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abstract

We have developed a video-rate stereo machine that
has the capability of generating a dense depth map at the
video rate. The performance bench marks of the CMU vid-
eo-rate stereo machine are: 1) multi image input of up to 6
cameras; 2) throughput of 30 million point× disparity mea-
surement per second; 3) frame rate of 30 frame/sec; 4) a
dense depth map of up to 256× 240 pixels; 5) disparity
search range of up to 60 pixels; 6) high precision of depth
output up to 8 bits (with interpolation). The capability of
passively producing such a dense depth map (3D represen-
tation) of a scene at the video rate can open up a new class
of applications of 3D vision: merging real and virtual
worlds in real time.

1  Introduction

Stereo range imaging uses correspondence between
sets of two or more images for depth measurement. Despite
a great deal of research during the past two decades, no ste-
reo systems developed so far have achieved adequate
throughput and precision to enable video-rate dense depth
mapping [1,5,6,17]. The throughput of a stereo machine
can be most effectively measured by the product of the
number of depth measurements per second (pixels/sec) and
the range of disparity search (pixels); the former deter-
mines the density and speed of depth measurement and the
latter the dynamic range of distance measurement. The
PRISM3 system developed by Teleos [12], the JPL stereo
implemented on DataCube [10], CMU’s Warp-based
multi-baseline stereo [16], and INRIA’s system [4] are
among the most advanced real-time stereo systems; yet
none of them are able to provide a complete video-rate out-
put of range as dense as the input image with low latency.

We have developed a video-rate stereo machine which
has the throughput of 30 million pixel2/sec. This through-
put translates to a 200×200×5bit depth image at the speed
of 30 frames per second - the speed, density and depth res-
olution high enough to be called a video-rate 3D depth
measurement camera. Our video-rate stereo machine is
based on a new stereo algorithm, the multi-baseline stereo
theory[13,14,11]. It uses multiple images obtained by mul-
tiple cameras to produce different baselines in lengths and
in directions.

Video-rate stereo range mapping has many advantag-
es. It is passive and it does not emit any radio or light ener-
gy. With appropriate imaging geometry, optics, and high-
resolution cameras, stereo can produce a dense, precise
range image. Stereo performs sensor fusion inherently;
range information is aligned with visual information in the
common image coordinates. Stereo depth mapping is scan-
less; thus it does not have the problem of apparent shape
distortion from which a scanning-based range sensor suf-
fers due to motion during a scan. These features of video-
rate dense depth mapping open up a new class of applica-
tions: merging the real and virtual worlds in real time. In
this paper we will present two examples, z keying and vir-
tualized reality, on which we are currently working.

2  CMU Video-Rate Stereo Machine and Its
Performance

CMU video-rate stereo machine is a special-purpose
hardware that has been built with off-the-shelf components
(See Figure 1). The main devices used in the machine in-
clude PLDs, high-speed ROMs, RAMs, pipeline registers,
commercially available convolvers, digitizers and ALUs.
All of the system is designed and built in CMU except for
the video cameras, the C40 DSP array and the real-time
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processor board. Table 1 summarizes the current perfor-
mance.

Five-eye camera head, shown in Figure 1 (b), handles
the distance range of 2 to 15m using 8mm lenses. An exam-
ple scene and its range image are shown in Figure 2. The
stereo machine outputs a pair of intensity and depth images
at 30 times/sec.

3  Multi-Baseline Stereo Algorithm

3.1  Theory

The stereo machine adopts the multi-baseline stereo
algorithm [13]. Assuming that stereo images have been
rectified, the disparityd is related to the distancez to the
scene point by:

(1)

whereB andF are baseline and focal length, respectively.
This equation indicates that for a particular point in the im-

Table 1: Performance of CMU stereo machine

Number of cameras 2 to 6

Processing time/pixel 33ns × (disparity range + 2)

Frame rate up to 30 frames/sec

Depth image size up to 256 × 240

Disparity search range up to 60 pixels

Figure 1: The CMU video-rate stereo machine
(a) Processor (b) Five-eye camera hea d

Figure 2:  An example scene and its range image

(a) intensity image (b) corresponding
disparity map
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age, the disparity divided by the baseline length (the in-
verse depthζ) is constant since there is only one distancez
for that point. If any evidence or measure of matching for
the same point is represented with respect toζ, it should
consistently show a good indication only at the single cor-
rect value ofζ independent ofB.

