large constellations. How-
ever, larger constellations have the significant disadvantage of low recall in real desert scenes, as
they require more rocks to form and are more likely to be partly occluded. Recall that an average
scene in the Atacama Desert contains 7-8 rocks. Thus, for the remainder of the results we focus
on analyzing the effectiveness of smaller constellations of size 4 and 5.
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Figure 35: Probability of at least one false positive match vs. the measurement error as a
percentage of rock range for different sizes of CHB constellations.

4.3.6 Varying Rock Position Noise

The vector descriptors cannot be compared directly with the CHB descriptor since they use dif-
ferent parameters. However, their performance in recall and precision can be directly compared
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when noise is added to the rock positions.
The Monte Carlo simulation used here is similar to the method described above, except only

5,000 scenes of constellations are generated, which are then matched with noisy versions of
themselves. Gaussian noise with zero mean and varying standard deviations was added to each
rock’s position, and then constellations were built from the noisy set of points. The constellation
size was set to 4. The 5,000 pairs of scenes were matched against each other and the number of
true positive, false positive and false negative matches were determined to provide an estimate
on the recall and precision, given by

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Figure 36 shows the precision and recall curves for pairwise descriptors and Figure 37 shows
the precision and recall curves for polar descriptors. The similarity threshold is also varied in
both cases. Figure 38 shows the precision and recall curves for CHB descriptors with varying
measurement errors. To make the plots comparable to each other, similarity thresholds and
measurement errors were chosen to correspond to the same false positive probabilities. For
example, the 97% similarity threshold used in the pairwise descriptor plots corresponds to a false
positive probability of about 9% in Figure 34. The measurement error of 1% also corresponds
roughly to a false positive probability of 9% in Figure 35, so the recall and precision for these
two curves can be directly compared.

All descriptors perform comparably well in recall, but the CHB descriptor has generally
lower recall for all amounts of rock noise. More important, though, are the precision curves
which determine the descriptor’s susceptibility to incorrect data associations. There we can see
that the CHB descriptor is outperformed by the polar descriptor only in the case of very high
rock noise and low measurement error/high similarity threshold, which is the most unrealistic
case. In the cases where recall is greater than 10% (below 0.3 meters rock position noise) the
CHB descriptor is a more precise constellation descriptor at all tested measurement errors.

4.3.7 Varying the Number of Features Per Rock

Results so far have examined methods of constellation generation and geometric descriptors.
CHB descriptors have been shown to be the most robust descriptors, but the likelihood of at
least one false positive match is still unmanageably high (Figure 35) for smaller constellations
at measurement errors greater than 1% of rock range. Comparing the 4-constellations of two
random scenes of 20 rocks at 2% measurement error produces a false positive probability of
90%. For 5-constellations, this value reduces to 14%.

However, incorporating rock features into constellation matching can greatly reduce this risk.
This can be shown by performing the same constellation matching procedure as above, but also
assigning each rock a random feature vector to simulate the features of real rocks (e.g. pixel area,
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Figure 36: Precision and recall curves for pairwise descriptors at varying thresholds.
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Figure 37: Precision and recall curves for polar descriptors at varying thresholds.
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Figure 38: Precision and recall curves for CHB descriptors at varying measurement errors.
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rock size, color, etc.). This allows us to determine how the false positive rate is affected by these
extra random features.

The result of this analysis is shown in Figure 39. The random features for each rock are
uniformly and randomly generated. Measurement error is set constant at 2%, and the analysis is
repeated for both 4-constellations (top) and 5-constellations (bottom).

Overall, these results indicate the usefulness of extra rock features in reducing false positive
rate. For feature similarity thresholds greater than 60%, the likelihood of false positive matches
is greatly reduced, though we note diminishing returns on these improvements.

Uniformly distributed random features

Figure 39: Probability of at least one false positive match vs. feature similarity threshold for
varying numbers of uniformly distributed random features. The top images show the unmagni-
fied and magnified results for 4-constellations and the bottom images show the unmagnified and
magnified results for 5-constellations.
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Exponentially distributed random features Most distributions formed by natural processes
tend to be exponential. As an example, distributions of the surface areas and pixel areas of all
rocks in the Atacama dataset are shown in Figure 40. Thus, we can repeat the same analysis as
above but sample random features from an exponential distribution.

The result, in Figure 41 below, shows that this realistic assumption further improves results.
The curves are moved leftward, indicating that the same false positive probability can be achieved
at a lower similarity threshold.

Figure 40: Distribution of rock surface area and pixel area in the Atacama dataset.
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Figure 41: Probability of at least one false positive match vs. feature similarity threshold for vary-
ing numbers of exponentially distributed random features. The top images show the unmagni-
fied and magnified results for 4-constellations and the bottom images show the unmagnified and
magnified results for 5-constellations.

