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Abstract

The selection of data collection locations is a
problem that has received significant research
attention from classical design of experiments
to various recent active learning algorithms.
Typical objectives are to map an unknown
function, optimize it, or find level sets in it.
Each of these objectives focuses on an assess-
ment of individual points. The introduction
of set kernels has led to algorithms that in-
stead consider labels assigned to sets of data
points. In this paper we combine these two
concepts and consider the problem of choos-
ing data collection locations when the goal
is to identify regions whose set of collected
data would be labeled positively by a set clas-
sifier. We present an algorithm for the case
where the positive class is defined in terms of
a region’s average function value being above
some threshold with high probability, a prob-
lem we call active area search. To this end, we
model the latent function using a Gaussian
process and use Bayesian quadrature to esti-
mate its integral on predefined regions. Our
method is the first which directly solves the
active area search problem. In experiments
it outperforms previous algorithms that were
developed for other active search goals.

1 INTRODUCTION

Traditionally, active learning assumes that a label is
associated with each observable data point, which may
be revealed upon sampling. Here we consider an alter-
native setting, where the labels defining our objective
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cannot be observed directly but must rather be inferred
from auxillary observations. In particular, we consider
actively gathering point observations of a smooth func-
tion so as to identify regions with large average value
quickly.

An important application of this problem is found in en-
vironmental monitoring. Consider a small, autonomous
boat equipped with water quality sensors (such as the
ones described by Valada et al. [2012]). The variability
of the sensors and environmental conditions on a river
mean that no single sensor reading will ever be sufficient
to identify a significant pollution issue. However, a set
of readings within a certain region that satisfy some
pattern can indicate a real pollution problem. Although
a boat gives us the capability to take a measurement
anywhere, it does not provide the sensing bandwidth
to monitor every location all the time. Besides, sensing
cost dominates travel cost in many cases.1 Therefore
we need an algorithm to sequentially choose sensing
locations with a goal of identifying polluted regions.
This is an example of an active search problem [Garnett
et al., 2012] that we refer to as the active area search
problem. A critical distinction between point-based
active search and this setting is that the class labels
(i.e., high concentration of pollutants) are not directly
accessible to the learning algorithm. They must be
inferred by sampling some underlying unknown func-
tion that defines them. In this paper that definition
will simply be that the average of the function over the
region exceeds some threshold.

We will assume that our function of interest is defined
on a domain that has been a priori subdivided into a
set of regions (for example, into a grid). We further
assume that the low-level response is smooth over the
entire space. Our job is to actively decide where to take
measurements so that we can find as many polluted re-

1A typical dissolved oxygen sensor requires about one
minute for the reading to settle down after moving [Val-
ada et al., 2012], which is enough time for the small boat
to travel end-to-end in the areas we’ve considered so far.
Similarly, any application requiring in situ lab analysis of
samples would have this property.
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gions with high confidence as possible. Mathematically,
we assume that the low-level response is a random func-
tion with a Gaussian process (gp) prior, f ∼ GP(µ, κ),
whose hyperparameters are externally designed.2 We
define the reward of a given region to be a binary vari-
able indicating whether the average function value in
this region is higher than a given threshold τ with prob-
ability greater than a given confidence θ (equivalently,
(1− θ) can be interpreted as the allowed false-positive
rate). The gp prior on f implies a normal distribution
on its average value in a given region, a property that
has been applied to estimate difficult integrals under
the names Bayesian quadrature (bq), Bayesian Monte
Carlo, and Bayes–Hermite quadrature [O’Hagan, 1991;
Minka, 2000; Ghahramani and Rasmussen, 2002]. We
exploit this property as well.

The particular strategy we use for active search of inter-
esting regions is a one-step lookahead fashion heuristic.
Given a potential observation location, we use bq to
compute the distribution of our updated beliefs on all
regions, marginalizing the unknown function value un-
der our current model. This allows us to calculate the
expected sum of binary rewards for each region after
incorporating an observation at that location. We then
observe f where this expectation is maximized. The
resulting algorithm naturally achieves exploration and
exploitation, and, surprisingly, is related to optimal
experiment design for bq in the single-region case.

