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Abstract

In this paper we present a new discriminative approach
to achieve consistent and efficient tracking of non-rigid ob-
ject motion, such as facial expressions. By utilizing both
spatial and temporal appearance coherence at the patch
level, the proposed approach can reduce ambiguity and in-
crease accuracy. Recent research demonstrates that fea-
ture based approaches, such as constrained local models
(CLMs), can achieve good performance in non-rigid ob-
ject alignment/tracking using local region descriptors and a
non-rigid shape prior. However, the matching performance
of the learned generic patch experts is susceptible to local
appearance ambiguity. Since there is no motion continu-
ity constraint between neighboring frames of the same se-
quence, the resultant object alignment might not be consis-
tent from frame to frame and the motion field is not tempo-
rally smooth. In this paper, we extend the CLM method into
the spatio-temporal domain by enforcing the appearance
consistency constraint of each local patch between neigh-
boring frames. More importantly, we show that the global
warp update can be optimized jointly in an efficient manner
usingconvex quadratic fitting. Finally, we demonstrate that
our approach receives improved performance for the task
of non-rigid facial motion tracking on the videos of clinical
patients.

1. Introduction

Accurate and consistent tracking of non-rigid object mo-
tion, such as facial motion and expressions, is important in
many computer vision applications and has been studied in-
tensively in the last two decades [1,2,6–9,11,15,16,23–25].
This problem is particularly difficult when tracking sub-
jects with unseen appearance variations. To address this
problem, a number of registration/tracking methods have
been developed based on local region descriptors and a non-
rigid shape prior [7,11,12,15,16,20,21]. Compared to the
holistic representations, such as active appearance models
(AAMs), working on the patch level offers us more flexi-

bilities on the local regions, which leads to improved accu-
racy on object alignment and robustness to unseen appear-
ance variation [7,11,21]. In particular, the constrained local
model (CLM) framework proposed recently by Cristinacce
and Cootes [7] has demonstrated good performance in non-
rigid object alignment/tracking, in comparison to leading
holistic approaches (e.g., AAMs). Instead of using holistic
representations, a CLM is able to register a non-rigid object
through the application of an ensemble of patch/region ex-
perts to local search regions within the source image. Given
an appropriate non-rigid shape prior for the object, the re-
sponse surfaces from these local regions are then employed
within a joint optimization process to estimate the global
non-rigid shape of the object. However, the matching per-
formance of the learned generic patch experts might be sus-
ceptible to local appearance ambiguity. Since there is no
motion continuity constraint between neighboring frames
of the same sequence, the resultant object alignment might
not be consistent from frame to frame and the motion field
is not temporally smooth.

Since there is texture coherence between different im-
ages, another direction is to explore this information to align
them automatically. Inspired by recent work for aligning
a set of images in an unsupervised manner [3, 13, 14, 20]
we propose a new discriminative approach to achieve accu-
rate and consistent tracking of non-rigid object motion in
a video sequence by extending the CLM method into the
spatio-temporal domain. By enforcing the appearance con-
sistency constraint of each local patch between neighboring
frames, the temporal texture coherence is integrated into the
original CLM method as a motion smoothness constraint.
We make the following contributions in our paper:

• We extend the constrained local model (CLM) method
into the spatio-temporal domain by introducing the ap-
pearance consistency constraint of each local patch be-
tween neighboring frames. Furthermore, to incorpo-
rate this local appearance consistency constraint effi-
ciently into the CLM framework, we compute the im-
age error in different reference frames, i.e., between
the input image and the model images from previous
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frames. (Section 3)

• Instead of using computationally expensive generic
optimizers such as the Nelder-Mead simplex [7]
method, we propose aconvex quadratic fittingap-
proach that is able todirectly fit a convex quadratic to
both the local response surface of a local patch-expert
and the associated local appearance consistency con-
straints. Since each of the approximated response sur-
faces is convex, an explicit solution to the approximate
joint minima can be found. As a result, we are able to
apply a similar optimization as employed in the Lucas-
Kanade algorithm within the generic CLM framework.
(Section 4 and 5)

