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Abstract

A system has been developed to acquire, extend and refine 3D geometric site models from
aerial imagery.  The system hypothesizes potential building roofs in an image, automatically
locates supporting geometric evidence in other images, and determines the precise shape and
position of the new buildings via multi-image triangulation.  Model-to-image registration
techniques are applied to align new images with the site model, and model extension and
refinement procedures are performed to acquire previously unseen buildings and improve the
geometric accuracy of the existing 3D models.  A correlation-based terrain recovery algorithm
provides complementary information about the site, in the form of a digital elevation map.

1.  Introduction

Acquisition of 3D geometric site models from aerial imagery is currently the subject of
an intense research effort in the U.S., sparked in part by the ARPA/ORD RADIUS
project (Gerson, 1992; Huertas, 1993; Collins, 1994; Roux, 1994).  We have developed
a set of image understanding modules to acquire, extend and refine 3D volumetric
building models, and to provide a digital elevation map of the surrounding terrain.
System features include model-directed processing, rigorous camera geometry, and
fusion of information across multiple images for increased accuracy and reliability.

Site model acquisition involves processing a set of images to detect both man-made
and natural features of interest, and to determine their 3D shape and placement in the
scene.  This paper focuses on algorithms for automatically extracting models of
buildings (Section 2) and terrain (Section 3).  The site models produced have obvious
applications in areas such as surveying, surveillance and automated cartography.  For
example, acquired site models can be used for automated model-to-image registration of
new images (Collins, 1993), allowing the model to be overlaid on the image to aid
visual change detection and verification of expected scene features.  Two other
important site modeling tasks are model extension, updating the geometric site model
by adding or removing features, and model refinement, iteratively refining the shape
and placement of features as more views become available.  Model extension and
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Fig. 1:  Sample image from the Radius
model board 1 data set.

Fig. 2:  Straight line segments produced
by the Boldt algorithm.

refinement are ongoing processes that are repeated whenever new images become
available, each updated model becoming the current site model for the next iteration.
Thus, over time, the site model is steadily improved to become more complete and
more accurate.

2.  Building Model Acquisition and Extension

This section focuses on algorithms for automatically extracting models of buildings in
the site.  To maintain a tractable goal for our research efforts, we have chosen initially
to focus on a single generic class of buildings, namely flat-roofed, rectilinear structures.
The simplest example of this class is a rectangular box-shape; however other examples
include L-shapes, U-shapes, and indeed any arbitrary building shape such that pairs of
adjacent roof edges are perpendicular and lie in a single plane.

2.1.  Initial Model Acquisition

The building model acquisition process involves several subtasks: 1) line segment
extraction, 2) building detection, 3) multi-image epipolar matching, 4) constrained,
multi-image triangulation, and 5) projective intensity mapping.  These algorithms will
be presented by way of an experimental case study using images J1-J8 of the RADIUS
model board 1 data set.  Figure 1 shows a sample image from the data set.  Each image
contains approximately 1320 x 1035 pixels, with about 11 bits of gray level information
per pixel.  Unmodeled geometric and photometric distortions have been added to each
image to simulate actual operating conditions.  The scene is a 1:500 inch scale model of
an industrial site.  Ground truth measurements are available for roughly 110 points
scattered throughout the model, which were used to determine the exterior orientation
for each image.  The residual resection error for each image is in the 2-3 pixel range,
representing the level of unmodeled geometric distortion present in each image.  This
corresponds to a backprojection error of roughly 3-4.5 feet in (simulated) object space.
This is a significant amount of error that presents a good test of system robustness.