4.3.8 CHB Descriptor Computation

Computation is a reasonable concern for the CHB descriptors. Generating convex hull bound-
aries from Delaunay triangulations can be done very efficiently. The main computational bottle-
neck occurs in matching all the shifted and rotated points of one set of constellations to all the
points of another. Below we analyze how this computation is affected by the size of constella-
tions generated and the number of rocks in the scene. As it is nontrivial to analytically determine
the average number of constellations generated by connecting Delaunay triangulations and ex-
tracting their convex hull boundaries, a simulation approach is used.

A set of Nr rocks is randomly generated in an FOV that matches that of Zoë. By forming the
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set of CHB constellations for those simulated rocks, we are able to determine how the number
of constellations increases with respect to the number of rocks visible in the scene. The leftmost
image in Figure 42 shows the result of this simulation. The number of constellations increases
close to linearly for the range of 0 to 50 rocks. We note that for a dataset in which we expect to
see less than 10 rocks in many scenes, it would be unhelpful to search for 6- and 7-constellations,
as these are much less likely to be found.

From the number of constellations found, we can also estimate how computational time is
affected by the number of visible rocks, which will be useful in designing future improvements
to constellation matching. Consider two scenes that use the same size k-constellations and same
number of constellations NC . For the brute force method used in this work in which all constel-
lations of one scene are compared against all constellations of a second scene, this comparison
simplifies to the inner product between two large matrices for a total number of point compar-
isons N2

c × k4. We find that the average number of point comparisons made between two scenes
increases quadratically as the number of visible rocks increases, as shown in Figure 42.

While the quadratic increase in computation with respect to the number of rocks in the scene
is certainly undesirable, in the context of rocks in the desert the actual numbers of point compar-
isons made are manageable. As shown in Figure 32, the number of rocks in an Atacama scene
is on average 7.4 rocks, with 78% of scenes containing less than 10 rocks and 97.5% of scenes
containing at most 20 rocks. The average number of point comparisons is on the order of 10,000
between scenes of 10 rocks and on the order of 100,000 between scenes of 20 rocks, as shown in
Table 4. These values are easily manageable by modern CPUs.
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Figure 42: Number of constellations generated (left) and number of CHB point comparisons
(middle) vs the number of rocks in the field of view. The figure on the right shows a magnified
version of the middle plot, focusing on the range of rocks relevant to desert scenes.
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Table 4: For the brute force approach to constellation matching, the average number of point
comparisons is compared for various constellations sizes.

Constellation
Size

Number of Point
Comparisons

(10 rocks)

Number of Point
Comparisons

(20 rocks)
3 8700 74,000
4 15,000 203,000
5 10,700 260,000
6 3700 89,000
7 900 32,000

4.4 Discussion
The analysis of constellation matching above provides useful guidelines for setting parameters
to avoid false positive matches. For example, we have shown that both 4- and 5- constellations
can achieve close to 0% false positive probability using
• CHB descriptors
• 2% measurement error
• Two additional features per rock at 70% similarity threshold

The measurement error and similarity threshold can be increased to further reduce false positive
rate so long as sufficient recall is maintained. The value for “sufficient recall” is dependent
on the dataset, odometry error, and difficulty of loop closure matches. False positive matches
unaccounted for by the above process can be safely guarded against by a final RANSAC outlier
rejection.

Numerous variations of the above parameters can be used to achieve similar results, and this
flexibility is useful in adapting constellations to other datasets or applications. This is especially
true for applications where prior information about the terrain or features is available. For exam-
ple, several hundred thousand images of Mars rocks are available online, and analysis of these
images could be used to train a Mars rock detector, determine the distribution of rock sizes, rock
positions, and rock cluster density, or identify rock features best suited for Mars rocks. One
might find that the color of Mars rocks, for example, is an unhelpful feature.

We have shown that the computational complexity is manageable for the number of rocks
in typical desert scene when using a brute force computation approach. Future implementations
might include a smart adaptive filter to adjust the set of rocks detected depending on the scene.
For example, a scene with a large number of rocks could simply be ignored, or the rock size
requirement could be increased to only allow the 10 most distinct rocks to be detected. This
would constrain computational time.

For a truly scalable constellation approach, however, a more efficient database search could
be implemented in the same vein as star identification methods. Intuitively, it is clear that not
every pair of constellations between two scenes should necessarily be compared. The constel-
lations could be stored in a binary search tree sorted by area to greatly reduce the number of
comparisons made.
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5 MeshSLAM
This section discusses the complete GraphSLAM-based localization system using constellations
as landmarks, named MeshSLAM. The constellations are obtained as previously discussed in
Sections 3 and 4. The change in robot poses are obtained by (1) matching features between con-
secutive scenes, (2) rejecting outliers using RANSAC, (3) using the absolute orientation method
[28] to calculate the bearing and translation change between two sets of 3-D points.

A detailed breakdown of the MeshSLAM pipeline and its effectiveness on real datasets are
shown below.

