
On the Fundamental Relationships Among
Path Planning Alternatives

Ross A. Knepper

CMU-RI-TR-11-19

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 2011

Thesis Committee:
Matthew Mason, Chair

Alonzo Kelly
Siddhartha Srinivasa

Emilio Frazzoli (Massachusetts Institute of Technology)

Copyright c© 2011, 2021 by Ross A. Knepper. All rights reserved.

For my parents, Mark and Cathy Knepper, who gave me the gift of light.

Abstract
Robotic motion planning aspires to match the ease and efficiency with which hu-

mans move through and interact with their environment. Yet state of the art robotic

planners fall short of human abilities; they are slower in computation, and the results

are often of lower quality. One stumbling block in traditional motion planning is

that points and paths are often considered in isolation. Many planners fail to recog-

nize that substantial shared information exists among path alternatives. Exploitation

of the geometric and topological relationships among path alternatives can therefore

lead to increased efficiency and competency. These benefits include: better-informed

path sampling, dramatically faster collision checking, and a deeper understanding of

the trade-offs in path selection.

In path sampling, the principle of locality is introduced as a basis for constructing

an adaptive, probabilistic, geometric model to influence the selection of paths for

collision test. Recognizing that collision testing consumes a sizable majority of

planning time and that only collision-free paths provide value in selecting a path

to execute on the robot, this model provides a significant increase in efficiency by

circumventing collision testing paths that can be predicted to collide with obstacles.

In the area of collision testing, an equivalence relation termed local path equiva-

lence, is employed to discover when the work of testing a path has been previously

performed. The swept volumes of adjoining path alternatives frequently overlap,

implying that a continuum of intermediate paths exists as well. By recognizing such

neighboring paths with related shapes and outcomes, up to 90% of paths may be

tested implicitly in experiments, bypassing the traditional, expensive collision test

and delivering a net 300% boost in collision test performance. Local path equiva-

lence may also be applied to the path selection problem in order to recognize higher-

level navigation options and make smarter choices. This thesis presents theoretical

and experimental results in each of these three areas, as well as inspiration on the

connections to how humans reason about moving through spaces.

Epigraph
So the shortest day came, and the year died,

And everywhere down the centuries of the snow-white world

Came people singing, dancing,

To drive the dark away.

They lighted candles in the winter trees;

They hung their homes with evergreen,

They burned beseeching fires all night long

To keep the year alive.

And when the new year’s sunshine blazed awake

They shouted, revelling.

Through all the frosty ages you can hear them

Echoing, behind us — listen!

All the long echoes sing the same delight

This shortest day

As promise wakens in the sleeping land.

They carol, feast, give thanks,

And dearly love their friends, and hope for peace.

And so do we, here, now,

This year, and every year.

Welcome Yule!

Susan Cooper (The Shortest Day, 1974)

The value of teaching without words and accomplishing

without action is understood by few in the world.

Lao Tzu (Tao Te Ching, 6th century BCE)

Acknowledgments
Through research and discovery, we strive to illuminate the world with new knowl-

edge. Since Prometheus, this quest for light, both literal and metaphorical, binds one

generation to another through all the ages. Darkness inspires fear in us at a primitive

level, so we each strive to light the way both for ourselves and for the next genera-

tion. I am indebted to the many mentors, role models, and peers who have helped to

light the way for me.

Among those who illuminated my path, three stand out for the intensity and duration

of that illumination. Foremost, I owe my growth both as a researcher and as a person

to their willingness to overcome their own instinctive fear of the darkness by holding

back from actively lighting my path when the occasion called for it.

The first two of these are my parents, Mark and Cathy. Thanks to them most of all for

teaching me to believe in myself and for never letting me forget the joy of curiosity

and learning. They provided everything I needed growing up, and yet some of their

greatest acts of love are the actions they did not take. They gave me room to grow

into a self-confident adult by recognizing that experience is the best teacher of all.

It cannot be easy to watch somebody you love make preventable mistakes. Non-

action can be simultaneously the most difficult and the most loving action of all.

Every time I messed up, I felt loved and respected – but never judged – by them.

As a consequence, I learned, and continue to learn, to light my own way without

depending on others. Without this, nothing else would have been possible.

The third major illuminator in my life is my advisor, Matt Mason. Thanks to Matt

for being so cool, fun, easy to work with, brilliant, insightful, and modest. Matt

embodies the “less is more” philosophy. A few words from Matt in an advising

meeting often taught me more than an entire lecture in any of my classes. He often

drew my attention to a dark corner rather than illuminating it for me to see. This self-

restraint reveals both love and respect. My subsequent actions to try to illuminate

that dark corner, whether or not I ultimately succeeded, taught me how to perform

original research. That work was hard and often daunting, but Matt gave me space to

feel safe in exploring and taking risks. Several of those risks turned into this thesis,

which truly would not have been possible without Matt.

Anyone who knows Matt also knows Jean Harpley, who keeps Matt’s office and

lab running like clockwork—all while balancing about a dozen other miscellaneous

roles within the Robotics Institute. I especially appreciate both Matt’s and Jean’s

efforts to insulate me from distractions so I can concentrate on doing great research.

I hope it shows in this thesis.

I shared working quarters with a number of fellow students during my time here.

All have been great friends and colleagues. Thanks for your support, Tom Howard,

Dave Bradley, Jean-Francois Lalonde, Henry Kang, Matt Tesch, and Laura Lindzey.

As a member of the Manipulation Lab, I have shared ideas, paper reviews, and lunch
every Friday with Amir Degani, Alberto Rodriguez, Siyuan Feng, Robbie Paolini,
and many others. You have all been great!

To the other RI professors I have collaborated with throughout the years: Howie
Choset, Al Kelly, James Kuffner, Sidd Srinivasa, Drew Bagnell, and Martial Hebert.
I have learned much from each of you, and I appreciate the diverse perspectives
gained from exposure to different research topics, styles, and approaches.

I have had a particularly strong collaboration with the Personal Robotics Lab of Sidd
Srinivasa. Mike vande Weghe, Dmitry Berenson, Mehmet Doğar, Alvaro Collet,
Anca Drăgan, and Kyle Strabala: I have have enjoyed being both your peer and your
friend. Thanks for treating me as a member of your group!

Academic conferences, aside from being a venue to learn, exchange problems and
ideas, and network, are also an opportunity for a little adventure. To my fellow
adventurers, Tom Howard, Mihail Pivtoraiko, Mike Stilman, Joe Djugash, Lars and
Kristen Erickson, and many others: thanks for all the fun times!

Thanks to the prospective Robotics Institute Ph.D. students I’ve hosted—Matt Tesch,
Anca Drăgan, Ben Eckart, and Greydon Foil—for allowing me to give back to the
RI and to have a legacy of sorts here at CMU. I appreciate getting to put my house
and its spare bedrooms to good use once in a while. And finally, thanks all of you
for accepting the RI’s admission offer and giving me a perfect hosting record!

Finally, many thanks to Suzanne Muth and Reid Simmons for keeping me, and the
whole graduate program, running smoothly. I appreciate the opportunities to give
back to the department through hosting prospectives and serving on committees. It’s
great to be in a department where feedback visibly gets incorporated into the
process.

vi

Contents

1 Introduction 1
1.1 Choice of Planner . 2
1.2 Path Diversity . 3
1.3 Contributions . 3
1.4 Overview . 4

I Background 5

2 Hierarchical Planning 7
2.1 Motivation . 7
2.2 Prior Work in Hierarchical Planning . 8
2.3 Comparison to Other Planning Approaches . 11
2.4 Local Planners . 11
2.5 Global Planners . 14
2.6 Heuristic Functions . 16

3 Hierarchical Planner Applications 19
3.1 The Mobile Manipulation Application . 19
3.2 2D Navigation Planner . 21

3.2.1 Navigation Planner: Local Planner and Controller 21
3.2.2 Navigation Planner: Global Planner and Heuristic Function 22
3.2.3 Experimental Setup . 22

3.3 3D Arm Planner . 23
3.3.1 The Manipulation Planning Problem . 23
3.3.2 Arm Planner: Local Planner . 24
3.3.3 Arm Planner: Global Planner and Heuristic Function 26
3.3.4 Manipulation Planning Performance . 27

3.4 Prior Work in Mobile Manipulation . 27
3.5 Other Applications . 30

3.5.1 Snake Robot Planning . 30
3.5.2 The Double Integrator . 31
3.5.3 People Prediction . 31

vii

4 Path Set Theory 33
4.1 Path Parametrization . 33
4.2 Path Space and Metrics on Paths . 34
4.3 Search Space Frame of Reference . 40
4.4 Path Diversity . 41
4.5 Concerning Completeness and Optimality . 42
4.6 Open Questions . 42

5 Path Set Design 43
5.1 The Green-Kelly Algorithm . 43
5.2 Other Deterministic Approaches . 44
5.3 Random Sampling . 46
5.4 Dynamic Path Sets . 51
5.5 Prior Work in Path Set Generation . 53

5.5.1 State-Sampled Path Sets . 53
5.5.2 Probabilistic Planners . 54
5.5.3 Optimizing Planners . 55

5.6 Path Set Design . 56

II The Stages of Motion Planning 57

6 Path Sampling 59
6.1 Path Sampling and Path Parametrization . 60
6.2 Prior Work . 61
6.3 Informed Path Sampling Approach . 61
6.4 Probabilistic Foundations . 63
6.5 Locality . 64

6.5.1 General Locality Model . 65
6.5.2 Simple Locality Model . 66
6.5.3 Handling Multiple Collision Sites . 67
6.5.4 Adaptive Locality Model . 68

6.6 Path Entropy . 70
6.7 Experimental Results . 72
6.8 Summary . 73

7 Collision Testing 75
7.1 Algorithms . 77

7.1.1 Path Set Generation . 77
7.1.2 Path Classification . 77
7.1.3 Implicit Path Safety Test . 78

7.2 Foundations . 78
7.2.1 Properties of Paths . 80
7.2.2 Equivalence Relation . 82

viii

7.2.3 Resolution Completeness of Path Classifier 86
7.3 Experimental Results . 87

7.3.1 Classification Performance Overhead 87
7.3.2 Collision Testing . 87

8 Path Selection 91
8.1 The Non-Monotonicity Problem . 93
8.2 The Temporal Incoherence Problem . 93
8.3 The Obstacle Proximity Problem . 94
8.4 Improved Hierarchical Planner . 95
8.5 Logical Succession Path Relation . 95
8.6 Multistage Path Selection Algorithm . 95

8.6.1 Stage One: Solving the Decision Problem 96
8.6.2 Stage Two: Solving the Optimization Problem 100

8.7 Experimental Results . 100

9 Extensions and Future Work 103
9.1 Path Sampling . 103
9.2 Mobile Manipulation . 103
9.3 A Rigid Body in 3D . 104
9.4 Variable-Size Robots in 2D . 104
9.5 Articulated Robots . 107
9.6 Steerable Needles . 109

10 Conclusion 111
10.1 Contributions . 113

Bibliography 115

ix

 x

List of Figures

1.1 Typical robot data flow. 2

3.1 HERB, a mobile manipulator robot. 20
3.2 Navigation planner overview. 21
3.3 Exploiting affordances in goal description. 24
3.4 An example plan to the goal during mobile manipulation. 25
3.5 HERB, a mobile manipulator robot. 28

4.1 Two failures of area-based metrics. 35
4.2 Distribution of obstacles in the frame of a robot-fixed path set local planner. . . . 37
4.3 Distribution of obstacles in collision in robot-fixed frame local planner. 38

5.1 Examples of path sets. 46
5.2 Frequency distribution histogram showing success rate of various path sets. . . . 47
5.3 Comparison of static and dynamic path diversity. 48
5.4 Annotated scatter plot of path diversity correlation. 49
5.5 The effect of continuations on navigation performance. 49
5.6 Uniform branching factor random path sets. 51
5.7 Histogram of fixed versus varying random path sets in the robot-fixed frame. . . . 52

6.1 Typical robot data flow. 60
6.2 Proximity Look-Up Table . 63
6.3 Obstacle locality. 65
6.4 General locality model. 66
6.5 Comparison of General Locality Model and Simple Locality Model. 67
6.6 Independence assumption. 68
6.7 Adaptive locality model . 69
6.8 Two-sided adaptive locality model. 69
6.9 Three-dimensional locality model. 70
6.10 A family of paths on the left side of an obstacle. 71
6.11 Simulator depiction of locality model. 73
6.12 Locality model simulation results. 74

7.1 Motivation for a local equivalence relation. 76
7.2 Computing path equivalence. 78
7.3 Appropriate paths. 81

 xi

7.4 Interior of two paths. 82
7.5 Continuous deformation between paths. 83
7.6 Hausdorff coverage area. 84
7.7 Finding upper bound on path length. 85
7.8 Path classification overhead. 88
7.9 Paths tested per time-limited replan step in an obstacle-free environment. 88
7.10 Path test rate in the presence of obstacles. 89

8.1 Discrete and continuous choices during navigation. 92
8.2 Logical succession. 96
8.3 Categories of equivalence class used in path selection. 97
8.4 Improvement in overall planner success rate. 101
8.5 Absolute cost function penalizing obstacle proximity and path length. 102
8.6 Ratio of Best Path cost to multistage local planner algorithm cost. 102

9.1 Two paths are insufficient for 3D path equivalence. 105
9.2 Finding 3D path equivalence with three paths. 106
9.3 Mobile robot paths with variable radius. 106

xii

List of Tables

2.1 Comparison of capabilities among arm planning techniques. 11

3.1 Comparison with bidirectional RRT averaged over 5 trials. 27

7.1 Conic sections form the weighted Voronoi diagram. 84

xiii

xiv

List of Algorithms

1 Local Planner Algorithm(w, x, h, P) . 13
2 Pfree ←Test All Paths(w, P) . 13
3 PN ←Green Kelly(X , N) . 44
4 D ←Equivalence Classes(Pfree, d) . 79
5 b←Test Path Implicit(p, w, S, d) . 80
6 (W ,N)←Divide Wide Narrow(C, t) . 98
7 p←Optimize Path(x, h, e, p) . 98
8 (p,L)←Multistage Local Planner Algorithm(w, x, h, e, P , L) 99

 xv

 xvi

List of Definitions

1 metric . 34
2 path space . 34
3 swath . 36
4 dispersion . 39
5 facility dispersion . 39
6 continuation . 48
7 boundary value problem . 60
8 principle of locality . 64
9 range of effect . 66
10 path entropy . 70
11 safe . 78
12 feasible . 79
13 appropriate . 80
14 continuous deformation . 81
15 equivalent . 81
16 guard paths . 81
17 between . 82
18 monotonicity . 93
19 logical succession . 95
20 narrow . 96
21 progressing . 97

xviii

Chapter 1

Introduction

Robotic motion planning is an exercise in organizing information. Given a costmap (or obstacle
map), a set of rules about how the robot moves through space, and a pair of state sets labeled
start and goal, the planning problem is to discover a motion sequence that moves the robot from
a start state to a goal state while avoiding obstacles and obeying kinodynamic constraints. The
planning problem is usually formulated as either a discrete combinatorial search or a continuous
optimization problem.

In either case, the preponderance of motion planning computation is spent in reinterpreting
information. Given the solution, represented as a sequence of control inputs, we may verify its
correctness by performing a path test. In searching for a solution, path tests consume a significant
majority of CPU time. Path tests are slow because the information they require is stored in a
relatively inaccessible form in the costmap or obstacle map, and the path testing process coverts
it to an immediately useful form reflecting the goodness of the candidate path.

The largest share of computation is consumed in path testing, which comes in two forms,
depending on the application. In collision testing, the planner must determine whether a given
prospective path for the robot to follow would be likely to result in a collision with obstacles.
In this formulation, every robot state has a binary status—it is either free or in collision with an
obstacle. A related problem occurs in real-valued costmaps, where cost comprises an abstrac-
tion of the risk induced by a particular workspace location. Note that each robot configuration
comprises a range of workspace locations occupied by the robot. The planner must evaluate the
desirability of a given path, for example by convolving the shape of the robot with the shape of
the path. Such an expression gives the risk associated with following that path.

As the number of paths to be evaluated increases, the effort expended by conventional path
test algorithms scales linearly. Although these paths represent unique trajectories in the configu-
ration space, their swept volumes in the workspace increasingly overlap. Thus, as the number of
paths increases, the work required to test them all individually requires increasing redundancy.
By recognizing that all of these paths inhabit a shared workspace, it is possible to improve path
testing performance by recognizing and reusing shared information.

In fact, latent shared information may be exploited throughout the motion planning process.
Fig. 1.1 depicts the flow of information through a robot in the typical feedback loop. The diagram
reveals details of the planner, which is split into three stages: path sampling, path testing, and
path selection. This thesis describes opportunities and approaches for recognizing and reusing

1

Path
Sampling

Collision
Testing

Simulation

Sensing Cost
Map

Action

Planner

World

Figure 1.1 Typical data flow within a robot closes the loop around the sense-plan-act cycle, but the planner
itself runs open-loop.

information at each stage of the motion planning process.

1.1 Choice of Planner
In discussing information reuse in motion planning, it is helpful to adopt a specific planning
paradigm in order to clarify concepts. We focus on the hierarchical planner because we believe it
is the simplest case that elucidates the interesting information reuse properties that are the subject
of this thesis.

Model predictive planning and hierarchical planning are two techniques that work in concert
to plan paths through complex, cluttered terrain over great distances. Predictive models map a
robot’s control inputs into state space responses, which can be numerically integrated to generate
paths in the workspace. Such a process produces high fidelity paths that are inherently feasible
to execute on a real robot without post-processing, while incorporating the best possible under-
standing of both the system and disturbances to it. A model predictive planner typically samples
from the control space. Resulting paths depend on both the sampled control trajectory and the
initial state of the robot. A collection of input trajectories coupled with resulting workspace paths
is referred to as a path set. Before it is eligible to be executed on the real robot, each member
of the path set must be vetted by testing it for collision in simulation, and some planners require
other steps such as computing a cost based on a costmap or equivalent path integral.

The drawback of model predictive planners is that robot models are expensive to simulate.
Such planners therefore compute only partial plans, which necessitate frequent replanning. Com-
putational cost and a time budget combine to impose a limited horizon on the model predictive
planner, which is also known as a local planner. Such limited range makes the planner suscep-
tible to getting stuck in features of the global topology, such as cul-de-sacs, in which the local
gradient, as generated by the potential field method [79], leads into a dead end. To compen-
sate for this shortcoming, a second, global planner may be introduced to provide information on
global connectivity of the freespace. The two planners, along with the numerical glue (heuristic

2

function) to make them work together, form a hierarchical planner.
In the context of a hierarchical planner, the local planner dedicates itself to finding the im-

mediate future path. By replanning continuously while executing the previous planned path, the
robot can simultaneously plan and execute with minimal startup delay. It is logical for the plan-
ner to spend the majority of its time concentrating on the local area around the robot for several
reasons:

1. Sensors give the highest quality data in the immediate neighborhood of the robot.

2. At any given time, dynamics highly constrain the robot’s position over the next several
seconds (while over longer time scales, many more positions are achievable), so the most
care must be taken to avoid collision over the next several seconds, when the problem is
hardest.

3. Dynamic obstacles farther away have more time to reconfigure themselves before the robot
reaches them.

1.2 Path Diversity

To maximize the probability of survival (and of making progress), it is important to sample
control trajectories that maximize the diversity of the resulting workspace paths. Let On be the
joint configuration space of all obstacles in the neighborhood of the robot and Onfree(P) ⊂ On
be the set of obstacle configurations for which at least one path in path set P is collision-free.
A path set P maximizes path diversity when the measure of Onfree(P) is maximized. Basically,
paths are the tools by which the planner makes progress towards the goal, and the planner can be
most successful when it has the greatest possible variety of viable options on how to proceed.

Robot models can be arbitrarily complex, and so the mapping between control trajectories
and paths in the workspace is similarly baroque. Consequently, few model predictive planners
depend on diversity in control space when trying to provide diversity in paths. Instead, it is
common to generate path sets offline by precomputing each path in a large set and carefully
selecting a subset of paths to maximize particular diversity properties. Another approach to
generating diverse path sets is to rely on the properties of uniform random sequences to blindly
select a set of inputs that will be diverse in the workspace without explicitly precomputing the
paths.

1.3 Contributions

In this thesis, we improve upon each stage of the motion planning process using careful infor-
mation management, both online and offline. We perform diverse, adaptive path sampling in real
time by feeding back the results of earlier collision tests. We then move on to accelerate collision
testing by recognizing when parts of other paths’ collision tests have already tested a new path,
thus giving path test results for free. Finally, we improve path selection by recognizing groups
of paths possessing shared outcomes.

3

1.4 Overview
This thesis is organized in two parts. In Part I: Background, we introduce many applications,
problems, and prior work solutions. Chapter 2, describes the operation of the hierarchical planner
in detail. Chapter 3 establishes a collection of robotic applications for the hierarchical planner
and for the information reuse techniques we describe. Chapter 4 delves into a theoretical analysis
of the issues affecting local-area motion planning with path sets. Chapter 5 examines the practical
aspects of the state of the art in path set design for local planners.

In Part II: The Stages of Motion Planning, we delve into some approaches to information
reuse throughout the motion planning process. Chapter 6 explores issues of informed realtime
path sampling: specifically, we look at which path is best to sample next, given the collision
test outcomes of earlier paths. Chapter 7 deals with an equivalence relation on local paths for
use in collision testing. Chapter 8 looks at applying this equivalence relation to route selection.
Chapter 9 discusses opportunities for extensions and future work in areas covered by this thesis.
Finally, we summarize and conclude in Chapter 10.

4

Part I

Background

5

Chapter 2

Hierarchical Planning

The planners described in this thesis represent perhaps the simplest interesting example in which
to employ the ideas presented in later sections. Hierarchical planners employ two or more sub-
planners (layers) that lie on the spectrum from short-range and high-fidelity (local planner) to
long-range and low fidelity (global planner). By combining diverse planners, we may take ad-
vantage of sensor information at short range to plan detailed trajectories for obstacle avoidance
without spending undue computation planning in far away parts of the environment, about which
little may be known.

Hierarchical planners afford a number of advantages.

1. reactivity: The local planner replans frequently, meaning that it is reactive to an unpre-
dictably changing environment.

2. minimal startup latency: After each replan step completes, the local planner issues a
command to the robot for execution during the subsequent planning cycle. Therefore, the
robot incurs a minimal amount of lag before it starts moving.

3. scalability: The division of labor allows the planner to find paths over great distances.

4. feasibility: The local planner also generate detailed paths which avoid obstacles while
obeying motion constraints.

Few planners offer this combination of features. For instance, the RRT planner of LaValle and
Kuffner [96] is highly scalable and sometimes produces feasible paths, however it is not reactive
to a changing environment and has significant startup latency because the entire plan must be
completed before execution begins. By contrast, the potential field planner of Khatib [79] is
highly reactive as well as scalable and low-latency, but its paths are not guaranteed feasible, and
it can easily become stuck in cul-de-sacs since it lacks global guidance or lookahead capability.

In the following sections, we give more detail about the local and global planners and how
they are combined using a heuristic function.

2.1 Motivation
We previously described the value of hierarchical planners in decomposing the problem of plan-
ning over long distance for robots with constraints. In refutation of the notion that the task can

7

be accomplished with a single planner at high fidelity all the way to the goal, Reif and Wang
[119] showed that the problem of finding a piecewise constant-curvature arc path all the way to
the goal is NP Hard. However, hierarchical planning is also appealing from a design standpoint,
and as such has been in use in the AI and robotics communities for decades.

The hierarchical planning architecture we employ here is designed not for eventual success in
the worst-case but for rapid success in the majority of cases. The plans generated by this planner
begin running on the robot with minimal planning delay and succeed in reaching the goal under
normal circumstances.

In conducting this work, we sought to build a planner possessing a degree of greediness,
which can generate goal-directed behavior that is both fast and subjectively “good enough”. By
simultaneously employing a degree of lookahead via trajectories in the model predictive local
planner, this planner may avoid getting stuck in any but the deepest cul-de-sacs in the potential
field. Note that the length of these trajectories (degree of lookahead) places the hierarchical
planner anywhere along a spectrum. At one end, zero lookahead leads to something similar to
potential field-based controllers, which merely follow the local potential function gradient and
can easily get stuck. At the opposite extreme, letting the local planner plan all the way to the
goal results in a complete planner. By selecting lookahead distance, we place the planner within
this spectrum.

2.2 Prior Work in Hierarchical Planning
Many projects have employed a hierarchy of heterogeneous planners to provide complementary
functionality. One of the first mobile robots to do so was ALV [31, 107], which employed
four planners called (in descending order) Mission, Route, Local, and Reflexive. The Route
Planner resembles our global planner, while the Reflexive Planner performs the function of our
local planner. At the local level, ALV’s robot model evaluates a handful of linear workspace
trajectories based on robot-terrain interaction in order to select the safest course of action that
achieves the navigation objective.

The design of such systems as ALV inspired another outdoor planning architecture in Per-
ceptOR [77], which employs a low-fidelity global planner based on Field D* [38] to provide
global guidance to a local planner. This local planner evaluates candidate trajectories, generated
by sending sampled constant-input controls through a robot model. These trajectories terminate
at various points in the workspace. All collision-free local paths imply a complete path to the
goal because D* provides a navigation function. The local replan rate is roughly 10 Hz.

Two of PerceptOR’s successor robots, Crusher and Boss [57], employ hierarchical planners
in different environments. Crusher concentrates on off-road driving, while Boss, the winner of
the 2007 DARPA Urban Grand Challenge, navigates roads. A variety of other Urban Challenge
teams also explored the use of hierarchical planners to varying degrees (see [82] for a survey of
Urban Challenge local planning solutions).

On the Argo platform, Allen et al. [1] implement a separate heritage of off-road hierarchical
planners. This work exhibits a subtle distinction from PerceptOR. While PerceptOR and its kin
generate a global navigation function which can be queried from any point, Argo’s global planner
offers a single path for the local planner to track. Thus, only local paths which terminate on the

8

global path can be considered.
In a twist on the hierarchical planning concept for planetary rovers, Pivtoraiko and Kelly

[108] combine search spaces of varying fidelity and scalability into a unified graph. This planner
performs comparably to many hierarchical planners with a single D* query at the expense of
additional bookkeeping to manage the world-fixed search graph as the rover traverses its envi-
ronment.

Laumond et al. [92] describe a hierarchical planner for mobile robots with nonholonomic
constraints. Their global planner operates in a graph search space defined by the retraction of the
free C-space. Meanwhile, the local planner performs potential-field-style gradient descent based
on the Reeds-Shepp Reeds and Shepp [118] metric rather than the typical Euclidean distance
metric. The Reeds-Shepp metric describes the length of the shortest path for a car with limited
turning radius. Such paths can be synthesized using only straight lines and minimum turning
radius arcs.

Another body of work relates to hierarchical planning in indoor human environments. Such
spaces differ from outdoor rough terrain in that cost is binary; any robot configuration is either
in collision with an obstacle or collision-free. Autere [5] describe a multi-resolution grid-based
variant of A*, in which each resolution operates similarly to a hierarchical layer by giving more
approximate solutions that are topologically informed. Hyun and Suh [63] find connected spaces
in a grid and then hone them into higher quality paths in successive hierarchical layers.

Several other works more closely resemble the type of hierarchical planning architecture
described in this thesis. Candido et al. [26] discuss the application of hierarchical planning to
humanoids. Since the high degrees of freedom make exhaustive C-Space planning impractical,
this work instead employs a look-up table of feasible motions, called motion primitives, which
generate useful behaviors when applied in context to a terrain. They build a graph of motion
primitives that explore the terrain. After finding a path through the graph connecting the start
and goal states, the authors execute the resulting series of motions open loop.

Yang and Brock [146] implement a hierarchical planner loosely resembling our architecture.
The global planner generates a probabilistic road map with movable nodes to handle dynamic
environments. The objective is to maintain an approximation of the changing topology of the
environment within this graph. During execution, a potential field local planner follows these
graph edges. Like our planner, theirs is incomplete but functions reliably in practical settings.

In a work by Wang et al. [142], a global planner computes the shortest path in a grid from
start to goal. A local planner then tries to follow this path by defining a sub-goal where a circle
centered at the current robot position intersects the target path. Potential fields drive the robot
toward its sub-goal, thus performing receding horizon control (pure pursuit path tracking [141])
until the robot reaches the final goal. The authors provide results on a real robot. This indoor
planner, like the others discussed above, does not incorporate dynamics into the planning pro-
cess, thus setting up fundamental conflicts between path following speed and quality as well as
between motion constraints and obstacle avoidance.

Willow Garage’s PR2 platform utilizes a hierarchical planner for its office navigation plan-
ner. Marder-Eppstein et al. [100] report on a maturity test billed as the “office marathon.” Like
our navigation planner, they employ a grid-based global planner that neglects kinodynamic con-
straints. At the local planning level, the PR2 employs the dynamic window approach of Fox et al.
[40].

9

Handey [98] is a fully integrated system capable of recognizing and manipulating polyhedral
parts in clutter. Handey’s motion planner is composed of a two-layer hierarchy of a coarse-
grained kinematic arm planner and a fine-grained hand controller for executing planned compli-
ant grasping. The intuition for the hierarchy is that while the arm had to merely avoid obstacles,
the hand had to reach into tight spaces, make deliberate contact with obstacles, and perform fine
manipulation.

Perhaps the earliest application of hierarchical planning to robotics was STRIPS [39], a sym-
bolic planner designed to help robots reason about achieving complex goals requiring many
actions. STRIPS works by decomposing goals into subgoals in a hierarchical structure. In order
for a sequence of actions to satisfy the goal criteria. each action’s postconditions must satisfy
the following action’s preconditions. Since STRIPS lacks any understanding of the nature of the
problem and must solve the whole problem at once, it suffers from exponential complexity in the
size of the plan.

Sacerdoti [122] introduces ABSTRIPS, an abstraction-based variant of STRIPS that employs
an abstraction hierarchy to deliberately ignore preconditions to simplify the problem. After
solving the problem at the most abstract level of detail, each step in the abstract solution generates
a subproblem to be solved at a higher level of detail. Thus, the intricate problems need only be
addressed as simpler subproblems, thus dramatically increasing problem-solving efficiency.

Nourbakhsh [106] contributes a crisp definition and refinement of the abstraction hierarchy
concept and also proposes interleaved planning and execution to further enhance the symbolic
planning process. By executing the first subplan as soon as it is ready, the solutions to further
subproblems may be based on ground truth as a result of the first execution, in order to accom-
modate incorrect assumptions and execution errors. Our local planner embraces the concept of
interleaved planning and execution, extending it to simultaneous planning and execution. Thus,
we both simplify the problem via hierarchical abstraction and also hide the planning computation
time by parallelizing it with execution.

A recent contribution in hierarchical control by Girard and Pappas [46] shows that an ap-
proximate abstraction of a complex system may be used as a basis for simplifying control. A
trajectory controlling the simplified system is an approximate solution to the real system, and
it may be used to generate more accurate trajectory to control the real system. By generating
several levels of increasing abstraction, this process may be generalized to a multi-level hierar-
chy. Besides being an example of hierarchical control, this paper is significant because the robot
models we employ are inevitably approximations of the true systems. Even so, the end result of
employing such robot models is increased controllability of complex real-world systems.

Plaku and Hager [110] devise a two-layer interleaved planning system in which the top layer
performs the symbolic reasoning responsible for discovering subgoals to deliver to the motion
planner. Meanwhile, the lower level geometric planner performs sample-based planning to con-
struct a control-based motion tree. The symbolic planner’s subgoals bias the state sampling
distribution that drives the motion planner in order to direct the search towards accomplishing
task goals.

Finally, Knepper and Mason [83] perform some analysis of hierarchical planning for naviga-
tion in a theoretical and simulation study.

10

Table 2.1 Comparison of capabilities among arm planning techniques. A check-mark here denotes that a
planner is “good enough” at fulfilling a capability. The hierarchical planner is the most capable overall.

Handles Avoids
Planner Complete Dynamic Local Optimal

Obstacles Minima
Arm controllers # ! # !

Elastic bands and # #* ! !
strips, CHOMP
RRT, PRM, SBL ! # ! #

Hierarchical Planner # ! ! !

* this capability is only available to a limited extent.

2.3 Comparison to Other Planning Approaches

A few noteworthy planning approaches, compared in Table 2.1, share aspects of hierarchical
planners. The table compares approaches using four common planning criteria. The comparisons
indicate whether a planner’s performance is “good enough” in a certain area. We use this phrase
to mean that while an approach may not reach a paramount state of achievement in an area, the
performance is quite acceptable in everyday applications.

Potential fields [79] are an important and popular control technique. Potential fields compute
an objective function that causes the robot to be attracted by the goal state and repelled by ob-
stacles. Arm controllers use potential fields in a purely greedy approach to planning, so they are
very susceptible to local minima.