Line Segment Extraction.  To help bridge the huge representational gap between
pixels and site models, feature extraction routines are applied to produce symbolic,
geometric representations of potentially important image features.  The algorithms for
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Fig. 3:  Results of building detection on image J3.

acquiring building models rely on extracted straight line segments (Boldt, 1989).  At the
heart of the Boldt algorithm is a hierarchical grouping system inspired by the Gestalt
laws of perceptual organization.  Zero-crossings  of the Laplacian of the intensity image
provide an initial set of local intensity edges.  Hierarchical grouping then proceeds
iteratively; at each iteration edge pairs are linked and replaced by a single longer edge if
their end points are close and their orientation and contrast values are similar.  Filtering
to keep line segments with a length of at least 10 pixels and a contrast of at least 15 gray
levels produced roughly 2800 line segments per image.  Figure 2 shows a representative
set of lines extracted from the image shown in Figure 1.

Building Detection.  The goal of automated building detection is to roughly delineate
building boundaries that will later be verified in other images by epipolar feature
matching and triangulated to create 3D geometric building models.  The building
detection algorithm is based on finding image polygons corresponding to the boundaries
of flat, rectilinear rooftops in the scene (Jaynes, 1994).  Briefly, possible roof corners
are identified by line intersections.  Perceptually compatible corner pairs are linked with
surrounding line data, entered into a feature-relation graph, and weighted according to
the amount of support they receive from the low-level image data.  Potential building
roof polygons appear as cycles in the graph; virtual corner features may be
hypothesized to complete a cycle, if necessary.  Rooftops are finally extracted by
partitioning the feature-relation graph into a set of maximally weighted, independent
cycles representing closed, high-confidence building roofs.

Figure 3 shows the results of building detection on image J3 of the model board 1 data
set.  The roof detector generated 40 polygonal rooftop hypotheses.  Most of the
hypothesized roofs are rectangular, but six are L-shaped.  First, note that the overall

performance is quite
good for buildings
entirely in view.  Most
of the major roof
boundaries in the scene
have been extracted, and
in the central cluster of
buildings (see area A in
Fig. 3) the segmentation
is nearly perfect.

There were some false
positives, i.e. polygons
extracted that do not in
fact delineate the
boundaries of a roof.
The most obvious
example is the set of
overlapping polygonal
rooftops detected over
the large building with
many parallel roof vents
(area B)  Note that the
correct outer outline of

this building roof is detected, however.  There are also some false negatives, which are
buildings that should have been detected, but weren't.  The most prevalent example of



this is a set of buildings (area C) that are only partially in view at the edge of the image.
Label D marks a false negative that is in full view.  Two adjacent corners in the rooftop
polygon were missed by the corner extraction algorithm.  It should be stressed that even
though a single image was used here for bottom-up hypotheses, buildings that are not
extracted in one image will often be found easily in other images with different
viewpoints and sun angles.

There are several cases that cannot be strictly classified as false positives or false
negatives.  Several split-level buildings appearing along the right edge of the image
(area E) are outlined with single polygons rather than with one polygon per roof level.
Some peaked roof buildings were also outlined, even though they do not conform to the
generic assumptions underlying the system.

Multi-image Epipolar Matching.  After detecting a potential rooftop in one image,
corroborating geometric evidence is sought in other images (often taken from widely
different viewpoints) via epipolar feature matching.  The key problem in epipolar
matching is disambiguation of multiple potential matches.  One way to avoid ambiguity
is to match higher-level structures that are more distinctive.

Rooftop polygons are matched by searching for each component line segment
separately and then fusing the results.  For each polygon segment from one image, an
epipolar search area is formed in each of the other images, based on the known camera
transformations and the assumption that the roof is flat.  This quadrilateral search area is
scanned for possible matching line segments, each potential match implying a different
roof height in the scene.  Results from each line search are combined in a 1-dimensional
histogram, each match voting for a particular roof height, weighted by compatibility of
the match in terms of expected line segment orientation and length.  A single global
histogram accumulates height votes from multiple images, and for multiple edges in a
rooftop polygon.  After all votes have been tallied, the histogram bucket containing the
most votes yields an estimate of the roof height in the scene and a set of
correspondences between rooftop edges and image line segments from multiple views.

