Segmenting Textured 3D Surfaces Using the Space/Frequency Representation

John Krumm and Steven Shafer
Spatial Vision 1994, special issue on Texture Perception and Attention, , 1994


Download
  • Adobe portable document format (pdf) (326KB)
Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract
Segmenting 3D textured surfaces is critical for general image understanding. Unfortunately, current efforts at automatically understanding image texture are based on assumptions that make this goal impossible. Texture segmentation research assumes that the textures are flat and viewed from the front, while shape-from-texture work assumes that the textures have already been segmented. This deadlock means that none of these algorithms will work reliably on images of 3D textured surfaces.

We have developed an algorithm that can segment an image containing nonfrontally viewed, planar, periodic textures. We use the spectrogram (local power spectrum) to compute local surface normals from small regions of the image. This algorithm does not require unreliable image feature detection. Based on these surface normals, we compute a "frontalized" version of the local power spectrum which shows what the region's power spectrum would look like if viewed from the front. If neighboring regions have similar frontalized power spectra, they are merged. The merge criteria is based on a description length formula. We demonstrate the segmentation on images with real textures. To our knowledge, this is the first program that can segment 3D textured surfaces by explicitly accounting for shape effects.


Notes
Associated Center(s) / Consortia: Vision and Autonomous Systems Center
Associated Lab(s) / Group(s): Calibrated Imaging Lab

Text Reference
John Krumm and Steven Shafer, "Segmenting Textured 3D Surfaces Using the Space/Frequency Representation," Spatial Vision 1994, special issue on Texture Perception and Attention, , 1994

BibTeX Reference
@article{Krumm_1994_4247,
   author = "John Krumm and Steven Shafer",
   title = "Segmenting Textured 3D Surfaces Using the Space/Frequency Representation",
   journal = "Spatial Vision 1994, special issue on Texture Perception and Attention",
   year = "1994",
}