5.1 Background and Related Works
The fundamental problem of localizing a robot in an unknown environment is known as the
simultaneous localization and mapping problem, or SLAM [65]. As its name implies, SLAM
involves building up a map of the environment and localizing with respect to that map. More
formally, given a series of sensor measurements z1:t and odometry measurements u1:t, the full
SLAM problem computes an estimate of the trajectory x1:t and map m, expressed as
p(x1:t,m|z1:t, u1:t). In visual SLAM, the map is a set of discrete landmarks. Thus far, discussion
has focused on the front-end of the SLAM problem — feature extraction and data assocation —
but below, some context is given for the back-end of SLAM optimization.

The SLAM problem has been around for nearly three decades now [40, 58]. Most early
work focused on solving SLAM with extended kalman filters (EKF SLAM). However, these
algorithms only solve the online SLAM problem p(xt,m|z1:t, u1:t), and large uncertainties in
the posterior or highly non-linear measurements can lead to significant inconsistencies in pose
estimates [31].

5.1.1 GraphSLAM

GraphSLAM (also called factor graph optimization or smoothing and mapping) is a term used
to describe SLAM algorithms that solve the full SLAM problem [65]. It is so named because
the SLAM problem can be expressed naturally as a graph of relationships between odometry
and landmark measurements, robot poses, and the map. The nodes of the graph are the poses
or landmarks. Every edge in the graph, i.e. every measurement, is a soft nonlinear constraint,
and the objective function to be minimized by GraphSLAM is the sum of all these constraints,
resulting in a nonlinear least squares problem:

J = xT
o Ωoxo︸ ︷︷ ︸

anchoring constraint

+
∑
t

[xt − g (ut, xt−1)]T R−1
t [xt − g (ut, xt−1)]︸ ︷︷ ︸

odometry measurements

+
∑
t

∑
i

[
zit − h

(
xt,m, cit

)]T
Q−1

t

[
zit − h

(
xt,m, cit

)]
︸ ︷︷ ︸

landmark measurements

In the above expression, g is the nonlinear motion model,R is the covariance of motion noise,
h is the nonlinear measurement model, Q is the measurement covariance, and c is a discrete cor-
respondence variable that relates landmarks. The first term with the initial pose estimate is used
to anchor the solution to absolute map coordinates. Each measurement, odometry or landmark,
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is a quadratic constraint, equivalent to the negative log-likelihood of that measurement given an
initial estimate of the pose or landmark being measured and the measurement covariance.

EKF SLAM [40] and GraphSLAM both represent state beliefs by Gaussians. However,
whereas EKF SLAM directly tracks the means and covariances µ and Σ, GraphSLAM keeps
track of a different parameterization of the Gaussians, the information matrix and information
filter Ω and ξ, respectively. They are related by

Ω = Σ−1

ξ = Σ−1µ

This formulation has the advantages of being (1) more computationally efficient (2) more numer-
ically stable and (3) able to keep track of all previous trajectory and landmark information [65].
The third advantage in particular gives GraphSLAM more flexibility and robustness in handling
complex trajectories and data associations.

To build up the information matrix Ω and information vector ξ, the Jacobians of the measure-
ment models Gt and Ht are used to linearize each measurement update around its initial estimate
via Taylor expansion. These linear approximations are used to update the information matrix and
vector. In this way, the nonlinear least squares problem becomes a linear least squares problem
of the form Ax = b:

Ωµ = ξ

The most straightforward way to extract the optimal state estimates would be through inver-
sion:

µ = Ω−1ξ

Σ = Ω−1

However, since each pose is connected only to consecutive poses and landmarks are only
seen locally, the information matrix Ω is sparse, and much more efficient sparse linear algebra
techniques can be used to solve the problem.

The current standard for batch optimizations of nonlinear least squares problems is the Levenberg-
Marquadt algorithm. This can be computationally expensive, though, and a real-time SLAM
system would require an incremental optimizer.

5.1.2 Incremental Smoothing and Mapping

Incremental Smoothing and Mapping is an efficient method of solving the GraphSLAM problem
incrementally, maintaining a best estimate of the current state as new measurements arrive [32,
33]. For the online version of GraphSLAM, the nonlinear least squares problem becomes a series
of linear least squares problems. In the smoothing step, the linear least squares problem is solved
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by using a QR or Cholesky decomposition to factorize the information matrix. A Cholesky
decomposition, for example, decomposes the information matrix into

Ω = RTR

Then forward and back substitutions can be used to solve for the state estimate µ:

RTy = ξ

Rµ = y

The forward and back substitutions are efficient if R is sparse, but in general this is not true.
However, the variables of Ω can be reordered, e.g. using the column approximate minimum
degree ordering algorithm (COLAMD), in such a way that the factorization R is sparse [14].
The original iSAM algorithm described a method of incrementally adding measurement updates
directly to the factorized R matrix using Givens rotations [33]. Expensive periodic batch steps
were still necessary to relinearize and reorder the variables in the information matrix to improve
convergence and maintain sparsity in R.