Epipolar matching of a rooftop hypothesis is considered to have failed when, for any
edge in the rooftop polygon, no line segment correspondences are found in any image.
This criterion was chosen because the 3D line triangulation algorithm will fail to
converge in this case.  Based on this criterion, epipolar matching failed on eight rooftop
polygons.  Six were either peaked or multi-layer roofs that did not fit the generic flat-
roofed building assumption, and the other two were building fragments with some sides
shorter than the minimum length threshold on the line segment data.  At this stage, six
incorrect building hypotheses were removed by hand; detecting and removing such
mistakes automatically is being actively investigated.

Multi-image Line Triangulation.  Multi-image triangulation is performed to
determine the precise size, shape, and position of a building in the local 3D site
coordinate system.  A nonlinear estimation algorithm has been developed for
simultaneous multi-image, multi-line triangulation of 3D line structures. Object-space
constraints are imposed for more reliable results.  This algorithm is used for
triangulating 3D rooftop polygons from the line segment correspondences determined
by epipolar feature matching.

The parameters estimated for each rooftop edge are the Pl�cker coordinates of the
algebraic 3D line coinciding with the edge - specific points of interest, like vertices of
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Fig. 4:  The final verified and triangulated 3D rooftops.

the rooftop polygon, are computed as the intersections of these infinite algebraic lines.
Pl�cker coordinates are a way of embedding the 4-dimensional manifold of 3D lines
into R6.  Although the Pl�cker representation requires 6 parameters to be estimated for
each line rather than 4, it simplifies the representation of geometric constraints between
lines.  For the generic flat-roofed rectilinear building class being considered here, we
specify a set of constraints to ensure that pairs of adjacent lines in a traversal around the
polygon are perpendicular, that all lines are coplanar, and that all lines are perpendicular
to the Z-axis of the local site coordinate system.  An iterative, nonlinear least-squares
procedure determines the Pl�cker coordinates for all lines simultaneously such that all
the object-level constraints are satisfied and an objective ÒfitÓ function is minimized
that measures how well each projected algebraic line aligns with the 2D image
segments that correspond to it.

After triangulation, each
3D rooftop polygon is
extruded down to the
ground to form a
volumetric model.  For
the Model Board 1 site
we represented the
ground as a horizontal
plane with Z-coordinate
value determined from
the ground t ru th
measurements.  More
generally, we will soon
be combining our
symbol ic  bu i ld ing
extraction routines with
the digital terrain maps
produced by the UMass
Terrain Reconstruction
System (Section 3).
Outlines of the final set
of triangulated rooftops
are shown in Figure 4.

To evaluate the 3D accuracy of the triangulated building polygons, 21 roof vertices
were identified where ground truth measurements are known (numbered vertices in
Figure 4).  The average Euclidean distance between triangulated polygon vertices and
their ground truth locations is 4.31 feet, which is reasonable given the level of
geometric distortion present in the images.  The average horizontal distance error is
3.76 feet, while the average vertical error is only 1.61 feet.  This is understandable,
since all observed rooftop lines are considered simultaneously when estimating the
building height (vertical position), whereas the horizontal position of a rooftop vertex is
primarily affected only by its two adjacent edges.

Projective Intensity Mapping.  Backprojection of image intensities onto polygonal
building model faces enhances their visual realism and provides a convenient storage
mechanism for later symbolic extraction of detailed surface structure.  Planar projective
transformations provide a locally valid mathematical description of how surface
structure from a planar building facet maps into an image.  By inverting this



Fig. 5:  Intensity mapped model rendered from a new view.

transformation using known building position and camera transformations, intensity
information from each image is backprojected to ÒpaintÓ the walls and roof of the
building model.  Since multiple images are used, intensity information from all faces is
available, even though they are not all visible from any single view.  Multiple intensity

maps for each polygonal
building facet are
c o m b i n e d  u s i n g
knowledge of the sun
angle and camera
viewpoint to remove
visual artifacts caused by
shadows and occlusion.
The resulting intensity
mapped site model can
then be rendered to
predict how the scene
will appear from a new
view (Figure 5).