Elastic bands [114] and elastic strips [17] represent a technique for defining a volume which
is free of objects. Maneuvering within this space is basically free, but the volume is a subset of
reachable space. The methods differ in that elastic bands exist in the C-space, whereas elastic
strips inhabit the workspace. CHOMP [115] is a more sophisticated, modern variant of elastic
bands. These methods possess a limited degree of ability to switch between solution homotopy
classes.

2.4 Local Planners

The local planner algorithm is built on the premise that it is relatively easy to generate a workspace
trajectory from a control trajectory using the robot model but hard to solve the inverse problem,
which requires inverting the robot model. Consequently, the planner works by generating a set
of paths through forward simulation and testing their suitability for execution. The basic local
planner algorithm is sketched out in Alg. 1.

Robot safety requires that our robot model provide a high-fidelity simulation capable of pre-
dicting the robot’s response to candidate actions over the upcoming ground shape. Model pre-
dictive planning utilizes such a robot model to select and steer the best trajectory.

Model predictive planning (MPP) generalizes the notion of model predictive control (MPC)

11

[24, 111] to non-linear, time-varying systems with possibly many local minima. In MPC, the con-
troller repeatedly simulates controls being applied to the system via a model. At each step, the
controller numerically solves an optimization problem. In the context of a robot, this optimiza-
tion is called trajectory generation. For mobile robots, such trajectories (either in the workspace
or the C-space) may be uniquely determined [74] or may be optimized according to some objec-
tive function [58]. In MPC, the controller typically bounds the lookahead time horizon in order
to make the computation tractable.

MPP likewise bounds lookahead time, but it samples a diverse set of controls instead of
optimizing a single control. The same objective (or heuristic) function as with MPC is used to
pick the winning path for execution. For a sufficiently dense, low dispersion path sampling, the
resulting controls from MPC and MPP may closely approximate each other. However, MPP has
an advantage in objective functions with many local minima (such as with potential fields in
clutter) because it does not rely strictly on gradient descent to find high-quality controls.

Independently of the research leading to this thesis, Dunlap et al. [35] presented Sampling
Based Model Predictive Control (SBMPC) within the controls community. The authors present
results in both robotics and process control applications. SBMPC functions quite similarly to
our local planner, discretizing the space of controls and utilizing the forward model to predict the
resulting trajectories. Given the similarities between approaches, the contributions of this thesis
thus apply to SBMPC as well for many applications.

Model predictive planners are somewhat costly to execute due to two factors. First, they
are limited by the speed and complexity of the accompanying robot model. To improve runtime
throughput, it is possible to precompute trajectories and store them in a look-up table (LUT) after
discretizing both the initial state and control input. Second, the planner must frequently retest
all available paths to ensure responsiveness. A rapid replan rate is important to ensure the most
up-to-date sensor data for the upcoming ground patch, and replanning also provides the robot an
ability to react to dynamic obstacles in real time.

Together, a rapid replan rate and a costly model constrain the amount of available computa-
tion during each replan cycle, which has the effect of bounding some combination of depth and
breadth of local planning. Planning depth is enforced by the depth of each candidate local path.
Constrained computation induces a tradeoff between depth and breadth—the number of path al-
ternatives that can be considered per unit time. The correct choice in this tradeoff involves many
factors, such as expected depth of cul-de-sacs, expected width of narrow corridors, and physical
parameters like stopping distance and sensor range. The outcome of this process is a set of safe,
feasible paths that may be selected for execution. Section 2.6 provides more detail on the process
of selecting one of these paths.

In earlier work utilizing local exploration to effect a global result, Cheng and LaValle [27]
modify the RRT planner by keeping track of which local paths have been tried and failed due
to collision with obstacles. Feedback from these failures is used to bias selection of future path
samples. Kalisiak and van de Panne [69] improve upon this idea with RRT Blossom by expanding
the entire path set in parallel, much like we do. They reason that in difficult situations with
clutter, Cheng and LaValle’s planner will eventually do so anyway, and there are gains to be
made in considering all of the paths in parallel. This thesis discusses a variety of such gains, and
our results therefore apply directly to RRT Blossom as well.

One such gain is realized by replacing the Get Next Path() function in Alg. 2 line 3, which

12

Algorithm 1 Local Planner Algorithm(w, x, h, P)
Input: w – a costmap object;

x – initial state;
h – a heuristic function for selecting a path to execute;
P – a fixed set of paths

Output: Moves the robot to the goal if possible
1: while not at goal and time not expired do
2: Pfree ← Test All Paths(w, x,P)
3: j ← h.Best Path(x,Pfree)
4: Execute Path On Robot(j)
5: x← Predict Next State(x, j)
6: end while

Algorithm 2 Pfree ←Test All Paths(w, P)
Input: w – a costmap object;
P – a fixed set of paths

Output: Pfree, the set of paths that passed collision test
1: Pfree ← ∅
2: while time not expired and untested paths remain do
3: p← Get Next Path(P)
4: collision← w.Test Path(p) // collision is boolean
5: if not collision then
6: Pfree ← Pfree ∪ {p} // non-colliding path set
7: end if
8: end while
9: return Pfree

has traditionally been quite naive. Most hierarchical planners simply iterate through an unin-
formed sequence of paths, P , testing the set in a brute force manner. Provided that P is a diverse
path set, this method can be effective at discovering feasible trajectory options. However, there
is room for improvement by informing the path sampling process based on feedback from prior
sampled paths. We return to this issue in Chapter 6, Path Sampling.

There is a degree of latitude in the nature of the paths that make up P . They can, for example,
be trees that branch at the root or at many other nodes. We give a detailed history of the path set
types we have investigated in the past in Chapter 5, Path Set Design.

Alg. 2 performs the path test operation on the entire path set. Although the algorithm handles
each path in isolation, it can be more efficient to consider them in parallel. Schlegel [126] makes
efficient use of obstacle information in collision testing a local path set for a mobile robot. The
author discretizes the local area containing the path set in the robot-fixed frame. A priori, the
author computes, for each cell, the list of paths for which traversal causes some part of the robot
to pass over that cell. During collision test, obstacles from the global cost map are projected
onto the local map frame. For each obstacle cell in the local map, all those paths traversing the
cell are eliminated from consideration. This approach significantly increases collision-testing

13

efficiency at the expense of some degree of approximation. We demonstrate in Chapter 7 a
topological approach to increasing path-testing efficiency that does not suffer from this cellular
approximation.

In testing all these trajectories, a rapid replan rate is important to ensure the most up-to-date
sensor data for the current robot state. Rapid replanning also provides the robot an ability to react
to a dynamic environment in real time. Together, a rapid replan rate and costly computational
requirements constrain the amount of available computation during each replan cycle. Bounded
computation introduces a tradeoff between depth of search (the horizon of local planning) and
breadth (the number of distinct paths explored).

To compensate for the limited horizon, a hierarchical planner employs one or more coarser
planners with different tradeoffs. In general, an entire spectrum of planners may be employed
in a hierarchy, where the largest scale may involve no more than a heuristic distance estimate.
Each successively lower level in the hierarchy plans to a shorter horizon while more accurately
representing actual robot motions. For examples in this thesis, the hierarchy is restricted to two
levels, local and global. We discuss the global planner in the following section.

2.5 Global Planners
In solving long-range queries, understanding the topology of the freespace is the most essential
task because the robot may otherwise become stuck in a cul-de-sac. Even using a map annotated
with the connectivity of freespace, finding the shortest path is not trivial. One common approach
for representing topology is the retraction of freespace, in which corridors connecting junctions
are represented by graph edges. The graph edges may explicitly follow the Voronoi diagram,
as in the work of Choset and Burdick [29], Garber and Lin [43]. The Voronoi diagram may
also be used to bias probabilistic sampling, as did Holleman and Kavraki [54], Wilmarth et al.
[144], Yang and Brock [147]. Cycles in the graph thus represent obstacles. The representation
of freespace as a graph introduces approximate representations of feasible motions that make the
path planning problem scalable, although the resulting paths typically are not feasible to directly
execute on the robot. A more common approach, which we employ here, is to decompose the
workspace into a Cartesian grid. This decomposition is also approximate, but it enables the
planner to find a path up to the resolution of the grid discretization.

Once the environment has been reduced to a graph, solving the global planning problem is
simply a matter of graph search. A long line of algorithms based on the principle of dynamic
programming [8] was proposed to discover the shortest path in a graph. One of the earliest such
techniques is Dijkstra’s algorithm [33], which performs an exhaustive search of the graph. The
algorithm constructs a tree from the graph by iteratively expanding the unexpanded graph node
nearest the start node until all nodes have been expanded. Upon expanding the goal node, the
tree path leading from start to goal represents the shortest path in the graph.

Approximately a decade later, Hart, et al. presented the A* algorithm [51], which improves
upon Dijkstra’s algorithm by employing an admissible heuristic function in selecting which node
to expand. The heuristic function returns a lower bound on the (unknown) distance or cost re-
maining to the goal state. Using the heuristic estimate, the algorithm may prune away obviously
suboptimal nodes without expanding them, thus dramatically improving search times in large

14

graphs. This feature, in turn, led to improved scalability for robot navigation problems.
A* search results are predicated on two assumptions: the whole environment is known a

priori, and it does not change during navigation. These may both be faulty assumptions for mo-
bile robots sensing their environment while traversing it. To address these difficulties, Stentz
proposed D* [130], which dynamically replans as the graph representation of the environment
changes. This graph is often represented in 2D by a grid costmap with 4- or 8-way connec-
tivity. As cells change cost, the corresponding edge weights change. D* recomputes only the
portion of the path that is affected by this change in cost, including downstream nodes. Since the
robot moves through the environment and sensed costmap updates occur in the neighborhood of
the current robot location, D* searches backwards from the goal. This algorithm dramatically
improves global planner scalability when exploring real environments, although planning back-
wards from the goal introduces additional difficulties for planning in time, since the arrival time
at the goal is unknown while the search proceeds.

Koenig and Likhachev introduced D* Lite [85], a variation on D* that is simpler to implement
and more efficient in practice. Subsequently in this work, references to “D*” actually imply a
D* Lite implementation.

One further enhancement to D* Lite was introduced by Ferguson and Stentz. Like D*, Field
D* [38] searches in a costmap grid, but it does not restrict solution paths to grid discretization.
Instead, Field D* interpolates costs between map cells, finding the optimal path from cell edge to
cell edge. In addition to providing a more optimal path than D*, Field D* also typically produces
paths with gentler angles that are easier for path trackers to follow, although any angles in a path
prevent perfect path following at non-negligible velocities.

Most of the above-mentioned algorithms perform heuristic search, meaning that the compu-
tational demands of the algorithm depend heavily on the quality of the heuristic estimate. Most
real-world robots have nonholonomic constraints preventing them from driving arbitrary paths,
but such constraints can be challenging to encode in a heuristic. Another source of search ineffi-
ciency derives from the presence of obstacles, which heuristic estimates typically neglect. Dol-
gov et al. [34] introduce a hybrid heuristic that incorporates both of these factors for a car. Their
metric computes two submetrics. The first computes an obstacle-free kinematically-feasible path
length similar to Reeds-Shepp [118], while the second computes an obstacle aware grid-path so-
lution using Dijkstra’s algorithm. The final value returned by their hybrid heuristic function is
simply the maximum of these two values. Such clever heuristics more than make up for their
computational expense by expanding fewer nodes in the graph search.

As mentioned above, the local planner has a limited capacity to generate, test, and evaluate
model-predictive paths. A robot trying to navigate using only a limited-horizon local planner
would run into two difficulties. First, it would have no sense of which direction to move, in a
local sense, to make progress toward the goal position. Second, the configurations of obstacles
in the world often creates cul-de-sacs. A potential field without such local minima, called a
navigation function, is needed to direct the robot toward the goal successfully. Such a navigation
function requires knowledge of global topology of the workspace to generate, and so model
predictive techniques do not scale well to this task.

Instead, our hierarchical planner employs a simplified robot model lacking the kinodynamic
constraints to which the actual robot is subject. We run D* Lite [85] for this task because
it rapidly returns answers to navigation function queries, reuses previous results, and permits

15

movement of the robot and obstacles without recomputing more than necessary. In short, D*’s
performance is sufficiently fast that it makes up a negligible part of the overall planner’s compu-
tation.

In the global planner, the robot is approximated as a point or ball shape. We discretize the
workspace into a rectangular grid and run the D* search algorithm to rapidly find the cost of a
path from any point in the workspace to the nearest goal position. In searching a grid without
regard to robot constraints, we trade off guaranteed trajectory feasibility for computational speed.
D* offers additional advantages over other graph search algorithms such as reuse of previously
generated results and the ability to alter cell costs due to dynamic obstacles with maximal reuse
of prior computations.

The ability to rapidly provide a path to the goal from any point in the free workspace is key
to the functioning of the global planner. By querying the end-point of a local path, the global
planner provides the continuing path to the goal which is topologically, though not kinodynam-
ically, correct. In Alg. 1, invocation of the local planner occurs within the heuristic function,
h.Best Path(R).

2.6 Heuristic Functions
The heuristic function is responsible for bringing together all the layers of the hierarchical plan-
ner and producing a unified planned path all the way to the goal. The path will only be executed
for a short distance, though, since the planner must replan rapidly to provide both reactiveness
and sufficient high-fidelity lookahead at all times.

In Alg. 1, the local planner generates a set of local paths which are feasible to execute on
the target system. The global planner provides a value function (or “cost-to-go”) at the endpoint
of each local path. Minimizing the sum of local and global path costs results in goal-seeking
behavior, known as goal-directedness. Additional considerations may come into play in selecting
a path to execute, such as safety. Paths that come close to obstacles may be penalized, for
instance.

The overall heuristic function takes the following form. Given paths p each parametrized as
p : [0, 1]→ Q, these paths are scored as

cp(p) = cgp(x(p(1))) + clp(p) + αTf(p), (2.1)

where q is a robot configuration, x(q) is the corresponding workspace coordinate, f(q) is a vector
of features on the robot configuration, and α is a vector of feature weights, which may be hand-
tuned or learned using a technique like logistic regression. The global and local path costs are
represented by cgp(x) and clp(p), respectively. Note that the global path is implied by a single
state because D* maps every state to a path to the goal. Safety and other such considerations are
contained in the implementation of f .

After computing the heuristic function on each path in the surviving path set, the path returned
for execution is simply

j = argmin
p∈R

cp(p). (2.2)

16

These formulas implement a simple, goal-directed hierarchical planner. Some shortcomings
include a tendency to guide the robot very close to obstacles and a preference for needlessly
following narrow corridors when they happen to represent the shortest path to the goal. Chapter 8
explores an approach to overcome these shortcomings of the Best Path heuristic function.

17

18

Chapter 3

Hierarchical Planner Applications

This chapter provides an overview of some applications of hierarchical planning. Our main focus,
based on work by Knepper et al. [84], is on mobile manipulation planning. The hierarchical
model takes separate hierarchical navigation and manipulation planners and combines them into
layers of a meta-hierarchy for mobile manipulation planning.

In the remainder of this chapter, we discuss several applications for the hierarchical planner.
Section 3.1 provides an overview of the mobile manipulation planning problem. In Section 3.2,
we address indoor navigation of a Segway RMP based robot in an office environment. In Sec-
tion 3.3, we extend the approach to planning for the Barrett WAM arm. We conclude with
Section 3.5 by briefly surveying a few diverse robotic applications, which showcase the abilities
of the hierarchical planner.

3.1 The Mobile Manipulation Application

A mature robotic platform, HERB (Fig. 3.5), hosts our planner implementations. HERB com-
prises a WAM arm mounted on a differential drive Segway RMP base. HERB localizes itself in
real time during navigation with less than 5 cm of error. During manipulation tasks, on-board
perception systems localize obstacles and target objects relative to the robot within 1 cm, thus
ensuring collision-free trajectories.

We have implemented a pair of hierarchical planners on HERB. A 2D planner handles nav-
igation for the Segway base, while a 3D arm planner performs manipulation tasks. These two
planners, in turn, form a combined mobile manipulation planner, in which the 2D planner gener-
ates a trajectory for the Segway, which acts as global guidance. Due to the limited reach of the
arm, the 3D planner considers shorter distances and acts as a local planner. It receives a predicted
trajectory from the Segway planner and generates a path which reacts to its predicted motion. We
demonstrate this combined functionality in simulation.

We believe that mobile manipulation is an ideal application for hierarchical planning because
of its natural variation in level of detail. Before manipulating a faraway object, we must ini-
tially focus on driving the mobile base. As the target object gets closer, the configuration of the
manipulator arm becomes increasingly important, and more time should therefore be devoted
to arm planning in the final stage of the operation. With our hierarchical planning architecture,

19

Figure 3.1 HERB is a mobile manipulation platform comprising a WAM arm and Segway base.

20

Figure 3.2 Navigation planner view showing local candidate curves in blue and the straighter global D*
path (in red) connecting the best local path to the goal (red diamond). Obstacles are in black.

we demonstrate mobile manipulation planning that is spontaneous, effective, and reactive to the
environment during execution.

3.2 2D Navigation Planner

In designing a navigation system for HERB’s Segway base, we utilized ROS [112]. Just as with
the architecture described above, we divided the navigation planner into local and global planners
with a heuristic function arbitrating between them. The details of our navigation planner were
first described in [83]. The local planner generates a set of polynomial-parametrized curves in
action space with a six-second lookahead. In the costmap, each obstacle is dilated by the radius
of the robot. Thus, to test a path we merely need to consider the sequence of cells through which
it its center passes.

After selecting the best path at each cycle, the planner passes the corresponding command to
the robot for open-loop execution. We produced a high-fidelity dynamic model of the Segway
based on data collected from HERB driving. We use this model to predict the trajectory resulting
from a given control. The predictive model of the Segway is sufficiently accurate as to introduce
negligible error over the course of a fraction of a second between commands. Consequently,
we do not require a separate closed-loop path-following controller. Instead, we employ a purely
reactive controller for safety, plus feedback at the local planner level.

3.2.1 Navigation Planner: Local Planner and Controller

Model predictive planning is executed in a loop. In our system, the local planner replans at
5 Hz, while the controller loops more rapidly at 37.5 Hz. During each cycle, the planner tests a
fixed number of trajectories. Paths are represented by polynomial functions of linear and angular
velocity controls. We may select the path sequence randomly, in which case we resample the
paths during each cycle in order to customize their selection and tune performance. Alternatively,

21

we also employ a diverse, fixed path sequence as well as other path sampling methods described
in Chapter 6.

For long-range navigation, we have found that restricting the set of controls to fixed velocity
and limited curvature (i.e. a car-like motion model) produces smoother motion than the more
general set of differential drive actions. By contrast, when the robot is near the goal, the full
range of differential drive motions becomes crucial to success. Rather than abruptly switching
motion types, we sample variably from two distributions on controls (car-like and differential
drive) according to goal proximity.

We test each predicted path for collision with obstacles and compute a heuristic cost function
on each trajectory. We then pass the lowest-cost control to the controller for execution.

Since we are operating indoors on flat surfaces, the robot model is sufficiently good that we
can drive the Segway open-loop for 1/5th sec at a time. Therefore, the controller’s main job is
merely to pass commanded velocity trajectories to the robot. However, it also monitors HERB’s
SICK ladar, broadcasting at 37.5 Hz, for imminent collisions, which are detected by simulating
forward the last command beyond the stopping distance. If the controller’s “virtual bumper”
predicts a collision, then the commanded linear velocity is overridden with zero speed until the
hazard no longer obstructs the local path plan. We put the controller infrastructure in place to
guarantee highly reactive safe behavior, but the virtual bumper is rarely necessary since the local
and global planners will react to obstacle movements at 5 Hz.

3.2.2 Navigation Planner: Global Planner and Heuristic Function

In the navigation planner, D* Lite plans in a map where obstacles are expanded by the radius of
the robot. The end point of each local trajectory becomes the starting point for the global path,
and the sum of the two path costs (i.e. the line integral of a path with a costmap) gives the total
path cost. D* is suitable for use in a real time environment. In an 8-connected grid, our D*
implementation expands cells at a rate of 300,000 cells per second, consuming about 0.1 second
amortized over a whole navigation run.

The navigation planner’s vector of configuration features from (2.1) consists of

fnav(τ) = [cang(τ(1)) cprox(τ) csim(τ)]T . (3.1)

Here, cang(q) returns the cost resulting from the difference in heading between the terminal
configuration in the local path and the gradient of the global navigation function. cprox(τ) denotes
the cost reflecting the proximity of the path culminating in q to any obstacle. Finally, csim(τ)
reflects the similarity between the commanded action ending at q and the currently-executing
action: given two paths of equal cost, we prefer the path that minimizes acceleration.

3.2.3 Experimental Setup

Although this work is motivated by many important applications on real robots, we present many
results in simulation in order to establish statistical significance. It is simply not possible to run
the thousands of trials required by statistical tests such as Chi-square on a real robot. We submit

22

the navigation planning problem as a testbed to compare planners and path sets. Within these
tests, we utilize a two-level hierarchical planner.

Planning problems consist of a combination of an environment and planning query. Envi-
ronments were randomly generated within a room measuring twenty meters on a side, in which
10 cm diameter obstacles were randomly positioned until reaching the desired workspace ob-
stacle coverage fraction. Given the size of the robot, coverage densities of up to about 3% are
considered solvable.

Planning queries, chosen at random, ask the 0.412 m diameter Nomad Scout robot to navigate
from a start to a goal configuration, each chosen randomly so as to be separated by 14 m. Finally,
candidate problems were rejected if a 10 cm resolution 8-connected grid planner was unable to
solve the planning problem in which obstacles were dilated by the radius of the robot. Note
that this grid planner also serves as global guidance to the local planner. Each reported result is
an average over a number of runs (between 100 and 1,000) on a fixed set of different planning
problems.

At the local level, we simulate a disc-shaped robot of radius 0.206 m, minimum turning
radius of about 0.8 m and linear velocity of 0.3 m/s. These numbers are based on experiments
from a Nomad Scout robot. Unless otherwise stated, the local planner receives 0.1 sec per replan
cycle. In our simulation, we construct path trees with seven discrete curvature actions at each of
four depths in the tree. Thus, the densely-sampled tree comprises 74 = 2401 paths. Most other
path sets are subsets of the densely-sampled set. The exception is constant-curvature arcs, whose
discretization in curvature is as high as required for the requisite number of leaf nodes. Within
the tree, each branch lasts for 1.5 s, giving the local planner a total lookahead of 6 s.

Since our test environments are static, we may optionally precompute the global plan from
every cell in the free space using brushfire. Since the overhead of D* Lite is negligible as a frac-
tion of overall planning time, this choice does not significantly affect any of our local planning
results. At runtime, we utilize a heuristic, Best Path, which merely adds together the times of
each local and global path pair (the global path beginning in the cell where the local path termi-
nates), with a penalty term included for the difference in angle between the terminal local path
and initial global path.

3.3 3D Arm Planner

In this section, we move to the problem of applying a hierarchical planner to a manipulator arm.
We executed our planned trajectories on a WAM arm from Barrett Technology, Inc. with seven
degrees of freedom. We utilized the OpenRAVE [32] planning environment, which provides
kinematics, collision checking, and visualization capabilities.

3.3.1 The Manipulation Planning Problem

As manipulation represents a huge scope for ongoing research, we concentrate here on the rep-
resentative task of reaching from a start configuration to any one of a set of goal poses of the end
effector. We exploit the affordance offered by the manipulation problem, allowing the hand to

23

Figure 3.3 Sampling multiple target goal poses around an object. For small finger apertures, the goal state
(ready to grasp the object) may be hard to reach. Therefore, we pull back by a small amount and generate
a penultimate goal, from which the ultimate goal is reached without search.

approach a target object from any free direction. In fact, we generalize even further by allowing
the planner to choose among multiple target objects.

The model we use for goal specification is a simplified form of TSR (Task Space Region [10])
for specifying goal neighborhoods. A TSR describes a range of valid end effector poses. For
example, a bottle may be grasped from any side with a small translational tolerance. For this
work we kept the implementation simple by instead specifying a small set of goal poses sampled
from the TSR. From these goal poses, we compute a corresponding set of inverse kinematic
solutions using OpenRAVE’s IKfast solver.

Depending on the finger aperture, it may be difficult to find any configuration from which the
goal is visible by line-of-sight in joint space. This form of the narrow passage problem is easily
solvable because we know that pulling the hand straight back from the target object is a valid
motion (pending necessary collision checks). Therefore, by designating a set of penultimate
goals set back a short distance from the true goal, a solution becomes easier to find (Fig. 3.3).

3.3.2 Arm Planner: Local Planner
The arm controller relies on a combination of model predictive and PID control. We found this
controller to be sufficiently reliable that we could generate purely kinematic plans and count on
the controller to execute them accurately.

As with the Segway planner, we allow the arm to begin moving toward the goal before the
entire plan has been generated. Planning iterations complete at a rate of about 5 Hz on average,
just as on the Segway. Although paths are planned much faster than they can be executed, we
cannot replace old commands with new ones as we did in the 2D planner because we currently
lack the capabilities both to predict where the arm will be a fraction of a second hence and to
interrupt an executing command. Thus, we execute all paths to their endpoints. Fig. 3.4 shows a
visualization of all the searched paths through a series of steps culminating in reaching the goal.

During each replan step, the local planner samples a fixed number of straight-line motions
in joint space. These paths comprise two categories. To produce a degree of greedy goal-
directedness, we generate several paths that move in a straight line in joint space from the current

24

Figure 3.4 An example plan to the goal, showing all considered trajectories. The arm began in singu-
larity at the top of the figure, proceeding down and left toward the counter. It is shown near the final
configuration, about to grasp the juice bottle.

configuration to the goal configurations. For the sake of exploration, the remaining motions are
sampled from a low-dispersion distribution. We represent all paths as relative motions in joint
space, thus they are not particular to a given start configuration.

In the event that one of the goal-directed paths is collision-free, the arm immediately moves
to the goal and returns success. However, such goal path collision tests often fail because each
target grasp is inherently in close proximity to one of the target objects. In this case, we retain
colliding paths by truncating them short of the distance at which the collision occurred (minus
20% of the total path length).

In our initial implementation of the arm planner, we generate the majority of paths by sam-
pling relative motions from a random distribution. Since there is no guarantee that these paths
will be useful, we lazily collision test only those paths which are candidates for traversal. If one
of the exploratory paths has the lowest cost, then it will be tested for collision with the environ-
ment, self-collision with the robot, and exceeded joint limits. A path failing any of these tests is
eliminated from consideration.

The path sampling distribution was the subject of some engineering. We break the sampling
process into two stages. In stage one, we sample directions in C-space. Then in stage two, we
scale each path according to a distribution over lengths that is a function of the remaining distance
to the nearest goal. This separation enables the planner to explore widely at the beginning and
then gradually move to fine-tuning its position as the arm approaches a solution. We achieve
this behavior without fundamentally altering the path generation algorithm at any point during

25

planning.
We initially tried picking directions by uniformly sampling points from an n-dimensional

hypersphere. Such algorithms are somewhat computationally expensive. To improve perfor-
mance, we next tried sampling from the circumscribing n-hypercube. This fast operation gives
a distribution biased toward motions where C-space velocity components are better distributed
throughout the joints of the arm (corresponding to the corners of the hypercube). In practice, this
distribution appears to better explore the C-space in fewer steps, particularly in cases where the
arm starts from a singularity, as in Fig. 3.4

After generating a unit-length vector, we then scale it based on a Gaussian random variable.
Both the mean and standard deviation of this distribution are equal to half the C-space distance
to the goal, di. We scale each candidate path to a joint space length, si as

si ← trunc

(
N

(
di
2
,

(
di
2

)2
)
, [0,∞)

)
. (3.2)

We apply a heuristic scoring function to all paths and then pass the lowest-cost path that
survives the collision test to the arm for execution.

3.3.3 Arm Planner: Global Planner and Heuristic Function

As with the 2D planner, we employ D* Lite to generate a navigation function in 3D workspace
position for the end effector, planning in a 26-connected grid. Note that we are treating the hand
as if it is floating in space; the resulting D* paths do not reflect potential collisions between the
arm and environment. As a consequence of this trade-off, performance is quite fast. In 3D, D*
performs over 100,000 expansions per second. Due to the compact workspace, D* expends a
mere 1/15th sec on a typical reaching problem.

The arm planner’s vector of configuration features from (2.1) consists of

farm(τ) = [cdf (τ) ccs(τ(1)) cjl(τ(1))]T . (3.3)

The cost cdf (τ) comes from a squared distance field akin to the signed distance field of Ratliff
et al. [115]. This distance field maps each workspace cell to the squared distance to the nearest
object in the world. The computation time is negligible (0.06 sec for 1 million voxels on a
standard desktop processor). To find a distance field cost, we discretize the arm lengthwise and
step through to find the point of nearest contact for the arm. Conveniently, the arm approximates
a constant-radius cylinder, so we may readily compute the workspace distance, dws(τ). The cost
cdf (τ) is computed as

cdf (τ) =
1

dws(τ)2
. (3.4)

We measure the straight-line C-space distance to the closest goal configuration, ccs(q). This
term may appear redundant since cgp(x) also measures distance to the goal, but the two are
complementary. ccs(q) is aware of kinematics but ignorant of obstacles, while cgp(x) incorporates

26

Table 3.1 Comparison with bidirectional RRT averaged over 5 trials.
Planner Average onset Average time Average

of motion (sec) to goal (sec) collision checks
Hierarchical 0.2 12.7 382
Planner
CBiRRT 2.4 14.7 1755

obstacles but not kinematics. Since the optimal path is both kinematically feasible and obstacle-
free, we use a weighted sum of the two terms. Inspiration for this approach comes from Dolgov
et al. [34].

We compute cjl(q) based on the distance of each joint to the nearest joint limit. It is desirable
to keep the arm away from joint limits both for manipulability and equipment health. Given the
distance dj of joint j to the nearest limit, the joint limit cost is computed as

cjl(q) =
∑
j

1

d2
j

. (3.5)

3.3.4 Manipulation Planning Performance

We tested the arm planner in a kitchen environment. The task, pictured in Fig. 3.5, is to approach
and grasp any one of several bottles on the table. We compared the standalone hierarchical arm
planner, running on the real robot, against a state of the art bidirectional RRT-based planner,
CBiRRT [9]. CBiRRT is capable of accepting a list of TSRs describing object grasps, hence it is
solving a similar problem to our own planner. In performing a comparison, we examined three
planning metrics. First, we measured the delay between planning onset and the start of motion.
Second, we measured the total task time from start of planning to reaching the goal. Third,
we looked at the total number of collision checks each planner performed. Typically, collision
checks strongly influence planning time because collision checking is quite expensive. Table 3.1
shows the results of this comparison. The hierarchical planner gives competitive results in all
cases—especially in average onset of motion.

3.4 Prior Work in Mobile Manipulation

There have been many approaches to manipulation and mobile manipulation over the years. A
recent survey paper by Katz et al. [71] suggests that successful implementations that plan for
mobile manipulation in cluttered, unstructured environments generally take on a hierarchical
form or otherwise attempt to reduce the complexity of the overall problem by breaking it into
simpler subproblems.

Many researchers make a set of simplifying assumptions, which restrict the scope of ma-
nipulation planning. Although many diverse manipulation strategies exist, most are difficult to
model due to the uncertainties of sliding friction. Thus, researchers typically prefer that robots

27

Figure 3.5 HERB is a mobile manipulation platform comprising a WAM arm and Segway base. We
demonstrate a solution, based on the hierarchical planning framework, for simultaneously driving toward
and reaching for objects. Here we depict such an example task, both in simulation, and on the real robot.

perform an immobilizing grasp on the object under manipulation and otherwise have no con-
tact with it—a technique called pick-and-place. Furthermore, a complex task, such as “set the
table for dinner” is generally assumed to be decomposable into a set of subproblems or tasks,
each requiring a simpler motion. Taken together, a sequence of such simple tasks can solve the
original problem. Koga and Latombe [86] proposed that these tasks be placed in two categories,
termed transit and transfer tasks. A transit path is an arm motion that does not involve an object,
while a transfer path moves an object from one stable placement to another. A sequence of tasks
generally alternates between transit and transfer actions separated by grasp and release actions.
Each transit or transfer task is itself a motion planning problem, while grasping is assumed to be
trivial.

Li and Latombe [97] consider a manufacturing scenario in which two robot arms share a
workspace. Because parts arrive unpredictably, planning must be done online in real time. The
authors devise a set of simplifying strategies involving lower-dimensional search spaces as well
as precomputed motion primitives. Using these techniques, the authors were able to produce a
working implementation on a pair of real robot arms.

Jain and Kemp [66] focus on a specific mobile manipulation application, the opening of doors
and drawers by a robot to assist the disabled. They demonstrate robust opening under incomplete
information by applying equilibrium point control, a model of how humans are theorized to
perform motor control.

A number of recent papers address the subject of simultaneous task planning and motion
planning. In mobile manipulation, the two problems are coupled. In task planning, the sequence

28

of motions needs to be planned, such as picking up a cup before dropping it off elsewhere. There
can be dependencies, such as if a bowl is in the way of the cup. Given a sequence of tasks, a
physical motion must be planned for each task, such as approaching the cup or moving the cup
to the table. The coupling of task and motion planning occurs because certain motions may be
very difficult to plan, while a seemingly more complex series of tasks might actually involve
much simpler motions. Thus, by performing task and motion planning simultaneously, a better
solution may be realized. Of course, a naive coupling of these planners results in a problem of
intractably high dimension.