An improved version of the algorithm, iSAM2, uses a novel data structure called a Bayes
tree to represent R [32]. The factor graph can be converted to a Bayes net, and the cliques in the
Bayes net can be naturally converted to a tree structure. The Bayes tree is shown to have several
advantages over previous data structures. With the Bayes tree, cliques can be rearranged to
produce similar results as reordering variables of the information matrix, but it can be done much
more cheaply and incrementally. Additionally, the Bayes tree introduces fluid relinearization
— by keeping track of variables that need to be relinearized, relinearization can be performed
efficiently at every iteration by only affecting those variables and the cliques associated with
them.

5.1.3 Powell’s Dog-Leg Incremental Optimization

The original iSAM algorithm uses an incrementalized version of the iterative Gauss-Newton
method to find the minimum of each new nonlinear least squares problem. However, the Gauss-
Newton method, while fast, is not robust to highly nonlinear objective functions since it assumes
local linearity at each iteration. A more robust method would be a steepest descent method,
which iteratively converges to a solution by stepping in the direction of the largest gradient.
These methods, however, have slow convergence time.

The Powell’s Dog-Leg trust region method combines the advantages of the Gauss-Newton
method and steepest descent method [53]. A region of trust of radius ∆ is maintained around
each linearization point. Optimization steps are determined by interpolating between the fast
Gauss-Newton method and the more reliable steepest descent method based on the size of the
trust region. At each iteration, the radius ∆ of the trust region is updated based on the ratio
between the actual reduction in the objective function and the predicted reduction. When the
linear approximation performs well, the radius increases to allow for faster convergence.

When the Powell’s Dog-Leg trust region is used with iSAM2, the algorithm is known as
Robust Incremental least-Squares Estimation (RISE2) [54]. This method is used by MeshSLAM
for its combination of speed and robustness to nonlinearities.
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5.1.4 Georgia Tech Smoothing and Mapping Library

The Georgia Tech Smoothing and Mapping Library (GTSAM) is a library of methods and tools
for graph optimization based on factor graphs and Bayes networks [15, 21]. GTSAM includes
a MATLAB toolbox that was used to implement the MeshSLAM back-end in the following
sections. The specific incremental solver used is iSAM2 with a Powell’s Dog-Leg optimizer
using default parameters.

5.2 Method
The pipeline from stereo images to SLAM update is described here. These steps are repeated at
each time step.

Step 1. Compute point cloud

Th standard method is used to estimate a point cloud from stereo images: (1) determine corre-
sponding points between the left and right images (2) rectify the images, and (3) compute the
point cloud using known camera parameters.

Step 2. Estimate pose change

Pose changes are estimated from the point clouds of consecutive frames. Here, the Absolute Ori-
entation method (AO) is used for its simplicity and effectiveness on outdoor datasets [3]. Given
two sets of corresponding 3-D points, AO estimates a rotation R and translation T between the
points. Lorusso [44] showed that the singular value decomposition (SVD) technique for this
alignment provides the best overall accuracy and stability. The steps for the unweighted version
are reproduced below [59]:

Given N 3-D points X and their corresponding 3-D points Y , with respective centroids X̄ and
Ȳ :

Let H =
1

N

N∑
i

(Yi − Ȳ )(Xi − X̄)

Compute SVD of H:

H = USV T

Solve for the optimal rotation R:

R = V T


1

1
. . .

1
det(V UT )

U
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Solve for the optimal translation T :

T = X̄ −RȲ

To obtain the 3-D points required for AO, features are matched between frames. In this work
SURF keypoint features were used, but any type of feature that matches well between consecutive
scenes could be used. Even centroids of constellations could potentially be used as keypoints,
though one difficulty that might arise is that, whereas nearly all scenes contain at least three
SURF keypoints, it is not as common for a desert scene to contain at least three constellations.
This can lead to inaccurate odometry estimates.

RANSAC is used for outlier rejection on the matched keypoints. In each RANSAC iteration,
three random matched points are selected and the SVD technique above is used to estimate a
rigid body transform (RBT) to apply to all the points of the first scene [59]. This is repeated until
an RBT produces an adequate number of inliers. The translation and yaw updates (xt, yt, θt) are
extracted directly from the best-performing rigid body transform (R∗, T∗).

This process is shown in Algorithm 4. In lines 1-2, the 3-D locations of features in the the
image are computed. In lines 3-7, matched points that are beyond some distance threshold τfar
are removed, as these are more likely to generate an inconsistent RBT. In lines 8-10, RANSAC is
used to fit an RBT to the matched points, and the yaw θ and translation t are computed. In lines
11-19, a check is performed to ensure enough inliers were found and that the yaw and translation
between the frames are consistent with the rover’s physical limitations. If they are not, re-use the
previous odometry motion.