The SSD (Sum of Squared Difference) over a small
window is one of the simplest and most effective measures
of image matching. For a particular point in one image, a
small image window is cropped around it, and it is slid
along the epipolar line of other images. Suppose that the
stereo camera head has a base cameraf0 andn inspection
cameras {fk |k=1,...n}, forming n stereo pairs. For each ste-
reo pair we compute SSD value (SSDk, k=1,...n) for a pixel
(i,j) of f0 with respect toζ.

(2)
whereSDk is the squared difference betweenf0 andfk,

Bk is the baseline length betweenf0 andfk, c = (c1,c2) is the
unit vector pointing the direction of the epipolar line infk
for the pixel (i,j) of f0 andW(i,j) is a small window cropped
around the position (i,j).

The curves SSD1 to SSD3 in Figure 3 show typical
curves of SSD values with respect toζ for individual stereo
image pairs. Note that, as expected, these SSD functions
have the same minimum position that corresponds to the
true depth. We add up these SSD functions from all stereo
pairs to produce the sum of SSDs, which we call SSSD-in-
inverse-distance.

(3)
The SSSD-in-inverse-distance has a clearer and less

ambiguous minimum than individual SSDs. Also, one
should notice that the valley of the SSSD curve is sharper
than SSDs, meaning that we can localize the minimum po-
sition more precisely, thereby producing greater precision
in depth measurement. The algorithm has been successful-
ly tested with indoor and outdoor scenes under a variety of
conditions[11,14].

f
k

s c
1

B
k

ζ⋅ 
 ⋅+ t c

2
B

k
ζ⋅ 

 ⋅+, 
  f

0
– s t,( ) 

  2

s t( , ) W i j,( )∈
∑=

SSD
k

i j ζ, ,( ) SD
k

s t ζ,( , )
s t( , ) W i j,( )∈

∑=

SSSD i jζ, ,( ) SSD
k

i j ζ, ,( )
k 1=

n

∑= SD
k

s t ζ,( , )
s t( , ) w i j,( )∈

∑ 
 

k 1=

n

∑=

S
S

D
/S

S
S

D

ζ

SSSD

SSD3

SSD2

SSD1

Figure 3: SSD and SSSD functions



3.2  Summary of the Algorithm

The multi-baseline stereo method consists of three
steps as shown in Figure 4. The first step is the Laplacian
of Gaussian (LOG) filtering of input images. This filtering
enhances the image features as well as removing the effect
of intensity variations among images due to difference of
camera gains, ambient light, etc. The second step is the
computation of SSD values for all stereo image pairs and
the summation of the SSD values to produce the SSSD
function. The third and final step is the identification and
localization of the minimum of the SSSD function to deter-
mine the inverse depth. Uncertainty is evaluated by analyz-
ing the curvature of the SSSD function at the minimum.

The total amount of computation per second required
for the SSSD calculation is estimated as:

(4)

whereN2 is the image size,W2 the window size,D the
disparity range,C the number of cameras,P the number of
operation per one SD calculation andF the number of
frames per second. We have estimatedp as 14 operations
including image sampling in the subpixel precision and cal-
culation of difference. If we setN = 256,W = 11,D = 30,
C = 6, andF = 30, then the total computation would be 465
giga-operations. However, the most important aspect of the
multi-baseline stereo algorithm is that it takes advantage of
the redundancy contained in multi-stereo pairs. As a result
it is a straightforward algorithm which is appropriate for
hardware implementation.

4  Design of a Video-Rate Stereo Machine

The basic algorithm requires some extensions to allow
for parallel, low-cost, high-speed machine implementation.
The three major ones are: 1) the use of small integers for
image data representation; 2) the use of absolute values in-
stead of squares in the SSD computation (i.e., sum of abso-
lute difference SAD instead of SSD); and 3) the capability
of rectificational geometry compensation.

Figure 5 illustrates the architecture of the system de-
veloped. It consists of five subsystems: 1) multi-camera
stereo head; 2) multi-image frame grabber; 3) Laplacian of
Gaussian (LOG) filtering; 4) parallel computation of
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Figure 4: Outline of stereo method

Images

Laplacian of Gaussian (LOG)
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Minimum Detection

Disparity Map

SSAD; and 5) subpixel localization of the minimum of the
SSAD in the C40 DSP array.

These subsystems are connected to a VME Bus and
controlled by a VxWorks real-time processor. System soft-
ware, running on Sun workstation, enables users to utilize
the machine’s capabilities through a graphical interface.