• Finally, we demonstrate improved non-rigid align-
ment performance on the video sequences in a clin-
ical archive which contains video clips of pain pa-
tients. Our extended CLM approach exhibits superior
performance to the CLM approach without the local
appearance consistency constraint and leading holis-
tic AAM [6] approaches to non-rigid object tracking.
(Section 6)

2. Learning Constrained Local Models

The notation employed in this paper shall depart slightly
from canonical methods in order to easily allow the inclu-
sion of patches of intensity at each coordinate rather than
just pixels. When a templateT is indexed by the coordi-
nate vectorx = [x, y]T it not only refers to the pixel in-
tensity at that position, but the local support region (patch)
around that position. For additional robustness theP × P

support region1 is extracted after the image has been suit-
ably normalized for scale and rotation to a base template of
the non-rigid object.T (xk) andY (xk) refer to the vector
concatenation of image intensity values within thekth re-
gion (patch) of the template imageT and the source image
Y , respectively.

2.1. Estimating Patch Experts

The choice of classifier employed to learn patch experts
within a CLM can be considered to be largely arbitrary al-
lowing the use of a variety of methods such as boosting
schemes [4,16] (e.g., AdaBoost, GentleBoost, etc.) or rele-
vance vector machine (RVMs) [4] to mention just a few. A
linear SVM was chosen in our work over other classifiers

1A typical patch size is15 × 15 in our experiments for a face object
with an inter-ocular distance of50 pixels.

due to its computational advantages in that,

f̂(∆x) =

NS
∑

i=1

γiαiTi(x)T Y (x + ∆x)

= Y (x + ∆x)T

NS
∑

i=1

γiαiTi(x) (1)

where f̂(∆x) is the match-score for the patch-expert at
coordinate displacement∆x from the current patch co-
ordinate centerx. Y is the source image,Ti is the ith
support vector,αi is the corresponding support weight,
γi ∈ {not aligned (−1), aligned (+1)} is the correspond-
ing support label, andNS is the number of support vec-
tors. Employing a linear SVM is advantageous as it allows
for

∑NS

i=1 γiαiTi(x) to be pre-computed rather than evalu-
ated at every∆x. The support imagesTi are obtained from
an offline training set of positive and negative images. Pos-
itive patch examples were obtained for patches centered at
the fiduciary points of our training images, while negative
examples were obtained by sampling patches shifted away
from the ground truth.

Obtaining Local Responses: Once the patch expert has
been trained we can obtain a local response for an individ-
ual patch expert by performing an exhaustive search of the
neighboring region of that patch’s current position within
the source image. In our experiments, we found a search
window size of15 × 15 pixels for each patch gave good
results for a face object with an inter-ocular distance of50
pixels.

2.2. Estimating the PDM

A point distribution model (PDM) [6] is used for a para-
metric representation of the non-rigid shape variation in the
CLM. The non-rigid warp function can be described as,

W(z; p) = z + Vp (2)

wherez = [xT
1 , . . . ,xT

N ]T , p is a parametric vector describ-
ing the non-rigid warp, andV is the matrix of concatenated
eigenvectors.N is the number of patch-experts. Please note
that this PDM notation differs slightly from the canonical
one becausez is not necessary the mean shape such as de-
fined in [2]. Procrustes analysis [6] is applied to all shape
training observations in order remove all similarity. Princi-
pal component analysis (PCA) [4] is then employed to ob-
tain shape eigenvectorsV that preserved95% of the sim-
ilarity normalized shape variation in the train set. In this
paper, the first4 eigenvectors ofV are forced to correspond
to similarity (i.e., translation, scale and rotation) variation.