Figure 43 shows RANSAC being used on matched points in the desert to produce a consistent
pose estimate.

Figure 43: Matched features between frames, before RANSAC (left) and after (right). SURF
features are shown on top and the corresponding matches are shown in 3-D below.
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Algorithm 4 Pose update
Given two consecutive scenes I1 and I2

01. Compute feature descriptors for I1 and I2.
02. Find n corresponding 3-D points s1 and s2 at matched

feature locations.
03. For i . . . n
04. If si1 > τfar or si2 > τfar
05. Remove si1 and si2
06. EndIf
07. EndFor

08. /* Use RANSAC to fit RBT between s1 and s2*/
09. inliers, (R, t) = ransac_fit_rbt( s1, s2, τinlier )
10. θ = compute_yaw( R )
11. If inliers.length > 3 and θ < τyaw and t < τtranslation
12. xt =t.x
13. yt =t.y
14. θt =θ
15. Else
16. xt = xt−1

17. yt = yt−1

18. θt = θt−1

19. EndIf

Step 3. Update pose factors

Add the computed pose update (xt, yt, θt) as a BetweenFactorPose in GTSAM, with a Gaussian
noise model based on estimated stereo error. Iterate the graph optimizer and obtain the current
rover world pose XW

t .

Step 4. Detect rock pixels

Use the trained CNN model to label rock pixels in one of the stereo images. Identify each set of
connected rock pixels as a rock, and store the centroids of each rock.

Step 5. Compute rock features

For each identified rock in the label image, compute desired rock features as described in Section
4.2.3. This includes height, isolation, pixel area, and surface area.
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Step 6. Build constellation descriptors

Build constellation descriptors based on convex hull boundaries from the set of rock centroids,
as discussed in Sections 4.2.1 and 4.2.2. This involves (1) connecting the Delaunay triangles (2)
computing the convex hull boundaries of the connected triangles and (3) storing the set of convex
hull boundary points shifted and rotated to the reference frame of each point.

Two example sets of convex hull boundary constellations are shown in Figures 44 and 45 for
two paths in the Atacama Desert.

Step 7. Match constellations to nearby scenes

Identify poses within some distance threshold D to the current pose XW
t , and compare the set of

constellation descriptors in those scenes with the constellation descriptors in the current scene us-
ing the matching methods discussed in Section 4.2.4. Use RANSAC and rock feature thresholds
to reject outlying matches, and return the final set of verified matches.

Step 8. Update landmark factors

Compute the bearings and ranges to each of the centroids of the NL matched landmarks, and add
this set of bearings and ranges {(bi, ri) , . . . , (bNL

, rNL
)} as BearingRangeFactors in GTSAM.

Iterate the graph optimizer.
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Figure 44: Sample set of consecutive frames showing detected rocks and 5-constellations built
during MeshSLAM (left to right, top to bottom). Each constellation is displayed with a random
color.

64



Figure 45: Sample set of consecutive frames showing detected rocks and 5-constellations built
during MeshSLAM (left to right, top to bottom). Each constellation is displayed with a random
color.
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5.3 Results

The MeshSLAM system was tested on three paths from the Atacama dataset that contained loop
closure points. They are labeled A, B, and C in the following figures. The results below show the
ground truth data provided by the position estimator onboard Zoë, the result from relying only
on the pose estimation method described above, and the result from using MeshSLAM to detect
loop closure points from constellation landmarks.

5.3.1 Path A

The ground truth and pure odometry result are shown in Figure 46. Odometry works well on this
strongly textured path. Figure 47 shows the progression of the MeshSLAM path. The first plot
(top left) shows the path just before a loop closure point and the second plot (top right) shows the
path just after the loop closure. We see that the entire trajectory is adjusted and better matches
the ground truth after the loop closure correction, and covariance error around the current rover
state is reduced. The third plots shows the path just before a second loop closure point and the
final plot shows the result after. Again the trajectory is corrected and covariance is reduced.

Although the final path shows only small improvement over the pure odometry path in terms
of accuracy, it is important to note that the confidence in its path has increased, as indicated
by the overall lower covariances, and additionally the rover has gained an understanding of the
topology of the map.

Figure 46: Path A Position estimator ground truth (left) and pure odometry (right).
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Figure 47: Path A MeshSLAM path.

5.3.2 Path B

Figure 48 shows the ground truth path and the path resulting from only odometry updates. The
terrain in path B is sparsely-featured at times and contains bare landscape for long stretches. This
makes it difficult to detect keypoint features, which is necessary the pose estimation. The result
is a highly inaccurate path from only using odometry. Correction of this path is also impossible
without some knowledge of the map.

Figure 49 demonstrates that even poor odometry estimates can be corrected with a few loop
closure detections. The second plot shows the path just before loop closure and the third plot
shows the corrected path after loop closure. The fourth plot shows the final MeshSLAM path.
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Figure 48: Path B Position estimator ground truth (left) and pure odometry (right).