Ghallab and Ingrand [45] provide a complete mobile robot implementation capable of solving
complex tasks. The planner is split between a high-level, symbolic reasoning engine and low-
level planning and control systems. In this implementation, a symbolic is generated first, and then
the motion plan is attempted. This ordering may cause complications if some symbolic plans do
not have feasible motion plans. In such case, the robot must restart planning from scratch.

Nielsen and Kavraki [105] proposed the two-level Fuzzy PRM for solving manipulation prob-
lems. The Fuzzy PRM lazily postpones collision testing until a path through the graph has been
found. Although it may turn out that this path is invalid, the net result is still fewer paths col-
lision tested, as compared with a traditional PRM. By postponing solving the boundary value
problem (BVP), a sub-PRM may be used to connect states in a higher level PRM. The two-level
approach permits the authors to decouple the transit and transfer tasks that make up a complex
manipulation planning problem.

Siméon et al. [128] introduce topological and geometric formalisms for reasoning about the
connection of stable grasps and placements of objects to the transit and transfer tasks that are
building blocks of manipulation. They utilize randomized planning techniques to construct a
graph joining together C-space manifolds that occupy the intersection of stable grasp and stable
placement configurations. Such intersections represent key “bridge” configurations at which an
object is stable with or without being grasped.

van den Berg et al. [136] illustrate one type of task planning with their probabilistically
complete planner for navigation amongst movable obstacles (NAMO). The NAMO problem is
challenging because the robot can only reach a subset of the obstacles, and moving them out of
the navigation path may require multiple steps of preparation in which other objects are rear-
ranged to make room for the blocking obstacle. The trick in this case is an abstraction of object
configurations such that configurations which induce the same set of connected components of
the free space are considered equivalent. By separately modeling the object and robot configu-
ration spaces and abstracting away the robot in planning block motions, the problem becomes
tractable.

Two papers by Choi and Amir [28] and Guitton and Farges [50] deal with the question of
cross-representation between symbolic and geometric planners. For example, some robot mo-
tions result in symbolic changes in the world, such as flipping a switch or opening a door. Uti-
lizing a knowledge base to describe discrete language concepts geometrically, spatial and non-
spatial constraints can be rendered in a common language.

Cambon et al. [25] introduce a hybrid planning approach in which symbolic planning states
are associated with geometric C-space state sets. Thus, symbolic actions translate to a set of sat-
isfying geometric actions for the robot. Their planning system is powerful, supporting multiple
heterogeneous robots constrained both symbolically and geometrically using a general proposi-

29

tional logic language. However, the system’s probabilistic planner does not scale well to complex
planning problems.

Hauser and Latombe [52] performs simultaneous task and motion planning by mitigating
uncertainty about which tasks may lead to feasible motions. Their planner, I-TMP, distributes
search activity for a modified PRM planner across a set of tasks according to the likelihood
of success of a given task. Task search is made efficient by searching in a configuration sub-
manifolds induced by constraints placed on the robot. Some care is necessary to sample at the
intersection of manifolds that join tasks together. The planner is shown working in simulation
for multi-limbed traverse of a rough terrain (i.e. climbing).

Suçan and Kavraki [131] introduce an abstraction called the task motion multigraph, in which
each pair of connected states is joined by a set of edges each representing the same motion plan-
ning problem posed in various subspaces. For instance, some mobile manipulation problems can
be solved by arm motion alone, while others require combined base and arm motion. Lower-
dimensional planning solutions are generally simpler to find, but some full-dimensional prob-
lems require slow, full-dimensional solutions. Thus, by interleaving computation among various
dimensions, the first form of the problem to complete is taken as the overall solution.

Wolfe et al. [145] describe a hierarchical planner for mobile manipulation tasks. They break
down a complex task into combinations of simpler tasks in order to achieve a complete task
solution. Individual subtasks may invoke motion planners for their subproblems. This process
continues until a winning combination of successful motion plans is discovered. Of course, the
combinatorics of defining a complete hierarchy of all possible action combinations can become
overwhelming. The authors introduce an algorithm called SAHTN to reduce search complexity
by recognizing states that are independent of each other and uncoupling them, making dynamic
programming more effective.

Kaelbling and Lozano-Perez [68] take the uncoupling of tasks in a planning hierarchy much
further. By selectively ignoring task preconditions, they solve parts of the problem indepen-
dently, even when mild dependencies exist. They then begin executing the partial plans while
solving other subtasks. This approach is conditioned on two application-driven assumptions:
that subtasks are not intricately coupled, and that there is little penalty for undoing an action that
later turns out to be a dead-end. By observing that many common applications, such as house-
hold personal robots, possess these properties, the authors are able to solve large, long-horizon
problems tractably.

3.5 Other Applications
We have investigated and implemented a variety of other applications besides mobile manipula-
tion. We give a brief overview of several of them here.

3.5.1 Snake Robot Planning
We abstract away the shape and dynamics of a high-degree-of-freedom snake robot in order
to discretize its action space into a small set of useful motions that make progress in various
directions relative to the body frame. Tesch et al. [133] describe the complexity of executing

30

motions in such hyperredundant systems. We selected several gaits from that work to constitute
discrete actions: rolling left/right, slithering forward (otherwise known as sinus lifting), and left
or right in-place rotation based on the sidewinding gait. Although the true actions, being cyclical,
can only be stopped or transitioned a certain phases, our approximation permits arbitrary-length
application of the actions. By composing these actions, we may construct a path set that in some
respects resembles the path sets described above. Rather than attempt to represent the changing
shape of the snake, we enclose the entire snake within a bounding box that contains all possible
actions, thus simplifying collision testing. A local planner, selecting among combinations of
these actions, functions in combination with the global planner built around D* Lite.

3.5.2 The Double Integrator
To demonstrate that the hierarchical planner works equally well with more highly dynamic sys-
tems, we implemented a 2D double integrator. A double integrator is a dynamical system in
which acceleration inputs to the system are integrated once to obtain velocity and again to get
position. We employ this model in simulation for the 2D navigation problem. Given a set of
controls that accelerate the robot in assorted directions, the planner selects at each replan cycle
a control that produces a trajectory that both avoids obstacles and makes progress towards the
goal. Controls take the form

u(t) = (φ(t), α(t)), (3.6)

where φ is a heading in the plane and α is an acceleration in that direction, both functions
parametrized by time. The system model responds to controls by[

ẍ(t)
ÿ(t)

]
= α(t)

[
cosφ(t)
sinφ(t)

]
. (3.7)

Unlike the snake and Nomad Scout models, which are largely kinematic, the shape of a
double integrator path set highly depends on the current state of the system. Thus, it becomes
necessary to discretize the state space and create separate lookup tables for a diverse path set and
its properties at assorted states.

3.5.3 People Prediction
The hierarchical planner’s form permits easy integration with diverse sources of information.
For instance, the planner was modified to perform pedestrian avoidance by replacing the global
planner with the pedestrian prediction algorithm reported by Ziebart et al. [150]. The prediction
algorithm returns a time-indexed value function (a navigation function) in which cost reflects the
estimated likelihood that a pedestrian currently being tracked by the robot will be in a particular
location at some future given time. By using this value function as a global planner, the robot
naturally navigates in such as manner as to avoid blocking or colliding with a person.

31

32

Chapter 4

Path Set Theory

Path sets form the basis of our local planner implementation. There has been a limited amount of
investigation into the theoretical aspects of path sets. Most of this inquiry has been driven by the
desire to generate diverse path sets, which in some way span the space of possible movements
subject to some horizon and parametrization. In this chapter, we describe a few basic theoretical
tools that we use in later sections to analyze properties of path sets.

4.1 Path Parametrization
Paths can be parametrized in myriad different ways. Two of the most applicable means of ex-
pressing the kind of smooth, constrained paths common in robotics are curvature as a func-
tion of path length and the pair (linear velocity, angular velocity) as a function of time. These
parametrizations actually express trajectories in control space. Such a trajectory is taken as an
input to the robot model (or as a command to the actual robot), and the output of either system is
the true path.

The trajectory commands should be at least piecewise differentiable (piecewise-C1 continu-
ous). Thus, command discontinuities are permitted following finite intervals. It should also be
intuitive and numerically stable. Simple polynomial functions for linear and angular velocity,

v(t) = a0 + a1t+ a2t
2 + a3t

3 + . . .+ ant
n (4.1)

ω(t) = b0 + b1t+ b2t
2 + b3t

3 + . . .+ bnt
n, (4.2)

guarantee smoothness, but the higher-order coefficients exhibit extreme sensitivity for large time-
parameter values and can become numerically unstable. Additionally, inspection of a polynomial
offers little intuition for the shape of the resulting trajectory.

An alternative control formulation, splines in control space, consists of a series of n + 1
uniformly-spaced knotpoints describing linear and angular velocity controls: (v0, v1, . . . , vn+1)
and (ω0, ω1, . . . , ωn+1). There is a unique interpolating polynomial of degree n for each se-
quence of knotpoints. The knotpoint values are numerically well conditioned and intuitive for
sufficiently small values of n.

33

In cases where we are generating a tree of paths, interpolation does not make sense since
one velocity parameter branches into many at the succeeding level. Consequently, we usually
turn to piecewise constant curvature commands. These take the form of intuitive n-tuples sim-
ilar to knotpoints, but the resulting combined controls through the tree are only piecewise C1

continuous. Nevertheless, the actual followed path is typically subject to higher orders of differ-
entiability due to dynamics.

This response to a commanded action, generated by the robot model, is often not represented
explicitly in functional form, but it is instead represented only implicitly as a function

p : [0, 1]→ Q, (4.3)

mapping an interval in time to a path in configuration space. In implementation, we represent
this path numerically by a series of closely-spaced waypoints in C-space or in the workspace.

Throughout this thesis, we use p to refer to a path and P to refer to a discrete set of paths.
P ⊂ X , the continuum path space or a densely-sampled approximation thereof.

4.2 Path Space and Metrics on Paths
Underlying all path set theory is the fundamental issue of how to quantify the difference between
paths. We quote the following definition from Munkres [103].
Definition 1 (metric) A metric on a set X is a function

d : X ×X → R

having the following properties:
1. (Nonnegativity) d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.
2. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X .
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z ∈ X . 2

Definition 2 (path space) The path space is a metric space (X , µ) in which the metric µ is used
to measure the distance between a pair of paths in X . Paths may vary in shape and length. 2

The question of which metric to employ on path sets is muddied by the fact that path sets are
employed in various different paradigms. Some metrics on path sets that have been tried in the
past include:
• approximate area quasimetric1 of Green and Kelly [48]
• “Exact” area metric
• Hausdorff metric
• Hilbert space L2 metric (also known as bounded variation [70])
• Mutual collision metric
• Survivability metric of Erickson and LaValle [36]

These metrics assume that the paths share a common initial state. Furthermore, each path is
parametrized as in (4.3), although some metrics utilize only the position components of the

1A quasimetric lacks the symmetry property.

34

Figure 4.1 Two failures of area-based metrics. A trapezoidal computation of the area between two paths
is shown. The red trapezoid at top represents a region in which the space between the two paths is com-
pressed because the paths are nearly parallel. A truer area metric might compute the sweep of the given
path points along some geodesic path in path space connecting the two paths (such as by interpolating
between the path commands), but such a geodesic is not necessarily uniquely defined. The bottom, blue
trapezoid measures an “area” between the paths that would not conventionally be considered to be between
them. It is debatable, however, whether the resulting metric value is an over- or under-representation of
the difference between the paths.

resulting states. pi denotes the path i, which is divided into states pi(1) . . . pi(m) that numerically
approximate the path.

The Green-Kelly quasimetric approximates the area between paths using rectangular sec-
tions:

µgk(pi, pj) =
m∑
k=2

µL2(pi(k), pj(k))µL2(pi(k), pi(k − 1)) , (4.4)

where µL2(x) is the Euclidean distance metric on workspace points. Note that as described in
[48] (4.4) is only a quasimetric because it is not necessarily symmetric.

A more exact area between paths can be computed by computing the area of general quadri-
lateral slices instead of rectangles. However, the idea of using area between paths to represent di-
versity breaks down for wildly divergent paths. In situations where the direction of path segment
intervals [pi(

k−1
m

), pi(
k
m

)] and [pj(
k−1
m

), pj(
k
m

)] are significantly more than 90 degrees different,
the quadrilateral between them may include an unrepresentative area that would not ordinarily be
deemed to be “between” the curves. Either of these methods may return small values for some
quadrilaterals in certain degenerate cases, not properly reflecting the diversity between the two
paths. See Fig. 4.1 for two examples.

A common method for finding the maximal separation between two sets is the Hausdorff
metric, which returns the greatest distance between any point in one set and its nearest neighbor
in the other set. Mathematically, the Hausdorff metric is defined geometrically as

µH(pi, pj) = max{ max
1≤k≤m

min
1≤g≤m

µL2(pi(
k

m
), pj(

g

m
)), max

1≤g≤m
min

1≤k≤m
µL2(pi(

k

m
), pj(

g

m
)) } ,

(4.5)

35

or topologically as
µH(pi, pj) = inf

ε
{pi ⊂ (pj)ε and pj ⊂ (pi)ε}, (4.6)

where (p)r denotes dilation of p by r: {t ∈ R2 : ‖tp− t‖L2 ≤ r for some point tp ∈ p}. In effect,
the Hausdorff metric returns the feature with the greatest deviation between two paths. In doing
so, it neglects all other features. The lack of sensitivity of this metric to deviations between paths
that do not affect their most distant points adversely impacts the use of the Hausdorff metric in
applications that might wish to optimize the shape of a path with respect to some functional. On
the plus side, the Hausdorff metric gives meaningful results on paths which are arbitrarily similar
or diverse.

Another approach is to construct a Hilbert space of dimension md, where m is the number
of waypoints in a path approximation, and d is the dimension of the workspace. For each path,
the concatenation of its waypoints’ workspace coordinates in sequence describes that path as a
single point. Let pci(k) denote the coordinate in the cth dimension of the workspace point pi(k).
Furthermore, let the tuple γ(pi) = (p1

i (
1
m

), p2
i (

1
m

), . . . , pdi (
1
m

), p1
i (

2
m

), . . . , . . . , pdi (1)). It is then
sensible to compute the Hilbert L2 metric as

µHL2(pi, pj) =
md∑
i=1

µL2(γ(pi), γ(pj)) . (4.7)

As m increases, the approximation of the path improves, and the dimension of the Hilbert space
increases. In the limit as m approaches infinity, the space becomes an infinite-dimensional func-
tion space. Karaman and Frazzoli [70] refer to this metric taken on the continuum paths as a
bounded variation norm.

A final approach to metrics on path space is the mutual collision metric. This metric computes
the probability that two paths will collide with the same obstacle. However, the metric has
no knowledge of actual obstacles in the world, so it must look at the probability of collision
averaged over all possible obstacle configurations. A similar metric, survivability, was proposed
by Erickson and LaValle [36].

To compute the mutual collision metric, we suppose that point obstacles are uniformly dis-
tributed in the world. The robot is assumed to be a ball of radius r, so each obstacle in C-space is
likewise a ball of radius r. These balls are assumed to occupy fraction dobs of the C-space. Any
path passing through this space takes the workspace form of a ribbon with rounded ends, known
as a swath.
Definition 3 (swath) A swath is the workspace area of ground or volume of space swept out as
the robot traverses a path. 2

Each path has some probability of striking an obstacle, which is a function of the swath’s
area exposed to risk of collision. The area in turn is solely a function of path length; with the
exception of very high curvature trajectories (when 1/κ < r), the shape of the path does not affect
the swath’s area. The formula for the probability of survival—that is, lack of collision between a
path’s area, A, and an obstacle’s area, Aobs—can be derived from the Poisson distribution, and it
looks like

Pr(survival) = (1− dobs)A/Aobs . (4.8)

36

0 2.8 4 6 8 10 12 15 100

Figure 4.2 Example distribution of obstacles in the frame of a robot-fixed path set local planner. In the
world-fixed frame, obstacles are distributed uniformly with a density of 2.8%, so gray regions of the
figure represent depressed areas due to active obstacle avoidance, while colored areas represent increased
obstacle density. These data were collecting using a path set consisting of 24 uniformly spaced constant-
curvature arcs, however, the robot-frame obstacle distribution is subjectively the same with other path sets
tested.

Similarly, the probability that two paths collide with a single obstacle depends on the area of
their two swaths that is mutually exposed to risk of collision. By letting A represent the area of
overlap between a pair of paths, (4.8) may provide a metric based on the probability of mutual
collision, hence

µsurv(pi, pj) = (1− dobs)A(pi,pj)/Aobs . (4.9)

As with the other metrics, this one comes with several caveats. Of course, obstacles are not
typically uniformly distributed in the world, but there is no basis for any better assumption with-
out knowing something about specific environments. Even if obstacles are uniformly distributed
in the environment, they may not be uniformly distributed in the robot’s planning frame.

Fig. 4.2 shows a uniform obstacle distribution in the world frame as seen from the frame of
a robot that is actively performing obstacle avoidance. The effect of obstacle avoidance is to
displace obstacles away from the robot as well as the areas immediately in front of and behind
the robot. An Ackerman (car-like) path set produced the distribution shown in the figure. For
comparison, Fig. 4.3 depicts the statistical average obstacle distribution in those robot config-

37

0 2.8 4 6 8 10 12 15 100

Figure 4.3 As in Fig. 4.2, this figure shows the statistical distribution of obstacles during navigation. How-
ever, this snapshot represents only those states which were encountered during path testing but rejected
due to collision with an obstacle. The high-probability obstacle region is clearly visible immediately in
front of (above) the robot. The regions of elevated probability to the sides of the robot—visible in the pre-
vious figure—are absent here because the final step depicted here represents uninformed path exploration.
No attempt was made to select paths that would avoid obstacles.

38

urations where a path tested by the planner collided with some obstacle. Not surprisingly, the
highest concentration of obstacle density is immediately in front of the robot.

These distributions could be used to experimentally generate an improved estimate of the
probability of mutual collision between pairs of paths in a large path set. Of course, any smaller
path set selected on the basis of this metric would then influence the robot-frame obstacle distri-
bution that is used to compute the metric. This chicken-and-egg problem is solved by the fact that
the distribution of obstacles empirically varies little among path sets. If necessary, the process
could be iterated once or twice to achieve a solid convergence.

Two properties which maximize the uniformity of a distribution of points in a metric space
are dispersion and facility dispersion. Borrowing from Niederreiter [104]:
Definition 4 (dispersion) Given a bounded metric space (X , µ) and a set P = {x1, . . . , xn} ∈
X , the dispersion of P in X is defined by

δ(P ,X) = sup
x∈X

min
p∈P

µ(x, p) (4.10)
2

The dispersion of P in X equals the radius of the biggest open ball in X containing no points
in P . By minimizing dispersion, we ensure that there are no large voids in path space. Thus,
dispersion reveals the quality of P as an “approximation” of X because it guarantees that for any
x ∈ X , there is some point p ∈ P such that µ(x, p) ≤ δ(P ,X). Note that all paths in X are of
fixed length and share a start state. This condition is sufficient to assure that X is bounded for a
wide variety of path metrics.

The effect of dispersion on path diversity is to place an upper bound on the distance to a
point’s nearest neighbor. Typically, in implementation the path space X is represented by a
large path set that densely samples the space (i.e. several thousand paths or more). Finding
dispersion then amounts to iterating over X and finding the nearest neighbor in P at each point.
The maximum nearest-neighbor distance will be a close approximation to the true dispersion of
the path set.

A related problem is known as facility dispersion.
Definition 5 (facility dispersion) Given a metric space (X , µ) and a setP = {x1, . . . , xn} ∈ X ,
the facility dispersion of P is

δf (P) = min
pi,pj∈P

{µ(pi, pj)} . (4.11)
2

In order to maximize facility dispersion, one must position k points in a space such that the
minimal nearest-neighbor distance within the set is maximized. Facility dispersion’s role in path
diversity is to place a lower bound on the distance to the nearest neighbor of a point in P . For
the discrete version of the facility dispersion problem, polynomial-time implementations exist
that approach a factor of two of the optimal solution [4, 117]. For a small path set P , computing
facility dispersion is significantly faster than computing dispersion since the algorithm only needs
to iterate over every point in P instead of the much larger set X .

If we suppose that the importance of a given path is related to its diversity with respect
to other paths in a path set, then both kinds of dispersion have fairly natural interpretations.
Dispersion measures the importance of the most important path not in the set P , thus suggesting

39

a one new path that would improve the set’s diversity most if only one path could be added. By
contrast, facility dispersion reflects the importance of the least important path in the set P . Since
each path costs the planner in both time and resources, facility dispersion measures the degree
of waste resulting from maintaining relatively similar paths in P . Note that improving either
property cannot worsen the other, so they are never in opposition. Thus, an optimal path set
would possess both maximal facility dispersion and minimal dispersion.

4.3 Search Space Frame of Reference
In the context of a local planner that replans frequently, there are at least two fundamentally dif-
ferent modes in which a path set may be employed for motion planning. The primary distinction
is how the path set moves between replan cycles. As previously stated, all paths in our path set
emanate from a common root node. As the robot moves with respect to the workspace, the path
set may remain fixed in either the world’s frame of reference or the robot’s frame. The meaning
of the path set is slightly different in the two cases.

With a path set fixed to the world, the paths represent concrete proposed trajectories for the
robot to follow. If the path set takes the form of a tree, then the branches represent decision points
for the planner. The crucial advantage of world-fixed path sets is that they inherently possess
memory of the results of past planning iterations in the form of surviving paths. Assuming
that the robot can traverse only a fraction of each local path per replan cycle, and provided that
localization and path tracking are adequate, previous results can be reused out to the horizon of
the path set. At that horizon, the putative leaves of the tree must be expanded on subsequent
replan cycles with further path options to allow forward progress to continue indefinitely. One
obvious approach to this problem is to grow a copy of the original path set from each leaf. World-
fixed planners may employ a recombinant graph instead of a tree, which accelerates search by
combining similar states and eliminating suboptimal routes to any given state. There is a cost to
generating or detecting such convergent states in a graph however. Two different approaches to
this problem are described by Barraquand and Latombe [7], Pivtoraiko et al. [109].

By contrast, robot-fixed path sets offer only the general idea of a trajectory for the robot to
follow. During each replan cycle, the root of a robot-fixed path set (really, of the corresponding
control set) moves to the new position of the robot. More precisely, the root of the path set is
placed where the moving robot is predicted to be when path set evaluation completes and the
next command is issued, a fraction of a second hence. The new path command, when issued,
truncates and replaces the old command. Note that for dynamic motion models, the paths’ shapes
are predicated on the initial state, so the shape of a path set may evolve over time. Since the path
set frequently moves by small increments, robot-fixed path sets are capable of searching the
environment at finer granularity with the same amount of computation (measured as the number
of paths tested per unit time). The trade-off for this benefit is that the planner has no memory of
past successful trajectories. For such a memoryless planner to successfully navigate through a
corridor, the planner must rediscover at least one safe path through the corridor at each iteration.
As the robot traverses a nontrivial corridor, the shape of the corridor changes in the robot frame
at each iteration. Consequently, a variety of path shapes will be selected during the course of the
corridor’s traversal.

40

One might ask why a deep path set is necessary in the robot-fixed frame context, given that
only a small initial interval of any trajectory will ever be executed. One answer is safety; there
must exist some dynamically feasible path that extends beyond the safe stopping distance of the
robot in order not to risk collision. Another answer relates to sampling theory. While the planner
will not end up following the exact trajectory commanded during any iteration, that trajectory
posits the existence of a traversable corridor among obstacles. The wider (hence safer) that
corridor is, the larger will be the corresponding volume of path space from which future safe
trajectories may be sampled. Since a robot-fixed path set must rediscover the corridor many
times, this phenomenon introduces a bias toward following wider corridors.

A higher replan rate allows the planner to be more reactive to changing environments. In
fact, this planner even explores static environments at a higher resolution than does a world-fixed
planner. On the down side, a robot-fixed path set planner lacks memory; it must rediscover a
route among obstacles at every iteration or else it will fail to traverse the route.

4.4 Path Diversity

The path diversity problem is the most important theoretical path set question because it is driven
by a practical concern: to maximize performance of path set based planners. Briefly, the path
diversity problem is to construct a path set containing n paths such that, after testing all paths for
collision, the average number of surviving paths across all possible environments is maximized.
A related, though different, problem statement is that the probability of at least one path surviving
is maximized (so that the robot can still make forward progress).

Given that the configuration of obstacles is not known when designing a path set offline, the
problem is similar to that of C-space reachability. The one-and-only safe gap passing through a
clutter of obstacles could be located at any configuration, and the robot that cannot achieve that
configuration will fail. However, the problem goes beyond reachability because it is insufficient
to guarantee that some path in the set reaches every point in space. That path may be blocked by
some obstacle prior to reaching the gap. Therefore, the goal of path diversity is to build a path
set which contains some path that reaches any given point while avoiding any given set of points.
In a finite path set, this is impossible, but one can choose to view each path as approximately
representing a corridor of feasible trajectories, all very similar to each other. Thus, the relaxed
version of the goal is to find a trajectory to drive the robot within some distance ε of a target
configuration while avoiding a set of points. Since the goal may be located at any configuration,
the problem is therefore to seek the set of paths that approximates any desired path as closely as
possible, after culling away some paths that collide with an arbitrary set of obstacles.

To complicate matters, there are multiple tasks in which path set planners are employed.
The most significant division occurs between path sets fixed to the world and those fixed to the
robot. In the world-fixed case, it appears that diversity is maximized by minimizing dispersion
as in (4.10) on the paths in the path set. In the case of robot-fixed path sets, it remains unclear
what the correct measure of path diversity is. In the absence of a theoretical answer, we have
instead relied on an empirical metric of diversity, computed by measuring the success rate over
thousands of simulated trials [82, 83].

41

4.5 Concerning Completeness and Optimality
Most commonly in the planning community, motion planners are framed in the context of com-
pleteness and optimality. The completeness property states that if a solution exists, the planner
will return it, and if no solution exists, the planner returns failure. The optimality property states
that no better solution exists than the one returned by the planner.

These properties describe planning ideals, but they both turn out to be prohibitively expensive
to guarantee in practice for nontrivial real-world planning problems. Several restrictive forms of
completeness have been proposed to make planning problems computable. In deterministic plan-
ners, it is common to discretize space, and so resolution completeness was proposed to express
the notion that a planner becomes complete in the limit as the discretization unit approaches zero.

In more recent years, probabilistic planners (random number based) have come into vogue,
and so an alternative form of limited completeness was needed. Probabilistic completeness states
that in the limit as time (or sample count) approaches infinity, a solution will be found if one
exists. Of course, such a probabilistic planner will never return that no solution exists because of
the impracticality of exhausting all time. The term sampling-based planning is used to generalize
probabilistic planning to also include deterministic sample sequences. In such cases, a planner is
said to be resolution complete rather than probabilistically complete, but the same caveats apply.

Until very recently ([70]), sampling-based planners have also sacrificed optimality, which
deterministic planners retain only in a limited form that we deem “resolution optimality.” In
practice, plans returned by most probabilistic planners are highly suboptimal, such that they
must be smoothed or otherwise improved as a post-processing step prior to execution.

The generality of sampling-based model predictive planners as presented in this thesis re-
quires that we sacrifice completeness and optimality, but in practice they produce solutions that
are “good enough.” In effect, these planners trade off completeness and optimality for the abil-
ity to plan in large, cluttered, changing environments in real time while obeying kinodynamic
constraints.

4.6 Open Questions
Many interesting research questions regarding path sets remain open. We list a few important
ones here.

1. Which gives superior performance—and in what circumstances—ground-fixed or robot-
fixed path sets?

2. What is the effect of path set size on planning performance?

3. How to measure path diversity of robot-fixed path sets?

4. How to best discretize the action trajectory space for continuous input systems?

5. How to best discretize the action trajectory space for hybrid systems possessing discrete
modes, like the snake robot mentioned in Section 3.5.1?

These questions are left as the subject of future research.

42

Chapter 5

Path Set Design

Having discussed the theoretical aspects of path sets for local planning, we now turn to the
problem of constructing a diverse path set. Green and Kelly [48] show that this problem is
NP Hard, making it intractable given a large pool of paths from which to choose. Just as with
traditional planners, the path sampling algorithms break down into deterministic and probabilistic
approaches.

Historically, many local planners restrict their choice of paths to constant curvature arcs of
fixed length or time horizon in the robot frame. Some examples include Bohren et al. [14], Buhmann
et al. [19], Goldberg et al. [47], Kelly and Stentz [76], Kelly et al. [77], Rauskolb et al. [116], Simmons
[129], von Hundelshausen et al. [140]. Arc trajectories have a number of advantages. For an
Ackerman steered (car-like) robot, arcs represent a constant command eliciting a constant out-
put. Keeping a control input constant, in turn, means that the next iteration, the same constant
control will be available as an option to continue following the arc from the previous iteration.
Thus, arcs and other constant actions provide the planner with a modicum of memory, which we
address as an important concern in Section 5.3. Additionally, it is easy to sample a set of arcs
separated by equal intervals of curvature and bounded on either end by the turning radius of the
robot, thus minimizing dispersion (Def. 4) within the subspace of constant-curvature paths. On
the downside, arcs place a constraint on the relationship between reachable position and heading
that is undesirable for a robot navigating in a cluttered environment.

Several techniques for constructing more general, diverse path sets are introduced below.

5.1 The Green-Kelly Algorithm

Green and Kelly [48] pose the problem of constructing path sets that maximize what they call
relative completeness. This algorithm (Alg. 3) takes a deterministic greedy approach to path set
construction. To select a path set of size k from a pool of n paths, the authors iterate from 1 to
k. After seeding the search with an arbitrary path (the “straight ahead” option), each successive
iteration finds and inserts the path which is most distant from the set of paths already picked. This
operation is equivalent to computing the dispersion of the path set and returning the center of the
largest ball containing no paths in the set. The path at the center of that ball is then added to the
path set. In so doing, the algorithm maximizes the facility dispersion of the path set. Polynomial

43

Algorithm 3 PN ←Green Kelly(X , N)
Input: X – a densely-sampled, low-dispersion path set; N ≤ |X | – the target path set size
Output: path sequence PN of size N

1: P0 ← ∅
2: n← 0
3: while n < N do
4: n← n+ 1
5: p← argmin

x∈X
(δ(Pn−1 ∪ {x},X))

6: Pn ← Pn−1 ∪ {p}
7: end while
8: return PN

time solutions to the facility dispersion problem, such as this greedy path selection algorithm,
were shown to approach a factor of two of optimal facility dispersion [4, 117].

5.2 Other Deterministic Approaches

Branicky et al. [16] proposed two algorithms for designing diverse path sets of a given path count
by selecting paths from a larger path set. These algorithms are based on a discretization of the
workspace into a square grid of cells. The authors then represent paths by the set of cells through
which they pass. The first algorithm, Path Diversity Inner-Product, maintains a set s comprising
the union of the cells in each constituent path in its path set. The algorithm begins by seeding
the path set with the path occupying the minimal number of workspace cells. It then iteratively
adds new paths to the path set by selecting those paths whose intersection with s is minimized.
Thus, the overall algorithm seeks to minimize the incidence of multiple paths colliding with one
obstacle by greedily building a path set that minimizes workspace overlap.

The second algorithm, Path Diversity Inclusion-Exclusion, is named for the principle of
inclusion-exclusion, a method of finding the union of a set of sets. In this form, we are in-
terested instead in the probability that a path set (set of sets of cells) is not blocked by obstacles.
That value, Prpnb(P), works out to the sum of the probabilities of each separate path (Prcnb(pi))
not being blocked by an obstacle minus the sum of probabilities that each pairwise union of paths
is not blocked by an obstacle, and so on. Mathematically,

Pr
pnb

(P) = Pr(p1 not blocked or p2 not blocked or . . . pn not blocked)

=
∑
i

Pr
cnb

(pi)−
∑
i 6=j

Pr
cnb

(pi ∪ pj) +
∑
i 6=j 6=k

Pr
cnb

(pi ∪ pj ∪ pk)−

· · ·+ (−1)n−1 Pr
cnb

(p1 ∪ p2 ∪ · · · ∪ pn)

=
∑

A∈2P\∅

(−1)|A|−1 Pr
cnb

(∪pi∈Api) .

(5.1)

44

The authors compared path survival rates on path sets generated with these two algorithms, a
like-sized random path set, and the original full path set across varying obstacle densities. The
random and full path sets performed identically, while the Inner-Product algorithm outperformed
the others.