3. Constrained Local Model Fitting

Based on the patch experts learned and the point distri-
bution model in Section 2, we can pose non-rigid alignment



as the following optimization problem,

arg min
p

∑

k

Ek{Y (xk + Vkp)} (3)

where Ek() is the inverted classifier score function ob-
tained from applying thekth patch expert to the source im-
age patch intensityY (xk + ∆xk). The displacement∆xk

is constrained to be consistent with the PDM defined in
Equation 2, where the matrixV can be decomposed into
submatricesVk for each kth patch expert, i.e.,V =
[V1, . . . ,VN ]T .

One potential problem with the above constrained local
model is that the tracking performance is largely dependent
on the discriminant performance of the generic patch ex-
perts learned in Section 2.1, and there is no guarantee that
the alignment results will be consistent between different
frames of the same sequence. In order to address this is-
sue, we can extend Equation 3 into the spatio-temporal do-
main to include the local appearance consistency constraint
between neighboring frames. Furthermore, inspired by the
approach developed by Bakeret al. [2, 3], we compute the
image error between the input image and the aligned images
from previous frames. In particular, we extend Equation 3
as follows

arg min
p

∑

k

Ek{Y (xk + Vkp)}

+
1

NT0

∑

t∈T0

∑

k

λ(t)k‖Y (xk + Vkp) − Y(t)(x(t)k)‖2 (4)

whereT0 = [t0 − ∆t, t0] is the time interval used to check
the local appearance consistence between the current frame
Y and the aligned imageY(t) from the previous frame at
time t. NT0

2 is the number of frames included inT0.
λ(t)k is the weighting coefficient for the appearance con-
sistency constraint term which is estimated dynamically in
Section 4.3. For clarity, in the rest of this paper we refer
to the first term in Equation 4 as thegenericterm and the
second one as theconsistencyterm.

4. Convex Optimization

In general, it is difficult to solve forp in Equation 4
as there is no guarantee for the classifier score function
Ek() being convex. Previous methods have either used gen-
eral purpose optimizers (e.g., Nelder-Mead simplex [18])
or attempted to pose the problem as a form of graph opti-
mization [7, 12]. Unfortunately, general purpose optimiza-
tion techniques, such as Nelder-Mead simplex [18], are of-
ten computationally expensive and require good initializa-
tion. In order to employ graph optimization techniques like

2In our experiments, we typically include 3 previous frames in the ap-
pearance consistency constraint term, i.e.,NT0

= 3.

loopy belief propagation it has been shown that the warp
functionW(z; p) needs to be spatially sparse as described
in [12]. In this section, we propose a new approach to
jointly optimizep by convex quadratic fitting.

4.1. Solving the Consistency Term

Since each error function in the consistency term in
Equation 4 takes the form of a sum of squared differences
(SSD), it can be solved efficiently by the Lucas-Kanade gra-
dient descent algorithm [2, 6, 17]. For simplicity, we con-
sider the local appearance consistency error function for the
kth patch between the current frameY and the aligned im-
ageY(t) from a previous framet,

arg min
p

‖Y(t)(x(t)k) − Y (xk + Vkp)‖2 (5)

whereV is the matrix of concatenated eigenvectors describ-
ing the PDM in Equation 2 andVk is the submatrix ofV
for the kth patch. p is a parametric vector describing the
non-rigid warp.

By performing a first order Taylor series approximation
atY (xk + Vkp), we can rewrite Equation 5 as,

arg min
p

‖D(xk) − GT (xk)Vkp‖
2 (6)

which can be expressed generically in the form of a
quadratic,

pTVT
k A(t)kVkp− 2bT

(t)kVkp + c(t)k (7)

given,
A(t)k = G(xk)GT (xk)
b(t)k = G(xk)D(xk)
c(t)k = DT (xk)D(xk)

(8)

whereD(xk) = Y(t)(x(t)k) − Y (xk) andG(xk) is the2×

P 2 local gradient matrix∂Y (x)
∂x

for each set ofP 2 intensities
centered aroundxk.

