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Abstract bilities on the local regions, which leads to improved accu-
racy on object alignment and robustness to unseen appear-
In this paper we present a new discriminative approach ance variation [7,11,21]. In particular, the constrairmzhl
to achieve consistent and efficient tracking of non-rigid ob model (CLM) framework proposed recently by Cristinacce
ject motion, such as facial expressions. By utilizing both and Cootes [7] has demonstrated good performance in non-
spatial and temporal appearance coherence at the patchrigid object alignment/tracking, in comparison to leading
level, the proposed approach can reduce ambiguity and in- holistic approaches (e.g., AAMS). Instead of using hddisti
crease accuracy. Recent research demonstrates that fearepresentations, a CLM is able to register a non-rigid dbjec
ture based approaches, such as constrained local modelghrough the application of an ensemble of patch/region ex-
(CLMs), can achieve good performance in non-rigid ob- perts to local search regions within the source image. Given
ject alignment/tracking using local region descriptorgam an appropriate non-rigid shape prior for the object, the re-
non-rigid shape prior. However, the matching performance sponse surfaces from these local regions are then employed
of the learned generic patch experts is susceptible to localwithin a joint optimization process to estimate the global
appearance ambiguity. Since there is no motion continu- non-rigid shape of the object. However, the matching per-
ity constraint between neighboring frames of the same se-formance of the learned generic patch experts might be sus-
guence, the resultant object alignment might not be consis-ceptible to local appearance ambiguity. Since there is no
tent from frame to frame and the motion field is not tempo- motion continuity constraint between neighboring frames
rally smooth. In this paper, we extend the CLM method into of the same sequence, the resultant object alignment might
the spatio-temporal domain by enforcing the appearance not be consistent from frame to frame and the motion field
consistency constraint of each local patch between neigh-is not temporally smooth.
boring frames. More importantly, we show that the global  Since there is texture coherence between different im-
warp update can be optimized jointly in an efficient manner ages, another direction is to explore this informationigral
usingconvex quadratic fittingFinally, we demonstrate that  them automatically. Inspired by recent work for aligning
our approach receives improved performance for the task a set of images in an unsupervised manner [3, 13, 14, 20]
of non-rigid facial motion tracking on the videos of clinica we propose a new discriminative approach to achieve accu-
patients. rate and consistent tracking of non-rigid object motion in
a video sequence by extending the CLM method into the
spatio-temporal domain. By enforcing the appearance con-
1. Introduction sistency constraint of each local patch between neighgorin
frames, the temporal texture coherence is integratedfieto t

i Accurﬁte apd _C(?n5|stt_ent tra:jckmg of n_on-rlgld_objectt mto_- original CLM method as a motion smoothness constraint.
'on, SUch as faclal motion and €xpressions, IS IMportantinyye maye the following contributions in our paper:
many computer vision applications and has been studied in-

tensively in the last two decades [1,2,6-9,11,15,16,2B-25 e We extend the constrained local model (CLM) method

This problem is particularly difficult when tracking sub- into the spatio-temporal domain by introducing the ap-
jects with unseen appearance variations. To address this  pearance consistency constraint of each local patch be-
problem, a number of registration/tracking methods have tween neighboring frames. Furthermore, to incorpo-

been developed based on local region descriptors and anon-  rate this local appearance consistency constraint effi-
rigid shape prior [7,11,12,15,16, 20, 21]. Compared to the ciently into the CLM framework, we compute the im-

holistic representations, such as active appearance model age error in different reference frames, i.e., between
(AAMs), working on the patch level offers us more flexi- the input image and the model images from previous
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frames. (Section 3) due to its computational advantages in that,