1.1 Related Work

In Bayesian literature, modeling the smoothness of a
latent function by imposing a Gaussian process prior
[Rasmussen, 2006] is commonplace. Previous work
has developed algorithms to efficiently infer a function
over its entire domain with few samples [Krause et al.,
2008; Houlsby et al., 2011], to estimate the shape of a
particular level set [Gotovos et al., 2013; Bryan et al.,
2005], and to search for its global optimum [Jones et al.,
1998; Osborne et al., 2009; Tesch et al., 2011]. Here, we
introduce and provide an algorithm to do active area
search, where our goal is to successively evaluate the
latent function to quickly identify regions with high
averge value.

A related line of research is level-set estimation, where
the goal is to identify the set of points in the domain
where the function value equals a given number τ ′.
Bryan et al. [2005] were among the first to address this
problem with gp assumptions. Their heuristic chooses
points where there is high uncertainty in both the latent
function and whether the point is above or below the

2In a real world scenario where multiple domains are
studied in a sequence, the gp prior parameters can be
trained on a pilot dataset which is more densely surveyed
as a result of an earlier stage.

level set. Gotovos et al. [2013] took a step further and
derived a theoretically justified bandit optimization
algorithm, which they call lse, that is similar to the
well-known gp-ucb algorithm [Srinivas et al., 2010],
which further traces back to Auer et al. [2002]. The
lse algorithm guarantees that, with high probability,
all regions ε-close to the level τ ′ can be found and
regions with higher and lower function values marked.
Although level set seeking algorithms could be applied
in active area search, they actually solve a different
problem. They are fundamentally point-based, which
means they seek to accurately represent whether each
individual point is above or below the level set thresh-
old. Active area search is concerned with the properties
of areas rather than points. Practically speaking, the
problem with using level set seeking methods is the
large amount of variability and transients in the envi-
ronment. The true level set boundaries could be very
convoluted and require impossibly many samples to
identify, whereas finding positive areas need not require
nearly as many.

Krause et al. [2008] discretized the input space and used
active learning to maximize the (mutual) information
gain between the labeled and unlabeled points. The
goal in that work is to infer the latent function over
the entire domain. Again, inferring the entire latent
function is useful for active area search but requires far
more samples than needed for the job. For example,
accurately mapping an area that is clearly not postive
is unnecessary.

A final line of related active sampling methods aims to
search for the global optimum of an unknown function
[Jones et al., 1998; Osborne et al., 2009; Tesch et al.,
2011]. These methods also balance exploration and
exploitation over the function domain, but are point-
based optimizers.

The validity of using a gp prior to approximately study
the average-case or worst-case error of the region aver-
age for a whole class of functions is justified by previ-
ous work [O’Hagan, 1991; Minka, 2000]. For integrals
on many function classes, e.g., polynomials of limited
degrees and linear splines, the optimal designs for eval-
uating the function and the multipliers of the function
values for guaranteed worst-case errors can be well
approximated by gps with proper kernel construction.

2 PROBLEM DEFINITION

Let f : Rd → R be an unknown, smooth function on
the input space, and let pg : Rd → R+, g = 1, . . . , G
be a family of given probability density functions. We
consider estimating the expected value of f under each
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pg, and we will denote this random varibableMg:

Mg ,
∫
f(x)pg(x) dx. (1)

We are particularly interested in the case when the den-
sities pg are uniform on two-dimensional box-bounded
regions Ag , [`g,1, ug,1]× [`g,2, ug,2]. Now the quanti-
ties of interest are the averages of f on the Ag:

Mg =
1

|Ag|

∫
Ag

f(x) dx. (2)

According to Minka [2000], for many classes of smooth
random functions, it is reasonable to assume a Gaussian
process prior on f :

p(f) , GP(f ;µ, κ).

Throughout we will assume a zero prior mean function
µ. We assume that we can make noisy observations
of f at chosen points in the domain. That is, given
an arbitrary x∗ ∈ Rd, we may receive the associated
observation

y∗ , f(x∗) + ε,

where ε is zero-mean iid Gaussian distributed with
variance σ2

n.