Figure 49: Path B MeshSLAM path.

68



5.3.3 Path C

In addition to being inaccurate, odometry-only systems maintain path errors that grow uncon-
strained in GPS-denied environments, as can be seen in Figure 50. Path C is more than twice
as long as the previous two paths so the growth in covariance can be seen clearly here. Path C
is also a well-featured environment with strong loop closure points across multiple frames, so
landmark updates are obtained more frequently to produce the result in Figure 51. Landmark
updates along the path that are not loop closure points generally do not cause drastic changes in
the path but do help to constrain the covariance errors.

The fourth plot in Figure 51 below shows the MeshSLAM path before loop closure and the
fifth plot shows the correction after loop closure. A final loop closure point is detected between
plots 6 and 7, though it lasts for a single frame and provides only a small correction.

Path C contains some scenes with non-rock objects, people and cars, but constellations were
still matched in these scenes by simply filtering out detected “rocks” above some height thresh-
old, here 0.8 meters.

Figure 50: Path C Position estimator ground truth (left) and pure odometry (right).
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Figure 51: Path C MeshSLAM path.
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Figure 52 shows a visualization of the constellation matches that occur between each scene.
The left match matrix shows an approximate ground truth, obtained by setting very low thresh-
olds to increase recall to nearly 100%, then manually checking that the resulting matches were
true positive matches. The middle image shows the initial matches made by the constellation
matching methods described in Section 4. Some false positives are found here, which is in-
evitable in some datasets as true positive loop closure matches and false positive matches are not
guaranteed to be separable. However, using larger constellations or more features can increase
the likelihood of separability.

The right match matrix shows the constellation matches that remain after performing RANSAC
outlier rejection. Constellation matching precision of 100% is obtained indicating that no false
data associations were made.
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Figure 52: Matrix showing constellation matches detected between every scene. The ground
truth is shown on the left, the initial set of matches is shown in the middle, and the final detected
matches after RANSAC outlier rejection is shown on the right.

5.3.4 Results Summary

Figure 53 shows the ground truth, pure odometry, and MeshSLAM paths for loops A, B, and C.
Table 5 summarizes the accuracy results in terms of mean and max position error along the entire
path.
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Table 5: MeshSLAM accuracy results

Path Total Distance Pure Odometry MeshSLAM
Mean Error Max Error Mean Error Max Error

A 123 m 0.9% 2.0% 0.48% 1.3%
B 140 m 10% 19% 2.4% 4.0%
C 365 m 3.5% 10% 1.4% 2.8%

X (m)

0 5 10 15 20 25

Y
 (

m
)

-14

-12

-10

-8

-6

-4

-2

0

2

Ground Truth
Pure Odometry
MeshSLAM

X (m)

0 10 20 30 40 50

Y
 (

m
)

-30

-25

-20

-15

-10

-5

0

Ground Truth
Pure Odometry
MeshSLAM

X (m)

0 20 40 60 80

Y
 (

m
)

-70

-60

-50

-40

-30

-20

-10

0

10

20

Ground Truth
Pure Odometry
MeshSLAM

Figure 53: Comparison between ground truth (solid), pure odometry (dashed), and MeshSLAM
paths (dotted).

5.4 Discussion

The results above demonstrate the potential of MeshSLAM as a localization system and the
effectiveness of using constellations as landmarks in a real desert setting. The MeshSLAM
system achieved an mean error of 1.4% across the three paths in the desert using only stereo
images. This accuracy could be improved further by fusing other sensing modalities — IMU,
wheel encoders, gyro, etc — into the odometry estimate.

We also showed that on real images, the convex hull boundary descriptors can be used with
rock features and RANSAC to achieve 100% precision. On each of the paths above, the features
used were sufficient to fully separate true and false positive matches.

5.4.1 Limitations

Not all of the Atacama Desert datasets produced successful results. In 6 of the 11 loops tested, the
loop closure point could not be detected. In these cases, two main factors led to failure: (1) the
loop closure point was only visible in one or two frames and (2) the rocks at the loop closure point
were too few or too far. Without a sufficient number of non-occluded rocks, no constellations
can be matched. Some other limitations of the MeshSLAM approach are described below.

Motion blur Datasets with significant motion blur are difficult to deal with when using only
stereo vision. In these cases an IMU would be especially helpful.
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Too few features While the MeshSLAM is designed to be used in environments with a sparse
set of features, some features must still be present to form constellations. In some datasets, such
as those from an expanse of dry lakebed in the Atacama, long stretches of scenes were devoid of
rocks entirely and no loop closure points could be detected.

New terrain The MeshSLAM rock detector was trained on a set of images from the Atacama
Desert, and so will be most accurate on similar images. Introducing the system into new terrain
“out of the box” would likely not work until the rock detector CNN has been generalized to more
terrains and rocks.