Ng
e Instead of using computationally expensive generic flax) = Y yaTi(x)"Y (x + Ax)
optimizers such as the Nelder-Mead simplex [7] i=1
method, we propose aonvex quadratic fittingap- Ns
proach that is able tdirectly fit a convex quadratic to = Y(x+Ax)"> waTi(x) 1)
both the local response surface of a local patch-expert i=1

and the associated local appearance consistency conwhere f(Ax) is the match-score for the patch-expert at
straints. Since each of the approximated response surcoordinate displacemenhx from the current patch co-
faces is convex, an explicit solution to the approximate grdinate centex. Y is the source image]; is the ith
joint minima can be found. As aresult, we are able to support vector,a; is the corresponding support weight,
apply a similar optimization as employed in the Lucas- ~; € {not aligned (—1), aligned (+1)} is the correspond-
Kanade algorithm within the generic CLM framework. ing support label, andVs is the number of support vec-
(Section 4 and 5) tors. Employing a linear SVM is advantageous as it allows
for vajl ~via; T;(x) to be pre-computed rather than evalu-

e Finally, we demonstrate improved non-rigid align- ated at everyAx. The supportimages; are obtained from
ment performance on the video sequences in a clin-an offline training set of positive and negative images. Pos-
ical archive which contains video clips of pain pa- itive patch examples were obtained for patches centered at
tients. Our extended CLM approach exhibits superior the fiduciary points of our training images, while negative
performance to the CLM approach without the local examples were obtained by sampling patches shifted away
appearance consistency constraint and leading holisfrom the ground truth.

tic AAM [6] approaches to non-rigid object tracking.  Obtaining Local Responses: Once the patch expert has
(Section 6) been trained we can obtain a local response for an individ-
ual patch expert by performing an exhaustive search of the
) ) neighboring region of that patch’s current position within
2. Learning Constrained Local Models the source image. In our experiments, we found a search
window size of15 x 15 pixels for each patch gave good

The notation employed in this paper shall depart slightly yesyits for a face object with an inter-ocular distancé®f
from canonical methods in order to easily allow the inclu- pixels.

sion of patches of intensity at each coordinate rather than
just pixels. When a templafg is indexed by the coordi- 2.2. Estimating the PDM
nate vectorx = [,y it not only refers to the pixel in-
tensity at that position, but the local support region (patc
around that position. For additional robustnesskhg P
support regioh is extracted after the image has been suit-
ably normalized for scale and rotation to a base template of W(z;p) =z+ Vp (2)
the non-rigid objectT'(x;) andY (xy) refer to the vector
concatenation of image intensity values within #té re-
gion (patch) of the template imagéand the source image
Y, respectively.

A point distribution model (PDM) [6] is used for a para-
metric representation of the non-rigid shape variatioma t
CLM. The non-rigid warp function can be described as,

wherez = [xT,...,x%]7, pis a parametric vector describ-
ing the non-rigid warp, an¥ is the matrix of concatenated
eigenvectorsN is the number of patch-experts. Please note
that this PDM notation differs slightly from the canonical
one because is not necessary the mean shape such as de-
fined in [2]. Procrustes analysis [6] is applied to all shape
training observations in order remove all similarity. Riin
The choice of classifier employed to learn patch experts Pal component analysis (PCA) [4] is then employed to ob-
within a CLM can be considered to be largely arbitrary al- t&in shape eigenvectofé that preserved5% of the sim- -
lowing the use of a variety of methods such as boosting'la”ty norm_ahze(_j shape variation in the train set. In this
schemes [4,16] (e.g., AdaBoost, GentleBoost, etc.) of rele Paper, the first eigenvectors oW are forced to correspond
vance vector machine (RVMs) [4] to mention just a few. A {0 similarity (i.e., translation, scale and rotation) edion.

linear SVM was chosen in our work over other classifiers . L
3. Constrained Local Model Fitting

LA typical patch size is15 x 15 in our experiments for a face object _Based on t_he pat_ch experts learned and t_h? po_int distri-
with an inter-ocular distance 60 pixels. bution model in Section 2, we can pose non-rigid alignment

2.1. Estimating Patch Experts




as the following optimization problem, loopy belief propagation it has been shown that the warp
functionV(z; p) needs to be spatially sparse as described
argminz E{Y (xr + Vip)} 3) in [12]. In this section, we propose a new approach to