Branicky, et al. inspired Erickson and LaValle [36] to propose an alternative formulation
of path diversity, which they called survivability, and a path set design algorithm based on the
concept. Survivability measures the fraction of paths in a path set T that survive when a single
path in T collides with an obstacle, which is allowed to range in size from zero to infinity. First,
they define r-survivability, α(T, r, x) ∈ [0, 1], giving the fraction of paths in T which survive an
obstacle of radius r centered at x. Next, the authors define the survivability of a path, p as

σp(T) =
1

ep

∫ ∞
0

∫ ep

0

α(T, r, p(s))dsdr , (5.2)

where ep is the length of path p. Finally, survivability of an entire path set is obtained by summing
the survivability of each path as

σ(T) =
1

|T |
∑
p∈T

σp(T − p) . (5.3)

These equations form the basis of a greedy algorithm to select, from a large path set, a subset of
paths that maximizes survivability.

The GESTALT navigator of Goldberg et al. [47] runs on the Mars Exploration Rovers (MER),
Spirit and Opportunity. GESTALT considers a set of short, constant curvature arcs in the workspace.
It scores each according to (a) safety as indicated by a grid costmap, and (b) how well the arc
seeks the goal. The current Mars rovers drive at less than 5 cm/sec over rough terrain, so pre-
dictive dynamics models are less important than static calculations of wheel slip, rollover, and
high centering. The MER rovers did not have a global planner when launched because there are
few cul-de-sacs in the Martian environments they were designed for. Long after rovers’ arrival
on Mars, engineers uploaded a version of Field D* [38].

Another deterministic approach is by Lacaze et al. [88, 89], who contribute a sophisticated
local planner, the ego-graph, for mobile robots. The ego-graph is a directed acyclic graph of
workspace trajectories originating from the robot’s current location—much like the robot-fixed
path set tree we describe in Section 4.3. However, the ego-graph’s nodes are constrained to be
on concentric circles centered on the current robot position. The ego-graph’s first level of paths
consists of smooth trajectories directly traversable by the robot, while all successive levels of
paths in the graph consist of straight lines that serve to approximate future motions. Nodes are
sampled most densely around each circle in the direction of travel and quite sparsely behind the
robot.

Not unlike our path sets, Frazzoli et al. [42] propose a set of control-parametrized motion
primitives for a given dynamical system that fall into two categories. Trim trajectories represent
steady-state controls that can be executed in a given state for an arbitrary length of time. Fixed-
length maneuvers transition between states and are used to connect trim trajectories together. The
Maneuver Automaton is a system for expressing permissible sequences of motion primitives
drawn from a finite-sized library. A planner computes the optimal composition of primitives

45

(a) (b)

(c) (d)

(e) (f)

Figure 5.1 Examples of path sets. (a) Full 2,401-path data set; (b) path set generated with a modified
Green-Kelly approximate-area metric; (c) path set generated with the Hausdorff metric; (d) path set gen-
erated using a mutual-collision metric, which estimates the probability of two paths colliding with the
same obstacle; (e) the best performing randomly-generated path set; (f) constant-curvature arcs.

connecting steady-state start and goal states according to some objective function in the absence
of obstacles.

5.3 Random Sampling
Given the computational requirements and suboptimality involved in efforts to date to construct
minimal-dispersion path sets, it is worth exploring other options. A sequence of uniformly dis-
tributed random numbers has low (though not optimal) dispersion and is quite simple to generate.
Thus, by relying on randomized sampling, it is feasible to dispense with off-line path set con-
struction and generate path sets in real time. But how do these path sets perform compared to the
deterministic algorithms described above?

Knepper and Mason [83] address this question in the context of robot-fixed path set perfor-
mance. In that work, we show that the Green-Kelly algorithm, which seeks to greedily minimize
dispersion, does not return the optimal solution in the robot-fixed context. In our experiments,
we generated a large set of random path sets by sampling 24 leaves from a densely-sampled
“full” path tree containing 2,401 leaves. Furthermore, we generated a set of 100 random tasks,

46

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 10 20 30 40 50 60 70 80 90

Fr
eq

ue
nc

y
of

 S
uc

ce
ss

 R
at

e

Success Rate

Histogram of Random Path Sets
Best Random Path Set Success Rate
Green-Kelly Path Set Success Rate
Full Path Set Success Rate
Arcs Path Set Success Rate

Figure 5.2 Frequency distribution histogram showing success rate of various path sets. A higher success
rate indicates a more robust path set in planning experiments.

to which these path sets and some deterministic ones (see Fig. 5.1) were applied. The planner
reports success upon reaching the goal state, and it reports failure if no paths survive collision
testing at any time during the run. Results (Fig. 5.2) summarize the fraction of tasks in which the
path set allowed the planner to reach the goal. The best-performing random path set outperforms
the best deterministic path set by approximately 10%.

Note the inclusion of the “full” or densely sampled path set in Fig. 5.2. Although path testing
consumes much longer than the replan cycle time permits, we allow the full path set in entirety as
though it could all be tested. Contrary to intuition, this path set performs worse than many others
(even though it contains all of their paths). In short, this phenomenon actually reflects a failing
of the heuristic function rather than an innate attribute of the path sets. For a fuller discussion of
this phenomenon, which we term non-monotonicity, see Section 8.1.

Knepper and Mason [82] subsequently repeat this experiment while distinguishing two cases.
In the world-fixed frame case, we refer to the performance as static path diversity. Meanwhile, in
the robot-fixed frame, path set performance is called dynamic path diversity. Dynamic path di-
versity results are as reported in our previous work, while performance in the static path diversity
case is quite different (see comparison in Fig. 5.3). There, performance of all the deterministic
path sets except constant-curvature arcs exceeds performance of the best random path set. We be-
lieve this result indicates that dispersion is a good predictor of world-fixed path set performance,
and random paths have higher (worse) dispersion than greedily-constructed deterministic path
sets.

Note again the “full” (or densely sampled) path set, which is permitted to cheat by receiving
unlimited planning time in order to exhaustively evaluate all 2401 paths. We see strong perfor-

47

0

5

10

15

20

25

0.3 0.4 0.5 0.6 0.7 0.8

F
re

qu
en

cy
 o

f
S

co
re

Static Path Diversity Score (Success Rate)

Full path set

A
AU

Constant-curvature arcs���9

Metric-based
path sets

�
�
�
��

(a) Histogram of static path diversity. This plot shows
performance of randomly-generated path sets compared
to several deterministic path sets in the world-fixed path
set case. The red curve represents a histogram of ran-
dom path set performance. Other path sets of interest are
picked out along the curve. The greedy “metric-based
path sets,” including Green-Kelly, Hausdorff, and mutual
collision, all have virtually the same performance in this
test.

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7 0.8

F
re

qu
en

cy
 o

f
S

co
re

Dynamic Path Diversity Score (Success Rate)

Full path set
H
HHj

Constant-curvature
arcs

�
�
�	

Metric-based
path setsXXXzQ

Q
QQs

-

(b) Histogram of dynamic path diversity. The curve repre-
sents a histogram of the performance scores on robot-fixed
path sets. The scores of several special path sets are also
shown.

Figure 5.3 Comparison of static and dynamic path diversity. 1000 random path sets were each tested on
1000 dynamic planning problems and scored based on their success rate and completion time.

mance of the full path set in the static case, as the dense sampling is able to find even small gaps
between obstacles reliably. By contrast, the full path set performs below average in the dynamic
case, reflecting the non-monotonicity property we alluded to previously. Although the full path
set still has an advantage at finding narrow gaps, it also possesses the capability to find paths
driving very near to obstacles. The heuristic path selection function, which chooses the shortest
time path to the goal, will always prefer such paths near obstacles. Driving near obstacles has
the effect of drastically reducing available path choices in future replan cycles, thus negating the
full path set’s advantage. We present a solution to this drawback in Chapter 8.

The most important result of this work, however, is in comparing performance on the same set
of random paths between the two reference frames. The correlation in performance on this large
set of random paths between the world-fixed and robot-fixed cases is only 0.2175, indicating
only a mild relationship between the two cases (Fig. 5.4).

Finally, in order to create a hybrid between the world- and robot-fixed cases, we may employ
continuations.
Definition 6 (continuation) A continuation is the remaining unexecuted portion of the path
selected during the previous replan iteration. 2

By preserving the selected path as an option for the successive round of path tests, continua-

48

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.3 0.4 0.5 0.6 0.7 0.8

St
at

ic
 P

at
h

D
iv

er
si

ty
 S

co
re

Dynamic Path Diversity Score

Random Path Sets
Special Path Sets

Constant-curvature arcs

@
@

@@I

Full path set
A
AK

Metric-based
path sets

A
A
A
AK

Figure 5.4 Annotated scatter plot of path diversity correlation. Each path set’s scores are plotted for the
static (vertical axis) and dynamic (horizontal axis) cases. A path set that performs well in both would be at
the top-right, while one which performs poorly overall would appear at the bottom-left of the image. The
correlation coefficient between these two distributions is 0.2175, reflecting only a very mild connection
between performance in these two distinct problems. A strong correlation would appear as a diagonal line
from lower left to upper right.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.3 0.4 0.5 0.6 0.7 0.8

D
yn

am
ic

 P
at

h
D

iv
er

si
ty

 S
co

re
 w

ith
 C

on
tin

ua
tio

ns

Base Dynamic Path Diversity Score

Random Path Sets
Special Path Sets

Constant-curvature arcs�
���

Full path set

@@R

Metric-based
path sets

B
B
B
BBM

Figure 5.5 The effect of continuations on navigation performance. To better understand the effect of
continuations on robot-fixed path set planning performance, each path set was retested with an extra path:
the untraversed remainder of the previously-commanded path. Path sets which degrade in performance
appear below the diagonal line, while those path sets that improve are shown above the line. About 15%
of random path sets are adversely affected by the additional continuation option.

49

tions add a minimal amount of memory to robot-fixed path sets, and so performance is expected
to increase when they are employed. We find that 85% of random path sets and all of the deter-
ministic path sets see a performance increase averaging 5% when using continuations (Fig. 5.5).

One question we gloss over in the above discussion is how to properly generate random path
sets. If each path is generated by a separate control from start to finish, then one need only
sample randomly in the space of controls. Certain scenarios, however, call for path trees, such as
those in Fig. 5.1. The most prominent need for path trees comes in the world-fixed path set case,
where branching points provide the planner with decision points.

Sampling of leaves in the path tree, as was done in the two papers above, would appear
to be the wrong approach in the world-fixed context because of the non-uniformity in effective
branching factor induced by such sampling. Suppose, for example, that in a tree of depth four and
maximum branching factor seven, giving 2,401 leaf nodes, 24 nodes are sampled from the leaves.
The expected number of branches varies with level according to the following (approximate)
formula.

Exp[Li] = b

(
1−

(
b− 1

b

) kQi−1
j=0

Lj

)
(5.4)

Here, Li is the number of branches at a node in the ith level in the tree, b is the maximum number
of branches, and k is the number of sampled leaf nodes. Note that we are making an assumption
that k � bd, with d the depth of the tree. The expected effective branching factors at each level
are L0 = 6.8269, L1 = 2.9286, L2 = 1.1825, and L3 = 1.0140. This nonuniformity is significant
because of how the world-fixed planner treats expansion at the leaves of the original tree. If a
fresh copy of the original tree is rooted at each leaf node, then as the robot moves through the
tree, the number of available choices will cycle through the above progression, on average. This
nonuniformity of choice is not conducive to effective navigation.

If instead a path set is desired that has a uniform expected branching factor throughout,
then we require a nonuniform distribution at the leaves, which can be more easily achieved by
sampling each branch from a uniform distribution. Placing a uniform expectation on every node
in the tree induces a branching factor of k1/d = 4

√
7 ≈ 2.21 throughout the tree for the values

above. Assuming that a copy of the tree could be placed at each leaf node to provide a full d
levels, a tree sampled as we describe would provide a similar search experience starting from any
node, both in terms of the total number of nodes and edges searched, as well as the tree’s ability
to find gaps and penetrate obstacles. These traits are valuable in a world-fixed frame planner.

One could generate such a tree by first using weighted random samples to select the number
of branches at each node according to a Poisson distribution, and then choosing which branches
to include from an unweighted random distribution. Such an algorithm will generate a collection
of path sets whose leaf count has mean k. The variance of leaf count around this mean occurs as
a result that sampling at a given level is a function only of previous levels—not of edges already
sampled within the current level. Thus, the distribution can be tightened somewhat by adjusting
the expected number of branches at each successive level of the tree to account for the total
number of nodes at that level. Given the total number of nodes Ni at level i, the mean value for
use in the Poisson formula is

50

Figure 5.6 Two examples of uniform branching factor random path sets. Each is generated by iterat-
ing through levels 0–3, sampling branches according to (5.5) and the accompanying text. Compare to
Fig. 5.1(b)–(e), which are examples of path sets sampled uniformly at the leaves.

Li =

(
k

Ni

) 1
d−i

. (5.5)

Thus, we see considerable opportunity for path set design, even with randomly-generated
path sets.

5.4 Dynamic Path Sets

All of the methods for path set design that we have discussed up to this point involve fixing a
single path set and using it throughout the duration of the planning task. In some cases, this
off-line generation mode is done out of necessity since some design techniques can be slow to
execute. Others, such as uniform random leaf sampling, can run in real time. Assuming that it is
feasible to generate path sets online during each replan step, is there a benefit to doing so?

In the robot-fixed context, continuously varying the path set at random is advantageous com-
pared to picking a fixed path set at random. However, the best randomly chosen fixed path set
consistently outperforms a continuously varying random path set. These results are shown in
Fig. 5.7. This result is hardly a surprise since demanding a unique random path set at each cycle
is a request for quantity over quality. Most of the varying random path sets, taken as fixed path
sets, would individually perform worse than the best random path set tested.

The trouble with continuously varying random path sets is that they are still task agnostic.
To realize superior performance, it is necessary to incorporate knowledge of the current situation
into the selection of paths during each replan cycle. Inputs to the problem include the config-
uration of obstacles, current robot state, and actions still available versus those selected during
past sampling cycles. To realize performance gains, the resulting path set construction algorithm
must save more time through avoiding unnecessary collisions than the overhead of clever path
sampling. This problem is the subject of Chapter 6: Path Sampling.

51

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80

Fr
ac

tio
n

A
ch

ie
vi

ng
 R

at
e

Success Rate

Fixed Random Path Sets
Continuously Varying Random Path Sets

Figure 5.7 Histogram of fixed random path sets versus continuously varying random path sets in the
robot-fixed frame. Each fixed random path set is selected once and run on 1000 test problems. For the
continuously varying random case, a new random path set is chosen at the outset of each replan cycle.
While a user may select the best fixed random path set and expect good performance in other problems, a
continuously varying path set’s performance is unpredictable, so only the distribution on these path sets is
meaningful.

52

5.5 Prior Work in Path Set Generation

A fundamental work laying out the rationale and assumptions underlying our original local plan-
ner is the two part paper by Kelly and Stentz [75, 76]. This paper presents Ranger, a local
planner for dynamics-aware planning for mobile robots. The targeted applications fall into two
categories where dynamics are a vital component of planning: high-speed navigation and clut-
tered spaces in which nonholonomic constraints are significant. Ranger tests approximately ten
constant speed-and-steering commands per replan cycle. Each arc is fed through a forward robot
model, which returns full 3D state plus velocities. These state variables, in turn, are used to
evaluate controls for safety and effectiveness in navigation.

Barraquand and Latombe [7] present a planner that samples six actions in the command
space—the actions of the Reeds-Shepp car [118]. Unlike Reeds-Shepp, however, the actions are
integrated through a robot model to produce short trajectories. Each trajectory is designed to be
just long enough to reach an adjacent cell in the C-space grid. Naturally, such a planner generates
a tree of motions. To reduce work performed by A* when searching the tree, the planner culls
away all but the first path to land in a given C-space cell. In this planner, cost is determined by
the number of reversals in a path, while the A* heuristic is zero, making the search identical to
Dijkstra’s algorithm.

Dunlap et al. [35] generate a search space in the form of a directed acyclic graph by sampling
branches at random in control space, integrating the actions forward, and discovering where they
terminate. In the manner of Barraquand and Latombe [7], the authors discretize the state space
and eliminate redundant paths arriving at equivalent states. Unlike Barraquand however, they use
more meaningful costs and heuristics in order to achieve minimal distance paths.

The path set generation problem also arises in computer graphics, where it is used to generate
motion graphs—a technique for realistic character motion generation. Kovar et al. [87] were
among the first to propose the idea, in which various clips of motion capture data are concatenated
to form a tree of continuous motions. Smoothly interpolating between clips presented a challenge
in addition to the problems of path diversity and search efficiency explored in this thesis proposal.

In an extension to the motion graph concept, Lau and Kuffner [90] precompute a tree of
feasible motions for a character, for example using motion-capture data. Then, using a lookup
table, the authors are able to rapidly discover feasible routes between different states subject
to the obstacles in the character’s environment. For longer-range motions, a two-level planner
hierarchy is used to generate subgoals within the range of the precomputed path tree. Reitsma
and Pollard [120] extend the work of Lau and Kuffner and others to splice together portions of
motions in order to maximize realism of the resulting animation.

5.5.1 State-Sampled Path Sets

Sampling in state space is valuable because it is in the state space that low dispersion leads
directly to an ability to avoid obstacles. The inherent challenge is the two-point boundary value
problem (BVP) in which states must be connected by a feasible trajectory. Several recent works
sample deterministically in the state space and rely on a model-predictive trajectory generator to
solve the BVP.

53

Howard et al. [57] sample at a set of states in the robot frame that are cross-track offsets
to a nominal global planned path. An online trajectory generator attempts to join each of the
candidate states to the current robot state. The resulting trajectories become a path set tuned for
lane-following behavior.

A slightly different approach is the State Lattice of Pivtoraiko et al. [109], in which a trajec-
tory generator is employed offline to find a set of trajectories that join up to create a regular grid
or lattice pattern that is tessellated throughout the workspace. At runtime, the world-fixed paths
are tested for collision, with A* running on the surviving graph structure to find the shortest path.

5.5.2 Probabilistic Planners
Prior to these recent state space sampling approaches, several randomized state space sampling
planners arose as a means of combatting the curse of dimensionality. These planners typically
solve the BVP using straight-line interpolation between states. Although kinodynamic versions
of some of these planners exist, they have received comparatively little attention.

Kavraki et al. [73] introduced the Probabilistic Roadmap (PRM) as a multi-query planner
that explores high-dimensional state spaces by sampling randomly in the state space and then
attempting to connect neighboring states to form a graph. To generate a path using the PRM,
the start and goal states must first be connected to one of the nodes in the graph and then an A*
search may be performed to find the shortest path. Complete visibility coverage of the space by
the graph nodes (the Art Museum Problem) is necessary to assure completeness, but this can be
difficult to achieve in some cases.

By contrast, LaValle and Kuffner’s Rapidly-exploring Random Trees [96], or RRTs, perform
single query planning by expanding trees from the start and goal states that grow towards each
other. At each iteration, a random state is sampled, and the planner attempts to connect it to its
nearest neighbor in one of the trees. If it is able to join to both trees, then a path has been found
connecting the start and goal.

The expansive space planner (ESP) of Hsu et al. [59] offers another form of roadmap-based
probabilistic planning. In each planner iteration, the algorithm grows a tree by selecting a node
at random and growing a new edge by applying a random action from the state represented by
that node. If the new edge represents a collision-free motion, then a new child node is added to
the tree. Although the ESP has demonstrated some effectiveness on real planning problems, its
performance tends to degrade more quickly than that of PRMs and RRTs.

The Single-query Bidirectional Lazy (SBL) planner by Sánchez and Latombe [124] combines
elements from both the RPM and RRT approaches. It samples randomly in state space to connect
nodes in the graph, but collision checking is postponed until the result is needed, since in the
above planners, a majority of collision-tested paths will not be used in the final solution.

Probabilistic planners like PRM, RRT, ESP, and SBL can never be guaranteed to find a so-
lution. Instead, researchers rely on the concept of probabilistic completeness which states that
as the number of samples increases without bound, the probability of finding a solution path
approaches one. Another factor is more important in practice though. In practice, these plan-
ners rapidly find a solution path most of the time. The tradeoff for such rapid path-finding is
that the results are suboptimal–sometimes highly so. Therefore, a post-processing “smoothing”
step is generally applied to find a shorter collision-free path. Often, the smoothing step takes

54

longer than planning itself. A side effect of smoothing is that probabilistic planners generally do
not come with feasibility guarantees. Since the path uses a pure state space representation, it is
left to the path tracker to follow it. An alternative both to highly suboptimal paths and to path
smoothing is provided by RRT* [70], which rapidly finds a suboptimal solution and then, as time
permits, converges toward a more optimal solution by refining the sampled tree using additional
state samples.

One probabilistic planner that generates feasible paths described by a control policy is by
Frazzoli et al. [41]. They propose a modification to the RRT algorithm. Like RRT, a state is
sampled at random, and the planner tries to join it to an existing node in the tree. Rather than
try to connect only the sample’s nearest-neighbor node as RRT does, this planner attempts to
connect the sample to each node in the tree, one at a time. The nodes are tried in order from
nearest to farthest, based on a metric function that is aware of the dynamics. An edge connecting
each tree node to the newly-sampled state is generated by utilizing a controller that works in the
absence of obstacles. If the resulting edge collides with an obstacle, it is thrown out and the
next node is tried. When a collision-free edge is found, it is added to the tree and the iteration
step terminates. The tree constructed by this algorithm is described by a set of controls (just as
with our planner), so that any path through the tree describes a feasible motion even for highly
dynamic systems. The planner is effective at penetrating clutter and permits moving obstacles,
provided that their path is known in advance.

5.5.3 Optimizing Planners
Another class of local planners does not build an explicit search space but instead searches the
continuum by performing gradient descent optimization.

Khatib introduced potential fields [79], in which an imaginary basin of attraction by the goal
state is tempered by repulsion of obstacles. The net “force” on the robot moves it down the
center of corridors and toward the goal. Potential fields are not so much a planning technique
as a controller because they do not employ lookahead. The value of lookahead is avoidance of
local minima in the potential field. This situation arises when the attractive force of the goal is
precisely canceled by the repulsion of several obstacles, causing the robot to get stuck.

An alternative optimization approach comes from Ratliff et al. [115]. Covariant Hamilto-
nian Optimization for Motion Planning (CHOMP) computes an initial guess trajectory and then
optimizes it until it becomes free of collision. Optimization is performed based on a signed dis-
tance field, which discretizes the environment into cells and computes the shortest distance from
each cell to the freespace boundary. CHOMP is not guaranteed to find a collision-free trajec-
tory, although experimental results suggest it works quite well. Because CHOMP operates in
the space of trajectories connecting start and goal (or subgoal) states, it avoids local minima in
the C-space. CHOMP is instead subject to getting stuck in local minima in trajectory space, for
example selecting a trajectory in a suboptimal homotopy class. Although framed as a limitation,
such a property can sometimes be advantageous, as we discuss in Chapter 8: Route Selection.

Another sort of continuum planning was introduced by Quinlan and Khatib in the form of
elastic bands [114], which represent an alternative solution to the tradeoff between model fidelity
and scalability. Given a global C-space path produced by some low-fidelity planner, a series of
C-space “bubbles” covering the path are computed by the planner. These bubbles set their radius

55

according to the distance to the nearest obstacle to the path. By maintaining overlap between
consecutive bubbles, an elastic band of guaranteed freespace creates a corridor through which
the robot may travel without performing collision checking. The width of the corridor provides
some flexibility in which the robot may smooth out corners or comply with other kinodynamic
constraints. The name “elastic band” refers to the property that the corridor may be efficiently
deformed in real time based on dynamic obstacles.

By analogy to elastic bands, Brock and Khatib propose elastic strips [17], which create “tun-
nels” of bubbles in the workspace for the robot to move inside. Just as with elastic bands, these
tunnels provide some slack for the robot to maneuver while retaining a collision-free guarantee.
Both elastic bands and elastic strips are free of local minima, but they have limited capacity to
explore different homotopy classes of solution path as the configuration of obstacles evolves.

A combination of deterministic state space sampling and optimization was proposed by
Howard [55]. This planner begins with a State Lattice as described by Pivtoraiko et al. [109],
and then performs optimization on graph nodes, edges, or both. The resulting planner is far more
likely to find a sufficiently low-cost path through clutter without resorting to extremely fine-
grained discretization. The resolution only needs to be fine enough to find each local minimum
(corridor) of interest.

5.6 Path Set Design
Most motion planners do not explicitly design path sets, instead leaving it up to chance. However,
the issues we highlight on this topic are important when studying the performance of all motion
planners. We therefore hope that the tools and techniques we discuss in Part I of this thesis find
broad application within the community.

We now move on to Part II, in which we examine each stage of the motion planning process,
uncovering available information that traditional planners simply throw away. We start with
online path set design by feeding back information on path tests to future sampling steps.

56

Part II

The Stages of Motion Planning

57

Chapter 6

Path Sampling

The motion planning problem is to find a path (parametrized by arc length) or trajectory (parametrized
by time) that guides the robot from a given start state to a given goal state while obeying con-
straints and avoiding obstacles. In either case, the solution space is high dimensional, so motion
planning algorithms typically decompose the problem by searching for a sequence of shorter,
local paths, which solve the original motion planning problem when concatenated.

Each local path comprising this concatenated solution must obey motion constraints and
avoid obstacles and hazards in the environment. Many alternate local paths may be considered
for each component, so planners select a combination of local paths that optimizes some objective
function. In order to generate such a set of candidate paths, the planner must generate many more
candidate paths, each of which must be verified against motion constraints and collision-tested
prior to consideration. Motion planners generate this large collection of paths by sampling—
most often at random or from a low-dispersion sequence as defined by Def. 4.

All the information needed to find collision-free path samples exists within the costmap, but
the expensive collision-testing process prevents that information from being readily available to
the planner. A negative collision-test result (i.e. no collision) offers reasonable certainty to the
planner that executing a particular path will not harm the robot or its surroundings. In contrast, a
positive collision-test result is typically thrown away because the path is not viable for execution.
Such planners may subsequently waste time sampling and testing other paths that collide with
the same obstacle.

This policy of discarding information about colliding paths highlights a major inefficiency,
which especially impacts realtime planning. Every detected collision provides a known obstacle
location. This observation may not seem significant at first, as all detected collisions represent
obstacles already stored in the costmap. However, not all such obstacles are equally relevant to
a given local planning problem, and so we can benefit by storing relevant costmap obstacles in a
form more immediately available to the planner. We argue that the planner may derive increased
performance by feeding back the set of collision points, known from prior collision tests, to the
path sampling process, as in Fig. 6.1.

59

Path
Sampling

Collision
Testing

Simulation

Sensing Cost
Map

Action

Planner

World

Figure 6.1 Typical data flow within a robot closes the loop around the sense-plan-act cycle, but the planner
itself runs open-loop. In this chapter, we close the planning loop by informing path sampling based on the
results of collision-testing earlier paths against obstacles.

6.1 Path Sampling and Path Parametrization
The general path sampling problem is to supply a sequence of distinct paths {p1, p2, . . . } =
P ⊂ X , the continuum space of paths. Often, these paths are not parametrized directly by their
geometry but instead are described by their means of generation. For instance, some planners
consider only straight-line paths. Given a current robot state x0 ∈ X , the configuration space, a
straight-line path is uniquely specified by connecting x0 to an arbitrary sampled state xf ∈ X . In
such planners, it is expected that the robot is able to execute arbitrary paths, and so the boundary
value problem is easy to solve because it is under-constrained.
Definition 7 (boundary value problem) Given start and end states, the boundary value prob-
lem (BVP) is to find any feasible path from the start to the goal (i.e. the local planning problem).
A variant of this problem is to find the shortest such path. 2

Some classes of robotic systems possess velocity constraints that limit the direction in which
they may move instantaneously. The most well known example of these nonholonomic con-
straints is the difficulty of parallel parking a car. In such highly constrained, underactuated
systems, the set of feasible paths F is much smaller than the space of all paths, X . Thus, an
arbitrary path sample drawn from X is unlikely to be in the feasible set F . In such cases, the
BVP is difficult to solve.

For constrained systems, we may avoid solving the BVP by instead sampling in U , the space
of actions. Suppose we have a “black box” model of the robot’s response to a control input,
which is a mapping M : U → F . Sampling in the control space offers several advantages:

1. all sampled paths trivially obey motion constraints; and

2. we may precompute a set of paths and properties of those paths.

For a mobile robot, these paths are independent of initial position and heading, depending only
on their derivatives (we ignore external interference such as wind or wheel slip). Therefore, a
relatively small lookup table suffices to describe an expressive set of robot motions.

60

6.2 Prior Work
The motion planning community has invested considerable effort in the topic of non-uniform and
adaptive sampling. The literature on this topic largely concerns probabilistic roadmaps (PRMs),
which sample states rather than paths. Hsu et al. [62] provide a survey of recent work in non-
uniform sampling for PRMs. We touch on a few of the broad approaches here.

One approach employs a fixed strategy to bias configuration sampling towards narrow corridors—
parts of the C-space that are less likely to be sampled on their own due to their small measure—
including papers by Amato et al. [3], Hsu et al. [60], V. Boor [135]. These works all restrict
the sampling consideration to points, whereas we sample directly in the space of paths, using a
distribution that varies in reaction to new collision test results.

The non-uniform sampling field has largely moved towards such adaptive strategies. For
instance, Jaillet et al. [65] restrict sampling to size-varying balls around nodes in an RRT to
avoid testing paths that would go through obstacles. Yu and Gupta [149] perform sensor-based
planning in which a PRM is incrementally constructed based on the robot’s partial observations
of obstacles. Exploratory motions are selected by maximizing information gain. Another recent
adaptive approach is to construct a meta-planner with several tools at its disposal; such planners
employ multiple sampling strategies, as with Hsu et al. [61] or multiple randomized roadmap
planners, as with Morales et al. [102], based on a prediction of which approach is most effective
in a given setting.

One important feature of our work is the use of information from all collision tests, including
positive results, to minimize entropy in a model approximating obstacle locations. The work of
Burns and Brock [20, 21, 22, 23] bears considerable resemblance to ours in this regard. They
describe an adaptive model of obstacle locations in C-space based on previous collision test
results. Their model utilizes locally weighted learning to select state [21] or path [22] samples
that reduce model uncertainty. We likewise develop a model of obstacle location, although ours
inhabits the workspace and is simpler and more suitable for realtime applications. Burns and
Brock subsequently observe, as we do, that model refinement is not an end in itself, but merely
a means to the end of finding collision-free paths [23]. We proceed from this observation to
consider what level of refinement is appropriate, in the context of constrained paths, based on the
maximum width of corridor we are willing to miss discovering.

Separately, Burns and Brock describe an entropy-guided approach to the selection of con-
figuration samples likely to unify two connected components of the PRM graph [20]. In later
work, Burns and Brock [23] augment this approach with the notion of utility, which combines
information gain regarding obstacle locations with the value of a resulting sample for solving
the planning problem. Utility-guided sampling selects the configuration expected to solve the
eventual planning problem most efficiently. We take a similar approach, in that we sample a
combination of paths intended to navigate the space and to refine our obstacle model.

6.3 Informed Path Sampling Approach
In closing the loop on path sampling, we must feed back knowledge of obstacles reachable by
the robot (in the form of collision-test results) into the sample space of paths, be it X or U , so

61

that we can suppress from the sampled path sequence future paths intersecting those regions of
the workspace. Obstacles reside in the workspace, W , which may be represented as R2 or R3,
depending on the nature of the robot. We may describe two set-valued functions,

ws : X → collection of subsets of W
cs : W → collection of subsets of X .

The function ws(x) returns a set of workspace points wi ∈ W that the robot occupies while in
configuration x, which is simply the Minkowski sum of the robot’s shape with a point. cs(w)
returns the set of robot configurations xi ∈ X in which the robot intersects the workspace point
w. Supposing that w resides inside an obstacle, these functions enable us to reason about config-
urations the robot must avoid.

For unconstrained systems that sample paths via points in the configuration space, closing
the loop on path sampling requires finding the intersection of cs(wi) with the new point or path
for each known collision point wi. Motion planners do not typically attempt such elimination
because the sampling process becomes exactly the collision test that it replaces. When the set
of feasible motions is highly constrained, we prefer to sample paths by sampling in the space of
actions. Computing the set of actions that result in the robot passing through a certain point in
space is non-trivial since it requires solving a version of the BVP.

Instead, our approach to path sampling feedback in constrained systems is to keep the feed-
back entirely within the action space. We first collision-test some paths drawn from a low-
dispersion sequence as given by Green and Kelly [48]. After finding the first collision point,
its location biases future action samples. We may construct, a priori, a list of correspondences
between action samples to accelerate this process.

A collision can be described as an ordered pair c = (p, s), with p ∈ F and s ∈ I = [0, 1], a
time/distance parameter describing where on the path the collision occurred. A path is a mapping
p : I → X . Thus, c maps directly into a state x ∈ X , identifying the location of an obstacle.
However, this collision state is special because it is known to be reachable by an action u ∈ U . In
fact, x is probably reachable by a continuum of other actions, of which we can easily precompute
a sampled subset for each possible collision point.

Often, collision-test routines are able to identify the precise location where a collision oc-
curred. Knowing that point w ∈ ws(x) is part of an obstacle, we may eliminate from our
sampled sequence all paths passing through the set cs(w). To eliminate these paths, we must
store the list of actions by which they are parametrized.