4.1  LOG Subsystem

The LOG subsystem contains six channels of proces-
sor, each of which can perform the Laplacian of Gaussian
(LOG) filtering on an image at video rate. The input image
for each channel is read from the frame grabber and the out-
put image is sent to the SSAD subsystems. Figure 6 shows
the function of the LOG subsystem for one channel. Four
7×7 convolvers are used for each channel. By loading arbi-
trary 7×7 coefficient we can realize a large class of filtering
operations. For example, a LOG filtering is achieved by
loading a Gaussian mask into the first three convolvers and
a Laplacian filter into the final one. The maximum size of
LOG filter becomes 25×25 by this cascading technique.
The LOG subsystem also has a multi-resolution capability
which produces an image pyramid by repeatedly shrinking
the images [2].
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After the LOG filtering, we compress the output data
from 8 bits to 4 bits, primarily to reduce the hardware size
of the SSAD subsystem which follows this stage. A typical
example of the histogram of output values of LOG filtering
in 8 bits is shown at the top of Figure 7. The distribution of
the pixel values typically concentrates around zero. With
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such a distribution, linear data compression would put most
of pixels into the same value and most features would be
lost. Instead, we use nonlinear compression which approx-
imates the effect of histogram equalization. The two imag-
es of 4bit LOG at the middle of Figure 7 show the
difference between the two types of compression of LOG
data. The output of the nonlinear compression has more
features because it enables the data values closer to zero to
be represented more finely, while values further from zero
are divided more coarsely.

In software experiments, we confirmed that there was
not much difference between the disparity map calculated
with 8 bit data and the disparity map calculated with 4 bit
data which are obtained using a histogram equalization
technique. In the final stereo machine hardware, we use a
built-in table for conversion instead of computing a histo-
gram for each image on the fly.

4.2  SSAD Subsystem

The SSAD subsystem has three functions. First, it rec-
tifies the images which come from LOG output. The SSAD
calculation follows the rectification. The method of SSAD
calculation is optimized for a compact hardware imple-
mentation. Finally, the minimum finder detects the dispar-
ity value which minimizes the SSAD value. These
functions are implemented on two VME bus boards.

4.2.1  Rectification of Images
The calculation of squared difference  in equation

(2) assumes inputs of rectified images. In general, howev-
er, since multiple stereo cameras are not perfectly aligned,
and/or optical systems are not perfect, video rate image rec-
tification and correction are required.

Suppose we have multiple images {fk | k=0,...n} which
are not rectified. Then the absolute difference

, instead of the squared difference
, has the following expression.

(5)

Here  and  are functions of rectified coordinates
(s,t) andζ, while  and  are functions of only (s,t).
Either strong calibration methods [15, 9] or weak calibra-
tion methods [3] enable us to obtain these functions.

The SSAD subsystem stores these functions in RAM
in the form of tables. Using these tables, the SSAD hard-
ware calculates absolute differences in the rectified coordi-
nates (see Figure 8). The tables are obtained at the time of
calibration and are loaded when the machine starts up.
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4.2.2  Optimized SSAD Calculation
The number of SSAD (or SSSD) operations evaluated

by the formula (4) includes redundancy of absolute differ-
ence (or squared difference) calculation which is repeated
W2 times with the same combination of coordinates (s,t)
and inverse depthζ. This redundancy can be removed by
changing the order of summation in equation (3) and ex-
pressing the window summation in a recursive manner.

By converting square difference (SD) to absolute dif-
ference (AD), and changing the order of summation, we
can rewrite equation (3) as:

(6)

Assuming that  and
 ( ), we get the following expression

for the SSAD.

(7)

The first and the second summations correspond to the
horizontal and vertical summations within a window, re-
spectively. Let the second sum be denoted by

:

(8)

Equation (8) can be written in a recursive form.

(9)

Similarly,  itself can also be written in a recur-
sive form.

(10)

The SSAD calculation with the equations (9) and (10)
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Figure 8: Calculation of Absolute Difference
with Rectification
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eliminates redundancy of calculating absolute difference
with the same combination of coordinates and inverse
depth. Therefore, we could save memory space and other
hardware components to result in a compact hardware im-
plementation.

4.2.3  Minimum Finder
The minimum finder module, located at the end of

SSAD subsystem, selects the minimum value and its posi-
tion in the SSAD function together with its neighboring
SSAD values, and transfers them to the C40 DSP array.

4.3  Subpixel Disparity Detection

The C40 DSP array performs sub-pixel interpolation
of disparity and uncertainty estimation using quadratic
function fitting around the minimum value. This extends
the disparity resolution to 8 bits. Figure 9 demonstrates a
result of subpixel interpolation of disparity. For the scene
(a), the image (b) shows its depth map with a disparity
range of 30 (approximately 5 bits). The interpolated depth
map (8 bits) shown in the image (c) has smoother gradua-
tion than (b). Currently disparity measurement with inter-
polation operates at 15 frames per second with the frame
size of 200×200 image size.