P jointly optimizep by convex quadratic fitting.

where E() is the inverted classifier score function ob-

tained from applying théth patch expert to the source im-

age patch intensity (x; + Axy). The displacemenhxy Since each error function in the consistency term in

is constrained to be consistent with the PDM defined in Equation 4 takes the form of a sum of squared differences

Equation 2, where the matri¥ can be decomposed into (SSD), itcan be solved efficiently by the Lucas-Kanade gra-

submatricesV;, for each kth patch expert, i.e.V = dient descent algorithm [2,6, 17]. For simplicity, we con-

[Vi,...,Vx]T. sider the local appearance consistency error functiorhfor t
One potential problem with the above constrained local kth patch between the current frariieand the aligned im-

model is that the tracking performance is largely dependentageY(,) from a previous frame,

on the discriminant performance of the generic patch ex-

perts learned in Section 2.1, and there is no guarantee that arg min || Yy (x(1)x) — Y (xx + Vip)||? (5)

the alignment results will be consistent between different P

frames of the same sequence. In order to address this iSyherev is the matrix of concatenated eigenvectors describ-
sue, we can extend Equation 3 into the spatio-temporal do'ing the PDM in Equation 2 an¥, is the submatrix oV

main to include the local appearance consistency constraing,; ihe ith patch. p is a parametric vector describing the
between neighboring frames. Furthermore, inspired by thenon-rigid warp.
approach developed by Baket al. [2, 3], we compute the By performing a first order Taylor series approximation

image error between the inputimage and the aligned imagesaty(xk +V,p), We can rewrite Equation 5 as
from previous frames. In particular, we extend Equation 3 ' '

as follows arg min || D(x;) — GT (xx)Vip||? (6)
P
arg min Z Ex{Y (xx + Vip)}
P %

4.1. Solving the Consistency Term

which can be expressed generically in the form of a
quadratic,
+

SO MollY (i + Viep) — Yoo (xo) |12 (4) o .
To teTo k p Vk A(t)kap — 2b(t)kap + Clt)k (7)
whereTy = [to — At, to] is the time interval used to check

. iven,
the local appearance consistence between the current fram@

Y and the aligned imagg/;, from the previous frame at Awpr = G(xi)G" (xk)
time t. Np,2 is the number of frames included if. b = GTXk)D(Xk) (8)
Ak is the weighting coefficient for the appearance con- cir = D7 () D(xy)

sistency constraint term which is estimated dynamically in whereD(xy,) = Yo (xor) — Y (x) andG (xy) is the2 x
Section 4.3. For clarity, in the rest of this paper we refer S

to the first term in Equation 4 as tlgenericterm and the
second one as tlensistencyerm.

P2 |ocal gradient matri% for each set oP? intensities
centered arouns,,.
Therefore, the original consistency term in Equation 4

L . can be rewritten as
4. Convex Optimization

In general, it is difficult to solve fop in Equation 4 > (pTVTA(t)Vp —2b{, Vp + c(t)) (9)
as there is no guarantee for the classifier score function To ver,
E() being convex. Previous methods have either used gen-
eral purpose optimizers (e.g., Nelder-Mead simplex [18]) Where,
or attempted to pose the problem as a form of graph opti-

mization [7,12]. Unfortunately, general purpose optimiza ArAwr - 0
tion techniques, such as Nelder-Mead simplex [18], are of- Apy = - :
ten computationally expensive and require good initializa 0 o ApNA@N
tion. In order to employ graph optimization techniques like
2In our experiments, we typically include 3 previous franrethie ap- b(t) = [)‘(t)lbg;)l’ T )‘(t)Nba)N]T

pearance consistency constraint term, Nep, = 3. cyy = [)\(t)lc(t)l, . -;)\(t)NC(t)N]T



Since eachA (), is virtually always guaranteed of be- key point of enforcing the convexity of each local patch re-
ing positive definité and the summation of a set of con- sponse is to find a convex local function, which is essen-
vex functions is still a convex function [5], this impliessth  tial to achieve a fast convergence for the global optimiza-
guadratic in Equation 9 is convex and has a unique minimation. The detailed computational complexity analysis can
given ), > 0. be found in [22].

