Carnegie Mellon University
Nonprehensile Robotic Manipulation: Controlability and Planning

Kevin Lynch
doctoral dissertation, tech. report CMU-RI-TR-96-05, Robotics Institute, Carnegie Mellon University, March, 1996

  • Adobe portable document format (pdf) (2MB)
Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

A good model of the mechanics of a task is a resource for a robot, just as actuators and sensors are resources. The effective use of frictional, gravitational, and dynamic forces can substitute for actuators; the expectation derived from a good model can minimize sensing requirements. Despite this, most robot systems attempt to dominate or nullify task mechanics, rather than exploit them. There has been little effort to understand the manipulation capabilities of even the simplest robots under more complete mechanics models.

This thesis addresses that knowledge deficit by studying graspless or nonprehensile manipulation. Nonprehensile manipulation exploits task mechanics to achieve a goal state without grasping, allowing simple mechanisms to accomplish complex tasks. With nonprehensile manipulation, a robot can manipulate objects too large or heavy to be grasped and lifted, and a low-degree-of-freedom robot can control more degrees-of-freedom of an object by allowing relative motion between the object and the manipulator.

Two key problems are determining controllability of and motion planning for nonprehensile manipulation. The first problem is to determine whether the goal state of the object is reachable by nonprehensile manipulation, and the second is to find a manipulator motion to bring the object to the goal state.

Part I studies these problems for quasistatic nonprehensile manipulation by pushing. I elucidate the controllability properties of objects pushed with point and line contact, and i describe a planner that finds stable pushing paths among obstacles. Pushing can also be used to simplify the hardware parts of a feeder; a one-degree-of-freedom robot, positioned over a conveyor, can position and orient any polygonal part on the conveyor by a series of pushes.

Part II of the thesis studies dynamic nonprehensile manipulation. By considering dynamics, I show that even a one-degree-of-freedom robot can take a planar object to a full six-dimensional subset of its state space. Then I describe a planner that finds manipulator trajectories to perform dynamic tasks such as snatching an object from a table, rolling an object on the surface of the arm, and throwing and catching.

To demonstrate the feasibility of nonprehensile manipulation, all planners have been implemented on actual robot systems.

Sponsor: NSF and NASA
Grant ID: NSF: IRI-9318496, IRI-9114208, NASA: NCC 2-713
Number of pages: 210

Text Reference
Kevin Lynch, "Nonprehensile Robotic Manipulation: Controlability and Planning," doctoral dissertation, tech. report CMU-RI-TR-96-05, Robotics Institute, Carnegie Mellon University, March, 1996

BibTeX Reference
   author = "Kevin Lynch",
   title = "Nonprehensile Robotic Manipulation: Controlability and Planning",
   booktitle = "",
   school = "Robotics Institute, Carnegie Mellon University",
   month = "March",
   year = "1996",
   number= "CMU-RI-TR-96-05",
   address= "Pittsburgh, PA",