2.2.  Site Model Extension

The goal of site model extension is to find unmodeled buildings in new images and add
them into the site model database.  The main difference between model extension and
model acquisition is that the camera pose for each image can be determined via model-
to-image registration using the current partial site model, whereas for initial model
acquisition the pose must be supplied in some other way.  Our approach to model-to-
image registration involves two components: 1) model matching to determine
correspondences between model features and image features, and 2) pose determination
to determine the precise geometric relationship between the image and the scene.

The goal of model matching is to find the correspondence between 3D features in a site
model and 2D features that have been extracted from an image; in our case this involves
determining correspondences between edges in a 3D building wireframe and 2D
extracted line segments from the image.  To find this correspondence, we are using a
model matching algorithm described in (Beveridge, 1992).  The result of model
matching is a set of correspondences between model edges and image line segments and
an estimate of the transformation that brings the projected model into the best geometric
alignment with the underlying image data.

The second aspect of model-to-image registration is precise pose determination.  We
are using a robust pose estimation procedure (based on a least median squares
minimization procedure) described in (Kumar, 1994).  The final results of pose
determination are a set of camera pose parameters and a covariance matrix that
estimates the accuracy of the solution.

Model Extension Example.  The model extension process involves registering a
current geometric site model with an incoming image, and then focusing on unmodeled
areas to recover new buildings that have been recently built, that were previously
unseen, or that for some other reason are not present in the site model database.  We
illustrate this process using the partial site model constructed in Section 2.1, and image
J8 from the Radius Model Board 1 dataset.



Fig. 6:  Extended site model overlaid on J8 (Fig. 1).

Results of model-to-
image registration of
image J8 with the partial
site model can be seen in
Fig. 6, showing projected
building rooftops from
the site model (thin lines)
overlaid on the image.
Image areas containing
buildings already in the
site model were masked
off, and the building
rooftop detector was run
on the unmodeled areas
in the image, yielding 19
new rooftop hypotheses.
The multi-image epipolar
matching and constrained
multi-image triangulation
procedures from Section
2.1 were applied, again
using images J1-J8, to
verify these hypotheses

and construct 3D volumetric building models.  Only 10 hypotheses survived the
verification and triangulation process.  These were added to the site model database, to
produce the extended model shown in Figure 6 (thick lines).  The main reason for
failure among building hypotheses that were not verified was that they represented
buildings located at the periphery of the site, in an area which is not visible in very
many of the eight views.  If more images were used with greater site coverage, we
expect that more of these buildings would be included in the site model.

3.  Terrain Extraction

The geometric component of a site model consists not only of the building models and
other cultural features but also an accurate model (digital elevation map or DEM) of the
underlying terrain.  The type of imagery of a site that can be expected in the RADIUS
project can be characterized as being highly oblique, with widely separated views taken
from (perhaps) different cameras at varying temporal intervals.  In addition, the camera
parameters (both extrinsic and intrinsic) may be unknown or only incompletely
estimated.  Even under the assumption of known camera parameters, these images
present unique problems for correlation-based stereo reconstruction systems because of
their oblique viewing geometry and the associated large base-to-height ratios1.

When a disparity map is computed from widely separated images perspective distortion
may result in a large number of false matches and poor reconstruction accuracy.  For
example, when the base-to-height ratio exceeds approximately 0.5, the performance of
correlation-based matching algorithms begins to deteriorate, and when it becomes
greater than 1, elevation errors caused by perspective distortion can become large.  This

1 For oblique geometries, the ÔheightÕ is the distance from the center of the camera baseline to a nominal
point on the surface.  In this case, the base to height ratio can vary considerably across the scene.



implies that the size of the correlation mask should be small to minimize the effects of
perspective distortion.  On the other hand, the size of the mask should be fairly large to
provide increased robustness against random noise in the images.  To develop
algorithms that balance these competing factors we take advantage of the fact that
pixels near the center of the correlation mask are less affected by perspective distortion.