) ) Quadratic Program Curve Fitting: The optimization in
4.2. Solving the Generic Term Equation 10 is in general costly if solved directly [5]. One

When assuming?() is a SSD classifier it is possible Way {0 reduce the complexity of Equation 10 is to en-
to gain a convex quadratic approximation to the true error fOrce A, to be a diagonal matrix with non-negative diag-
responses. A major advantage of these approximations jonal elements. More specifically, for 2D image alignment
that it gives a direct method to gain an estimate of the global A, — [ a0 whereai,aze > 0. As a result,
warp update. In this section we shall elucidate upon how ) 0 a2 L
we can generalize this result for any type of objective error Equation 10 can be simplified as
function.

Specifically, our approach shall attempt to estimate the
parameters\x, by andcy, for each patch response surface,
through the following optimization

arg mina117a227b17b27C Zm,y HEk (I, y)
—a112? — agy?+  2b1x + 2boy — c||? (12)
subject to ay; > 0,a20 >0

which can be solved efficiently through quadratic program-
arg  MmMina, by,cp 2oax | Er(AX) ming [5].
—AxTARAx + 2bTAx — ci||>  (10)

_ Robust Error Function: When the local search responses
subject to A =0

from our patch experts have outliers, it might be difficult

to have accurate surface fitting. To address this issue, ro-
bust error functions have been used in many registration ap-
proaches [2, 19] to improve robustness for non-rigid image

whereEy(Ax) = Ei{Y (x + Ax)}. We should empha-
size thatE},() is now not necessarily a SSD classifier but

can be any function that gives a low value for correct align- . ; :
ment. We should note that our proposed approach diﬁersahgnment. Although there are many different choices [19],

from the standard Lucas-Kanade algorithmin the sense thaf.l 5|gm0|d fur_wcnon IS select_ed similar to t_he weighting func
. . ion in Equation 14. In particular, we define the robust error

the actual error response for different translations mast b S :

. . . function in the following form,
estimated over a local region. In the original Lucas-Kanade
approach no such local search responses are required. Slx) o) — 1

After we estimateA ., by, andcy, in Equation 10 for each o(E(x);0) = 14+ e llEG)IP+o
patch response surface, the origigehericterm in Equa-

tion 4 can be rewritten as whereo is a scale parameter which can be estimated from

£(x). Essentially, this function assigns lower weights to the
AzTA Az — 2bTAz + ¢4 response valu_es whose fitting error is larger than the_ scale
parametelw, since they are more likely to be the outliers.

_ T T
= PV A4Vp—2b;Vp+eq (11)  Asaresult, the original curve fitting problem in Equation 10
can be rewritten as
where,
A, L. 0 arg minAkybkyck ZAx Q(E(AX); U) (13)
Ay — . . . subject to A =0
0 ... Ay where
by = [bT,....bLT E(Ax) = B(Ax) — AxT AR Ax + 2bL Ax — ¢
Cqg = [Cla"'acN]T

We shall refer to this method of fitting a CLM asbust

andV is the matrix of concatenated eigenvectors describ- convex quadratic fittingRCQF) [22].
ing the PDM in Equation 2. We shall refer to this method ) ) i
of fitting a CLM asconvex quadratic fittindCQF). The 4.3. Estimating Weights