Suppose now that we have been given a set of ob-
servations D ,

{
(xi, yi)

}N
i=1

= (X, y). Our reward
with these observations is the number of significantly
interesting regions r =

∑G
g=1 rg under the posterior

distribution, where

rg ,

{
1 if Pr(Mg > τ | D) > θ

0 otherwise.
(3)

Here τ is the minimum for the average value of f
in a region to be considered interesting and θ is the
minimal test power. For convenience, we define the tail
probability:

Tg , Pr(Mg > τ | D). (4)

The total reward expressed with this new notation is:

r =
∑
g rg =

∑
g 1
{
Tg > θ

}
. (5)

The goal for an active area search strategy is to decide
which points to observe in order to maximize the reward
under a sampling budget.

2.1 Gaussian Processes

We now instantiate the above results with Gaussian
processes. The goal is to write (3) in an explicit form.
The derivation forMg recap discussions in [O’Hagan,
1991; Ghahramani and Rasmussen, 2002].

The observations that we have made, D, change our be-
lief about f andMg in an explicit way. For convenience,
define V ,

(
κ(X,X) + σ2

nI
)
. Standard Gaussian pro-

cess inference gives us the posterior distribution on f
given D:

p(f | D) = GP(f ;µf |D, κf |D),

where

µf |D(x) = κ(x,X)V −1y; (6)

κf |D(x, x′) = κ(x, x′)− κ(x,X)V −1κ(X,x′). (7)

The closure property of Gaussian processes under linear
transformations also gives us a simple form for the
posterior distribution ofMg given our observations:

p(Mg | D) = N (Mg;αg, β
2
g), (8)

where

αg = E[Mg] =

∫
µf |D(x)pg(x) dx; (9)

β2
g = Var[Mg] =

∫∫
κf |D(x, x′)pg(x)pg(x

′) dx dx′.

(10)

Of course, to find αg and βg, we must again calculate
the potentially difficult integrals (9–10). First we pull
constants out of the integral:

αg =

∫ (
κ(x,X)V −1y

)
pg(x) dx

=

[∫
κ(x,X)pg(x) dx

]
V −1y.

We define a vector ωg element-wise as:

ωi,g ,
∫
κ(x, xi)pg(x) dx. (11)

Now αg = ω>g V
−1y. If we can evaluate (11) for our

choice of κ and p(x), then we will have a simple analytic
expression for the expected value ofMg.

Given a closed-form expression for ωg, we can nearly
additionally work out an analogous expression for the
variance β2

g . A similar calculation as above gives us

β2
g = Zg − ω>g V −1ωg, (12)

where we have defined

Zg =

∫∫
κ(x, x′)pg(x)pg(x

′) dxdx′. (13)

Finally, the reward associated with region g can be
expressed by comparing the tail probability,

Tg = Φ

(
αg − τ
βg

)
, (14)

where Φ is the standard normal cumulative density
function, against the predefined probability threshold
θ, complying with (5).
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3 EXPECTED REWARD

To decide which point(s) to observe next, we apply
expected reward maximization (erm) in a one-step
look-ahead fashion. erm infers a posterior distribution
of the function value at every candidate location and
builds statistics conditioned on every draw from this
distribution. Suppose the data already collected is
D = (X, y); the steps to evaluate the expected reward
for any new available candidate location x∗ are:

1. Infer the conditional distribution of y∗ | D, x∗. We
put tildes on top of quantities updated with one
possible instantiation of y∗ as:

X̃ , (X>, x∗)
>, ỹ , (y>, y∗)

>, D̃ , (X̃, ỹ),

which serve as the bases for the look-ahead.
2. Find the distribution of Mg | D̃ conditioned on

every possible draw of the unknown y∗. Further,
compute the tail probability, which is implicitly
dependent on y∗, as:

T̃g , Pr
[
Mg > τ | D̃

]
, (15)

and the reward, also dependent on y∗, as:

r̃g , 1
{

Pr
[
Mg > τ | D̃

]
> θ
}
. (16)

3. Marginalize out the unknown y∗. The expected
reward over all regions is to be maximized:

max
x∗

u(x∗;G,D) ,
∑
g ug(x∗;D) ,

∑
g E
(
r̃g
)

=
∑
g Pr

{
T̃g > θ

}
(17)

Different terms in the above pipeline for one region can
be visualized in Figure 1. For multiple regions, imagine
multiple plots like Figure 1 whereMg and T̃g become
different, yet y∗ can be shared.

