Advanced Search   
  Look in
       Title     Description
  Include
       Inactive Projects
 

 
3D Head Motion Recovery in Real Time
Head: Jing Xiao
Contact: Jing Xiao
Mailing address:
Carnegie Mellon University
Robotics Institute
5000 Forbes Avenue
Pittsburgh, PA 15213
Associated center(s) / consortia:
 Vision and Autonomous Systems Center (VASC)
Associated lab(s) / group(s):
 Human Identification at a Distance
 People Image Analysis Consortium
Overview
We developed a method to recover the full-motion (3 rotations and 3 translations) of the head using a cylindrical model. The robustness of the approach is achieved by a combination of three techniques. First, we use the iteratively re-weighted least squares (IRLS) technique in conjunction with the image gradient to deal with non-rigid motion and occlusion. Second, while tracking, the templates are dynamically updated to diminish the effects of self-occlusion and gradual lighting changes and keep tracking the head when most of the face is not visible. Third, because the dynamic templates may cause error accumulation, we re-register images to a reference frame when head pose is close to a reference pose. The performance of the real-time tracking program was evaluated using image sequences (both synthetic and real) for which ground truth head motion is known. The real sequences included pitch and yaw of as large as 40 and 75, respectively. The average recovery accuracy of the 3D rotations was found to be about 3.
Examples:

AVI Movie, 2M4.
AVI Movie, 1M7.