Therefore, the original consistency term in Equation 4
can be rewritten as

1

NT0

∑

t∈T0

(

pTVTA(t)Vp − 2bT
(t)Vp + c(t)

)

(9)

where,

A(t) =







λ(t)1A(t)1 . . . 0
...

. . .
...

0 . . . λ(t)NA(t)N







b(t) = [λ(t)1b
T
(t)1, . . . , λ(t)NbT

(t)N ]T

c(t) = [λ(t)1c(t)1, . . . , λ(t)Nc(t)N ]T



Since eachA(t)k is virtually always guaranteed of be-
ing positive definite3 and the summation of a set of con-
vex functions is still a convex function [5], this implies the
quadratic in Equation 9 is convex and has a unique minima
givenλ(t)k ≥ 0.

4.2. Solving the Generic Term

When assumingEk() is a SSD classifier it is possible
to gain a convex quadratic approximation to the true error
responses. A major advantage of these approximations is
that it gives a direct method to gain an estimate of the global
warp update. In this section we shall elucidate upon how
we can generalize this result for any type of objective error
function.

Specifically, our approach shall attempt to estimate the
parametersAk, bk andck, for each patch response surface,
through the following optimization

arg minAk,bk,ck

∑

∆x ‖Ek(∆x)
−∆xTAk∆x + 2bT

k ∆x− ck‖
2

subject to Ak ≻ 0
(10)

whereEk(∆x) = Ek{Y (xk + ∆x)}. We should empha-
size thatEk() is now not necessarily a SSD classifier but
can be any function that gives a low value for correct align-
ment. We should note that our proposed approach differs
from the standard Lucas-Kanade algorithm in the sense that
the actual error response for different translations must be
estimated over a local region. In the original Lucas-Kanade
approach no such local search responses are required.

After we estimateAk, bk, andck in Equation 10 for each
patch response surface, the originalgenericterm in Equa-
tion 4 can be rewritten as

∆zTAd∆z− 2bT
d ∆z + cd

= pVTAdVp − 2bT
d Vp + cd (11)

where,

Ad =







A1 . . . 0
...

. . .
...

0 . . . AN







bd = [bT
1 , . . . ,bT

N ]T

cd = [c1, . . . , cN ]T

andV is the matrix of concatenated eigenvectors describ-
ing the PDM in Equation 2. We shall refer to this method
of fitting a CLM as convex quadratic fitting(CQF). The

3Actually, A(t)k is always guaranteed of being positive semidefinite.
In the rare occurrence thatA(t)k is positive semidefinite but not positive
definite (i.e., singular) we can employ a weighted identity matrix to ensure
its rank.

key point of enforcing the convexity of each local patch re-
sponse is to find a convex local function, which is essen-
tial to achieve a fast convergence for the global optimiza-
tion. The detailed computational complexity analysis can
be found in [22].

Quadratic Program Curve Fitting: The optimization in
Equation 10 is in general costly if solved directly [5]. One
way to reduce the complexity of Equation 10 is to en-
forceAk to be a diagonal matrix with non-negative diag-
onal elements. More specifically, for 2D image alignment

Ak =

[

a11 0
0 a22

]

wherea11, a22 > 0. As a result,

Equation 10 can be simplified as

arg mina11,a22,b1,b2,c

∑

x,y ‖Ek(x, y)

−a11x
2 − a22y

2+ 2b1x + 2b2y − c‖2

subject to a11 > 0, a22 > 0
(12)

which can be solved efficiently through quadratic program-
ming [5].