3.1 Active Area Search on gps

We again instantiate the above discussion for our con-
crete example where the involvement of gp prior be-
comes explicit. In the end, we will have a nice analytical
form for every addend of the summation in (17).

To express the distribution of Mg | D̃ and thus (15–
17), we consider what happens to αg and βg given an
additional observation, y∗, at a point3 x∗ ∈ Rd. Define
α̃g and β̃g to be the updated mean and variance such
that

Mg | D̃ ∼ N
(
α̃g, β̃g

)
, (18)

3Although most applications would consider only adding
one point at a time, the expressions also work with multiple
updates in a minibatch, by substituting (X∗, y∗) properly.

Figure 1: Lookahead variables for one region, g. Given
D, x∗ (omitted in figure), y∗ is the possible low-level re-
sponse, (Mg, T̃g | y∗) are statistics for g, and ug(x∗;D)
is the expected reward of candidate x∗ in g.

which yields T̃g = Φ
(
α̃g−τ
β̃g

)
, and thus α̃g and β̃g sum-

marize the randomness of y∗.

Additionally, we define updates to the gp covariance
matrix, Ṽ ,

(
κ(X̃, X̃) + σ2

nI
)
, the region integral of

the kernel functions, ω̃g =
(
ω>g , ω∗,g

)>, and a new
vector to relate the two, η̃g , Ṽ −1ω̃g, which we further
decompose into two parts: the first n entries (η̃n,g),
and the last entry (η̃∗,g).

It is helpful to define short-hand notions for the gp
posterior inference (6) and (7), as κ>∗ , κ(x∗, X),
µ∗|D , κ>∗ V

−1y, and V∗|D , κf |D(x∗, x∗) + σ2
n.

Notably, we will see that the variance of α̃g is a quantity
that is interesting enough to be assigned its own symbol:

ν̃2g = Var(α̃g). (19)

First, we note that the updated variance, β̃2
g , does not

depend on y∗, because similar to (12),

β̃2
g = Z − ω̃>g Ṽ −1ω̃g. (20)

However, α̃g does depend on y∗. As before, given y∗,
we have

α̃g = ω̃>g Ṽ
−1ỹ,

which breaks into two parts according to whether or
not each part depends on y∗, as:

α̃g = η̃>g ỹ = η̃>n,gy + η̃>∗,gy∗. (21)

We can see that α̃g is simply an affine transforma-
tion of y∗. Prior to observing y∗, we have a Gaussian
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distribution on y∗:

p(y∗ | D) ∼ N
(
µ∗|D, V∗|D

)
.

Therefore, we again apply the closure property of Gaus-
sians under affine transformations to find the marginal
distribution of α̃g:

(α̃g | x∗,D) ∼ N
(
η̃>n,gy+η̃>∗,gµ∗|D, η̃

>
∗,gV∗|Dη̃∗,g

)
. (22)

Next, we look for simplifications of (20) and (22). We
exploit the law of total probability:(

Mg | D, x∗
)

= E
[
(Mg | D̃)

∣∣ D, x∗]
= E

[(
Mg | α̃g, β̃2

g

) ∣∣ D, x∗] (23)

where the last expression is a Gaussian variable with
mean E(α̃g) and variance Var(α̃g) + β̃2

g . By (8) and
the fact thatMg is independent to x∗ alone, we have:

E(α̃g) = αg, β̃2
g = β2

g −Var(α̃g) = β2
g − ν̃2g . (24)

Finally, we address η̃∗,g in ν̃2g = Var(α̃g) by brute force.
Notice that the rank-one update of Ṽ −1 is:

Ṽ −1 =

(
V −1 0

0 0

)
+

(
−V −1κ∗

1

)
V −1∗|D

(
−κ>∗ V −1, 1

)
.