Parameter selection One of the open problems in SLAM is to develop automatic parameter
tuning methods so that SLAM systems can be used in arbitrary scenarios [8]. Unfortunately,
MeshSLAM does not have this capability and requires some parameter tuning to work well on
the datasets above. Specifically, the main parameters to be adjusted are the measurement error
εm, the RANSAC inlier threshold, and rock feature similarity thresholds.

5.4.2 Alternative Approaches

The system proposed in this work is just one specific implementation of a GraphSLAM frame-
work that could be used with constellations as landmarks. Any of the numerous variations of
GraphSLAM and visual odometry methods developed recently could be used in the back-end of
MeshSLAM to further improve localization and robustness. Some examples are given below.

Robust Cost Function Most GraphSLAM algorithms are derived from the assumption of mea-
surements with Gaussian noise, which leads to a quadratic cost function to be minimized. Out-
liers for a quadratic cost function can produce intolerable errors and prevent the optimizer from
converging. Instead, a robust estimator such as the Pseudo-Huber loss function could be used
[26]:

f(x) = b2

(√
1 + (x/b)2 − 1

)
The Pseudo-Huber loss function approximates the quadratic cost function for measurement errors
below some threshold b, and approximates a linear cost function above b. Thus, b can be used to
separate inliers and outliers, and reduce the effect of data association errors.

Pose Estimation An alternative pose estimation technique is the Pespective-n-Points method
(PnP). This class of methods estimates the camera’s pose based on n 3-D points in a scene
and their corresponding 2-D projections in the camera frame. Alismail [3] showed that the
PnP method (particularly P3P) produces superior accuracy to AO in a visual odometry (VO)
framework. However, visual odometry accuracy is highly dependent on the environment and
movement speed so the outdoor VO results provided in the work are not directly comparable to
pose estimation in the desert. Regardless, the PnP method and perhaps a full VO approach using
Kalman filters or Structure from Motion (SfM) is certainly worth exploring further.
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Robust Back-End One of the main challenges of many SLAM systems, MeshSLAM included,
is in achieving 100% precision in data association. This is necessary because data association
errors are highly detrimental to graph optimization, and a major mode of failure in most modern
SLAM back-ends [8, 62]. Iteratively minimizing a nonconvex cost function requires a good
initial estimate. Even a single bad estimate or false data association can change the topology of
the graph, resulting in further bad initial estimates and making a defective solution very likely.

Fortunately, promising work is being done in the area of robust loop closures [37, 49, 63].
By moving some of the responsibility of loop closure verification from the front-end of SLAM
to the back-end, data association errors can be mitigated. One method proposed by Sünderhauf
and Protzel uses switchable constraints [63]. A variable would be added to each loop closure
constraint in the graph that could represent an outlier. Then optimization is performed over the
original constraints as well as these variables, which extends the graph optimization problem to
a search for the optimal graph topology.
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6 Conclusions

In this thesis, we designed, implemented, and tested a method of localizing a rover in a desert
environment that might generally be considered barren. We hypothesized that, while a single
rock may be non-distinct, a collection of rocks can be used as a recognizable landmark for
localization, and tested this hypothesis with simulations and in the context of SLAM for real
desert images. The localization results using this method suggest that constellation landmarks
can be reliably matched in a SLAM setting and are worth exploring further.

A summary of results as well as contributions and recommendations for future work is pro-
vided below.

6.1 Summary of Results

Rock Detection We applied various computer vision techniques to rock detection and deter-
mined that a stereo vision-based method could be used to improve current rock detection tech-
niques. The resulting algorithm developed, called RHoCS, is based on the intuitive notion of a
rock as a region of contiguous color at some height above the ground and enclosed by a bound-
ary. The method was shown to achieve 64.5% recall on a set of ground truth labels, but was
determined to be too slow for real-time use.

A convolutional neural network was trained for fast rock detection, and the pixel-level la-
beling of its ground truth training set was produced by the RHoCS algorithm. The CNN rock
detector averaged 90.1% recall on a set of ground truth labels.

Constellation Matching Constellations are formed from groups of rocks, and various meth-
ods of generating, describing and matching constellations were discussed. The primary goal
of constellation matching is to determine landmark associations in a SLAM system, which re-
quires high precision to prevent false data associations. Monte Carlo simulations were used to
test the various constellation matching methods for robustness to false positives. We showed that:

• The cosine similarity metric should be used when comparing features from a uniform
random distribution, and the ratio similarity metric should be used for exponentially dis-
tributed features.

• Generating all possible constellations leads to high false positive rate even for very low
measurement error.

• Constellation vector descriptors, pairwise and polar, only achieve false positive probability
rates of less than 5% for similarity thresholds greater than 95%.