In order to identify the set of paths passing unacceptably close to an obstacle point w, we
precompute a proximity look-up table (PLUT), as shown in Fig. 6.2. Suppose our precomputed
path set P contains N paths, each discretized into M points. The PLUT stores, for every ordered
pair of paths (pi, pj) in P , the shortest distance to the kth discretized point on pj:

PLUT(pi, pj, k) = min
w∈pi

d

(
w, pj

(
k

M

))
, (6.1)

where d(w1, w2) gives the Euclidean distance between two points.
Now, given a collision c = (pj, s), we would like to find out if another path pi would collide

62

Figure 6.2 Given a path set of N paths, each discretized into M points, the proximity look-up table
(PLUT) stores for each ordered pair of paths a list of shortest distances to each discrete point on the
second path. Thus, there are a total of MN2 unique PLUT entries.

with the same obstacle. We simply query the PLUT as

PLUT(pi, pj, sM) < rr, (6.2)

where rr is the radius of the robot (or an inscribed circle of the robot). When this condition holds,
the collision test would fail. Knowing this, we may eliminate the path without a test, and spend
the CPU time considering other paths.

However, we may go beyond short-circuiting the collision-test to estimating the probability
distribution on obstacle locations using the principle of locality, which states that points inside
an obstacle tend to occur near other points inside an obstacle. We propose a series of models of
locality and two path sampling problems, which we address using our models. The key to success
of this approach is that the final evaluation be less costly than the collision tests it replaces.

6.4 Probabilistic Foundations

We develop a series of probabilistic models that enable us to rapidly select paths for collision test
that maximize one of two properties. First, in order to find valid robot motions, we must sample
a selection of collision-free paths for execution. Second, we wish to sample broadly within the
free space of paths, including in proximity to obstacles. The precision with which we know the
obstacle/free-space boundaries directly relates to the size of narrow corridor we expect to find.

The workspace comprises a set of points divided into two categories: obstacle and free. The
function

obs : W → β, (6.3)

where β = {true, false}, reveals the outcome that a particular workspace point w is either inside
(true) or outside of an obstacle. Building on such outcomes, we then describe an event of interest.
A path collision-test takes the form

pct : P → β, (6.4)

which returns the disjunction of obs(w) for all w within the swath (Def. 3) of the path. A result
of true indicates that this path intersects an obstacle.

Using these concepts as a basis, we pose two problems:

63

1. Exploitation. We are given a set of workspace points inside obstacles, C = {w1, . . . wm}
and a set of untested paths Punknown = {p1, . . . pn}. Knowing only a finite subset of the
continuum of obstacle-points, find the path that minimizes the probability of collision:

pnext = argmin
pi∈P

Pr(pct(pi, C)). (6.5)

2. Exploration. Suppose we have a model of uncertainty U(Psafe, C) over the collision
status of a set of untested paths, Punknown, in terms of a set of tested paths and known
obstacle-points. Find the path pnext ∈ Punknown giving the greatest reduction in expected
uncertainty:

Uexp(pi) = U (Psafe ∪ {pi}, C) Pr (¬ pct(pi, C))

+ U (Psafe, C ∪ {ci}) Pr (pct(pi, C)) (6.6)
pnext = argmax

pi∈Punknown

U(Psafe, C)− Uexp(pi). (6.7)

These two considerations are essentially the same as those encapsulated in the utility function of
Burns and Brock [23] (see Section 6.2).

6.5 Locality
Thus far, we have demonstrated how a single failed collision test may serve to eliminate an entire
set of untested paths from consideration because they pass through the same obstacle point. We
may extend this approach one step further using the principle of locality.
Definition 8 (principle of locality) The principle of locality states that if a robot state is in
collision with an obstacle, then that state is contained in a neighborhood ball of obstacle points.2

Two contributing factors combine to produce the locality effect. First, the non-zero volume
of the robot means that even a point obstacle results in a set of robot states cs(t) in collision with
that point. The second factor is that real-world obstacles occupy some volume in space.

Given a known collision point, we employ the principle of locality to define a function ex-
pressing the probability that a new path under test is in collision with the same obstacle. A
locality model takes the following general form:

loc(pi | C) = Pr(pct(pi) | C) (6.8)

Here, C may be a single point collision outcome or a set of collisions. If omitted, it is assumed
to be the set of all known collisions.

This function depends on many factors, including the size and shape of the robot as well as the
distribution on size and shape of obstacles in the environment. The most important parameter,
however, is the distance between the new path and the known collision site. Thus, we may
establish a rapidly computable first-order locality model in which we abstract away the size and
shape of obstacles using a single distribution on radius, as in Fig. 6.3. We next discuss several
intermediate locality model formulations before coming to the final form.

64

Figure 6.3 The robot (red disc at left) considers two paths. The bottom path fails its collision test. The lo-
cality model does not know the full extent of the obstacle (gray), but it can approximate the obstacle using
a probability distribution (concentric circles) and can estimate the likelihood of the top path colliding.

6.5.1 General Locality Model
By explicitly modeling locality, we may reason about which paths are more or less likely to be in
collision with any known obstacle, even with only partial information about its location. A path
sampling algorithm, when informed by a locality model, provides a path sequence ordered by
likelihood of collision, given currently known collision sites. We propose here a general model
of locality that can be expected to produce collision-free path samples with high probability.

In constructing a general locality model, we abstract away many parameters; we consider
both the robot and obstacles to be balls (in R2 or R3), and the obstacles are assumed uniform in
radius. We relax some of these assumptions later, in Section 6.5.4. For now, these restrictions
permit us to simplify the model by removing bearing from consideration. Thus, the general
model’s prediction of future collisions is purely a function of range from the known collision
site to the path. The fixed radii of both the obstacles (ro) and the robot (rr) result in the intuitive
notion of locality: that its influence is over a limited range only.

The precise formulation of the general locality model, as depicted in Fig. 6.4, is based on
maintaining a probability distribution on possible locations of the obstacle centroid, given a
known collision site. In this naive model, the location of the centroid is described by a uniform
distribution over B(ro), a ball of radius ro centered at the colliding position of the robot. A path
pi sweeps out a swath S(pi) of width 2ro + 2rr. Any non-empty set B(ro) ∩ S(pi) represents
some probability of collision. This general model then predicts that the probability of collision
is

locgeneral(pi | c) =
|B(ro) ∩ S(pi)|
|B(ro)|

. (6.9)

If we regard pi as a straight line, then in 2D the probability of collision is the ratio of the area
of a circular segment to the area of the whole circle, which is [11]:

fsegment(r) =

{
1
πr2e

(
r2
e cos−1 r−re

re
− (r − re)

√
2rer − r2

)
if 0 ≤ r ≤ 2re

0 otherwise,
(6.10)

65

(a)

ro

(b)

rorr

Figure 6.4 The general locality model: (a) Given a point known to be in collision with an obstacle (center
red dot), the blue inner circle of radius ro represents possible locations of the centroid of the obstacle. The
green outer circle comprises points possibly occupied by some part of the obstacle. (b) The probability
that a new candidate robot path is collision-free equals the fraction of possible obstacle centroids outside a
swath of width 2ro + 2rr. The blue region represents the set of possible centroids, while the green region
depicts possible obstacle extents.

where r is the range between the path and the collision point. We call re the range of effect,
which we set equal to ro here.
Definition 9 (range of effect) The range of effect of a known collision point describes the ra-
dius around that point at which paths are regarded to be at risk of collision with the known
obstacle. 2

6.5.2 Simple Locality Model
We now propose an even simpler locality model, which closely approximates (6.10) but makes
use of the existing PLUT. For paths bounded in curvature, the above model may be closely ap-
proximated by considering only the point on the new path most closely approaching the known
collision point. This new locality model employs the raised cosine distribution, due to its fi-
nite support and resemblance to (6.10)—as seen in Fig. 6.5. The raised cosine distribution is
expressed as

frcd(r) =

{
1

2re

[
1 + cos

(
π r

2re

)]
if 0 ≤ r ≤ 2re

0 otherwise.
(6.11)

Then, the probability that a new path pi will collide with the same obstacle represented by the
previous collision c = (pj, s) is simply

locsimple(pi | c) = frcd(PLUT(pi, pj, sM)− rr). (6.12)

Note that here we are no longer maintaining an explicit probability distribution on the location
of an obstacle but instead a heuristic estimate of the risk of a single path relative to a single
collision site.

66

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

P
ro
b
a
b
ili
ty
 o
f
co

lli
s
io
n

Range between path and collision point (normalized to obstacle radius)

General locality
Simple locality

Figure 6.5 Comparison of General Locality Model and Simple Locality Model. The latter employs the
raised cosine distribution.

6.5.3 Handling Multiple Collision Sites

Given a known collision site, both (6.9) and (6.12) provide a tool for selecting a candidate path to
minimize the probability of collision. However, we have not yet addressed the issue of multiple
known collision sites. The likelihood that two workspace points have the same obstacle outcome
correlates strongly with the distance between them, by virtue of describing the same obstacle.
The estimate of collision likelihood for an untested path depends on what statistical independence
assumptions we make among known collision points.

Fig. 6.6 depicts a situation in which two collision sites appear to be correlated. However,
many possible policies for estimating statistical independence among a set of collision points,
such as clustering, are complex to compute and implement.

In contrast, we may conservatively assume that all collisions are independent, in which case
basic probability theory states that

loc(p) = loc(p | {c1, . . . , cn}) = 1−
∏

i∈{1,...,n}

(1− loc(p | ci)). (6.13)

If some collision sites are actually part of the same obstacle, then we are overestimating the
likelihood of collision for p. In the absence of any knowledge regarding correlation, however,
the most conservative policy is the safest. Thus, we now have the means to address Problem 1,
Exploitation:

pnext = argmin
pi∈P

loc(pi). (6.14)

67

c2

c1

p
test

Figure 6.6 Two collision sites c1 and c2 are located in close proximity. Intuition suggests that c2 should
be ignored when computing the risk of collision of path ptest. Either the two sites belong to the same
obstacle, or else the obstacle at c2 is “blocked” by the obstacle at c1.

In the next section, we explore an information theoretic approach to safely adjusting this pes-
simistic model.

6.5.4 Adaptive Locality Model
The locality models presented in Sections 6.5.1–6.5.2 incorporate only positive collision test out-
comes. Those static models conservatively estimate an obstacle distribution spread over a large
but finite range of effect. We now construct an adaptive locality model capable of incorporating
both positive and negative collision-test outcomes.

If we should happen to discover a safe path psafe passing within collision site c’s range of
effect, then we may use this new information to refine the obstacle model of c. In effect, we
adjust the locality function to act over a smaller range in the direction of psafe. As Fig. 6.7a
shows, no path ptest that is separated from c by psafe can possibly be at risk of collision with this
obstacle. This adaptive model effectively relaxes the earlier, rigid assumptions on obstacle size
and independence of collision sites. In modeling such geometric relations, we depart from prior
work addressing locality.

Following an update to the model, all future probability estimates involving c incorporate this
new information. Although the independence assumption may initially make nearby paths like
ptest appear riskier than they should (Fig. 6.6), the adaptive model rapidly cancels out this effect
after finding a safe path to shrink each collision point’s range of effect.

In addressing the problem of how to adaptively adjust obstacle distributions in reaction to
a collision-free path, a variety of approaches present themselves. One possible approach is to
shrink the range of effect for the obstacle at c, as in Fig 6.7b, which supposes that the obstacle
is smaller than initially thought. Another approach, to shift the entire distribution away from the
safe path as in Fig. 6.7c, assumes that the obstacle size was correctly estimated, but its position
was off.

We adopt a compromise position. We prefer that the collision site remains the center of a
distribution in order to keep range checks efficient via look-up table. However, we also prefer
to avoid altering the range of effect of the opposing side, about which we have no new data.

68

(a)

2ro

p
safep

test

c

(b)

p
safe

c

(c)

2ro

p
safe

c

Figure 6.7 (a) Given a collision point c and neighboring collision-free path psafe, the blue circle rep-
resents a distribution on obstacle locations, some of which are invalidated by psafe. The more distant
candidate path ptest is not at risk of collision with the obstacle represented by c.
(b) and (c) Two simple hypotheses on obstacle scale and position explain these two results. The distribu-
tion shown in Fig. 6.4(b) is simpler to represent during online path sampling.

2ro

p
safec

Figure 6.8 The range of effect on each side of collision site c is maintained separately. The left range
began at 2ro, but it was reduced after successfully collision-testing path psafe.

We therefore split the range of effect into several regions of influence (“sides”) centered around
each collision site. In 2D, we have left and right sides of the obstacle, as in Fig. 6.8. In 3D, the
division is topologically more arbitrary, although we split the obstacle into four sides.

In splitting the locality model into several directions, we require a rule to consistently asso-
ciate each path with a particular side of the collision point. The sides are defined relative to the
pose of the robot before executing the path. The sides meet at the line a, an axis running through
the start pose and the collision point. We assign names to the sides describing their position
relative to the robot’s frame of reference. Sides are determined by

left = sgn(t× p · u) (6.15)
top = sgn(t× p · a× u), (6.16)

where u denotes the robot’s up vector, p the projection of c onto the path, and t the tangent
vector of the path at this point, as in Fig. 6.9. These sides may be precomputed for each path.

69

u

a

p

p
test

c

t

Figure 6.9 In three dimensions, the adaptive locality model’s range of effect is split into four sides. The
robot’s up vector, u, and the vector pointing toward the collision point, a, are used to define which of four
sides the path ptest is on. As illustrated, the path is on the top-left side.

In 2D, it is particularly convenient to augment the PLUT with a sign indicating on which side of
the path each possible collision point lies.

Fig. 6.10 shows a family of paths on the left side of an obstacle. We deem each path equally
likely to collide with the obstacle because they each approach equally near to the collision point,
c. This assignment of paths to a single side of an obstacle places assumptions on the path’s shape.
We assume here that curvature is bounded and that paths are reasonably short. See Chapter 7 for
a thorough discussion of these assumptions.

6.6 Path Entropy

Having established an adaptive locality model, we now consider a means to reap maximal ad-
vantage from its predictive capabilities in order to solve Problem 2, Exploration. It is important
to select paths for collision test that cause the model to rapidly converge to an accurate descrip-
tion of obstacles, while simultaneously minimizing failed collision tests. Given a set of collision
sites, the best path to collision test is that path with maximum entropy according to the current
model parameters.
Definition 10 (path entropy) An untested path’s entropy (sometimes called Shannon entropy)
refers to the expected amount of information about the safety of other untested paths that would
be gained from collision-testing it. A path’s entropy is

H(pct(p)) = −Pr(pct(p)) log Pr(pct(p))− Pr(¬ pct(p)) log Pr(¬ pct(p)). (6.17)
2

70

c

Figure 6.10 A family of paths, all of which pass to the left of the collision site, c. Despite the variety of
shapes, each path intrudes equally into the left range of effect of c, and thus they would each reduce its
left range of effect equally.

In order to maximize our understanding of the true distribution of obstacles with the fewest
possible samples, we choose to sample the maximum entropy path:

ptest = argmax
pi∈P

H(pct(pi)). (6.18)

Based on current information, the maximum entropy path has maximal uncertainty with regard
to its collision with obstacles; its probability of collision is nearest to 50%. Testing this particular
path will therefore increase total knowledge more than any other. The result will be either a path
that significantly reduces the range of effect for some known collision point(s) or a new collision
point that is far from known collisions. In either case, model accuracy increases with maximal
utility.

The policy of maximizing entropy was proposed by Jaynes [67] for the purpose of estimating
an unknown distribution. Maximum entropy has been specifically applied to decision theory, as
by Grünwald and Dawid [49], and as we employ it here. The decision that maximizes entropy
is the one that minimizes the worst case possible outcome. In our case, the worst outcome is
rediscovering a known result because it wastes computation time for no gain. This outcome
takes two forms:

1. testing a path that passes through (or very near) a known collision site, or

2. retesting a known safe path, or one very similar in shape.

By maximizing the worst-case outcome, this Γ-minimax approach, described by Vidakovic [139],
is capable of reasoning simultaneously about an entire family of probability distributions, called
Γ—in our case, a range of theories about obstacle extent.

If the maximum entropy policy is pursued repeatedly, path selection proceeds to discover
a sequence of safe paths and collision sites that are progressively nearer to each other, thus

71

establishing precisely the boundaries separating the obstacles from free space. Knowing these
boundaries may accelerate the process of sampling and testing paths more densely within the
free space. In Chapter 7, we provide one possible approach to this process.

Refining these boundaries is a process of diminishing returns, however. As we discover safe
paths progressively closer to obstacles, the margin of uncertainty becomes so low that additional
maximum entropy path samples provide negligible advantage for a variety of reasons:

1. the cost of collision testing a path often increases with greater obstacle proximity;

2. there is a computational cost associated with path sampling that is proportional to the
number of known collision sites; and

3. paths close to obstacles are poor choices for execution.

These factors could be incorporated into a utility function, as Burns and Brock [23] did, but this
remains as future work for us. Thus, we should not exclusively pursue the maximum entropy
sampling policy, but also select path samples far from obstacles to maximize safety and path
diversity.

We utilize several strategies to combine exploration and exploitation in a hybrid approach. In
the absence of any uncertainty from our locality model (such as before the first collision site has
been discovered), we sample from a low-dispersion sequence. In the presence of uncertainty, we
compute the fraction f of the total replan cycle time that has already elapsed. With probability
f we pursue an exploitation (obstacle avoidance) sampling strategy, whereas with probability
1− f we instead pursue an exploration (boundary finding) strategy to refine our locality model.
Sampled paths very near to known obstacles are set aside without testing for later use, since they
make poor candidates for traversal. We search these paths if there is time at the end of the replan
cycle, after testing all other paths.

6.7 Experimental Results
We conducted a set of experiments in simulation in order to obtain a sufficient quantity of trials
to recognize statistically meaningful trends. Experimental setup is as described in Section 3.2.3,
in which trials comprise sets of one-hundred planning problems; in each one, the curvature-
constrained robot attempts to navigate through randomly generated 2D environments, each based
on a query comprising start and goal poses. The robot moves continuously while replanning a
local path. A heuristic function selects goal-directed paths. In order to assess the effect of
various path sampling strategies, we varied two parameters: obstacle density, and replan cycle
time. Fig. 6.11 shows a screen capture of our simulator, indicating known collision sites (in
C-space) and ranges of effect. We consider four path sampling strategies:
• Low dispersion—sequence generated by Green and Kelly [48]
• Avoid obstacles—pure exploitation; sample as far as possible from obstacles
• Find boundaries—pure exploration; selects maximum entropy path
• Hybrid approach—combines “avoid obstacles” and “find boundaries” strategies.
We present results on three of the strategies in Fig. 6.12. We see an increase in safe paths

produced per unit time for both pure obstacle avoidance (up to 7.8x) and the hybrid approach (up

72

Figure 6.11 Simulator depiction of locality model, showing: collision-free paths (blue), known collision
sites (red dots), and their ranges of effect (concentric semicircles). Note that the dots correspond to the
nearest edge of each C-space obstacle—the point most relevant from the robot’s current pose. Not all
obstacles (black) are relevant to the current local plan.

to 3x), compared to a fixed low dispersion sequence. However, pure obstacle avoidance sampling
suffers a drop in performance at solving planning queries, which the hybrid approach overcomes.
Note that the low-dispersion sampler actually declines slightly in performance as more samples
are allowed, which is consistent with the non-monotonicity property earlier results. The hybrid
planner shows a trend of increasing performance as it improves its locality model.

6.8 Summary
In real time planning, performance is sensitive to the computational cost associated with collision
testing. Alternatives that alleviate some of that computation can be beneficial, provided that
such alternatives are computationally efficient themselves. In this chapter, we present a strategy
for informed path sampling that guides the search away from obstacles and towards safe or
unexplored parts of the workspace. Although obstacle information is already available to the
planner in costmap form, we obtain a significant increase in performance by representing the
most salient subset of those obstacles in a more immediately accessible form.

We utilize a proximity look-up table to accelerate this process. Even so, our statistical model
describing nearby obstacles and their relationship is necessarily simple. This model makes use of
the principle of locality to search appropriately far from obstacle locations already discovered in
prior collision tests to maximally reduce uncertainty. Using our probabilistic locality model, we
trade off between exploration and exploitation in order to discover a variety of safe paths while
largely avoiding searching colliding paths.

73

(a)
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra
ct
io
n
 o
f
T
e
st
e
d
 P
a
th
s
C
o
lli
si
o
n
-F
re
e

Replan Cycle Time (sec)

Low Dispersion
Avoid Obstacles
Hybrid Method

(b)
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
u
cc
e
ss
 R
a
te

Replan Cycle Time (sec)

Low Dispersion
Avoid Obstacles
Hybrid Method

Figure 6.12 All tests in these plots were run at an obstacle density of 2%. (a) The locality model provides
up to a 7.8x increase in the fraction of paths collision-free per replan cycle. As replan cycle time increases,
we see regression toward the mean, as a larger total fraction of available paths are collision tested. After 0.4
secs, the low-dispersion approach has tested on average 90% of all paths, the “avoid obstacles” strategy
has tested 45%, whereas the hybrid method has tested only 8% of available paths. (b) In success rate
at solving planning queries, we see that the “avoid obstacles” strategy suffers in performance, whereas
the hybrid approach, which strikes a balance between exploration and exploitation of the locality model,
performs increasingly well as it has more time to gather information.

74

Chapter 7

Collision Testing

The bottleneck in path testing is collision checking [125]. In this chapter, we introduce a novel
approach that delivers a significant increase in path set collision-testing performance by exploit-
ing the fundamental geometric and topological structure of paths. This work was first presented
by Knepper et al. [81].

We introduce an equivalence relation intuitively resembling the topological notion of homo-
topy. Two paths are path homotopic if a continuous, collision-free deformation with fixed start
and end points exists between them [103]. Like any path equivalence relation, homotopy parti-
tions paths into equivalence classes. Different homotopy classes make fundamentally different
choices about their route amongst obstacles. However, two constraints imposed by mobile robots
translate poorly into homotopy theory: limited sensing and constrained action.

The robot may lack a complete workspace map, which it must instead construct incrementally
from sensor data. Since robot perception is limited by range and occlusion, a robot’s understand-
ing of obstacles blocking its movement evolves as it moves. A variety of sensor-based planning
algorithms have been developed to handle such partial information. Obstacle avoidance meth-
ods, such as the potential fields of Khatib [78], the vector field histograms of Borenstein and
Koren [15], and the curvature-velocity method of Simmons [129], are purely reactive. The bug
algorithm by Lumelsky and Stepanov [99], which generates a path to the goal using only a con-
tact sensor, is complete in two dimensional spaces. A planner using the hierarchical generalized
Voronoi graph, a roadmap with global line-of-sight accessibility proposed by Choset and Burdick
[29] achieves completeness in higher dimensions using range readings of the environment. Yu
and Gupta [149] propose a planner that iteratively constructs a probabilistic roadmap in response
to partial sensed information about the world. Actions are selected on the basis of maximizing
information gain for future plan steps. Our local planner resembles these algorithms in that it
reacts to local obstacles while receiving global guidance about the direction to the goal.

If a robot is tasked to perform long-range navigation, then it must plan a path through ini-
tially unsensed regions. In a hierarchical planning context, a low-fidelity global planner (i.e. one
ignoring constraints) generates this path because we prefer to avoid significant investment in this
plan, which will likely be invalidated later. Path homotopy, in the strictest sense, requires global
knowledge of obstacles because homotopy equivalent paths must connect fixed start and goal
points.

Relaxing the endpoint requirement of homotopy avoids reasoning about the existence of far-

75

Figure 7.1 Motivation for a local equivalence relation. left: Paths from a few distinct homotopy classes
between the robot and the goal. The distinctions between some classes require information that the robot
has not yet sensed (the gray area is out of range or occluded). middle: With paths restricted to the sensed
area, they may freely deform around visible obstacles. right: After restricting path shape to conform to
motion constraints, we get a handful of equivalence classes that are immediately applicable to the robot.

away, unsensed obstacles. In naively relaxing a fixed endpoint, our paths might be permitted to
freely deform around obstacles, making all paths equivalent (see Fig. 7.1). To restore meaningful
equivalence classes, we propose an alternate constraint based on path shape. Such path shape
constraints stem from the nonholonomic motion constraints inherent to many mobile robots.
Laumond [91] first highlighted the importance of nonholonomic constraints and showed that
feasible paths exist for a mobile robot with such constraints. Barraquand and Latombe [6] created
a grid-based planner that innately captures these constraints. LaValle and Kuffner [94] proposed
the first planner to incorporate both kinodynamic constraints and random sampling. In contrast
to nonholonomic constraints, true homotopy forbids restrictions on path shape; two paths are
equivalent if any path deformation exists between them. By restricting our paths to bounded
curvature (or similarly, bounded controls), we represent only feasible motions while limiting
paths’ ability to deform around obstacles. The resulting set of path equivalence classes is of
immediate importance to the planner (Fig. 7.1). The number of choices represented by these
local equivalence classes relates to Farber’s topological complexity of motion planning [37].

Various planners have employed equivalence classes to reduce the size of the search space.
In task planning, recent work by Gardiol and Kaelbling [44] has shown that equivalence classes
of actions can be used to eliminate redundant search. In motion planning, path equivalence often
employs homotopy. A recent paper by Bhattacharya et al. [12] provides a technique based on
complex analysis for detecting homotopic equivalence among paths in 2D. Two papers employ-
ing equivalence classes to build probabilistic roadmaps [72] are by Schmitzberger et al. [127]
and Jaillet and Siméon [64]. The latter paper proposes the visibility deformation, a departure
from true homotopic equivalence that restricts continuous deformation to line-of-sight visibility
between paths. We propose here a different variation on homotopy. Not only do we restrict
continuous deformation between paths, but we also fix path length to create a purely local path
equivalence relation.

Our key insight in this chapter is that this local path equivalence reveals shared outcomes in
collision-testing. Specifically, two equivalent neighboring paths represent swept volumes of the
robot that cover some common ground in the workspace. Between them lies a continuum of paths
whose swept volumes are covered by the first two. We develop the mathematical foundations to
detect equivalence relations among all local paths based on a finite precomputed path set. We

76

then utilize these tools to devise efficient algorithms for detecting equivalence and implicitly
collision-testing local paths (circumventing the normal, expensive test).

7.1 Algorithms
In this section, we present two new algorithms for path classification and implicit path collision-
testing. We also borrow a path set generation routine from prior work.

7.1.1 Path Set Generation
We use the greedy path set construction technique of Green and Kelly [48], outlined in Alg. 3.
Recall that the algorithm iteratively builds a path set sequence {P1, . . . ,PN} by drawing paths
from a densely-sampled source path set, PN ⊂ X , the continuum path space. At step i, it selects
the path p ∈ PN that minimizes the dispersion (Def. 4) of Pi = Pi−1 ∪ {p}.

The Green-Kelly algorithm generates a sequence of path sets Pi, for i ∈ {1, . . . , N}, that has
monotonically decreasing dispersion. In seeking a path to execute, the local planner algorithm
(Alg. 1) searches paths in this order, thus permitting early termination while ensuring that a
low-dispersion set of paths is collision tested. Note that although the source set PN is of finite
size—providing a lower bound on dispersion at runtime—it can be chosen with arbitrarily low
dispersion in X a priori.

7.1.2 Path Classification
We present Alg. 4, which classifies collision-free members of a path set. Recall the Hausdorff
metric, which is central to the algorithm. Intuitively, this metric returns the largest amount of
separation between two paths in the workspace. From Munkres [103]:

µH(pi, pj) = inf
ε
{pi ⊂ (pj)ε and pj ⊂ (pi)ε}, (7.1)

where (p)r denotes dilation of p by r: {t ∈ R2 : ‖tp − t‖L2 ≤ r for some tp ∈ p}. Note that µH
satisfies all properties of a metric [53]. For our fixed path set generated by Green-Kelly and a
given d, we precompute each pairwise path metric value of (7.1) and store them in a lookup table
for rapid online access.

Alg. 4 performs path classification on a set of paths that have already tested collision-free at
runtime. We form an equivalence graph G = (V,E) in which node vi ∈ V corresponds to path
pi. Edge eij ∈ E exists, joining nodes vi and vj , when this relation holds:

µH(pi, pj) ≤ 1, (7.2)

where d is the diameter of the robot. This condition is true when two paths are separated by at
most one robot diameter. Taking the transitive closure of this relation, two paths pa and pb are
equivalent if nodes va and vb are in the same connected component of G (Fig. 7.2).

In effect, this algorithm constructs a probabilistic roadmap (PRM) in the path space instead
of the conventional configuration space. A query into this PRM tells whether two paths are

77

Figure 7.2 Computing path equivalence. A simple path set, in which obstacles (black) eliminate colliding
paths. The collision-free path set has three equivalence classes (red, green, and blue). In the corresponding
graph representation, at right, adjacent nodes represent proximal paths. Connected components indicate
equivalence classes of paths.

equivalent. As with any PRM, a query is performed by adding two new graph nodes vs and vg
corresponding to the two paths. We attempt to join these nodes to other nodes in the graph based
on (7.2). The existence of a path connecting vs to vg indicates path equivalence.

7.1.3 Implicit Path Safety Test
There is an incessant need in motion planning to accelerate collision-testing, which may take up
to 99% of total CPU time [125]. During collision-testing, the planner must verify that a given
swath is free of obstacles.
Definition 11 (safe) We say a path is safe if its swath contains no obstacles. 2

In testing many swaths of a robot passing through space, most planners effectively test the
free workspace many times by testing overlapping swaths. We may test a path implicitly at sig-
nificant computational savings by recalling recent collision-testing outcomes and circumventing
new collision tests whenever possible. We formalize the idea in Alg. 5, which is designed to be
invoked from Alg. 2, line 4 in lieu of the standard path test routine.

The implicit collision-test condition resembles the neighbor condition (7.2) used by Alg. 4,
but it has an additional “Is Between” check, which indicates that the swath of the path under
test is fully covered by two collision-free neighboring swaths. The betweenness trait can be
precomputed and stored in a lookup table. Given a set of safe paths, we can quickly discover
whether any pair covers the path under test. Experimental results show that this algorithm allows
us to test up to 90% of paths implicitly, thus increasing the path evaluation rate by up to 300% in
experiments.

7.2 Foundations
In this section, we establish the foundations of an equivalence relation on path space based on
continuous deformations between paths. We then provide correctness proofs for our algorithms
for classification and implicit collision-testing.

78

Algorithm 4 D ←Equivalence Classes(Pfree, d)
Input: Pfree – a set of safe, appropriate paths; d – the diameter of the robot
Output: D – a partition of Pfree into equivalence classes (a set of path sets)

1: Let G = (V,E)← (∅, ∅)
2: D ← ∅ // Partition of paths into classes (represented by a set of sets)
3: for all pi ∈ Pfree do // This loop discovers adjacency
4: V.add(pi) // Add a graph node corresponding to path pi
5: for all pj ∈ V \ {pi} do
6: if µH(pi, pj) ≤ 1 then
7: E.add(i, j) // Connect nodes i and j with an unweighted edge
8: end if
9: end for

10: end for
11: S ← Pfree // Unclassified paths
12: while S 6= ∅ do // This loop finds the connected components
13: C ← ∅ // Next connected component
14: p← a member of S
15: L ← {p} // List of nodes to be expanded in this class
16: while L 6= ∅ do
17: p← a member of L
18: C ← C ∪ {p} // Commit p to class
19: S ← S \ {p}
20: L ← (L ∪ V.neighbors(p)) ∩ S
21: end while
22: D ← D ∪ {C}
23: end while
24: return D

We are given a kinematic description of paths. All paths are parametrized by a common initial
pose, common fixed length, and individual curvature function. Let κi(s) describe the curvature
of path i as a function of arc length, with max0≤s≤sf

|κi(s)| ≤ κmax. Typical expressions for
κi include polynomials, piecewise constant functions, and piecewise linear functions. The robot
motion produced by control i is a feasible path given by

 θ̇i(t)
ẋi(t)
ẏi(t)

 =

 κi(t)
cos θi(t)
sin θi(t)

 . (7.3)

Definition 12 (feasible) A feasible path has bounded curvature (implying at leastC1 continuity)
and fixed length. The set F(sf , κmax) contains all feasible paths of length sf and curvature
|κ(s)| ≤ κmax. 2

79

Algorithm 5 b←Test Path Implicit(p, w, S, d)
Input: p is a path to be tested
Input: w is a costmap object // used as a backup when path cannot be implicitly tested
Input: S is the set of safe paths found so far
Input: d is the diameter of the robot
Output: b – boolean indicating whether path is safe

1: for all pi, pj ∈ S such that µH(pi, pj) ≤ 1 do
2: if p.Is Between(pi, pj) then // p’s swath has been tested previously
3: sf ← p.Get End Point()
4: collision← w.Test Point(sf) // endpoint may not be covered by swaths
5: return collision
6: end if
7: end for
8: return w.Test Path(p) // Fall back to explicit path test

7.2.1 Properties of Paths
In this section, we establish a small set of conditions under which we can quickly determine
that two paths are equivalent. We constrain path shape through two dimensionless ratios relating
three physical parameters. We may then detect equivalence through a simple test on pairs of
paths using the Hausdorff metric.