We use its last row,
(
Ṽ −1

)>
∗ , to compute

η̃∗,g =
(
Ṽ −1

)>
∗ ω̃g = V −1∗|D

(
ω∗,g − κ>∗ V −1ωg

)
. (25)

As a result,

ν̃2g = (ω∗,g−κ>∗ V −1ωg)>V −1∗|D(ω∗,g−κ>∗ V −1ωg), (26)

and the look-ahead statistics in this section reduce to:

p(Mg | D̃) = p(Mg | α̃g, β̃2
g) ∼ N (αg, β

2
g − ν̃2g ). (27)

Every addend of (17) becomes

ug(x∗;D) = Pr
{

Φ
( α̃g − τ

β̃g

)
> θ
}

(28)

= Φ

(
αg − τ − β̃gΦ−1(θ)

ν̃g

)
, (29)

whose summation is the utility of a candidate location.

Remark: The dependency on ỹ is implicit through
α̃g, updated by α̃g = αg + η̃>∗,g(y∗ − µ∗|D).

3.2 Pseudocode

To summarize the above discussions, we proposed an
algorithm which sequentially decides sampling locations
in a gp that maximizes the expected reward (17). An
explicit formulation can be found as a summation of
terms in (29). The pseudocode for our algorithm is in
Algorithm 1. We call our algorithm active area search
(aas) in the experiments. 4

4http://www.autonlab.org/autonweb/22036.html

Algorithm 1 The active area search (aas) algorithm.
Require: gp model GP(µ, κ), pdfs {pg}Gg=1

compute Zg for all 1 ≤ g ≤ G // (13)
X ← ∅; Y ← ∅
repeat
for unqueried x do

compute ω∗,g // (11)
compute ν̃2g // (26)

compute β̃2
g // (24)

compute expected reward given x // (29)
end for
x∗ ← arg max expected reward
observe y∗
X ← [X;x∗]; Y ← [Y ; y∗]

until budget depleted

3.3 Single Region Search

When there is only one predefined region, the problem
becomes a Bayesian sequential test problem. The out-
come affects the algorithm in only one way, which is to
decide whether or not to stop data collection depending
on if the confidence margin, Tg > θ | D, is obtained.

For our purposes, θ > 0.5, which implies Φ−1(θ) > 0.
Omit subscript g. Suppose aas is still running, i.e.,

Φ

(
α − τ
β

)
≤ θ ⇔ α − τ

βΦ−1(θ)
≤ 1.

We observe some properties about the optimal x∗ from
(29) that can further motivate the active learning strat-
egy we proposed and make connections to experiment
designs with Bayesian quadrature in the next section.

Notice that in (29), ν̃ is the only variable because
β̃ =

√
β2 − ν̃2. To find the maximum of (29), we take

the gradient over ν̃:

∂ug
∂ν̃

=
N (. . . )Φ−1(θ)

ν̃2
√
β2 − ν̃2

×

(
β2 −

√
β2 − ν̃2(α − τ)

Φ−1(θ)

)
.

For simplicity, define

v , (ν̃/β,
√
β2−ν̃2/β)> , t ,

α − τ
βΦ−1(θ)

≤ 1.

Now, the gradient of the expected reward becomes:

∂u

∂ν̃
= N (. . . )

Φ−1(θ)

v1v2

(
v21 + v22 − tv2

)
.

which is always nonnegative for t ≤ 1, because v21+v22 =
1 and thus 0 < v2 < 1. Thus our algorithm turns out
to be finding the x∗ that maximizes ν̃2 via (26).

One way to build intuition with unimodal stationary
kernels for this somewhat surprising result is that the
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points able to reduce the variance of the integral are
also likely to disturb its mean. At these locations,
we also have the best chance of “getting lucky” and
significantly increasing the posterior mean ofM.

3.4 Multiple Region Case

Contrary to the above, in the scenario where there are
multiple predefined regions on the domain, observation
outcomes play a more significant role in that they
affect the next regions to search. Imagine on a gp with
unimodal stationary kernels, there are two regions, g1
and g2, that are far away from each other and therefore
independent. Evaluate (29) for g`, ` = 1, 2 under their
respective maximizer ν̃g` . Under the same conditions,
a bigger αg, which depends on big outcomes, will result
in a higher expected reward. However, as the number of
net observations increases in a region, βg will increase
and ν̃g will decrease. This implies that after a long
failure period, aas gives up until every other region
gets even worse. In general, aas tends to explore the
most promising region at the current time.

Moreover, even if in one region, a location may be
chosen because of its influence at neighboring regions.
The coupling of regions, which potentially mixes both
interesting and boring regions in an unpredictable way,
is another factor implicitly related to the outcomes.