4.4  A Camera Head

A stereo head with 5 CCD cameras has been built (see
Figure 1(b)). The camera at the middle of the camera head
is the base cameraf0, with which the other cameras make
four stereo pairs. The symmetrical arrangement of cameras
helps to reduce effects of occlusion because each pixel of
the image of the base camera can be seen in at least one of
the other four camera images. Figure 10 illustrates the ef-
fect of using multiple cameras for stereo. Figure 10 (b)
shows depth map of the machine when using only two ste-
reo pairs on the right hand side of the base camera. Occlu-

(a) (b) (c)

Figure 9:  Example scenes demonstrating the
performance of subpixel interpolation of dept h

(a) an intensity image
(b) the corresponding depth map with 30 disparity range
(c) the interpolated depth in a precision of 8 bits



sions result in noisier depth measurement at the right side
of human body. Using all four symmetric stereo pairs (Fig-
ure 10 (c)) improves the result substantially.

5  New Applications of the Stereo Machine

Besides robotic applications, such as autonomous ve-
hicles, there are many other applications of the stereo ma-
chine. The capability of producing a dense 3D
representation at video rate opens up a new class of appli-
cations for 3D vision. We have been working on two such
new applications: virtualized reality [7] and z keying.

5.1  Z Keying

In visual media communication and display, it is often

(a) the base camera image

(b) a disparity map with
3 cameras

(c) a disparity map with
5 cameras

: a camera used
: a camera unused

: a camera used
: a camera unused

Figure 10: Example scenes of disparity map
with occlusions and without occlusions

necessary to merge a video signal from a real camera and a
synthetic video signal from computer graphics. Chroma
keying is a standard technique for such a purpose, as used
in TV weather reports. A weather man is imaged by a real
camera in front of a blue screen, and the pixels which have
blue color, that is, the portions of the scene that are not oc-
cluded by the real objects, are replaced by the synthetic im-
age. Chroma keying, therefore, implicitly assumes that a
real world object is in front of the synthetic world. Z keying
is a new technique for merging real and virtual world im-
ages in a more flexible way. It uses the depth information,
instead of chromaticity, as the key for switching between
images. Figure 11 illustrates the idea with a real example.
The depth value from the real world (the output of the ste-
reo machine) is compared pixel by pixel with that of the
virtual world (the z buffer from the graphic system), and
the pixel color (or intensity) of the world closer to the cam-
era is selected for display. As a result, real world objects
can be placed in any desired relationship with virtual world
objects. As shown in the example of Figure 11, part of the
real object (e.g., hand) occludes the virtual objects (e.g.,
lamp), which in turn occludes the real objects (e.g., body).
Currently, our system can perform z keying in real time at
15 frames per second.

5.2  Virtualized Reality

Once a depth map is obtained (or actually, once pixel-
wise correspondences are established between images), we
can place a virtual (soft) camera at places other than the
original camera position, and compute the image that it
would generate (except the portions that are occluded in the
original views). To reduce the occluded area of the scene,
we can think of a dome which is fully covered by a number
of cameras. A real-time-varying event is captured or tran-

Figure 11: The scheme for z keying

The z-key switch

The switch is
turned to the
image which has
nearer pixel to
the camera.
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scribed by those cameras, and then its 3D structure is re-
covered. Once the event is “virtualized” this way, a user,
wearing a stereo viewer, can freely move about in the space
and observe the event from any position or angle. We have
built a prototype system of such a 3D Virtualization Studio.
It consists of a hemispherical dome, 5 meters in diameter,
and is currently populated with 51 cameras. Figure 12
shows an example of a synthesized image sequence of a
virtualized “baseball” scene. A scene of a person swinging
a bat is captured, and the ball’s eye view is hit by the bat,
and soars high and away into the sky[8]. Due to the limita-
tions in image input and computation, this example was
created off-line.

6  Conclusion

This paper has presented the CMU video-rate stereo
machine and a couple of its applications. The machine is
capable of producing a dense 200× 200 depth map, aligned
with intensity information, at 30 frames per second. This
performance represents a one or two order of magnitude
improvement over the current state of the art in passive ste-
reo range mapping. Such a capability opens up a new class
of applications of 3D vision, and we have briefly presented
two examples in the area of visual media interaction.
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