These constraints ensure a continuous deformation between neighboring paths while per-
mitting a range of useful actions. Many important classes of action sets obey these general
constraints, including the line segments common in RRT [94] and PRM [72] planners, as well as
constant curvature arcs. Fig. 5.1 illustrates some more expressive action sets that adhere to our
constraints.

The three related physical parameters are: d, the diameter of the robot; sf , the length of each
path; and rmin, the minimum radius of curvature allowed for any path. Note that 1/rmin = κmax,
the upper bound on curvature, is a constant. For non-circular robots, d reflects the minimal cross-
section of the robot’s swath sweeping along a path. We express relationships among the three
physical quantities by two dimensionless parameters:

v =
d

rmin
w =

sf
2πrmin

.

We only compare paths with like values of v and w. Fig. 7.3 provides some intuition on the effect
of these parameters on path shape. Due to the geometry of paths, only certain choices of v and
w are appropriate.
Definition 13 (appropriate) An appropriate path is a feasible path conforming to appropriate
values of v and w from the proof of Lemma 2. Fig. 7.3 previews the permissible values. 2

When the condition in (7.2) is met, the two paths’ swaths overlap, resulting in a continuum
of coverage between the paths. This coverage, in turn, ensures the existence of a continuous
deformation, as we show in Theorem 1, but first we formally define a continuous deformation
between paths.

80

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

w

v

1

*

*

*
v=0 w=1 v=1 w=0.17 v=0.5 w=0.5 v=1 w=1

*

w

v

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Path set
in Fig. 1

Figure 7.3 Appropriate paths. At top: several example paths combining different values of v and w.
Each path pair obeys (7.2). The value of v affects the “curviness” allowed in paths, whereas w affects
their length.
At bottom: this plot, generated numerically, approximates the set of appropriate choices for v and w. The
gray region at top right must be avoided, as we show in Lemma 2. Such choices would permit an obstacle
to occur between two safe paths that obey (7.2). A path whose values fall in the white region is called an
appropriate path.

Definition 14 (continuous deformation) A continuous deformation between two safe, feasi-
ble paths pi and pj in F(sf , κmax) is a continuous function f : [0, 1] → F(s−f , κ

+
max), with s−f

slightly less than sf and κ+
max slightly more than κmax. f(0) is the initial interval of pi, and f(1)

is the initial interval of pj , both of length s−f . 2

The length s−f depends on v and w, but for typical values, s−f is fully 95–98% of sf . For
many applications, this is sufficient, but an application can quickly test the remaining path length
if necessary. Nearly all paths f(c) are bounded by curvature κmax, but it turns out that in certain
geometric circumstances, the maximum curvature through a continuous deformation is up to
κ+
max = 4

3
κmax. This limit occurs in the event that a point on the medial axis has two nearest

neighbor points sharing curvature κmax in the same direction.
Definition 15 (equivalent) We write pi ∼ pj to indicate that a continuous deformation exists
between paths pi and pj , and they are therefore equivalent. 2

Definition 16 (guard paths) Two safe, feasible paths that define a continuous deformation are
called guard paths because they protect the intermediate paths. 2

In the presence of obstacles, it is not trivial to determine whether a continuous deformation
is safe, thus maintaining equivalency. Rather than trying to find a deformation between arbitrary
paths, we propose a particular condition under which we show that a bounded-curvature, fixed-

81

I I pe
pi
pj

Figure 7.4]
Paths pi, pj, and pe form boundary B. Its interior, I , contains all paths in the continuous

deformation from pi to pj . The set of paths in I illustrates the betweenness trait described in
Section 7.1.3.

length, continuous path deformation exists,

µH(p1, p2) ≤ 1 =⇒ p1 ∼ p2. (7.4)

This statement, which we prove in the next section, is the basis for Alg. 4 and Alg. 5. The
overlapping swaths of appropriate paths p1 and p2 cover a continuum of intermediate swaths
between the two paths. The equivalence relation, of which (7.4) detects local instances, is a
proper equivalence relation because it possesses each of three properties:
• reflexivity. µH(p, p) = 0; p is trivially deformable to itself.
• symmetry. The Hausdorff metric is symmetric.
• transitivity. Given µH(p1, p2) ≤ 1 and µH(p2, p3) ≤ 1, a continuous deformation can be

constructed from p1 to p3 passing through p2.

7.2.2 Equivalence Relation
We now prove (7.4); that is, we show that shape constraints indicated by v and w combined with
Hausdorff distance constraints are sufficient to ensure the existence of a continuous deformation
between two neighboring paths. Our approach to the proof will be to first describe a feasible
continuous deformation, then show that paths along this deformation are safe.

Given appropriate guard paths pi and pj with common origin, let pe be the shortest curve
in the workspace connecting their endpoints without crossing either path (pe may pass through
obstacles). The closed path B = pi + pe + pj creates one or more closed loops (the paths may
cross each other). In the case of a two-dimensional workspace, we employ the Jordan curve
theorem [103], which tells us that each loop partitions R2 into two sets, only one of which is
compact. Let I , the interior, be the union of these compact sets with B, as in Fig. 7.4.
Definition 17 (between) A path pc is between paths pi and pj if pc ⊂ I . 2

In the case of a three-dimensional workspace, it becomes necessary to select a 2D manifold
containing both paths, such that each path f(c) within the continuous deformation is entirely
contained within the manifold. In general, more than one such viable manifold exists. We
defer the selection of a specific manifold to later in this section. First, we show the existence
of a feasible continuous deformation between guard paths under specified conditions in two
dimensions.
Lemma 1 Given appropriate paths pi, pj ⊂ F(sf , κmax) with µH(pi, pj) ≤ 1, a path sequence
exists in the form of a feasible continuous deformation between pi and pj . 2

82

pi

pj

point of maximum curvature

Figure 7.5 In a continuous deformation between paths pi and pj , as defined by the level sets of (7.6), each
path takes the form of a weighted GVD. Upper bounds on curvature vary along the deformation, with the
maximum bound of 4

3κmax occurring at the medial axis of the two paths.

PROOF We provide the form of a continuous deformation from pi to pj such that each interme-
diate path is between them. With t a workspace point and p a path, let

γ(t, p) = inf
ε
t ∈ (p)ε (7.5)

g(t) =

{
[0, 1] if γ(t, pi) = γ(t, pj) = 0{

γ(t,pi)
γ(t,pi)+γ(t,pj)

}
otherwise,

(7.6)

where g(t) is a set-valued function to accommodate intersecting paths. Each level set g(t) = c for
c ∈ [0, 1] defines a weighted generalized Voronoi diagram (GVD) forming a path as in Fig. 7.5.
We give the form of a continuous deformation using level sets g−1(c); each path is parametrized
starting at the origin and extending for a length s−f in the direction of pe.

Let us now pin down the value of s−f , the length of intermediate paths pc. Every point ti
on pi forms a line segment projecting it to its nearest neighbor tj on pj (and vice versa). Their
collective area is shown in Fig. 7.6. Eqn. (7.2) bounds each segment’s length at d. s−f is the
greatest value such that no intermediate path of length s−f departs from the region covered by
these projections.

For general-shaped generators in R2, the GVD forms a set of curves meeting at branching
points [123]. In this case, no GVD cusps or branching points occur in any intermediate path.
Since d < rmin, no center of curvature along either guard path can fall in I [13]. Therefore, each
level set defines a unique path through the origin.

Each path’s curvature function is piecewise continuous and everywhere bounded. A small
neighborhood of either guard path approximates constant curvature. A GVD curve generated by
two constant-curvature sets forms a conic section [148]. Table 7.1 reflects that the curvature of
pc is everywhere bounded with the maximum possible curvature being bounded by 4

3
κmax. For

the full proofs, see [80]. Thus, each intermediate path pc is a feasible path. �

In order to extend our concept of continuous deformations to three dimensional workspaces,

83

pepc

p
i

p
j

Figure 7.6 Hausdorff coverage (overlapping red and blue shapes in center) is a conservative approximation
of swath coverage (gray). The Hausdorff distance between paths pi and pj is equal to the maximum-length
projection from any point on either path to the closest point on the opposite path. Each projection implies
a line segment. The set of projections from the top line (blue) and bottom line (red) each cover a solid
region between the paths. These areas, in turn, cover a slightly shorter intermediate path pc, in white, with
its swath in cyan. This path’s length, s−f is as great as possible while remaining safe, with its swath inside
the gray area.

Table 7.1 Conic sections form the weighted Voronoi diagram. κ1 and κ2 represent the curvatures of the
two guard paths, with κ1 the lesser magnitude. Let κm = max(|κ1|, |κ2|). For details, see [80].

Type Occurrence Curvature bounds of intermediate paths
line κ1 = −κ2 |κ| ≤ κm
parabola κ1 = 0, κ2 6= 0 |κ| ≤ κm
hyperbola κ1κ2 < 0, κ1 6= −κ2 |κ| ≤ κm
ellipse κ1κ2 > 0 |κ| < 4

3
κm

we recognize that the set of paths comprising the weighted GVD forms a 2D manifold containing
both guard paths:

M =
⋃

c∈[0,1]

g(c). (7.7)

This manifold is not the only legitimate container for a continuous deformation between paths.
The full discussion of continuous deformations in 3D is left as future work.
Lemma 2 Given safe, appropriate guard paths pi, pj ∈ F(sf , κmax) separated by µH(pi, pj) ≤
1, any path pc ⊂ F(s−f ,

4
3
κmax) between them is safe. 2

PROOF We prove this lemma by contradiction. Assume an obstacle lies between pi and pj . We
show that this assumption imposes lower bounds on v and w. We then conclude that for lesser
values of v and w, no such obstacle can exist.

Let sl(p, d) = {t ∈ R2, tp = nn(t, p) : tpt ⊥ p and ‖t − tp‖L2 ≤ d
2
} define a conservative

approximation of a swath, obtained by sweeping a line segment of length d with its center along
the path. tpt is the line segment joining tp to t and nn(t, p) is the nearest neighbor of point t on
path p. The two swaths form a safe region, U = sl(pi, d) ∪ sl(pj, d).

Suppose that U contains a hole, denoted by the set h, which might contain an obstacle. Now,
consider the shape of the paths that could produce such a hole. Beginning with equal position
and heading, they must diverge widely enough to separate by more than d. To close the loop in
U , the paths must then bend back towards each other. Since the paths separate by more than d,

84

p
i
h pj

h

pj
e p

i
e

h

(a) With bounded curvature, there is a lower bound
on path lengths that permit a hole, h, while satisfy-
ing (7.2), indicated by pe

i , the blue highlight. Shorter
path lengths ensure the existence of a safe continuous
deformation between paths.

pj
h

p
i
e

hs

D

(b) We compute the maximal path length that prevents
a hole using Vendittelli’s solution to the shortest path
for a Dubins car. Starting from the dot marked s, we
find the shortest path intersecting the circle D of ra-
dius rmin. The interval pe

i illustrates path lengths per-
mitting a hole to exist. Shorter paths leave some part
of ph

j uncovered.

Figure 7.7 Finding upper bound on path length.

there exist two open intervals phi ⊂ pi and phj ⊂ pj surrounding the hole on each path such that
(at this point) phi 6⊂ (pj)d and phj 6⊂ (pi)d. To satisfy (7.2), there must exist later intervals pei ⊂ pi
such that phj ⊂ (pei)d and likewise pej ⊂ pj such that phi ⊂ (pej)d, as in Fig. 7.7a.

How long must a path be to satisfy this condition? Consider the minimum length solution
to this problem under bounded curvature. For each point t ∈ phj , the interval pei must intersect
the open disc D = int((t)d), as in Fig. 7.7b. Since phj grows with the width of h, and pei must
intersect all of these open neighborhoods D, the path becomes longer with larger holes. We will
therefore consider the minimal small-hole case.

Vendittelli et al. [138] solve the shortest path problem for a Dubins car to reach a line segment.
We may approximate the circular boundary of D by a set of arbitrarily small line segments. One
may show from this work that given the position and slope of points along any such circle, the
shortest path to reach its boundary (and thus its interior) is a constant-curvature arc of radius
rmin. In the limit, as v approaches one and the size of h approaches zero, the length of arc
needed to satisfy (7.2) approaches π/2 from above, resulting in the condition that w > 0.48.
Thus, for w ≤ 0.48 and v ∈ [0, 1), pc is safe. For smaller values of v, D shrinks relative to rmin,
requiring longer paths to reach, thus allowing larger values of w as shown in the plot in Fig. 7.3.

We have shown that there exist appropriate choices for v and w such that (7.2) implies that U
contains no holes. Since U contains the origin, any path pc ∈ I emanating from the origin passes
through U and is safe. �

Theorem 1 Given safe, appropriate guard paths pi, pj ∈ F(sf , κmax), and given µH(pi, pj) ≤

85

1, a safe continuous deformation exists between pi and pj . 2

PROOF Lemma 1 shows that (7.6) gives a continuous deformation between paths pi and pj such
that each intermediate path pc ⊂ I is feasible. Lemma 2 shows that any such path is safe.
Therefore, a continuous deformation exists between pi and pj . This proves the validity of the
Hausdorff metric as a test for path equivalence. �

By chaining together continuous deformations between neighboring paths, we can demon-
strate that a continuous deformation exists between any pair of paths within an equivalence class
by following the correct sequence of edges of the equivalence graph. This property holds for
any paths in our discretely sampled set. It also applies for any other pair of paths satisfying the
shape constraints, provided that the discrete sampling is sufficiently dense. The existence of a
sufficiently dense path sampling is the subject of the next section.

7.2.3 Resolution Completeness of Path Classifier
In this section, we show that Alg. 4 is resolution complete. Resolution completeness commonly
shows that there exists a sufficiently high discretization of each dimension of the search space
such that the planner finds a path exactly when one exists in the continuum space. We instead
show that there exists a sufficiently low dispersion sampling in the infinite-dimensional path
space such that the approximation given by Alg. 4 has the same connectivity as the continuum
safe, feasible path space.

Let F be the continuum feasible path space and Ffree ⊂ F be the set of safe, feasible paths.
Using the Green-Kelly algorithm, we sample offline from F a path sequence PN of size N . At
runtime, using Alg. 2, we test members of PN in order to discover a set Pfree ⊂ PN of safe
paths.

The following lemma is based on the work of LaValle et al. [95], who prove resolution com-
pleteness of deterministic roadmap (DRM) planners, which are PRM planners that draw samples
from a low-dispersion, deterministic source. Since we use a deterministic sequence provided by
Green-Kelly, the combination of Alg. 2 and 4 generates a DRM in path space.
Lemma 3 For any given configuration of obstacles and any path setPN generated by the Green-
Kelly algorithm, there exists a sufficiently large N such that any two paths pi, pj ∈ Pfree are in
the same connected component of Ffree if and only if Alg. 4 reports that pi ∼ pj . 2

PROOF LaValle et al. [95] show that by increasing N , a sufficiently low dispersion can be
achieved to make a DRM complete in any given C-Space. By an identical argument, given a
continuum connected component C ⊂ Ffree, all sampled paths in C ∩PN are in a single partition
of Pfree. If q is the radius of the narrowest corridor in C, then for dispersion δN < q, our discrete
approximation exactly replicates the connectivity of the continuum freespace. �

Lemma 4 Under the same conditions as in Lemma 3, there exists a sufficiently largeN such that
for any continuum connected component C ⊂ Ffree, Alg. 2 returns a Pfree such that Pfree∩C 6=
∅. That is, every component in Ffree has a corresponding partition returned by Alg. 4. 2

PROOF Let Br be the largest open ball of radius r in C. When δN < r, Br must contain some
sample p ∈ PN . Since C is entirely collision-free, p ∈ Pfree. Thus, for dispersion less than r,
Pfree contains a path in C. �

86

There exists a sufficiently large N such that after N samples, PN has achieved dispersion
δN < min(q, r), where q and r are the dispersion required by Lemmas 3 and 4, respectively.
Under such conditions, a bijection exists between the connected components of Pfree and Ffree.
Theorem 2 Let D = {D1| . . . |Dm} be a partition of Pfree as defined by Alg. 4. Let C =
{C1| . . . |Cm} be a finite partition of the continuum safe, feasible path space into connected com-
ponents. A bijection f : D → C exists such that Di ⊂ f(Di). 2

PROOF Lemma 3 establishes that f is one-to-one, whereas Lemma 4 establishes that f is onto.
Therefore, f is bijective. This shows that by sampling at sufficiently high density, we can achieve
an arbitrarily good approximation of the connectedness of the continuum set of collision-free
paths in any environment. �

Finally, we move on to show that we can detect path safety while circumventing a collision
test.
Theorem 3 A path interval pc may be implicitly tested safe if it is between paths pi and pj such
that µH(pi, pj) ≤ 1 and a small region at the end of pc has been explicitly tested. 2

PROOF By Lemma 2, the initial interval of pc is safe because its swath is covered by the swaths
of the guard paths. Since the small interval at the end of pc has been explicitly tested, the whole
of pc is collision-free. �

7.3 Experimental Results
We present some simulation results involving equivalence class detection and implicit path colli-
sion testing. All tests were performed in simulation on planning problems of the type described
in Section 3.2.3. During navigation, the local planner is permitted to run for a fixed amount of
time within each replan cycle before executing its chosen path. A variable number of paths will
be tested each cycle depending on factors such as obstacle clutter and implicit path testing. In
some experiments, we vary the planning time allotted, whereas other experiments explore the
effects of obstacle density.

7.3.1 Classification Performance Overhead
Path classification imposes a computational overhead due to the cost of searching for neighboring
collision-free paths. Collision rate in turn relates to the density of obstacles in the environment.
Fig. 7.8 shows that the computational overhead of our classification implementation is nearly
20% in an empty environment but drops to 0.3% in dense clutter. It is in precisely such high-
clutter environments that the usefulness of classification is maximized since two arbitrary paths
are less likely to be equivalent amongst many obstacles. We now proceed to weigh these and
other benefits of path classification against its costs.

7.3.2 Collision Testing
Regardless of obstacle density, implicit collision-testing more than compensates for the overhead
of path classification. Fig. 7.9 shows the effect of implicit path testing on total paths tested in

87

0

2

4

6

8

10

12

14

16

18

20

0 0.005 0.01 0.015 0.02 0.025

C
la
ss
ifi
ca
tio
n
 P
e
rf
o
rm
a
n
ce
 O
ve
rh
e
a
d
 (
%
)

Obstacle Density

Figure 7.8 Path classification overhead is minimized in exactly those densely-cluttered problems where
its contribution is most valuable.

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2

P
a

th
s

C
o

lli
si

o
n

 T
e

st
e

d

Replan Cutoff Time (sec)

Implicit Path Evaluation
Explicit Path Evaluation

Figure 7.9 Paths tested per time-limited replan step in an obstacle-free environment. Increased replan time
corresponds with a larger effective path set size and greater path density. Path testing performance im-
proves by up to 3x with the algorithms we present here. Note that an artificial ceiling curtails performance
at the high end due to a maximum path set of size 2,401.

the absence of obstacles. We compare the implicit collision-tester of Alg. 5 against traditional
explicit collision-testing. As the time allotment for testing paths increases, the number of paths
collision-tested under the traditional algorithm increases linearly at a rate of 8,300 paths per
second. With implicit testing, the initial test rate over small time allotments (thus small path
set sizes) is over 22,500 paths per second. The marginal rate declines over time due to the
aforementioned overhead, but implicit path testing still maintains its speed advantage until the
entire 2,401-member path set is collision-tested. Note that this result occurs in the empty world
case, where overhead is most severe.

Fig. 7.10 presents implicit collision-testing performance in the presence of clutter. As obsta-
cle density increases, we expect overhead to drop, but it simultaneously becomes more difficult
to satisfy the necessary conditions for implicitly testing a path. Fixing the replan rate at an in-
termediate value of 10 Hz, we see that implicit path evaluation maintains an expected advantage

88

0

500

1000

1500

2000

2500

0 0.005 0.01 0.015 0.02 0.025

P
a
th
s
C
o
lli
si
o
n
-T
e
st
e
d
 in

 0
.1
 s
e
c

Obstacle Density

Implicit Path Evaluation
Explicit Path Evaluation

Figure 7.10 Paths tested per 0.1 second time step at varying obstacle densities. Implicit collision-testing
allows significantly more paths to be tested per unit time. Even in extremely dense clutter, implicit path
testing considers an extra 19% of paths on average. The right edge of the graph represents the maximum
density at which environments remain navigable. Error bars indicate 95% confidence.

across all navigable obstacle densities. In high clutter, this advantage is statistically less clear,
yet implicit path testing still outperforms explicit path testing with over 90% confidence at the
maximum tested obstacle density.

89

90

Chapter 8

Path Selection

A mobile robot navigating through the world faces two categories of choices. Where corridors
split from each other, there is a discrete decision problem. A robot approaching a decision point
at constant velocity has a limited time in which to freely select a corridor without the penalty
of backtracking. Such decisions trade off among length, complexity, and safety of routes to the
goal.

A different sort of choice is the continuous optimization involved in selecting a path while
traveling within a free space, such as in a corridor. In this case, the robot typically trades off risk
of collision with shortness of path. We illustrate these two types of choice in Fig. 8.1.

These two qualitatively distinct choices are reflected in the variety of approaches to motion
planning. Many planners decompose the continuum search space into a graph, thus transforming
the planning problem into a graph search (a discrete decision process). Early examples deter-
ministically decompose space into a regular grid, including Barraquand and Latombe [6], who
discretize the configuration space and action space to generate graph nodes and edges. Other
deterministic decision-based methods construct a graph adaptively based on the geometric shape
of obstacles, such as the work of Choset and Burdick [29]. In more recent years, probabilistic
planners have become popular. Algorithms like probabilistic roadmaps (PRMs) [72], rapidly
exploring random trees [93], and lazy PRMs [124] take advantage of the asymptotic low dis-
persion of random sequences to sample uniformly throughout complex and high-dimensional
configuration spaces without prescribing a fixed density a priori.

Another set of algorithms directly considers motion in the continuum. Khatib’s potential
fields [78] produce a smooth path in the C-Space by following the gradient of a function com-
bining weighted penalty terms for obstacle proximity with a reward term for progress toward the
goal. Through tuning the weights on these terms, a robot may achieve reasonable goal-directed
behavior, but the formulation is subject to local minima in of the potential field so that the robot
may fail to reach its goal. Rimon and Koditschek proposed the navigation function [121], which
assures a potential function free of local minima under certain geometric assumptions on obsta-
cles. Ratliff, et al. introduce CHOMP [115], which performs functional gradient descent on a
C-Space path to improve on an initial naive straight-line path by minimizing depth of penetration
into obstacles.

All of the above motion planning approaches view the problem as either purely discrete or
purely continuous. By contrast, there has been a limited amount of work on hybrid planners that

91

Figure 8.1 A navigating robot faces both discrete decisions (left) about which corridor to follow and
continuous optimization (right) over where in the corridor to drive. A planner or controller should be able
to consider these choices separately.

reason about both decision problems and optimization problems. The elastic bands of Quinlan
and Khatib [113] optimize an initial collision-free C-Space path generated by a discretizing grid
planner—using a functional gradient technique similar to CHOMP—to keep the path safely away
from obstacles, even if the obstacles move during execution. The elastic strips of Brock and
Khatib [18] operate similarly but in the robot’s workspace, thereby alleviating the problem of
high-dimensional search for highly articulated systems. Since elastic bands, elastic strips, and
CHOMP all operate by decoupling global planning and local optimization, they each tend to
find solutions within a single homotopy class. Similarly, potential field planners consider only
the basin of attraction containing the robot, thus selecting one homotopy class among many. If
the chosen class later degrades in quality (perhaps due to sensor noise or dynamic obstacles),
these algorithms have difficulty weighing the tradeoffs between further local optimization and
switching to a new homotopy class.

An alternative hybrid approach by Howard [56] first generates a graph with regular discretiza-
tion in the C-Space, then optimizes both nodes and edges in the graph to improve the quality of
potential paths. Only after optimization completes is a discrete graph search performed. This
approach elegantly balances the dual continuous/discrete choice, but this elegance comes at the
cost of expensive optimization on many paths that will never be executed by the robot, thus
potentially incurring significant up-front computation time prior to the onset of execution.

In this chapter, we introduce a planning algorithm that can simultaneously consider both
decision-type and optimization-type choices and even reason about tradeoffs between the two
types. The planner considers a set of locally-distinct routes—defined by an equivalence relation—
that capture the notion of decision points. It selects among those routes and also selects paths
within a route to optimize for safety, goal-directedness, and future flexibility in decision-making.

92

8.1 The Non-Monotonicity Problem
In Chapter 7, we show that local path equivalence can produce significantly more collision-free
paths per unit time than traditional collision testing. In order for increased paths to translate into
improved planner performance, a planner must exhibit monotonicity.
Definition 18 (monotonicity) Given a coarsely-sampled path set C and a densely-sampled path
set D such that C ⊂ D, a monotone planner performs at least as well using D as it does using C.
Thus, we may say that under a monotonicity assumption, D dominates C. 2

Monotonicity (or its opposite) is a function not of the path set per se but of the planner and
in particular of the heuristic function. In statistically-significant simulation experiments (see
Section 5.3), we find that the basic minimum-distance heuristic function is non-monotonic. We
believe this effect occurs due to the fact that D is expected to contain a more optimal path to
the goal than C—one that approaches closer to obstacles. In particular, D is likely to find risky
narrow corridors that C might miss entirely. Therefore, we must establish that the additional
paths contained in D can in fact be put to use in increasing navigation performance.

The architecture of the hierarchical planner is not amenable to the construction of a truly
monotonic heuristic function. Suppose that a base path set is augmented with one extra path.
In order to ascertain, during each replan iteration, whether the extra path should be selected in
lieu of the otherwise preferred path, a monotonic planner must be able to anticipate what choices
the heuristic function will make during successive cycles. The path chosen at each cycle has
potential downstream effects without bound. Therefore, monotonicity requires the planner to
determine that selecting the new path will not, for all time, result in a failure that would not
otherwise have occurred. However, the design of the hierarchical planner abstracts away the
high fidelity plan except in the immediate future. The global planner simulates robot motion at
low fidelity and so does not possess the ability to predict the effects of selecting a particular path.
Thus, any truly monotonic heuristic function would be impractical to implement in this context.
We can, however, use path equivalence to produce a heuristic function more closely resembling
the monotonic ideal.

Since the local planner has a limited horizon, the resulting planned route is a concatenation of
paths from the local and global planners. Only the local paths are feasible to execute directly on
the robot, so the local planner must replan at regular intervals to allow continued progress. Thus,
Alg. 1, the Local Planner Algorithm, outputs a sequence of paths, the concatenation of the initial
segments of which forms the true route. At the end of each replan cycle, the planner executes
the beginning of the route representing the least cost to the goal, a heuristic known as Best Path.
Using this heuristic, traditional hierarchical planners produce strongly goal-directed behavior
that comes with two drawbacks: temporal incoherence and excessive obstacle proximity.

8.2 The Temporal Incoherence Problem
Temporal incoherence occurs because the Best Path heuristic does not generate consistent be-
havior between replan cycles, meaning that there is no deliberate process to maintain certain
decisions throughout navigation. Often in hierarchical planning, the ultimate route executed by
the local planner algorithm is an emergent behavior because the planner lacks any continuity of

93

intent between consecutive replan cycles. We propose local path equivalence as a means of rep-
resenting such continuity. In choosing a sequence of local paths, local planners implicitly also
select a sequence of equivalence classes. This observation provides another perspective in which
to view local path equivalence: based on the limited information available to the local planner
within a given replan cycle, the planned routes of all equivalent paths are homotopic. We propose
a new algorithm to improve navigation performance by explicitly considering continuity within
each replan cycle.

In general, we would like each replan cycle to select a new path that closely resembles the
previous path, but such is not always the case. In Section 5.3, we proposed increasing the chance
of such an outcome with the Best Path heuristic by preserving the unexecuted remainder of the
previous path as a continuation (Def. 6), which is considered along with the ordinary path set
within subsequent cycles. Even so, on some occasions, consecutive replan cycles may switch
equivalence classes, thus selecting a new planned route. Best Path does not distinguish between
classes, so such switches may happen arbitrarily often. Frequent switching is typically associated
with perception noise. In especially noisy systems or where two planned routes are about equally
costly, the planner may rapidly alternate between routes, thus effectively following an unplanned
and undesirable path directly towards the obstacle separating the two routes.

8.3 The Obstacle Proximity Problem
Obstacle proximity, the second drawback incurred by Best Path, risks the safety of the robot
in cases of outside disturbance or internal prediction error. From a planning perspective, nearby
obstacles also substantially reduce the quantity and diversity of safe paths available in subsequent
replan cycles.

Two related approaches to the problem of decreasing robot proximity to obstacles have been
in use for many years. The first approach involves “growing” the obstacles using a hard buffer,
first proposed by Buhmann et al. [19], which runs the risk of closing off narrow openings. This
problem is partially ameliorated by making the obstacle growth-radius vary in proportion to robot
speed.

The second approach involves placing a soft buffer around each obstacle in the form of a
gradient of elevated cost, such that cost varies inversely with obstacle proximity. This approach
was first proposed by Thorpe [134]. Although this approach does not eliminate options from
consideration, it is difficult to predict how a given cost function will affect decisions between
corridors.

The drawback of both approaches is that they couple two distinct decisions: which route
(equivalence class) to follow, and how to proceed (which path in the class) along that route.
These decisions are of qualitatively different character because continual fine-tuning is possible
throughout the traverse of a corridor, but the choice of corridor to be traversed requires a discrete
decision that soon becomes irreversible (Fig. 8.1). To understand why this coupling is important,
consider a decision between narrow and wide corridors. Clearly, the wide corridor is safer, but
it may also be significantly more circuitous. There is a tradeoff between corridor width and path
length, but both of the prior approaches handle the tradeoff in ways that are difficult to engineer
or tune, thus leading to undesirable emergent behavior.

94

8.4 Improved Hierarchical Planner

We introduce a new multi-stage path selection algorithm that separates these two decisions, thus
allowing them to be weighed separately and traded off against one another. This process in
turn improves planning and control flexibility, increasing continuity of plans, and retaining goal-
directedness. Through application of a set of rules based on path equivalence (applied both
within and across replan time steps), the algorithm selects paths for execution that guide the
robot sufficiently far from obstacles while moving consistently towards the goal.

8.5 Logical Succession Path Relation

In Chapter 7, we demonstrated the value of path equivalence in a single replan cycle. We now in-
troduce a relation on path equivalence classes to detect logical succession across multiple replan
cycles.
Definition 19 (logical succession) Logical succession is a strict partial ordering among equiv-
alence classes A� B such that some paths pA ∈ A and pB ∈ B exist for which µH(pA, pB) ≤ 1
and A was generated in an earlier replan time step than B. 2

This definition establishes that two paths covering largely the same terrain but produced by
different replan cycles can be said to follow the same route. The definition assumes a small time
increment between replan cycles, such that little ground is covered in the interim. For larger
steps, the definition would instead need to compare the end of pA to the start of pB. Of course,
the pairwise logical succession property can be precomputed for our fixed path set in order to
optimize performance.

In considering a new path for execution, logical succession provides a powerful tool for a
planner to distinguish between paths that represent major and minor alterations to the prior plan.
Suppose the planner just executed path pi at time step t−1. We initially choose to consider at time
t only those paths pj such that [pi] � [pj], where [p] describes the equivalence class containing p.
This restriction provides continuity of plan. Often, each equivalence class has only one logical
successor at the following replan time step. However, merges and splits may occur at critical
points along the robot’s traverse (Fig. 8.2). When the planner detects a split, it is important to
select the branch that maximizes success, given the locally-available information.

8.6 Multistage Path Selection Algorithm

We introduce the multistage local planner algorithm (Alg. 8) to make principled path selections
that trade off among the issues of logical succession, safety, and estimated path length to the
goal. At a high level, the algorithm consists of two stages. Stage one selects for consideration a
subset of Pfree comprising one or more equivalence classes in order to ensure progress, safety,
and consistency. Stage two selects from among the chosen subset one path for execution that
trades off safety and cost of the path, while retaining goal-directedness.

95

Figure 8.2 Between replan cycles, safe paths are associated by a logical succession of equivalence classes.
This strict partial ordering relation is represented by a directed acyclic graph. Graph edges represent the
relationship P1 � P2. Graph node colors (and matching equivalence class path colors) are conserved in
consecutive replan cycles only for the largest logical successor class. Between cycles, we may detect a
termination, split, merge, or continuation of the previous equivalence classes. By preferring the logical
successor of the previously-commanded path, subsequent path selections give better performance.