Schultz (1994) has developed a correlation based stereo algorithm which incorporates
several modifications to account for these effects.  Briefly, these are:

(1) A weight is assigned to each element in the correlation mask that depends on its
distance from the mask center.  Gaussian weights are used with a variance that is either
fixed or context dependent.  By assigning position dependent weights, it is possible to
place more emphasis on the central elements.

(2) The optimal match score is estimated from a series of match scores computed at
subpixel disparity steps.  By estimating the shape of the disparity function over a
narrower disparity range, it is more likely that the match scores at the end of the
intervals are statistically significant.

(3) An enhancement to standard multiresolution matching in which perspective
distortion is iteratively removed from the images as the processing progresses from low
to high resolution.

Fig. 7:  ARPA/Martin Marietta UGV
Demo C site reconstruction.

Fig. 8:  ISPRS ÒFLATÓ scene
reconstruction.

At any resolution step, the disparity map is represented as the sum of an initial and
incremental disparity map.  The initial map (which is derived from the computed
disparities at the previous level) is used to remove the perspective distortion at the
current resolution level before the incremental disparity map is computed.  This process
of successive removal of perspective distortion makes it possible to match small
features in images taken from widely varying viewpoints.

The resulting stereo analysis package has been tested on both synthetic and real images
taken from widely disparate positions (that is, with high base to height ratios) and has
been shown to be both accurate and robust in its reconstruction of elevation maps from
two or more images (Schultz, 1994).  Figure 7 shows a reconstruction of the ARPA
Unmanned Ground Vehicle Demo C site at Martin-Marietta in Denver.  The original



images were taken looking straight down, with a base-to-height ratio of 0.63.  Figure 8
shows a portion of the reconstruction of the FLAT Test Dataset 3 of the ISPRS
Working Group III/3 data set.

4.  Summary and Future Work

A set of IU algorithms for automated site model acquisition and extension have been
presented.  The algorithms currently assume a generic class of flat roofed, rectilinear
buildings.  To acquire a new site model, an automated building detector is run on one
image to hypothesize potential building rooftops.  Supporting evidence is located in
other images via epipolar line segment matching, and the precise 3D shape and location
of each building is determine by multi-image triangulation.  Projective mapping of
image intensity information onto these polyhedral building models results in a realistic
site model that can be rendered using virtual Òfly-through'Ò graphics.  To perform model
extension, the acquired site model is registered to a new image, and model acquisition
procedures are focused on previously unmodeled areas.  In an operational scenario, this
process would be repeated as new images become available, gradually accumulating
evidence over time to make the site model database more complete and more accurate.

Several avenues for system improvement are open.  One high priority is to add
capabilities for detecting and triangulating peaked roof buildings.  Another significant
improvement would be extending the epipolar matching and triangulation portions of
the system to analyze why a particular building roof hypothesis failed to be verified.
There are many cases where the rooftop detector has outlined split-level buildings with
a single roof polygon.  This currently causes the subsequent epipolar verification
procedure to fail, since all lines in the polygon are assumed to be at the same height.
However, a careful analysis of the height histogram in these cases reveals it to be
bimodal, meaning that some lines have been found to be at one height, while some
occur at another.  Automatic detection of these situations, followed by splitting of the
rooftop hypothesis into two separate hypotheses, one for each roof level, would result in
an improvement in system performance.

In the near future we plan to combine our symbolic building extraction procedures with
the correlation-based terrain extraction system described in Section 3.  The two
techniques clearly complement each other: the terrain extraction system will be used to
determine a digital elevation map upon which the volumetric building models will sit,
and the symbolic building extraction procedures will be used to identify building
occlusion boundaries where correlation-based terrain recovery can be expected to
behave poorly.  A tighter coupling of the two systems, where an initial digital elevation
map is used to focus attention on distinctive humps that may be buildings, or where
correlation-based terrain extraction techniques are applied to building rooftop regions to
identify fine surface structure like roof vents and air conditioner units, may also be
investigated.
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