4 RELATED PROBLEMS

4.1 Connection to Experiment Design for BQ

As long as the area has not been flagged as significantly
interesting, aas strives to maximize ν̃, which equiv-
alently minimizes the variance of the integral. This
objective collides with experimental designs for bq. For
particular kernels in [Minka, 2000], we should attain
similar search locations. This is a surprising connection,
but only holds in the single-region case. For mutliple
regions, the fact that the latent function is correlated
across regions modifies the optimal poilicy.

4.2 Connection to Σ-optimality

Single-region search is also connected to Σ-optimality,
as defined by Ma et al. [2013]. The maximization of
ν̃ is similar to the rank-one update in Σ-optimality, if
we take p(x) to be the counting measure of unlabeled
points xu = {xu1

, . . . , xup
}, including x∗ ∈ xu and

let the lookahead variable to be the latent variable
rather than the observed variable, or σn∗ = 0. More
specifically, ωi =

∑
uj
κ(xuj , xi), and

ω∗ − ω>V −1κ∗ =
∑
uj

(
κ(xuj , x∗)− κ(xuj , X)V −1κ∗

)
=
∑
uj
κf |D(xuj

, x∗). (30)

On such condition,

max ν̃2 =
∑
uj ,uj′

κf |D(xuj
, x∗)κ

−1
f |D(x∗, x∗)κf |D(x∗, xuj′ )

=

(∑
uj

κf|D(xuj
,x∗)√

κf|D(x∗,x∗)

)2

.

5 EXPERIMENTS

We used a list of simulated experiments to demonstrate
properties and performance of aas. More interestingly,
we provide intuition about the behavior of aas in multi-
region cases, which we really care about. (Gateway to
the actual codes is available at footnote 4.)

In all simulations, the input space was the 2-
dimensional Euclidean space and our function was gen-
erated from a gp whose prior mean was constant zero
and whose prior covariance was the following isotropic
square exponential kernel:

κ(x, x′) = σ2
f exp

{
− 1

2`2 (x− x′)>(x− x′)
}

(31)

where σ2
f and ` were set at different values in different

cases to make the simulated problems interesting. Fur-
ther, actual observations were simulated with additive
noise ε ∼ N (0, σ2

n).

5.1 One Region Synthetic Data

The first demonstration/experiment was performed on
a 2-dimensional unit square which contains only one re-
gion. The parameters used to generate the observations
in (31) are ` = 0.33, σ2

f = 1/(2π`2) = 1.212, σ2 = 0.12.
We purposefully made the problem difficult, so that
aas can run for a longer time period, by keeping the
a priori variance of the integral over the region small,
only roughly Z = 0.7372. As a result, the region is
not guaranteed to have high average values with high
probabilities. We kept sampling function values on a
33× 33 dense grid until the average value in the unit
square region is greater than the threshold τ = 1. aas
is expected to sequentially sample observations until
it believes that the regional average is greater than τ
with probability at least θ = 0.8.

Figure 2 (a) visualizes the sampling locations deter-
mined by aas in a sequential order. After these up-
dates, the posterior marginal bandwidth of every point
is shown in (b) and the gray mesh at level 1.0 serves as
a reference showing that the integral of the function,
under posterior distribution, has high possibility to be
greater than the threshold. The behavior of aas is
consistent with our analysis in Section 3.3. Before the
algorithm terminates when it verifies that the region is
significantly interesting, aas explores locations which
yield the maximal possible decrease of the variance
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(a) sampling location (b) posterior estimation

Figure 2: One region search. Samples are selected in hope that with posterior distributions, the integral over the
entire unit square is greater than 1 with probability at least 0.8.

of the integral once sampled, similar to experimental
designs in bq. The intuition is that function values at
these points are usually unexplored and may become
the best bet to attain a reward.

5.2 Multi-Region Synthetic Data

In this experiment, we simulated random gps on a
2-D space which is externally split into 10 × 10 unit
square regions. The goal was to find as many inter-
esting regions as possible. Similar to before, a region
may be flagged and rewarded if the posterior average
function value on this region is greater than τ = 1 with
probability at least θ = 0.8.