3 _ _ 3 S The choice of each weighting coefficiekt;), plays an
Actually, Ax)x IS always guaranteed of being positive semidefinite. ;34 tant role in obtaining the optimal solution of Equa-
In the rare occurrence th# ;) is positive semidefinite but not positive

definite (i.e., singular) we can employ a weighted identigtrix to ensure 10N 4. A small Value_ might not be a_ble to impose_enOUgh
its rank. smoothness constraints on the tracking results while & larg




value might cause other issues such as drifting. To addressve can rewrite Equation 4 as follows,
this issue, we can estimate the weight valdgs, dynami-

cally based on how likely the aligned patches extracted from
the previous frames are good templates. Although we can

argmin =~ p’VTA;Vp —2b2Vp + ¢y
P

measure the quality of match by introducing certain prior + Z (" VA Vp —2b,, VD + (1))
model such as in [20], a simple approach is to update the To em,

weights based on the outpf]bfthe support vector machine = argmin p’VTAVp —2b7Vp + ¢ (16)
from Equation 1. p

More specifically, an approximate probabilistic output where,
can be obtained by fitting a logistic regression function [4] A = A+ %TD dtem, A
to the outputf of Equation 1 and the labels = {not b = bg+ ﬁzte% b
aligned (-1), aligned ¢+1)} c = cit S, e
Nt, teT, C(t)

P(y _ 1|f) _ 1 ] (14) yvhereV isthe ma_trix of co_ncatena’ged eigenvectors des_crib-

1 4 eaf+b ing the PDM defined as in Equation B, is a parametric
vector describing the non-rigid wargy is the number of
patch-experts, an@A 4, by, cq) and (A ), by, ) are
defined in Equation 11 and 9 respectively.

wherea andb are learned through a cross-validation pro-
cess. Then we defing; using the approximate proba-

bilistic outputP(y = 1| f1)x) as follows Furthermore, as discussed in Section 4.1 and\; 2nd
R R A ;) are both positive definite. Since the summation of a
Ak = 1 (1 - Py = 1|f(t)k)) set of convex functions is still a convex function [5], given
eyt )\(t_)k > 0 itis possible to s_olve not only for th_e_local trans-
e (15) lation updates but the entire warp updatexplicitly,
1+ eJ@rtd L
= (VTAV) VTb 17
where P ( ) (7)
Ns
For = Yy (x@yr) " Z Yicei Ty (X))
1=1
whereY(,) is the aligned i_mage of the fram;_aTl- is theith Input:- learned patch experts, source imag®,(
learned support vectot; is the corresponding support la- aligned images from the previous framé$;(),
bel, «; is the corresponding support weight aig is the Jacobian matrixV),
number of support vectors. The intuition behind Equa- initial warp guessp),
tion 15 is that the consistency term only comes to help when index to the templatez], threshold ¢)
the associated patch experts can not locate the featurespoin ~ Output:- final warp )
correctly, i.e., the SVM scorg ;. is low. 1. Warp the source imagdeé with the current similarity
As discussed in Section 2.1, Equation 15 can be com- transform fromp.
puted efficiently because of the}\f;ldvantageous property of & 2 Compute the local responsBshased on the learned patch
linear SVM, which allows for}_,™% v;a;T;(x) to be pre- experts and the source imalje
computed rather than evaluated at every framandb are 3. Estimate the convex quadratic curve fitting paramedars

the same as in Equation 14 anés learned through a cross-

validation process. As shown in Figure 2, the choice of
1 does not have a significant affect on the tracking perfor-
mance of our proposed method. In our experiments, we 5. Estimate the warp updatep using Equation 17.

b andcy, from Equation 12 for each patch.
4. Compute the weights ), using Equation 15.

typically setr a small valué).1. 6. Update the warp’ = W(z; p) using
W(z;p) «— W(z;p) o W(z; Ap).
5. Our Algorithm 7. Repeat steps 1-6 unfjAp|| <= e or max iterations

hed.
A major advantage of the convex quadratic fitting (CQF) reache

method proposed in Section 4.2 is that it makes both the
generic term and the consistency term in Equation 4 share Algorithm 1. The outline of our spatio-temporal convex
the same quadratic form. As a result, we can simplify duadraticfitting (ST-CQF) method.