8.6.1 Stage One: Solving the Decision Problem
In generally preferring to execute a new path that is a logical successor to the previously chosen
equivalence class, we largely eliminate sensitivity to noisy perception data. Two exceptions
arise in which the algorithm will not execute a logical successor path. First, if a non-successor
equivalence class predicts a significantly lower cost to the goal, then the planner switches classes
on the assumption that the magnitude of the change exceeds that of likely perception noise.
Second, we allow the algorithm to consider broader alternatives—whether more or less costly—
if all logical successor classes terminate or become narrow.
Definition 20 (narrow) A narrow equivalence class contains few paths. We employ path count
as a proxy for the measure of a corridor in path space. Thus, a low path count indicates little
space to maneuver the robot through a narrow corridor. Non-narrow classes are called wide. 2

We define a constant fraction, MIN PATH THRESH, which adaptively selects the cutoff in
corridor width as a percent of the number of paths in Pfree. Thus, the more densely we sample
the space of paths, proportionately more paths are required to constitute a wide corridor. Even
when densely sampling the path space, a highly cluttered environment may eliminate all but a
few paths through collision with obstacles. In such a case, a passage containing relatively few
paths may still be to be considered “wide” in comparison to others with fewer paths.

This concept of wide and narrow corridors closely resembles that of Borenstein and Koren
[15]. Their vector field histogram represents obstacle density projected down to one dimension
corresponding to heading. Sparse regions of the histogram indicate corridors, but due to the

96

narrow,

non-progressing

wide, non-progressing

wide,

progressing

narrow,

progressing

GOAL

Figure 8.3 These four equivalence classes are annotated as to whether each is narrow or wide and pro-
gressing or non-progressing. Width is measured by the number of paths in the class as a fraction of all
surviving paths, whereas progressivity describes whether its paths make progress towards the goal at left.

projection, only the component of corridor width perpendicular to that projection is recorded.
Our approach to corridor detection and width estimation is more general since it closely approx-
imates the full capabilities of the robot and is not limited to a particular obstacle configuration or
observational perspective.

Although Alg. 8 displays a preference for wide logical successor classes, it strictly selects
only progressing paths within a class for consideration.
Definition 21 (progressing) A progressing path is one for which both of the following two
points are nearer to the goal than is the current robot position, according to the global planner:

1. the point one replan time step in the future, and
2. the end point of the local path.

Fig. 8.3 illustrates equivalences classes that are wide, narrow, progressing, and non-progressing.
The progressing property is often shared by all paths in an equivalence class, but certain large
classes in the absence of clutter can have mixed progressivity. By executing only progressing
paths, we ensure that the robot monotonically approaches the goal, thus guaranteeing termina-
tion. Furthermore, by eliminating non-progressing paths during stage one, we are free to ignore
goal-directedness in stage two while still guaranteeing progress.

When testing progressivity in a real implementation, it may be preferable to consider only
criterion 2, a path’s endpoint, and ignore the next step. Recognizing that curvature-constrained
local paths need more space to maneuver than global grid paths, this relaxation provides the
planner additional safety and flexibility when navigating around sharp corners, at the expense of
termination guarantees.

In our implementation, Alg. 6 is used to eliminate nonprogressing paths and divide the rest
according to the narrow/wide dichotomy. Alg. 8 uses it as a helper function in establishing an
order of preference in selecting S, the set of paths for consideration. The net order of preference
is:

1. All wide, progressing, logical successor classes

97

Algorithm 6 (W ,N)←Divide Wide Narrow(C, t)
Input: C – candidate set of classes; t – threshold size of class
Output: W – set of paths in wide classes; N – set of paths in narrow classes

1: W ← ∅
2: N ← ∅
3: for all C ∈ C do
4: if |C| > t then
5: W ←W ∪ C // Paths in wide classes
6: else
7: N ← N ∪ C // Paths in narrow classes
8: end if
9: end for

10: W ← Cull Nonprogressing Paths(W) // Omit paths that move robot away from the
goal

11: N ← Cull Nonprogressing Paths(N)
12: return (W ,N)

Algorithm 7 p←Optimize Path(x, h, e, p)
Input: x – initial state;

h – a heuristic function for selecting a path to execute;
e – equivalence object
p – seed path for optimization

Output: Return a path similar to p but safer
1: repeat
2: N ← e.Get Neighbors(p) ∪ {p}
3: p← h.Farthest Obstacle Path(x,N) // Select path in set farthest from nearest

obstacle
4: until p converges or p.obstacle proximity > 3

2
robot diameter

5: return p

2. Any wide, progressing class

3. All narrow, progressing, logical successor classes

4. Any narrow, progressing class

5. Return failure
After choosing a preliminary S, we must check if the planner has found a highly suboptimal
subset of paths; the algorithm compares the best path in S against the best path in Pfree. A
difference above a certain SCORE THRESH provokes a mid-course correction. Such a switch
of equivalence class should be a rare event.

In deciding when to override logical succession, we are making a choice with global im-
plications based on unreliable information from a low-fidelity global planner. Lacking detailed
knowledge of the complete path to the goal, we instead consider a calculation based solely on
the statistics of this environment’s average obstacle density, which predict that a narrow corridor

98

Algorithm 8 (p,L)←Multistage Local Planner Algorithm(w, x, h, e, P , L)
Input: w – a costmap object;

x – initial state;
h – a heuristic function for selecting a path to execute;
e – equivalence object;
P – a fixed set of paths;
L – equivalence class of path selected in prior call (initially ∅)

Output: p – a path progressing safely toward the goal;
L – equivalence class of p

1: Pfree ← Get Safe Progressing Paths(w, x,P) // May invoke implicit path test
2: b← h.Best Path(x,Pfree) // Greedy shortest path

// Stage 1: select equivalence classes for consideration; trade off succession and corridor
width

3: if L 6= ∅ then // Compute successor path candidates
4: C ← e.Get Logical Successor Classes(Pfree,L) // Returns a set of classes
5: (Ws,Ns)← Select Classes(C,MIN PATH THRESH× |Pfree|)
6: else
7: (Ws,Ns)← (∅, ∅)
8: end if
9: E ← e.Compute Equivalence Classes(Pfree)

10: (W ,N)← Select Classes(E,MIN PATH THRESH× |Pfree|) // Non-successor classes
11: ifWs 6= ∅ then
12: S ← Ws // Consider the set of wide successor classes if some exist
13: else ifW 6= ∅ then
14: S ← W // Prefer any wide, progressing class over a narrow successor
15: else if Ns 6= ∅ then
16: S ← Ns // Narrow successors are better than other narrow classes
17: else if N 6= ∅ then
18: S ← N // Last resort: take any path
19: else
20: return failure
21: end if
22: p← h.Best Path(x,S)
23: if p.score− b.score > SCORE THRESH then
24: S ← Pfree // Jump equivalence classes to a significantly shorter route
25: end if //

// Stage 2: Select one path from the set, trading off path length with safety
26: p← h.Best Path(x,S)
27: p← Optimize Path(x, h, e, p) // Find safe enough path in selected path set
28: L ← e.Class Of(p)
29: return (p,L)

99

“pinch point” should occur periodically at some frequency during traversal. Given a distance
remaining to reach the goal, we can estimate an expected number of risky narrow corridors re-
maining. SCORE THRESH should be chosen so that the decreased risk (stemming from the
shorter path length to the goal) of getting stuck in a future narrow corridor outweighs the imme-
diate risk involved in the current route change, which may itself jump to a narrower corridor.

8.6.2 Stage Two: Solving the Optimization Problem
After establishing a final set of candidate paths S, the algorithm moves on to stage two, which
selects a single path for execution. Initially, it finds the greedy Best Path option in S, but this
path may come unsafely close to an obstacle. Within the equivalence class containing the shortest
path, the subroutine Optimize Path performs a local, gradient-descent-type optimization in path
space by traversing the equivalence graph. This optimization, which generates a soft safety
buffer around obstacles, seeks to maximize the distance to the one nearest obstacle as described
in Alg. 7.

In especially wide corridors, the robot should be free to follow a reasonably short path, so the
obstacle proximity penalty decays to zero beyond 1.5 robot diameters. The proximity penalty
function is only defined with respect to the one nearest obstacle, so in a narrow corridor the
penalty is locally minimized by the path most nearly following the center of the corridor, thus
maximizing both safety and future planning options. Note that the algorithm will follow even an
extremely narrow corridor, provided that the route represents the best means to progress towards
the goal.

Ultimately, the algorithm we describe here improves on the original local planner algorithm
by executing an action that is safe, maximizes future planning/control options, and remains con-
sistent across replan cycles, all while retaining goal-directedness.

8.7 Experimental Results
We tested the multistage local planner algorithm (Alg. 8) over a variety of environments at a
range of obstacle densities in order to evaluate the effects on planner performance of awareness
of local equivalence classes. Experimental setup was the same as in Section 7.3, except that here
we tested the planner on 500 different planning problems for each obstacle density. Replan cycle
time for these experiments is 0.1 sec.

Fig. 8.4 shows success rate for the local planner algorithm (greedy) and multistage local plan-
ner algorithm (equivalence aware). The latter produces a statistically significant improvement of
7.6% at solving planning problems in dense clutter. Path length increases only negligibly, and
despite the extra path length, we find a decreased path cost, expressed as

c(p) =

∫
p

ds

od(p(s))
, (8.1)

where od(s) is the distance to the nearest obstacle from the given point along the path. Fig. 8.5
shows the mean absolute cost for each planner averaged over all runs, while Fig. 8.6 shows the
relative cost between the two planners. The overall mean change, shown with the solid red line,

100

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.005 0.01 0.015 0.02 0.025 0.03

S
u
cc
e
ss
 R
a
te

Obstacle Density

Local Planner Algorithm
Multistage Local Planner Algorithm

Figure 8.4 Improvement in overall planner success rate. At high clutter, Alg. 8 significantly outperforms
Alg. 1. Note that 0.03 obstacle density in the workspace corresponds to approximately 67% C-space
density.

indicates that the robot stays about twice as far from obstacles. We compared performance on
each test problem separately so the individual data-points (shown with blue crosses) represent
cost improvement normalized to the difficulty of the problem.

In contrast to the overall trend, a small fraction of the experiments showed cost worsening.
In roughly 2% of cases, skewed heavily towards the less dense environments, obstacle proximity
increased with the equivalence-aware planner. We attribute this phenomenon to the interplay
between choice and lookahead distance. In more open environments, the increased choice makes
it more tempting to stray from continuity of plan. At a different lookahead distance, the planner
may have understood its choices better, but there are of course significant costs to increased
lookahead. Making this tradeoff dynamically presents an interesting opportunity for future work.

101

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025 0.03

A
ve
ra
g
e
 T
o
ta
l P

la
n
 C
o
st

Obstacle Density

Local Planner Algorithm
Multistage Local Planner Algorithm

Figure 8.5 Absolute cost function penalizing obstacle proximity and path length.

0

50

100

150

200

250

300

350

0 0.005 0.01 0.015 0.02 0.025 0.03

C
o
st
 R
a
tio
 (
%
)

Obstacle Density

Mean Cost Ratio
Individual Tests
Baseline Ratio

Figure 8.6 Ratio of Best Path cost to multistage local planner algorithm cost. Lower is better. The cost of
an individual path from either planner represents the path integral of the reciprocal of obstacle proximity.
The overall mean cost improvement (solid red line) is about a factor of two, meaning that during navigation
the robot stays twice as far from obstacles, on average. The scatter plot (blue crosses) shows the individual
results for the 1838 experiments in which both planners successfully reached the goal.

102

Chapter 9

Extensions and Future Work

Thus far, we have examined the role that information reuse can play in the basic motion planning
process. Many of our examples employ simple models such as a mobile robot in the plane. We
now briefly turn to more complex systems and applications. We also discuss a number of other
avenues for future work in model-based hierarchical planning.

9.1 Path Sampling
In this thesis, we introduce a real-time adaptive path sampler that is informed by the outcome of
previous path tests. In the future, we plan to extend the planner to remember the locality model
between consecutive replan cycles in order to spare it from relearning the model each time. We
also note that we are disregarding the parts of a colliding path that test collision-free, which
would provide additional data to the locality model.

As we mentioned earlier, there is a tradeoff between depth and breadth of search in path
set design. The relationship between these traits and planning performance deserves significant
study. Adaptation of the path set, either online or offline, to adjust this tradeoff for performance,
is a promising area for future work.

More ambitiously, we remind the reader of our observation that the costmap is not an effec-
tive data format. A square grid is inefficient for the planner, which must integrate paths across
many grid cells to compute the safety and desirability of paths. Neither is the costmap an effi-
cient representation for the perception system, since sensors do not typically produce raw data
in a Cartesian format. We believe that a more suitable format of costmap could potentially rev-
olutionize robotics. After all, the planner spends the majority of its time essentially decoding
the costmap. Even more promising, we hypothesize that the costmap could be circumvented
entirely by putting perception data into a path space representation, thereby enabling the planner
to directly discover which paths are safe.

9.2 Mobile Manipulation
This thesis describes preliminary work on hierarchical planning for mobile manipulation. We
have reported results on a real robot for the decoupled navigation and arm planning problems.

103

We also demonstrated the combined mobile manipulation planner in simulation (Fig. 3.5). A
thorough examination of the coupled mobile manipulation planner running on HERB remains a
subject of future work. However, several other areas of future work present opportunities.

Bidirectional planners have been popular for a decade, particularly in the RRT community.
In interleaved planning and execution, bidirectionality has a different meaning since the robot
can only execute in the forward direction. However, we are already getting some benefit from
bidirectional planning, as we are sampling pullback goals (Section 3.3.1), from which we know
how to reach the ultimate goal. We believe this idea can be generalized to discover regions of
space from which a goal state is most reachable.

At present, the hand approaches a goal position in any arbitrary orientation, but we could
sample in fewer dimensions and constrain the palm or wrist to point towards a goal or other
nearby object. Then, as the hand moves closer to its goal, we can use distally-mounted cameras
to localize the target, providing improved position estimates while planning.

Finally, we would like to explore the planner’s failure modes in hopes of designing a global
planner which succeeds more often. Occasional failure is a fair price to pay for a planner that
works quickly and generates reasonable paths under most circumstances. In addition to these
benefits, the hierarchical planner offers reactivity to dynamic obstacles and nimble maneuvering
in cluttered environments.

9.3 A Rigid Body in 3D

Next, we address the application of local path equivalence to a rigid body in a 3D workspace,
such as an aircraft or spacecraft. Let us suppose this rigid body takes the form of a sphere (or can
be approximated as one). Two different paths, no matter how close together, are never sufficient
to establish path equivalence, as they were in two dimensions. Fig. 9.1 illustrates this fact. In
three dimensions, three paths are equivalent if each of their pairwise Hausdorff separations is
less than the radius of the robot. Fig. 9.2 depicts such a configuration of three paths and also
shows how to construct a continuous deformation between any pair. As in the 2D case, we can
perform implicit collision testing on a variety of paths. The region in which a fourth path must
reside to implicitly declare it collision-free is shown in Fig. 9.2.

One who is familiar with topology might question the value of path equivalence in three
dimensions because ordinary bounded obstacles do not induce additional homotopy classes.
However, this is where local path equivalence really shines. Since the planner has only local
knowledge, it cannot distinguish between a finite, long, skinny obstacle and an infinite, skinny
obstacle. For all practical purposes, the finite obstacle might as well be infinite.

9.4 Variable-Size Robots in 2D

In comparison to (7.1), we similarly define a normalized Hausdorff metric as

µH(pi, pj, d) = inf
ε
{pi ⊂ (pj)εd and pj ⊂ (pi)εd}. (9.1)

104

Figure 9.1 Two paths (red and green) of a spherical robot (gray) in a 3D workspace are insufficient to
establish equivalence. The bottom figure depicts a cross-sectional slice through the swept volumes of the
paths. Although two paths may be separated by less than one robot diameter, obstacles (black) may still
prevent a continuous deformation between the paths.

We now introduce a variant of the basic 2D mobile robot in which the robot’s size—still
approximated as a disc—varies as a function of path length. This scenario occurs in the mobile
manipulation problem, in which a mounted manipulator arm may extend out beyond the robot’s
own footprint. For example, the elastic strips of Brock and Khatib [18], when projected onto the
floor, closely resemble this variable-width robot. A radius function ri(`) expresses the robot’s
radius with respect to point pi(`) along path pi. We introduce the concept of proportional dilation,
in which the path width grows in accordance with its radius function:

(p)ri = {t ∈ R2 : ‖p(`)− t‖L2 ≤ ri(`) for some ` ∈ IL}, (9.2)

where IL = [0, L], with L the path length. Now a pair of nearby points on two neighboring paths
may possess distinct diameters, as in Fig. 9.3, thus giving rise to a new normalized Hausdorff
metric,

µvH(pi, pj, ri, rj) = max(argmin
ε

(∀`a ∈ IL,∃`b ∈ IL : (pi(`a))εri(`a) ∩ (pj(`b))εrj(`b) 6= ∅),

argmin
ε

(∀`a ∈ IL,∃`b ∈ IL : (pj(`a))εrj(`a) ∩ (pi(`b))εri(`b) 6= ∅)).

(9.3)

Intuitively, this variant of the Hausdorff metric finds the minimal scale factor for the two paths’
radius functions such that no gap remains between the two paths following proportional dilation.

105

Figure 9.2 Three paths (red, green, and blue) are required to establish path equivalence in 3D. The swept
volumes of the three paths are shown. To establish equivalence, we require that the Hausdorff distance
between each pair of paths must not exceed the robot’s radius. Given such proximity, one path may be
continuously deformed to another by following the dotted lines, without risk of intersecting the black
obstacles. Implicit collision testing may be performed on any fourth path discovered to be entirely inside
the gray star-shaped region at center.

Figure 9.3 Mobile robot paths with variable radius. The nearest point on the opposite path depends on
both the position and radius of each point along the path.

106

Following dilation, each point on either path is replaced by a disc. In order to ensure the above
condition, each disc on one path must intersect some disc on the opposite path.

Given some appropriate constraints on the shape of paths as well as their radius functions,
the equivalence relation on paths of variably-sized mobile robots then follows directly from the
fixed-diameter case:

µvH(p1, p2, r1, r2) ≤ 1 =⇒ p1 ∼ p2. (9.4)

Here, curvature bounds must apply to the boundary of the variable-diameter robot swath (Def. 3)
in addition to the path itself. However, in the case of a mobile manipulator, where the reach of
an arm is on the same order of magnitude as the mobile base diameter, this distinction is rarely
critical.

9.5 Articulated Robots
We similarly apply path classification to the trajectories of manipulator arms in 3D. At a high
level, the situation closely parallels the 2D mobile robot case we present in Section 7.1. Two
paths, separated by at most the diameter of the arm, are equivalent under certain shape and
proximity constraints. In contrast to a 2D rigid body, the central axis of the arm sweeps out a
2D manifold in the workspace, so points along our path are now parametrized by (s, `), where
s ∈ IS = [0, sf], a distance along the arm’s motion in the configuration space, and ` ∈ IL =
[0, L], a distance along the axis of the arm from base to end-effector. Thus, p(s, `) corresponds to
a particular workspace location along the arm’s axis while the arm is in a certain configuration.
A function r(`) describes the radius of a disc circumscribing a cross-section of the arm at a
point along its length. Note that radius is now a function function of arm length rather than
trajectory position. Note also that the disc is now normal to the arm axis, whereas in the 2D
shape-changing robot, it is coplanar with the path. Though nearly identical to (9.2), we define
proportional dilation in the context of a two-parameter path function,

(p)ri = {t ∈ R2 : ‖p(s, `)− t‖L2 ≤ ri(`) for some s ∈ Is and ` ∈ IL}. (9.5)

As in Section 9.4, we define a variant of the Hausdorff distance in the context of arm paths,

µaH(pi, pj, ri, rj) = max(argmin
ε

(∀(sal`a),∃(sb, `b) : (pi(sa, `a))εri(`a) ∩ (pj(sb, `b))εrj(`b) 6= ∅),

argmin
ε

(∀(sa, `a),∃(sb, `b) : (pj(sa, `a))εrj(`a) ∩ (pi(sb, `b))εri(`b) 6= ∅)),

where sa, sb ∈ IS and `a, `b ∈ IL. Note that this is a conservative expression for the distance
separating two arm trajectories.

In considering the possibility that an obstacle divides two arm trajectories, the semantics of
the application come into play. For example, objects in human spaces do not levitate, so in the
absence of highly dynamic objects such as a thrown ball, we may relax the tight constraints
imposed by by µaH . Instead, the two arm trajectories need only to completely surround a pocket
of space, meaning that their end-effector trajectories and end states overlap.

Next, we address constraints on arm path shape and length. Such concepts are inherently
much more nebulous than their mobile-robot equivalents due to the arm’s articulation—especially

107

for arms with revolute joints. It is difficult to pin down general, meaningful constraints on arm
path length and shape.

In principle, a useful measure of path length could be obtained by computing swept volume
of the arm. After all, in the case of a rigid body mobile robot, all swaths of a given length that
do not cross over themselves have equal length. In the case of manipulator arms (especially
those with revolute joints), many useful motions do involve swept volumes that “cross over
themselves,” so an alternate formulation of path length is needed. Just as the length of a mobile
robot path is found by integrating velocity, the length of an arm path may be found by integrating
a form of velocity as well. Given an arm path pi executed with unit C-Space speed, let vi(t, `)
be the workspace velocity of point pi(t, `) along the axis of the arm at time t. We propose two
alternative path length measures:

Lmean(i) =
1

L

∫ L

0

∫ sf

0

vi(s, `) ds d` (9.6)

Lmax(i) =

∫ sf

0

max
`∈IL

vi(s, `) ds (9.7)

In the case of a rigid body under arbitrary motion in R3, the mean and max path length are always
related by a factor between one and two. For an articulated chain, the factor may be greater.

We now move on to address path shape constraints for an arm. This issue is both complex
and mechanism-dependent. In previous work [84], we utilized path sets comprising straight lines
in C-Space. Of course, such “straight” trajectories can involve arbitrarily high curvature of some
point on the arm within the workspace. Given a sampling of such paths dense enough to estab-
lish path equivalence, it is not clear that the planner would often discover multiple equivalence
classes. It would therefore be left to a given manipulation application to further constrain path
sampling to a set of tasks useful for a given problem.

A few approaches worth exploring further include bounding the energy consumed in exe-
cuting a given path (after subtracting out torques associated with gravity compensation), and
retraction-based approaches. In the latter case, we propose to compare paths by utilizing retraction-
like reductions in dimensionality of a search space, such as those proposed by Choset and Bur-
dick [29], Sun and Lumelsky [132]. Under this reduction, any given path in the free configuration
space maps to a path in a one-dimensional set, which is the deformation retract of the freespace.
We can then employ such retracts as a graph-like roadmap and compare only paths whose cor-
responding graph paths are similar. For general articulated systems, this approach raises some
challenges of its own, such as the fact that in three or more dimensions, these one-dimensional
retracts are necessarily either not connected or have extra loops not corresponding to topological
features of the original freespace [30].

Despite these challenges, our path equivalence relation holds promise in the domain of mo-
tion planning for articulated robots, such as manipulator arms. For instance, even lacking con-
straints on path shape, it is possible to utilize µaH to accelerate collision testing. Although arms
pose greater challenges for satisfying the necessary conditions on proximity and betweenness,
the cost of each collision test is significantly higher for articulated robots than it is for rigid
bodies, so the gains remain potentially significant.

108

9.6 Steerable Needles
Steerable needles represent an application of local path equivalence to medical technology. Steer-
able needles are long, flexible, hollow needles with a bevel tip. During insertion, the bevel tip
causes the needle to follow a constant curvature path. The shaft of the needle may be twisted to
change the direction of curvature. Such needles can be used in medical procedures to reach soft
tissue anatomical features that would otherwise be inaccessible due to obstructing anatomy of a
hard (bone) or delicate (nerve, artery) nature. Steerable needles are interesting from a motion
planning perspective because they are underactuated, having only two velocity controls. One
may vary the rate of insertion and the rate of rotation about the axis of the needle. This twisting
motion alters the plane in which the needle bends [143].

During needle motion, uncertainty is introduced to the path primarily in the form of a random
variable added to the needle’s curvature. This uncertainty derives from the complexities of inter-
action with human tissue. Instantaneously, the uncertainty in position increases in the direction
of the vector normal to the needle within the plane of curvature. Meanwhile, the instantaneous
control inputs act primarily in vectors along the needle and normal to the plane of curvature. By
duty-cycling the needle, steering control can be applied to cancel out errors in curvature, thus the
needle can track arbitrary paths of bounded curvature [101].

Planners have been proposed for needle steering to account for uncertainty in both motion [2]
and localization [137]. It should be possible to extend many steerable needle planners using path
equivalence. The equivalence algorithms in this thesis assume that any path under consideration
may be chosen deterministically. Thus, the distribution of paths is purely a function of control
inputs. In the steerable needles context, the distribution among paths is generated by a combina-
tion of control and uncertainty. Consequently, we must find equivalence between entire groups
of paths across a probability distribution instead of between individual paths. Thus, steerable
needles constitute both a theoretical extension and a promising application for future work.

109

110

Chapter 10

Conclusion

This thesis focuses on the problems of generating, testing, and selecting candidate control-space
trajectories in real time in a local planner. High performance planning tasks demand predictive
models in order to generate feasible, collision-free workspace trajectories. Such feasible trajec-
tories can be followed without any kind of smoothing or post-processing. The challenge inherent
in model predictive planning is that the model maps controls to configuration space trajectories,
whereas path diversity is measured in the path space. Thus, the path diversity problem must
account for many paths passing through many configurations over time. We overcome this chal-
lenge through a combination of offline precomputation, clever online information management,
and a hierarchy of planners at varying levels of model fidelity, thus permitting the planner to
defer some computation until it is needed.

In all stages of motion planning, we exploit latent, freely available information to produce
measurable gains in planning performance. By several different methods, we are reusing infor-
mation previously generated or discovered. However, the key to realizing performance gains
from such information is representational. By storing information in the immediate form con-
sumed by the planner—a path space representation—we realize a substantial computational sav-
ings. And by maintaining only the data most relevant to the current planning problem, this path
space representation reduces the cost of search both in the form of collision testing and path
exploration.

In this thesis, we leverage path space representations of several forms. First, we perform
diverse path set generation offline and augment it with adaptive online path set generation in
order to increase the yield of high-quality, diverse path samples. By leveraging previous collision
tests and the principle of locality, we develop a model that predicts path test outcomes using path
space relationships. This model runs fast enough to “pre-test” many paths and select promising
candidate paths combining the properties of survival and diversity.

We also introduce a purely local path equivalence relation with applications in path testing
and path selection. We provide a method to rapidly identify equivalence among path samples
in order to classify those paths that survive a collision test. Given two members of the same
class, we show that a continuous deformation between them exists, which is both collision-free
and feasible. By recognizing that an untested path is continuously deformable to two other
equivalent, tested paths, the untested path may be “implicitly” tested, declaring it safe without
an expensive, explicit test. We show that up to 90% of paths may be implicitly tested, delivering

111

speedups of more than 300% in collision testing performance.
We also exploit the classification of safe paths during the path selection phase. Local path

classes afford the planner an opportunity to defer some choices until later in executing a path.
While the robot must commit to its first step prior to the onset of motion, it retains the flexibility
to optimize the unexecuted remainder of the path during future replan iterations. By executing a
path from a large equivalence class, the planner not only increases safety but also ensures greater
choice in the future, thus enhancing the robot’s ability to deal with unforeseen contingencies, all
while retaining goal-directedness.

This thesis explores themes of accelerating computation in motion planning. Using ap-
proaches presented here, a planner may provide more safe, feasible, diverse paths per unit time,
and it may select more intelligently among them. However, additional paths generated display
diminishing returns in corresponding plan quality.

The argument is often made that, due to improvements in processor speed, motion planning
performance accelerates for free with the passage of time. In the near term future, collision test-
ing will remain a majority of total planning time, and these approaches multiply any hardware
performance gains, thus retaining their advantage. In the more distant future, computing technol-
ogy may reach the advanced state in which a planner can generate and test a sufficiently dense
selection of paths by brute force alone while meeting realtime constraints. We show in this thesis
that the benefits of the multistage path selection algorithm actually increase as more paths are
tested. Thus, our contributions to heuristic path selection (specifically, in understanding the set
of discrete decisions facing a robot amongst obstacles) will likely have the greatest long-term
impact.

In addition, these algorithms generalize to a variety of scenarios and environments. We make
no assumptions about the robot’s dynamics or kinematics apart from determinism. We actually
benefit from added constraints that generate a meaningful form of path equivalence. Although we
depict robots with a ball shape, any shape is allowable, including articulated robots of arbitrary
shape. Another area of generalization comes in the context of path set frame. This work is pre-
sented in the robot-fixed frame for ease of presentation. However, all of the approaches discussed
in this thesis apply equally well to world-fixed planners. A planner such as RRT-Blossom [69]
would benefit equally well from many of these approaches. Likewise, our algorithms apply to
path sets comprising independent paths as well as path trees.

112

10.1 Contributions

• Model based planners. This thesis contributes to model based planners, which have been
employed in diverse environments, from office settings to hospitals to on-road driving to
unstructured rough terrain. By improving the ability of such planners to generate, test,
and select sets of diverse candidate paths, robots’ performance and responsiveness to their
environment will be increased.

• New mobile manipulation approach. We present a new approach to decoupling planning
in the high-dimensional configuration space of motion planning for mobile manipulation.
This algorithm works effectively and with low latency in common environments.

• Information reuse. We propose a set of practical algorithms for improving path set per-
formance at all stages of the planning process by exploiting readily available information
that has already been computed by the planner.

• Adaptive path sampling. We present a real-time algorithm to feed back path test results
in order to sample a diverse set of paths high likelihood of surviving the collision test. This
algorithm takes advantage of the principle of locality to select a combination of paths from
two classes: maximum-entropy paths optimize exploration of the locality model, while
maximum-safety paths optimize exploitation.

• Implicit collision test. Using the local path equivalence property, we efficiently detect
when the entire swath of a path under test has been previously tested by other surviving
paths. In such cases, the path can be declared implicitly safe without performing an ex-
plicit path test. Since path testing occupies a significant majority of overall planning time,
implicit path testing dramatically increases planning performance. We show an increase of
300% in safe paths generated per unit time.

• Multistage path selection. In order to take advantage of increased safe path output, we
present an improved path selection algorithm in two stages. In stage one, one or more
equivalence classes of paths are selected based on logical succession, corridor width, and
progressivity. Having selected only paths that make progress toward the goal, in stage two,
an individual path is selected for execution without regard to goal-directedness. Doing so
improves the safety of selected paths while ensuring forward progress. We show that the
multistage path selection algorithm eliminates the non-monotonicity problem and tempers
excessive goal-directedness.

• Empirical evaluation. We utilize several metrics to analyze the performance of path sets
and planning algorithms. We perform large quantities of tests in simulation in order to
produce statistically significant results.

• The principle of locality. We examine the principle of locality, which states that points
near known obstacle collision points tend to also be in collision with the same obstacle.
We propose a set of locality models to efficiently summarize and feed back obstacle infor-
mation that is most valuable to the planner in sampling future paths.

• Information management. Given the vast quantity of information available to a robot
through sensors and prior data, the management of that information is often a challenge.

113

We efficiently manage information, retaining only that which is most valuable to the future
planning process. Furthermore, we maintain data structures to keep the information in an
immediately usable form for the planner.

• Local path equivalence. We introduce a new form of equivalence relation called local
path equivalence. This relation, based on a continuous deformation between paths, maps
a large set of scattered paths into a small set of contiguous regions free of obstacles. From
the context of a planner, these regions represent navigation alternatives. Thus, local path
equivalence provides the planner with a sophisticated tool for understanding the true route
options in highly-cluttered environments.

• Diverse costmaps. These algorithms address a variety of planner requirements, including
continuous-valued cost maps and binary cost maps.

• Precomputation. By utilizing fixed, precomputed, input-sampled path sets, we are able
to guarantee diversity under any possible initial state by precomputation. Furthermore,
we precompute many properties of these paths, such as metrics, betweenness, and nearest
neighbor queries.

• Efficient algorithms. All of the algorithms presented here are of polynomial complexity
with respect to path count and run in real time. Efficient run-time is the key to achieving
speedups throughout the planning process.