To allow interactions between regions, we chose a larger
length scale for the prior gp.5 The parameters selected
are ` = 1, σ2

f = 1, σ2
n = 0.12. The prior variance of the

integral over any region is Z = 0.9242 (roughly 14% re-
gions are interesting). An illustration is in Figure 3(a),
where the color of a region indicates the average func-
tion value in that region. Level sets of the function
value are also plotted in (a).

The rest of Figure 3 compare the following algorithms

• Active area search (aas): Our proposed method.

• Level set estimation (lse): Gotovos et al. [2013]
proposed this theoretically justified algorithm for
level set estimations, which is to determine the region
in the input space where the function value is close to
h. We hope that by finding level sets for h = τ and
recognizing even higher/lower regions, interesting
regions may be discovered. Several other parameters
5In reality, training can be done offline with pilot data.

We usually match the order of region diameter and gp
length scale when designing regions for preliminary real-
world experiments.

were set as β
1/2
t = 3, ε = 0.1. (The original paper

also set βt fixed and broke theoretical guarantees in
experiments.)

• Uncertainty sampling (unc): Seo et al. [2000]
used unc to map the function value over the entire
input space. unc explores locations that have high
marginal variance in the posterior distribution. The
samples are sparse but blind to outcomes.

• Random sampling (rand) serves as a baseline. It
picks locations at random.

From these plots, we can see that aas samples locations
that are both sparse yet concentrate in regions which
are more likely to have high average. It favors points
on the boundary of multiple regions. It also explores
new locations reasonably. The superiority of aas in
interesting region discovery is obvious.

lse gives the second-best performance. While searching
for level sets, lse can identify positive regions inside.
However, lse is not aimed for this problem and thus
it is hard to pin down which threshold and tolerance
to ask for in lse. Further, lse may be too wasteful
to precisely map the level set, and the observations
that lse makes may not lead to discovery of interesting
regions. Finally, lse may sometimes be pessimistic
because of its theoretical guarantees and is sensitive to
boundaries.

Finally unc and rand are the worst because they are
generic and unspecific to the objective.

5.3 Repeated Experiments

We repeated our last experiment for 10 times with
different functions generated through the same param-
eters. We report recall in Figure 4. Precision is a
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(b) estimate from aas
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(c) estimate from lse
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(d) estimate from unc
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(e) estimate from rand
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Figure 3: Multi-region. Shared color bar. (a) shows both function values and region averages. (b-e) show the
first 25 locations sampled by different strategies (black dots). Gray scale indicate marginal variance. Red/green
curves in region centers show the posterior tail distribution of the region averages. Red regions are reported.

function of θ which is the same in all experiments so it
is not reported. The curves indicate the average per-
cent of positive regions reported given different query
budgets. Standard error of the average is also reported.
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Figure 4: Repeated experiments on 10× 10 regions

Figure 4 shows that aas outperformed other methods
by a large margin. With 20 observations, aas was able
to discover half of the interesting regions. Notice in
Figure 3, with 25 points, most parts of the function
space remain gray even for unc. The success of aas
mainly attributes to its relevancy to the objective.

lse performed second best, about 60% as efficient as

aas. It can be observed from Figure 3 that lse also
biases towards areas near interesting regions. In con-
trast, neither unc or rand utilize sampling budgets
efficiently. rand is slightly better in the beginning be-
cause of its randomness yet unc improves towards the
end because it avoids the “coupon collector’s problem.”

6 CONCLUSION

We defined a new problem, active area search, wherein
we wish to identify regions in a continuous space with
large average function value. In comparison to typical
active learning objectives, this setting is somewhat
unusual in that we cannot observe the labels directly.
Instead, we must infer the labels from observations of
a continuous ancillary function. Our approach is to
model the function using a Gaussian process and use
Bayesian quadrature to infer its average value on the
regions of interest. With this setup, we were able to
derive a simple myopic expected reward maximization
strategy for the active area search problem. Empirically,
our algorithm identifies positive regions much faster
than related previously proposed approaches.

An interesting future question is to apply more complex
reward criteria, e.g., classifiers based on the distribution
of outcomes in a region. We also hope to find theoretical
bounds in the current setup and discuss path planning.
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