the original optimization problem in Equation 4 and solve

jointly for the global non-rigid shape of the object in aneffi Since we are only using an approximation to the true
cientmanner. More specifically, based on Equation 9 and 11SSD error surface it is necessary within the Lucas-Kanade




algorithm to iterate this operation and constantly updage t o e meeeeeee
warp estimatep until convergence. For clarity, we list the Cost 7
outline of our spatio-temporal convex quadratic fitting{ST 8 o6 s

. . c [—sT-RcqF
CQF) method in Algorithm 1. S .l — ST-COQF

o RCQF
) E 02 / ---CQF
6. Experiments S k - Loaam |
00 1 2 X 3 4 5 6 7 8 10
We conducted our experiments on a clinical archive, Alignment Error (RMS-PE)

which contains video clips of clinical patients with shoul- Figure 1. A comparison of tracking results i video clips of10
der injuries. These clips have a large amount of head mo-P&n patients with significant head motion and facial expics
tion and facial expressions. All the images leidfiducial Each video ha800—400 frames. We trained all models, including
points annotated as the ground truth data. To make this tasiNe PDM and the patch experts, separately on the MultiPIE fac

. . . . database [10]. Three methods were included in the compariso
even more challenging, we trained all models, including the

. (i) spatio-temporal convex quadratic fitting (ST-CQF)), onvex
PDM and the patch experts, separately on the MulthIEfacequaldratic fitting (CQF) and (iii) active appearance mode\l.

database [10] which does not include any subjects from thesT.cQF and CQF with robust error functions, i.e., ST-RCQ# an

clinical archive. RCQF, were also included in the comparison experiments. The
weighting scale facton was 0.1 in both ST-CQF and ST-RCQF.
6.1. Evaluation Conforming to Section 1, the CLM methods all outperformesl th

holistic AAM method in terms of higher alignment accuracylan

In all our experiments the similarity normalized base convergence rates. Furthermore, the proposed ST-CQF thetho
template had an inter-ocular distance50f pixels. For a had better alignment performance than both the RCQF and CQF
fair comparison, we took into account differing face scales methods.
between testing images. This is done by first removing the
similarity transform between the estimated shape and the
base template shape and then computing the RMS-PE be-
tween the66 points. To compare the performance of dif-
ferent algorithms we employed alignment convergence
curve (ACC) [7]. These curves have a threshold distance
in RMS-PE on the x-axis and the percentage of trials that
achieved convergence (i.e., final alignment RMS-PE below
the threshold) on the y-axis. A perfect alignment algorithm
would receive an ACC that ha$)0% convergence for all
threshold values.

As discussed in Section 1, the CLM methods have sev-
eral advantages over the holistic AAM method in terms of
accuracy and robustness to appearance variation. The re-
sults in Figure 1 on the clinical archive further supporsthe
claims. We can see in Figure 1 that the CLM algorithms all
outperformed the AAM method. Furthermore, th@atio-
temporal convex quadratic fittinST-CQF) method pro-
posed in Section 5 received better performance than both
the robust convex quadratic fittingRCQF) andconvex
guadratic fitting(CQF) methods by integrating the local ap-
pearance constraint. One hypothesis is that the patch ex-

In this section we evaluate the performance of our pro- perts trained in one data set does not perform as well in
posed algorithm to track non-rigid facial motion in video @ new data set. By enforcing the local appearance consis-
sequences. To evaluate the performance we conducted confency constraint, the joint optimization can reduce thaloc
parison experiments on a subset of a clinical archive whichappearance ambiguity and improve the robustness and ac-
included 22 video clips of 10 clinical patients with sig- ~ curacy of the non-rigid alignment.
nificant head motion and facial expressions. There are An interesting observation in Figure 1 is that there is
200 — 400 frames in each video sequence. We trained all not much difference between the performance of ST-CQF
models, including the PDM and the patch experts, sepa-and ST-RCQF. One potential explanation is that the tempo-
rately on the MultiPIE face database [10]. Since no subjectsral texture consistency constraints greatly remove the out
are shared between the training and testing databases, thigers occurred to the local patch-expert matching, which
appearance and shape variances are very different betweeimproves the robustness of the object alignment in a sim-
them which makes the face alignment/tracking task a veryilar way as the robust error functions. Therefore the pro-
challenging problem. For completeness, we also includedposed ST-CQF method can achieve accurate and robust ob-
the simultaneou®\AM method which is considered one of ject tracking performance without using the computation-
the leading algorithms for holistic non-rigid alignmen}.[2  ally expensive robust error functions. Examples of align-
In our results we shall refer to this algorithm simply as the ment result on different subjects are also shown in Figure 3
AAM method. Figure 1 shows the results of our compari- and 4 to illustrate the performance of the three different
son. methods compared in Figure 1(a).