Robust Error Function: When the local search responses
from our patch experts have outliers, it might be difficult
to have accurate surface fitting. To address this issue, ro-
bust error functions have been used in many registration ap-
proaches [2,19] to improve robustness for non-rigid image
alignment. Although there are many different choices [19],
a sigmoid function is selected similar to the weighting func-
tion in Equation 14. In particular, we define the robust error
function in the following form,

̺(E(x); σ) =
1

1 + e−‖E(x)‖2+σ

whereσ is a scale parameter which can be estimated from
E(x). Essentially, this function assigns lower weights to the
response values whose fitting error is larger than the scale
parameterσ, since they are more likely to be the outliers.
As a result, the original curve fitting problem in Equation 10
can be rewritten as

arg minAk,bk,ck

∑

∆x ̺(E(∆x); σ)
subject to Ak ≻ 0

(13)

where

E(∆x) = E(∆x) − ∆xTAk∆x + 2bT
k ∆x− ck.

We shall refer to this method of fitting a CLM asrobust
convex quadratic fitting(RCQF) [22].

4.3. Estimating Weights

The choice of each weighting coefficientλ(t)k plays an
important role in obtaining the optimal solution of Equa-
tion 4. A small value might not be able to impose enough
smoothness constraints on the tracking results while a large



value might cause other issues such as drifting. To address
this issue, we can estimate the weight valuesλ(t)k dynami-
cally based on how likely the aligned patches extracted from
the previous frames are good templates. Although we can
measure the quality of match by introducing certain prior
model such as in [20], a simple approach is to update the
weights based on the outputf̂ of the support vector machine
from Equation 1.

More specifically, an approximate probabilistic output
can be obtained by fitting a logistic regression function [4]
to the outputf̂ of Equation 1 and the labelsy = {not
aligned (−1), aligned (+1)}

P̂ (y = 1|f̂) =
1

1 + eaf̂+b
(14)

wherea andb are learned through a cross-validation pro-
cess. Then we defineλ(t)k using the approximate proba-

bilistic outputP̂ (y = 1|f̂(t)k) as follows

λ(t)k = η
(

1 − P̂ (y = 1|f̂(t)k)
)

=
ηeaf̂(t)k+b

1 + eaf̂(t)k+b
(15)

where

f̂(t)k = Y(t)(x(t)k)T

NS
∑

i=1

γiαiTi(xk)

whereY(t) is the aligned image of the framet, Ti is theith
learned support vector,γi is the corresponding support la-
bel, αi is the corresponding support weight andNS is the
number of support vectors. The intuition behind Equa-
tion 15 is that the consistency term only comes to help when
the associated patch experts can not locate the feature points
correctly, i.e., the SVM scorêf(t)k is low.

As discussed in Section 2.1, Equation 15 can be com-
puted efficiently because of the advantageous property of a
linear SVM, which allows for

∑NS

i=1 γiαiTi(x) to be pre-
computed rather than evaluated at every frame.a andb are
the same as in Equation 14 andη is learned through a cross-
validation process. As shown in Figure 2, the choice of
η does not have a significant affect on the tracking perfor-
mance of our proposed method. In our experiments, we
typically setη a small value0.1.

5. Our Algorithm

A major advantage of the convex quadratic fitting (CQF)
method proposed in Section 4.2 is that it makes both the
generic term and the consistency term in Equation 4 share
the same quadratic form. As a result, we can simplify
the original optimization problem in Equation 4 and solve
jointly for the global non-rigid shape of the object in an effi-
cient manner. More specifically, based on Equation 9 and 11

we can rewrite Equation 4 as follows,

arg min
p

pTVTAdVp− 2bT
d Vp + cd

+
1

NT0

∑

t∈T0

(pTVTA(t)Vp− 2bT
(t)Vp + c(t))

= arg min
p

pTVTAVp− 2bTVp + c (16)

where,
A = Ad + 1

NT0

∑

t∈T0
A(t)

b = bd + 1
NT0

∑

t∈T0
b(t)

c = cd + 1
NT0

∑

t∈T0
c(t)

whereV is the matrix of concatenated eigenvectors describ-
ing the PDM defined as in Equation 2,p is a parametric
vector describing the non-rigid warp,N is the number of
patch-experts, and(Ad, bd, cd) and (A(t), b(t), c(t)) are
defined in Equation 11 and 9 respectively.