• Larger constellations increase robustness to false positives for all descriptors.
• Convex hull boundary descriptors out-perform pairwise and polar descriptors in precision

and recall when noise is added to rocks.
• Extra features can be added to each rock to greatly reduce false positive rate, if the feature

similarity threshold is set sufficiently high (> 60%).
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• Rock features derived from exponential distributions further reduce the false positive rate.

SLAM Localization The full SLAM system using constellations as landmarks, called Mesh-
SLAM, was tested on stereo images collected from the Atacama Desert. We showed that it
could reliably detect loop closure points and avoid incorrect data associations. Without constel-
lation landmarks, position estimates averaged 4.8% error across the three datasets tested. Using
constellation landmarks reduced this error to 1.4% and, additionally, resulted in a map of the
environment and reduced error along the estimated path.

6.2 Contributions

The main contributions of this work are summarized below.

The RHoCS algorithm for rock detection The RHoCS algorithm is a novel stereo vision
method developed for rock detection that can describe rocks at the pixel level. It uses superpixel
clustering and ground plane-fitting to identify rocks.

An application of deep learning to rock detection Various convolutional neural network ar-
chitectures and CNN inputs were tested for effectiveness in detecting rocks. Obtaining a pixel-
labeled training dataset is a difficult aspect of applying CNNs, but a method of automatic ground
truth labeling using RHoCS was shown to be an effective way to train a CNN-based rock detector.

A method of systematically generating robust k-constellations A novel method was pre-
sented for describing a set of points by convex hull boundaries formed from connected Delaunay
triangles. For a given scene of rocks, the method can be used to deterministically generate a set
of k-constellations that is (1) of manageable size and (2) robust to noisy points. The constella-
tion generation method described can be used to form landmarks in any planar environment with
sparse features.

An analysis of constellation matching Most SLAM systems are susceptible to false data as-
sociations, and this problem is magnified in a desert setting. Thus, building distinguishable and
reliable landmarks from a set of mostly uninteresting and similar rocks was a primary goal of
this work. A Monte Carlo simulation analysis was used to compare various methods of generat-
ing, describing, and matching constellations. The analysis shows various ways of mitigating the
likelihood of false positive matches.

A SLAM system that uses rock constellations as landmarks A complete SLAM system that
uses constellations as landmarks was developed and tested on real desert scenes. It was shown
to be capable of precise data assocations and accurate localization.
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6.3 Future Work
The MeshSLAM system described in this work is a first prototype, designed to show the potential
of using constellations as landmarks. SLAM in the desert remains a challenging problem and
various improvements can be made at all stages of the SLAM pipeline to increase its robustness
and generalizability.

The CNN model used for rock detection was trained only on Atacama Desert scenes. For a
more generalized model, scenes from other deserts or rock environments should be used to train
the CNN. For the Mars rover in particular, many images of Mars terrain have been collected and
could be used to train a robust CNN model specifically for rock detection on Mars.

The current system relies solely on camera data, both for data association and between-pose
motion. Incorporating other sensor modalities, such as an IMU or wheel encoders, would be
a reasonable next step to improve pose estimation. The simple approach used here for pose
estimation is sufficient for slow-moving rovers, but for generalizability a more modern visual
odometry method could be applied, such as one that uses structure from motion.

Modern odometry systems have shown significant advancements in recent years, with some
systems capable of errors less than 0.5% of trajectory length. However, the distinct advantage of
a SLAM system is its ability to close the loop, which can dramatically correct paths and constrain
errors. To take full advantage of the localization improvements provided by SLAM, it will be
necessary to design intelligent trajectories that optimize the spacing or number of loop closure
points. This is especially true in a desert scenario where a rover may have no reason to travel in
loops. For long-term autonomy, regular path corrections are crucial to maintaining an accurate
pose estimate.

As previously discussed in Section 5.4.2, using a robust cost function and a robust loop
closure verification method would mitigate the effect of data association errors, reducing the
burden of 100% precision in the SLAM front-end. This would have the added effect of reducing
the amount of parameter tuning necessary for precise data association.

The brute force method used to compare constellation descriptors between scenes is sufficient
for the Atacama Desert, but would not scale well to applications with a denser set of points. An
efficient data structure could be used to store the constellations and drastically reduce the number
of constellation comparisons made.

Finally, the current system has only been tested offline on series of images. Optimizing the
system to work in real-time on rover-grade hardware would be a necessary step toward making
the MeshSLAM system mission-ready.

6.4 Closing Remarks
Results have focused primarily on localization in the desert, but the idea of constellations as
landmarks has a wide range of applicability. Any planar environment with identifiable, but non-
distinct, features could be used. For example, an aerial view of trees or buildings, or an AUV’s
view of the ocean floor can be modelled in an analagous way to rocks in the desert. Possible
applications exist at the micro-level as well, such as in cell image analysis. This is a rich area of
research only in its beginning stages, and it will be interesting to see future developments to the
constellation idea.
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