114

Bibliography

[1] T. Allen, J. Underwood, and S. Scheding. A path planning system for autonomous ground
vehicles operating in unstructured dynamic environments. In Proceedings of the Aus-
tralasian Conference on Robotics and Automation, 2007. 2.2

[2] R. Alterovitz, M. Branicky, and K. Goldberg. Motion planning under uncertainty for
image-guided medical needle steering. International Journal of Robotics Research, 27
(11–12):1361–1374, 2008. 9.6

[3] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: An obstacle-
based PRM for 3D workspaces. In Proceedings of the International Workshop on the
Algorithmic Foundations of Robotics, pages 155–168, Houston, TX, USA, March 1998.
6.2

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and approximation: combinatorial optimization problems and their ap-
proximability properties, pages 419–420. Springer, 1999. 4.2, 5.1

[5] A. Autere. Hierarchical a* based path planning–a case study. Knowledge-Based Systems,
15(1):53–66, 2002. 2.2

[6] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Controllabil-
ity and motion planning in the presence of obstacles. Algorithmica, 10(2-3-4):121–155,
1993. 7, 8

[7] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: controllability
and motion planning in the presence of obstacles. Algorithmica, 10(2–4):121–155, 1993.
4.3, 5.5

[8] R. Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60:503–516, 1954. 2.5

[9] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation planning on con-
straint manifolds. In Proceedings of the International Conference on Robotics and Au-
tomation, May 2009. 3.3.4

[10] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet Romea, and J. Kuffner. Manipulation
planning with workspace goal regions. In Proceedings of the International Conference on
Robotics and Automation, May 2009. 3.3.1

[11] W. H. Beyer, editor. CRC Standard Mathematical Tables and Formulae. CRC Press, Boca
Raton, FL, 1991. 6.5.1

115

[12] S. Bhattacharya, V. Kumar, and M. Likhachev. Search-based path planning with homotopy
class constraints. In Proceedings of the National Conference on Artificial Intelligence,
2010. 7

[13] H. Blum. A transformation for extracting new descriptors of shape. In Weiant Whaters-
Dunn, editor, Proceedings of the Symposium on Models for the Perception of Speech and
Visual Form, pages 362–380, Cambridge, Mass., 1967. MIT Press. 1

[14] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza, J. Derenick,
J. Spletzer, and B. Satterfield. Little ben: The ben franklin racing team’s entry in the 2007
DARPA urban challenge. Journal of Field Robotics, 25(9):598–614, 2008. 5

[15] J. Borenstein and Y Koren. The vector field histogram—fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991. 7, 8.6.1

[16] M.S. Branicky, R.A. Knepper, and J.J. Kuffner. Path and trajectory diversity: Theory and
algorithms. In Proceedings of the International Conference on Robotics and Automation,
Pasadena, CA, 2008. 5.2

[17] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human
environments. International Journal of Robotics Research, 21(12):1031–1052, December
2002. 2.3, 5.5.3

[18] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human
environments. International Journal of Robotics Research, 21(12):1031–1052, December
2002. 8, 9.4

[19] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann, F. E. Schneider, J. Strikos,
and S. Thrun. The mobile robot RHINO. AI Magazine, 16(2):31–38, 1995. 5, 8.3

[20] B. Burns and O. Brock. Information theoretic construction of probabilistic roadmaps.
In Proceedings of the International Conference on Intelligent Robots and Systems, Las
Vegas, NV, USA, October 2003. 6.2

[21] B. Burns and O. Brock. Sampling-based motion planning using predictive models. In Pro-
ceedings of the International Conference on Robotics and Automation, Barcelona, Spain,
April 2005. 6.2

[22] B. Burns and O. Brock. Single-query entropy-guided path planning. In Proceedings of
the International Conference on Robotics and Automation, Barcelona, Spain, April 2005.
6.2

[23] B. Burns and O. Brock. Toward optimal configuration space sampling. In Proceedings of
Robotics: Science and Systems, Cambridge, MA, USA, June 2005. 6.2, 6.4, 6.6

[24] E. F. Camacho and C. Bordons. Model predictive control. Springer Verlag, 2004. 2.4

[25] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion, manipulation
and task planning. The International Journal of Robotics Research, 28:104–126, 2009.
3.4

[26] S. Candido, Y. Kim, and S. Hutchinson. An improved hierarchical motion planner for
humanoid robots. In Proceedings of the Internaional Conference on Humanoid Robots,
Daejeon, Korea, December 2008. 2.2

116

[27] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory design.
In Proceedings International Conference on Intelligent Robots and Systems, pages 43–48,
2001. 2.4

[28] J. Choi and E. Amir. Combining planning and motion planning. In Proceedings of the
International Conference on Robotics and Automation, Kobe, Japan, May 2009. 3.4

[29] H. Choset and J. Burdick. Sensor based planning, part I: The generalized Voronoi graph.
In Proceedings of the International Conference on Robotics and Automation, pages 1649–
1655, 1995. 2.5, 7, 8, 9.5

[30] H. Choset and A. A. Rizzi. Topology in motion planning. In Proceedings of the Interna-
tional Symposium on Robotics Research, August 2005. 9.5

[31] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser, J. Rosenblatt, D. Tseng,
and V. Wong. Autonomous cross-country navigation with the ALV. In Proceedings of the
International Conference on Robotics and Automation, Philadelphia, PA, 1988. 2.2

[32] R. Diankov and J. Kuffner. Openrave: A planning architecture for autonomous robotics.
Technical Report CMU-RI-TR-08-34, Robotics Institute, Carnegie Mellon University,
July 2008. 3.3

[33] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959. 2.5

[34] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonomous driving
in unknown environments. In Proceedings of the International Symposium on Experimen-
tal Robotics, Athens, Greece, July 2008. 2.5, 3.3.3

[35] D.D. Dunlap, C.V. Caldwell, and E.G. Collins. Sampling-based model predictive control.
In Proceedings of the American Control Conference, Baltimore, MD, June 2010. 2.4, 5.5

[36] L.H. Erickson and S.M. LaValle. Survivability: Measuring and ensuring path diversity. In
Proceedings of the International Conference on Robotics and Automation, Kobe, Japan,
May 2009. 4.2, 4.2, 5.2

[37] M. Farber. Topological complexity of motion planning. Discrete & Computational Ge-
ometry, 29(2):211–221, 2003. 7

[38] D. Ferguson and A. Stentz. Field D*: An interpolation-based path planner and replanner.
In Proceedings of the International Symposium on Robotics Research, October 2005. 2.2,
2.5, 5.2

[39] R. Fikes and N. Nilsson. STRIPS: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971. 2.2

[40] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.
IEEE Robotics and Automation Magazine, 4(1):23–33, 1997. 2.2

[41] E. Frazzoli, M. A. Dahleh, and Eric Feron. Real-time motion planning for agile au-
tonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1), January–
February 2002. 5.5.2

[42] E. Frazzoli, M. A. Dahleh, and Eric Feron. Maneuver-based motion planning for nonlinear

117

systems with symmetries. IEEE Transactions on Robotics, 21(6), December 2005. 5.2

[43] M. Garber and M. C. Lin. Constraint-based motion planning using voronoi diagrams. In
Proceedings of the International Workshop on the Algorithmic Foundations of Robotics,
pages 541–558, 2002. 2.5

[44] N. H. Gardiol and L. P. Kaelbling. Action-space partitioning for planning. In Proceedings
of the National Conference on Artificial Intelligence, Vancouver, Canada, 2007. 7

[45] R. Alami R. Chatila S. Fleury M. Ghallab and F. Ingrand. An architecture for autonomy.
The International Journal of Robotics Research, 17:315–337, April 1998. 3.4

[46] A. Girard and G.J. Pappas. Hierarchical control system design using approximate simula-
tion. Automatica, 45(2):566–571, 2009. 2.2

[47] S. Goldberg, M. Maimone, , and L. Matthies. Stereo vision and rover navigation software
for planetary exploration. In Proceedings of the IEEE Aerospace Conference, pages 2025–
2036, 2002. 5, 5.2

[48] C. Green and A. Kelly. Toward optimal sampling in the space of paths. In Proceedings
of the International Symposium of Robotics Research, Hiroshima, Japan, November 2007.
4.2, 4.2, 5, 5.1, 6.3, 6.7, 7.1.1

[49] P. D. Grünwald and A. P. Dawid. Game theory, maximum entropy, minimum discrepancy
and robust bayesian decision theory. The Annals of Statistics, 32(4), 2004. 6.6

[50] J. Guitton and J.-L. Farges. Taking into account geometric constraints for task-oriented
motion planning. In Proceedings of the Workshop on Bridging the Gap Between Task and
Motion Planning at the International Conference on Automated Planning and Scheduling,
2009. 3.4

[51] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions of Systems Science and Cybernetics, 4(2):
100–107, July 1968. 2.5

[52] K. Hauser and J.-C. Latombe. Integrating task and PRM motion planning: Dealing with
many infeasible motion planning queries. In Proceedings of the ICAPS09 Workshop on
Bridging the Gap between Task and Motion Planning, 2009. 3.4

[53] J. Henrikson. Completeness and total boundedness of the Hausdorff metric. MIT Under-
graduate Journal of Mathematics, 1, 1999. 7.1.2

[54] C. Holleman and L. E. Kavraki. A framework for using the workspace medial axis in prm
planners. In Proceedings of the International Conference on Robotics and Automation,
pages 1408–1413, April 2000. 2.5

[55] T. Howard. Adaptive Model-Predictive Motion Planning for Navigation in Complex En-
vironments. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
August 2009. 5.5.3

[56] T. Howard. Adaptive Model-Predictive Motion Planning for Navigation in Complex En-
vironments. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
August 2009. 8

118

[57] T. Howard, C. Green, D. Ferguson, and A. Kelly. State space sampling of feasible motions
for high-performance mobile robot navigation in complex environments. Journal of Field
Robotics, 25(1):325–345, June 2008. 2.2, 5.5.1

[58] T. M. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled
mobile robots. The International Journal of Robotics Research, 26(2):141–166, February
2007. 2.4

[59] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic motion plan-
ning with moving obstacles. The International Journal of Robotics Research, 21(3):233–
255, March 2002. 5.5.2

[60] D. Hsu, T. Jiang, J. Reif, and Zheng Sun. The bridge test for sampling narrow passages
with probabilistic roadmap planners. In Proceedings of the Internatiooal Conference on
Robotics and Automation, Taipei, Taiwnn, September 2003. 6.2

[61] D. Hsu, G. Sánchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-sensitive adap-
tive strategy. In Proceedings of the International Conference on Robotics and Automation,
pages 3885–3891, 2005. 6.2

[62] D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic
roadmap planning. Intl. Journal of Robotics Research, 25(7):627–643, 2006. 6.2

[63] W. K. Hyun and I. H. Suh. A hierarchical collision-free path planning algorithm for
robotics. In Proceedings of the International Conference on Intelligent Robots and Sys-
tems, Pittsburgh, PA, USA, August 1995. 2.2

[64] L. Jaillet and T. Siméon. Path deformation roadmaps: Compact graphs with useful cycles
for motion planning. International Journal of Robotics Research, 27(11–12):1175–1188,
2008. 7

[65] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon. Adaptive tuning of the sampling
domain for dynamic-domain RRTs. In Proceedings of the International Conference on
Intelligent Robots and Systems, 2005. 6.2

[66] A. Jain and C. C. Kemp. Pulling open doors and drawers: Coordinating an omni-
directional base and a compliant arm with equilibrium point control. In Proceedings of
the International Conference on Robotics and Automation, pages 1807–1814, May 2010.
3.4

[67] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):
620–630, May 1957. 6.6

[68] L. P. Kaelbling and T. Lozano-Perez. Hierarchical planning in the now. In Proceedings of
the International Conference on Robotics and Automation, Shanghai, China, May 2011.
3.4

[69] M. Kalisiak and M. van de Panne. RRT-blossom: RRT with a local flood-fill behavior.
In Proceedings of the International Conference on Robotics and Automation, Orlando,
Florida, USA, May 2006. 2.4, 10

[70] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7):846–894, June 2011. 4.2, 4.2, 4.5,

119

5.5.2

[71] D. Katz, J. Kenney, and O. Brock. How can robots succeed in unstructured environments?
In Proceedings of Robot Manipulation: Intelligence in Human Environments at Robotics:
Science and Systems, Zurich, Switzerland, June 2008. 3.4

[72] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. In Proceedings of the International
Conference on Robotics and Automation, pages 566–580, 1996. 7, 7.2.1, 8

[73] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. Robotics and Automation, IEEE
Transactions on, 12(4):566–580, 1996. 5.5.2

[74] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via parametric op-
timal control. The International Journal of Robotics Research, 22(7-8):583–601, July-
August 2003. 2.4

[75] A. Kelly and A. Stentz. Rough terrain autonomous mobility - part 1: A theoretical analysis
of requirements. Autonomous Robots, 5(2):129–161, May 1998. 5.5

[76] A. Kelly and A. Stentz. Rough terrain autonomous mobility - part 2: An active vision,
predictive control. Autonomous Robots, 5(2):163–198, May 1998. 5, 5.5

[77] A. Kelly, A. Stentz, O. Amidi, M. W. Bode, D. Bradley, A. Diaz-Calderon, M. Hap-
pold, H. Herman, R. Mandelbaum, T. Pilarski, P. Rander, S. Thayer, N. M. Vallidis, and
R. Warner. Toward reliable off road autonomous vehicles operating in challenging envi-
ronments. International Journal of Robotics Research, 25(1):449–483, May 2006. 2.2,
5

[78] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Proceed-
ings of the International Conference on Robotics and Automation, St. Louis, USA, March
1985. 7, 8

[79] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Interna-
tional Journal of Robotics Research, 5(1):90–98, 1986. 1.1, 2, 2.3, 5.5.3

[80] R. A. Knepper, S. S. Srinivasa, and M. T. Mason. Curvature bounds on the weighted
Voronoi diagram of two proximal paths with shape constraints. Technical Report CMU-
RI-TR-10-25, Robotics Institute, Carnegie Mellon University, 2010. 1, 7.1

[81] R. A. Knepper, S. S. Srinivasa, and M. T. Mason. An equivalence relation for local path
sets. In Proceedings of the International Workshop on the Algorithmic Foundations of
Robotics, Singapore, December 2010. 7

[82] R.A. Knepper and M.T. Mason. Path diversity is only part of the problem. In Proceedings
of the International Conference on Robotics and Automation, Kobe, Japan, May 2009.
2.2, 4.4, 5.3

[83] R.A. Knepper and M.T. Mason. Empirical sampling of path sets for local area motion plan-
ning. In Proceedings of the International Symposium of Experimental Robotics, Athens,
Greece, July 2008. 2.2, 3.2, 4.4, 5.3

[84] R.A. Knepper, S.S. Srinivasa, and M.T. Mason. Hierarchical planning architectures for

120

mobile manipulation tasks in indoor environments. In Proceedings of the International
Conference on Robotics and Automation, Anchorage, AK, USA, May 2010. 3, 9.5

[85] S. Koenig and M. Likhachev. D*lite. In Proceedings of AAAI/IAAI, pages 476–483, 2002.
2.5

[86] Y. Koga and J.-C. Latombe. On multi-arm manipulation planning. In Proceedings of the
International Conference on Robotics and Automation, 1994. 3.4

[87] L. Kovar, M. Gleicher, and F Pighin. Motion graphs. ACM Transactions on Graphics, 21
(3):473–482, July 2002. 5.5

[88] A. Lacaze, Y. Moscovitz, N. DeClaris, and K. Murphy. Path planning for autonomous ve-
hicles driving over rough terrain. In Proceedings of the ISIC/CIRA/ISAS Joint Conference,
pages 50–55, 1998. 5.2

[89] A. Lacaze, K. Murphy, and M. DelGiorno. Autonomous mobility for the demo iii ex-
perimental unmanned vehicles. In Proceedings of AUVSI, Orlando, FL, USA, July 2002.
5.2

[90] M. Lau and J. Kuffner. Precomputed search trees: Planning for interactive goal-driven an-
imation. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 2006. 5.5

[91] J. P. Laumond. Feasible trajectories for mobile robots with kinematic and environment
constraints. In Proceedings of Intelligent Autonomous Systems, An International Confer-
ence, Amsterdam, The Netherlands, December 1986. 7

[92] J.-P. Laumond, M. Taix, and P. Jacobs. A motion planner for car-like robots based on a
mixed global/local approach. In Proceedings of the International Workshop on Intelligent
Robots and Systems, pages 765–773, 3–6 July 1990. 2.2

[93] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects.
In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational
Robotics: New Directions, pages 293–308. A K Peters, Wellesley, MA, 2001. 8

[94] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International Journal
of Robotics Research, 20(5):378–400, May 2001. 7, 7.2.1

[95] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between classical
grid search and probabilistic roadmaps. International Journal of Robotics Research, 23
(7/8):673–692, July/August 2004. 7.2.3, 4

[96] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378, 2001. 2, 5.5.2

[97] T.-Y. Li and J.-C. Latombe. On-line manipulation planning for two robot arms in a dy-
namic environment. The International Journal of Robotics Research, 16(2):144–167,
April 1997. 3.4

[98] T. Lozano-Perez, J. J. Jones, E. Mazer, P. A. O’Donnell, W. E. L. Grimson, P. Tournas-
soud, and A. Lanusse. Handey: A robot system that recognizes, plans, and manipulates.
In Proceedings of the International Conference on Robotics and Automation, volume 4,
1987. 2.2

121

[99] V. Lumelsky and A. Stepanov. Automaton moving admist unknown obstacles of arbitrary
shape. Algorithmica, 2:403–430, 1987. 7

[100] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The office marathon:
Robust navigation in an indoor office environment. In Proceedings of the International
Conference on Robotics and Automation, May 2010. 2.2

[101] D. S. Minhas, J. A. Engh, M. M. Fenske, , and C. N. Riviere. Modeling of needle steering
via duty-cycled spinning. In Proceedings of the Conference of the IEEE EMBS, 2007. 9.6

[102] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. A machine learn-
ing approach for feature-sensitive motion planning. In Proceedings of the International
Workshop on the Algorithmic Foundations of Robotics, pages 361–376, Utrecht/Zeist, The
Netherlands, July 2004. 6.2

[103] J. R. Munkres. Topology. Prentice Hall, Upper Saddle River, NJ, 2000. 4.2, 7, 7.1.2, 7.2.2

[104] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods. Society
for Industrial Mathematics, Philadelphia, 1992. 4.2

[105] C. L. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation planning. In
Procedings of the International Conference on Intelligent Robots and Systems, 2000. 3.4

[106] I. R. Nourbakhsh. Using abstraction to interleave planning and execution. In Proceedings
of the Third Biannual World Automation Congress, 1998. 2.2

[107] K. Olin and D. Y. Tseng. Autonomous cross-country navigation. IEEE Expert, 6(4):
16–20, 1991. 2.2

[108] M. Pivtoraiko and A. Kelly. Differentially constrained motion replanning using state lat-
tices with graduated fidelity. In Proceedings of the International Conference on Intelligent
Robots and Systems, September 2008. 2.2

[109] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile robot mo-
tion planning in state lattices. Journal of Field Robotics, 26(1):308–333, March 2009. 4.3,
5.5.1, 5.5.3

[110] E. Plaku and G. D. Hager. Sampling-based motion planning with symbolic, geometric,
and differential constraints. In Proceedings of the International Conference on Robotics
and Automation, Anchorage, AK, USA, May 2010. 2.2

[111] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology.
Control Engineering Practice, 11:733–764, 2003. 2.4

[112] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. Ros: an open-source robot operating system. In Proceedings of the Inter-
national Conference on Robotics and Automation, Workshop on Open Source Robotics,
Kobe, Japan, May 2009. 3.2

[113] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In Pro-
ceedings of the International Conference on Robotics and Automation, pages 802–807,
Atlanta, USA, May 1993. 8

[114] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In Pro-

122

ceedings of the International Conference on Robotics and Automation, volume 2, pages
802–807, Atlanta, GA, 1993. 2.3, 5.5.3

[115] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. CHOMP: Gradient optimization
techniques for efficient motion planning. In Proceedings of the International Conference
on Robotics and Automation, May 2009. 2.3, 3.3.3, 5.5.3, 8

[116] F. W. Rauskolb, K. Berger, C. Lipski, M. Magnor, K. Cornelsen, J. Effertz, T. Form,
F. Graefe, S. Ohl, W. Schumacher, J. Wille, P. Hecker, T. Nothdurft, M. Doering, K. Home-
ier, J. Morgenroth, L. Wolf, C. Basarke, C. Berger, T. Glke, F. Klose, and B. Rumpe. Caro-
line: An autonomously driving vehicle for urban environments. Journal of Field Robotics,
25(9):674–724, 2008. 5

[117] S. Ravi, D. Rosenkrantz, and G. Tayi. Facility dispersion problems: Heuristics and special
cases. Algorithms and Data Structures, pages 355–366, 1991. 4.2, 5.1

[118] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and back-
wards. Pacific Journal of Mathematics, 145(2):367–393, 1990. 2.2, 2.5, 5.5

[119] J. Reif and H. Wang. The complexity of the two dimensional curvature-constrained
shortest-path problem. In Proceedings of the International Workshop on Algorithmic
Foundations of Robotics, pages 49–57, June 1998. 2.1

[120] P. S. A. Reitsma and N. S. Pollard. Evaluating motion graphs for character animation.
ACM Trans. Graph., 26(4), October 2007. 5.5

[121] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential functions.
IEEE Transactions on Robotics and Automation, 8(5), October 1992. 8

[122] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:
115–135, 1974. 2.2

[123] P. Sampl. Medial axis construction in three dimensions and its application to mesh gener-
ation. Engineering with Computers, 17(3):234–248, 2001. 1

[124] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic roadmap plan-
ner with lazy collision checking. In Proceedings of the International Symposium on
Robotics Research, Lorne, Victoria, Australia, November 2001. 5.5.2, 8

[125] G. Sánchez and J.-C. Latombe. On delaying collision checking in PRM planning: Ap-
plication to multi-robot coordination. International Journal of Robotics Research, 21(1):
5–26, 2002. 7, 7.1.3

[126] C. Schlegel. Fast local obstacle avoidance under kinematic and dynamic constraints for a
mobile robot. In Proceedings of the International Conference on Intelligent Robots and
Systems, Victoria, BC, Canada, October 1998. 2.4

[127] E. Schmitzberger, J.L. Bouchet, M. Dufaut, D. Wolf, and R. Husson. Capture of homotopy
classes with probabilistic road map. In Proceedings of the International Conference on
Intelligent Robots and Systems, October 2002. 7

[128] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manipulation planning with prob-
abilistic roadmaps. The International Journal of Robotics Research, 23:729–746, 2004.
3.4

123

[129] R. Simmons. The curvature-velocity method for local obstacle avoidance. In Proceedings
of the International Conference on Robotics and Automation, Minneapolis, Minnesota,
April 1996. 5, 7

[130] A. Stentz. Optimal and efficient path planning for partially-known environments. In
Proceedings of the International Conference on Robotics and Automation, pages 3310–
3317, May 1994. 2.5

[131] I. A. Suçan and L. E. Kavraki. Mobile manipulation: Encoding motion planning op-
tions using task motion multigraphs. In Proceedings of the International Conference on
Robotics and Automation, Shanghai, China, 2011. 3.4

[132] K. Sun and V. J. Lumelsky. Motion planning for three-link robot arm manipulators op-
erating in an unknown three-dimensional environment. In Proceedings of the Conference
on Decision and Control, 1991. 9.5

[133] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, and H. Choset. Param-
eterized and scripted gaits for modular snake robots. Advanced Robotics, 23:1131–1158,
2009. 3.5.1

[134] C. E. Thorpe. Path relaxation: Path planning for a mobile robot. In Proceedings of the
National Conference on Artificial Intelligence, pages 318–321, 1984. 8.3

[135] A. F. van der Stappen V. Boor, M. H. Overmars. The Gaussian sampling strategy for prob-
abilistic roadmap planners. In Proceedings of the International Conference on Robotics
and Automation, pages 1018–1023, 1999. 6.2

[136] J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha. Path planning among
movable obstacles: A probabilistically complete approach. In Proceedings of the Interna-
tional Workshop on the Algorithmic Foundations of Robotics, Guanajuato, Mexico, 2008.
3.4

[137] J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg. Lqg-based planning,
sensing, and control of steerable needles. In Proceedings of the International Workshop
on the Algorithmic Foundations of Robotics, Singapore, December 2010. 9.6

[138] M. Vendittelli, J. P. Laumond, and C. Nissoux. Obstacle distance for car-like robots. IEEE
Transactions on Robotics and Automation, 15:678–691, 1999. 2

[139] B. Vidakovic. Γ-minimax: A paradigm for conservative robust Bayesians, volume 152 of
Lecture Notes in Statistics, pages 241–259. Springer-Verlag, New York, 2000. 6.6

[140] F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller, and H. Wuensche. Driv-
ing with tentacles: Integral structures for sensing and motion. Journal of Field Robotics,
25(9):640–673, 2008. 5

[141] R. Wallace, A. Stentz, C. Thorpe, H. Moravec, W. Whittaker, and T. Kanade. First results
in robot road-following. Technical Report CMU-RI-TR-86-4, Robotics Institute, Carnegie
Mellon University, 1986. 2.2

[142] L.C. Wang, L.S. Yong, and M.H. Ang. Hybrid of global path planning and local navigation
implemented on a mobile robot in indoor environment. In Proceedings of the International
Symposium on Intelligent Control, Vancouver, BC, Canada, October 2002. 2.2

124

[143] R. J. Webster III, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura. Nonholo-
nomic modeling of needle steering. International Journal of Robotics Research, 25(5–6):
509–525, 2006. 9.6

[144] S. A. Wilmarth, N. M. Amato, and P. E. Stiller. Maprm: A probabilistic roadmap planner
with sampling on the medial axis of the free space. In Proceedings of the International
Confemce on Robotics and Automation, Detroit, Mich., USA, May 1999. 2.5

[145] J. Wolfe, B. Marthi, and S. Russell. Combined task and motion planning for mobile
manipulation. In Proceedings of the International Conference on Automated Planning
and Scheduling, 2010. 3.4

[146] Y. Yang and O. Brock. Elastic roadmaps: Globally task-consistent motion for autonomous
mobile manipulation in dynamic environments. In Proceedings of Robotics: Science and
Systems, Philadelphia, PA, USA, August 2006. 2.2

[147] Y. Yang and O. Brock. Adapting the sampling distribution in prm planners based on an
approximated medial axis. In Proceedings of the International Conference on Robotics
and Automation, New Orleans, La., USA, April 2004. 2.5

[148] C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve
segments. Discrete & Computational Geometry, 2:365–393, 1987. 1

[149] Y. Yu and K Gupta. An information theoretic approach to view point planning for mo-
tion planning of eye-in-hand systems. In Proceedings of the International Symposium on
Robotics Research, pages 306–311, 2000. 6.2, 7

[150] B.D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J.A. Bagnell, M. Hebert,
A.K. Dey, and S. Srinivasa. Planning-based prediction for pedestrians. In International
Conference on Intelligent Robots and Systems, pages 3931–3936, October 2009. 3.5.3

125

	Ross-NewCoverpage
	1 Introduction
	1.1 Choice of Planner
	1.2 Path Diversity
	1.3 Contributions
	1.4 Overview

	I Background
	2 Hierarchical Planning
	2.1 Motivation
	2.2 Prior Work in Hierarchical Planning
	2.3 Comparison to Other Planning Approaches
	2.4 Local Planners
	2.5 Global Planners
	2.6 Heuristic Functions

	3 Hierarchical Planner Applications
	3.1 The Mobile Manipulation Application
	3.2 2D Navigation Planner
	3.2.1 Navigation Planner: Local Planner and Controller
	3.2.2 Navigation Planner: Global Planner and Heuristic Function
	3.2.3 Experimental Setup

	3.3 3D Arm Planner
	3.3.1 The Manipulation Planning Problem
	3.3.2 Arm Planner: Local Planner
	3.3.3 Arm Planner: Global Planner and Heuristic Function
	3.3.4 Manipulation Planning Performance

	3.4 Prior Work in Mobile Manipulation
	3.5 Other Applications
	3.5.1 Snake Robot Planning
	3.5.2 The Double Integrator
	3.5.3 People Prediction

	4 Path Set Theory
	4.1 Path Parametrization
	4.2 Path Space and Metrics on Paths
	4.3 Search Space Frame of Reference
	4.4 Path Diversity
	4.5 Concerning Completeness and Optimality
	4.6 Open Questions

	5 Path Set Design
	5.1 The Green-Kelly Algorithm
	5.2 Other Deterministic Approaches
	5.3 Random Sampling
	5.4 Dynamic Path Sets
	5.5 Prior Work in Path Set Generation
	5.5.1 State-Sampled Path Sets
	5.5.2 Probabilistic Planners
	5.5.3 Optimizing Planners

	5.6 Path Set Design

	II The Stages of Motion Planning
	6 Path Sampling
	6.1 Path Sampling and Path Parametrization
	6.2 Prior Work
	6.3 Informed Path Sampling Approach
	6.4 Probabilistic Foundations
	6.5 Locality
	6.5.1 General Locality Model
	6.5.2 Simple Locality Model
	6.5.3 Handling Multiple Collision Sites
	6.5.4 Adaptive Locality Model

	6.6 Path Entropy
	6.7 Experimental Results
	6.8 Summary

	7 Collision Testing
	7.1 Algorithms
	7.1.1 Path Set Generation
	7.1.2 Path Classification
	7.1.3 Implicit Path Safety Test

	7.2 Foundations
	7.2.1 Properties of Paths
	7.2.2 Equivalence Relation
	7.2.3 Resolution Completeness of Path Classifier

	7.3 Experimental Results
	7.3.1 Classification Performance Overhead
	7.3.2 Collision Testing

	8 Path Selection
	8.1 The Non-Monotonicity Problem
	8.2 The Temporal Incoherence Problem
	8.3 The Obstacle Proximity Problem
	8.4 Improved Hierarchical Planner
	8.5 Logical Succession Path Relation
	8.6 Multistage Path Selection Algorithm
	8.6.1 Stage One: Solving the Decision Problem
	8.6.2 Stage Two: Solving the Optimization Problem

	8.7 Experimental Results

	9 Extensions and Future Work
	9.1 Path Sampling
	9.2 Mobile Manipulation
	9.3 A Rigid Body in 3D
	9.4 Variable-Size Robots in 2D
	9.5 Articulated Robots
	9.6 Steerable Needles

	10 Conclusion
	10.1 Contributions

	Bibliography

	ROSS-NewInsert
	CMU-RI-TR-11-19
	1 Introduction
	1.1 Choice of Planner
	1.2 Path Diversity
	1.3 Contributions
	1.4 Overview

	I Background
	2 Hierarchical Planning
	2.1 Motivation
	2.2 Prior Work in Hierarchical Planning
	2.3 Comparison to Other Planning Approaches
	2.4 Local Planners
	2.5 Global Planners
	2.6 Heuristic Functions

	3 Hierarchical Planner Applications
	3.1 The Mobile Manipulation Application
	3.2 2D Navigation Planner
	3.2.1 Navigation Planner: Local Planner and Controller
	3.2.2 Navigation Planner: Global Planner and Heuristic Function
	3.2.3 Experimental Setup

	3.3 3D Arm Planner
	3.3.1 The Manipulation Planning Problem
	3.3.2 Arm Planner: Local Planner
	3.3.3 Arm Planner: Global Planner and Heuristic Function
	3.3.4 Manipulation Planning Performance

	3.4 Prior Work in Mobile Manipulation
	3.5 Other Applications
	3.5.1 Snake Robot Planning
	3.5.2 The Double Integrator
	3.5.3 People Prediction

	4 Path Set Theory
	4.1 Path Parametrization
	4.2 Path Space and Metrics on Paths
	4.3 Search Space Frame of Reference
	4.4 Path Diversity
	4.5 Concerning Completeness and Optimality
	4.6 Open Questions

	5 Path Set Design
	5.1 The Green-Kelly Algorithm
	5.2 Other Deterministic Approaches
	5.3 Random Sampling
	5.4 Dynamic Path Sets
	5.5 Prior Work in Path Set Generation
	5.5.1 State-Sampled Path Sets
	5.5.2 Probabilistic Planners
	5.5.3 Optimizing Planners

	5.6 Path Set Design

	II The Stages of Motion Planning
	6 Path Sampling
	6.1 Path Sampling and Path Parametrization
	6.2 Prior Work
	6.3 Informed Path Sampling Approach
	6.4 Probabilistic Foundations
	6.5 Locality
	6.5.1 General Locality Model
	6.5.2 Simple Locality Model
	6.5.3 Handling Multiple Collision Sites
	6.5.4 Adaptive Locality Model

	6.6 Path Entropy
	6.7 Experimental Results
	6.8 Summary

	7 Collision Testing
	7.1 Algorithms
	7.1.1 Path Set Generation
	7.1.2 Path Classification
	7.1.3 Implicit Path Safety Test

	7.2 Foundations
	7.2.1 Properties of Paths
	7.2.2 Equivalence Relation
	7.2.3 Resolution Completeness of Path Classifier

	7.3 Experimental Results
	7.3.1 Classification Performance Overhead
	7.3.2 Collision Testing

	8 Path Selection
	8.1 The Non-Monotonicity Problem
	8.2 The Temporal Incoherence Problem
	8.3 The Obstacle Proximity Problem
	8.4 Improved Hierarchical Planner
	8.5 Logical Succession Path Relation
	8.6 Multistage Path Selection Algorithm
	8.6.1 Stage One: Solving the Decision Problem
	8.6.2 Stage Two: Solving the Optimization Problem

	8.7 Experimental Results

	9 Extensions and Future Work
	9.1 Path Sampling
	9.2 Mobile Manipulation
	9.3 A Rigid Body in 3D
	9.4 Variable-Size Robots in 2D
	9.5 Articulated Robots
	9.6 Steerable Needles

	10 Conclusion
	10.1 Contributions

	Bibliography