Furthermore, as discussed in Section 4.1 and 4.2Ad and
A(t) are both positive definite. Since the summation of a
set of convex functions is still a convex function [5], given
λ(t)k ≥ 0 it is possible to solve not only for the local trans-
lation updates but the entire warp updatep explicitly,

p =
(

VTAV
)−1

VTb (17)

Input:- learned patch experts, source image (Y ),
aligned images from the previous frames (Y(t)),
Jacobian matrix (V),
initial warp guess (p),
index to the template (z), threshold (ǫ)

Output:- final warp (p)

1. Warp the source imageY with the current similarity
transform fromp.

2. Compute the local responsesE based on the learned patch
experts and the source imageY .

3. Estimate the convex quadratic curve fitting parametersAk ,
bk andck from Equation 12 for each patch.

4. Compute the weightsλ(t)k using Equation 15.

5. Estimate the warp update∆p using Equation 17.

6. Update the warpz′ =W(z;p) using
W(z;p)←W(z;p) ◦ W(z;∆p).

7. Repeat steps 1-6 until||∆p|| <= ǫ or max iterations
reached.

Algorithm 1: The outline of our spatio-temporal convex
quadratic fitting (ST-CQF) method.

Since we are only using an approximation to the true
SSD error surface it is necessary within the Lucas-Kanade



algorithm to iterate this operation and constantly update the
warp estimatep until convergence. For clarity, we list the
outline of our spatio-temporal convex quadratic fitting (ST-
CQF) method in Algorithm 1.

6. Experiments

We conducted our experiments on a clinical archive,
which contains video clips of clinical patients with shoul-
der injuries. These clips have a large amount of head mo-
tion and facial expressions. All the images had66 fiducial
points annotated as the ground truth data. To make this task
even more challenging, we trained all models, including the
PDM and the patch experts, separately on the MultiPIE face
database [10] which does not include any subjects from the
clinical archive.

6.1. Evaluation

In all our experiments the similarity normalized base
template had an inter-ocular distance of50 pixels. For a
fair comparison, we took into account differing face scales
between testing images. This is done by first removing the
similarity transform between the estimated shape and the
base template shape and then computing the RMS-PE be-
tween the66 points. To compare the performance of dif-
ferent algorithms we employed analignment convergence
curve (ACC) [7]. These curves have a threshold distance
in RMS-PE on the x-axis and the percentage of trials that
achieved convergence (i.e., final alignment RMS-PE below
the threshold) on the y-axis. A perfect alignment algorithm
would receive an ACC that has100% convergence for all
threshold values.

6.2. Comparison Results

In this section we evaluate the performance of our pro-
posed algorithm to track non-rigid facial motion in video
sequences. To evaluate the performance we conducted com-
parison experiments on a subset of a clinical archive which
included22 video clips of 10 clinical patients with sig-
nificant head motion and facial expressions. There are
200 − 400 frames in each video sequence. We trained all
models, including the PDM and the patch experts, sepa-
rately on the MultiPIE face database [10]. Since no subjects
are shared between the training and testing databases, the
appearance and shape variances are very different between
them which makes the face alignment/tracking task a very
challenging problem. For completeness, we also included
thesimultaneousAAM method which is considered one of
the leading algorithms for holistic non-rigid alignment [2].
In our results we shall refer to this algorithm simply as the
AAM method. Figure 1 shows the results of our compari-
son.
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Figure 1. A comparison of tracking results for22 video clips of10
pain patients with significant head motion and facial expression.
Each video has200−400 frames. We trained all models, including
the PDM and the patch experts, separately on the MultiPIE face
database [10]. Three methods were included in the comparison:
(i) spatio-temporal convex quadratic fitting (ST-CQF), (ii) convex
quadratic fitting (CQF) and (iii) active appearance model (AAM).
ST-CQF and CQF with robust error functions, i.e., ST-RCQF and
RCQF, were also included in the comparison experiments. The
weighting scale factorη was 0.1 in both ST-CQF and ST-RCQF.
Conforming to Section 1, the CLM methods all outperformed the
holistic AAM method in terms of higher alignment accuracy and
convergence rates. Furthermore, the proposed ST-CQF method
had better alignment performance than both the RCQF and CQF
methods.