6.2. Comparison Results
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Furthermore, as described in Section 4.3, the weights
for the consistency term in the overall objective error func
tion 4 is computed based on the parameter Equation 15.

To analyze how sensitive the performance of our proposed
tracking method is to the value of we also conducted
comparison experiments with a wide rangerpfvalues.
The results are reported in Figure 2. The proposed spatio- s L . s : T s
temporal convex quadratic fitting (ST-CQF) method with Alignment Error (RMS-PE)
differentn values all had much better performance than the Figure 2. A comparison of tracking results with differentigies
convex quadratic fitting (CQF) method without the tempo- 7 for the consistency term. The same training and testingseata
ral appearance consistency constraint (ie= 0). Fur- were used as described in the cgpti_op of Figure 1. The propose
thermore, the choice of different weighjsioes not have a spatio-temporal convex quadratic fitting (ST-CQF) methed h

- . much better performance than both the robust convex quaétat
i;%?:(l)%am affect the tracking performance of our proposed ting (RCQF) and the convex quadratic fitting (CQF) methods- F

thermore, the choice of different weighjsloes not have a signif-
icant affect to the tracking performance of our proposechioet

4
@
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7. Conclusion and Future Work

In this paper, we proposed a new discriminative approach
to tracking non-rigid object motion, such as facial expres- [2] s. Baker and I. Matthews. Lucas-Kanade 20 years on: A

sions, in an efficient and unsupervised manner. By extend- unifying framework: Part 1: The quantity approximated, the
ing the canonical constrained local models (CLM) frame- warp update rule, and the gradient descent approximation.
work [7] into the spatio-temporal domain, the proposed ap- 1JCV, 2004.

proach can reduce ambiguity and increase accuracy. Fur-[3] S.Baker,l. Matthews, and J. Schneider. Automatic cwiest
thermore, we formulated the optimization problem into a tion of active appearance models as an image coding prob-
convex quadratic curve fitting framework whose generic lem. PAMI, 26(10):1380-1384, October 2004.

term and consistency term share the same quadratic form.[4] C. M. Bishop. Pattern Recognition and Machine Learning

This convex quadratic framework was motivated by the ef- Springer, 2006. S

fectiveness of the canonical Lucas-Kanade algorithm when 5] S._Boyd a.nd L. Vandenbergh€onvex OptimizationCam-

dealing with a similar optimization problem. By enforcing 6] '?rlgggo%rt"evsergt%Plg?j?;z;rzdosoi.nd C. 3 Tavlor. Active appea

this convexity it was possible, through an iterative method a.nc.e modelé. IECCV volun;e 5 pa.ge.s 42;4—.498 199?3

to solve jointly for the global non-rigid shape of the object 7] D. Cristinacce and T ’F Cootes ’Feature detectio’n aakir
We evaluated the performance of our proposed method [71°D. . '

. . e . . ; ing with constrained local models. BMVC, pages 929—
using the videos from a clinical archive which contains 938 2006.

video clips of pain patients. The experimental results [g] N. Dowson and R. Bowden. N-tier simultaneous modeliing
demonstrated that our spatio-temporal convex quadratic and tracking for arbitrary warps. IBMVC, page 11:569,
(ST-CQF) CLM has better alignment performance than 2006.