As discussed in Section 1, the CLM methods have sev-
eral advantages over the holistic AAM method in terms of
accuracy and robustness to appearance variation. The re-
sults in Figure 1 on the clinical archive further support these
claims. We can see in Figure 1 that the CLM algorithms all
outperformed the AAM method. Furthermore, thespatio-
temporal convex quadratic fitting(ST-CQF) method pro-
posed in Section 5 received better performance than both
the robust convex quadratic fitting(RCQF) andconvex
quadratic fitting(CQF) methods by integrating the local ap-
pearance constraint. One hypothesis is that the patch ex-
perts trained in one data set does not perform as well in
a new data set. By enforcing the local appearance consis-
tency constraint, the joint optimization can reduce the local
appearance ambiguity and improve the robustness and ac-
curacy of the non-rigid alignment.

An interesting observation in Figure 1 is that there is
not much difference between the performance of ST-CQF
and ST-RCQF. One potential explanation is that the tempo-
ral texture consistency constraints greatly remove the out-
liers occurred to the local patch-expert matching, which
improves the robustness of the object alignment in a sim-
ilar way as the robust error functions. Therefore the pro-
posed ST-CQF method can achieve accurate and robust ob-
ject tracking performance without using the computation-
ally expensive robust error functions. Examples of align-
ment result on different subjects are also shown in Figure 3
and 4 to illustrate the performance of the three different
methods compared in Figure 1(a).



Furthermore, as described in Section 4.3, the weights
for the consistency term in the overall objective error func-
tion 4 is computed based on the parameterη in Equation 15.
To analyze how sensitive the performance of our proposed
tracking method is to the value ofη, we also conducted
comparison experiments with a wide range ofη values.
The results are reported in Figure 2. The proposed spatio-
temporal convex quadratic fitting (ST-CQF) method with
differentη values all had much better performance than the
convex quadratic fitting (CQF) method without the tempo-
ral appearance consistency constraint (i.e.,η = 0). Fur-
thermore, the choice of different weightsη does not have a
significant affect the tracking performance of our proposed
method.

7. Conclusion and Future Work

In this paper, we proposed a new discriminative approach
to tracking non-rigid object motion, such as facial expres-
sions, in an efficient and unsupervised manner. By extend-
ing the canonical constrained local models (CLM) frame-
work [7] into the spatio-temporal domain, the proposed ap-
proach can reduce ambiguity and increase accuracy. Fur-
thermore, we formulated the optimization problem into a
convex quadratic curve fitting framework whose generic
term and consistency term share the same quadratic form.
This convex quadratic framework was motivated by the ef-
fectiveness of the canonical Lucas-Kanade algorithm when
dealing with a similar optimization problem. By enforcing
this convexity it was possible, through an iterative method,
to solve jointly for the global non-rigid shape of the object.

We evaluated the performance of our proposed method
using the videos from a clinical archive which contains
video clips of pain patients. The experimental results
demonstrated that our spatio-temporal convex quadratic
(ST-CQF) CLM has better alignment performance than
other evaluated CLMs without the local appearance consis-
tency constraint and leading existing holistic methods for
alignment/tracking (i.e., AAMs). In future work, we shall
investigate other discriminant classifiers such as boosting
schemes [4,16] or relevance vector machine (RVMs) [4] to
further improve the performance of our patch experts. We
would also like to explore alternate geometric constraintsto
handle large deformations and occlusion.
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