other evaluated CLMs without the local appearance consis- [9] P. Felzenszwalb and D. Huttenlocher. Pictorial stregsifor
tency constraint and leading existing holistic methods for object recognitionlJCV, 61(1):55-79, January 2005.
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Figure 3. Examples of tracking performance on an unseealfaci Figure 4. Comparison experiments on drifting. There are 202
expression sequence. Since the MultiPIE face databaselfE3] frames in the sequence and the first and second row shows the

not include the lip tightening expression, the appearaadation tracking results of the 55th and 98th frame, respectivele plot
around the lips was not included in the training datasetrd hee in the bottom row shows that both the RCQF and CQF meth-
338 frames in the sequence and the first and second row showsds started to drift around the 90th frame while our proposed
the tracking results of the 77th and 237 frame, respectivEhe ST-CQF method can maintain a consistent tracking perfocman
first column (a,d) shows the resulting alignment from thesdticl with a high accuracy. The first column (a,d) shows the result-

active appearance model (AAM), the second column (b,e) from ing alignment from the holistic active appearance model {AA

the robust convex quadratic fitting (RCQF), and the thirdiowoi the second column (b,e) from the robust convex quadratieditt
(c,f) from our spatio-temporal convex quadratic fitting {SQF) (RCQF), and the third column (c,f) from our spatio-tempaah-
method. The plot in the third row shows the comparison ofkirac  vex quadratic fitting (ST-CQF) method. The plot in the thiogvr

ing error (RMS-PE) on each frame of the whole sequence betwee includes the comparison of tracking error (RMS-PE) throtigh

the 5 methods as described in Figure 1, i.e., AAM, CQF, RCQF, whole sequence between the 5 methods as described in Figure 1
ST-CQF and ST-RCQF. The weighting scale facjowvas set as i.e., AAM, CQF, RCQF, ST-CQF and ST-RCQF. The weight-
0.1 in both ST-CQF and ST-RCQF. Since this facial expression ing scale factom was 0.1 in both ST-CQF and ST-RCQF. Our
was not included in the training database, the learned appea proposed ST-CQF and ST-RCQF methods had much more accu-
model could not find good matching around the lips even wigh th  rate and temporally smoother tracking results than both @q-

help of robust error functions. However, our proposed STFCQ RCQF methods.

and ST-RCQF methods can achieve a good alignment perfoemanc

by enforcing the local appearance consistency in the teahplor [21] Y. Wang, S. Lucey, and J. Cohn. Non-rigid object aligmine

main. with a mismatch template based on exhaustive local search.
In IEEE Workshop on Non-rigid Registration and Tracking
[17] B.Lucasand T.Kanade. An iterative image registratexh- through Learning2007.
nigue with an application to stereo vision. limernational [22] Y. Wang, S. Lucey, and J. Cohn. Enforcing convexity for i
Joint Conference on Artificial Intelligencpages 674-679, proved alignment with constrained local models.QWPR
1981. 2008.
[18] J. A. Nelder and R. Mead. A simplex method for function [23] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian
minimization. Computer Journal7:308-313, 1965. learning for efficient visual tracking.PAMI, 27(8):1292—
[19] B.-J. Theobald, I. Matthews, and S. Baker. Evaluatirrgre 1304, August 2005.
functions for robust active appearance models.Inberna- [24] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time
tional Conference on Automatic Face and Gesture Recogni- combined 2d+3d active appearance modelCUPR pages
tion, pages 149-154, 2006. II: 535-542,2004.

[20] K. Walker, T. Cootes, and C. Taylor. Automatically lul4il [25] Y. zZhou, L. Gu, and H. Zhang. Bayesian tangent shape
ing appearance models from image sequences using salient model: Estimating shape and pose parameters via Bayesian
featuresIVC, 20(5-6):435-440, 2002. inference. ICVPR volume 1, pages 109-116, 2003.



