Carnegie Mellon University
Uncertainty Reduction Using Dynamics

Mark Moll and Michael Erdmann
Proceeding of the 2000 Conference on Robotics and Automation, April, 2000.

  • Adobe portable document format (pdf) (224KB)
Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

For assembly tasks parts often have to be oriented before they can be put in an assembly. The results presented in this paper are a component of the automated design of parts orienting devices. The focus is on orienting parts with minimal sensing and manipulation. We present a new approach to parts orienting through the manipulation of pose distributions. Through dynamic simulation we can determine the pose distribution for an object being dropped from an arbitrary height on an arbitrary surface. By varying the drop height and the shape of the support surface we can find the initial conditions that will result in a pose distribution with minimal entropy. We are trying to uniquely orient a part with high probability just by varying the initial conditions. We will derive a condition on the pose and velocity of an object in contact with a sloped surface that will allow us to quickly determine the final resting configuration of the object. This condition can then be used to quickly compute the pose distribution. We also show simulation and experimental results that confirm that our dynamic simulator can be used to find the true pose distribution of an object.

pose distributions, parts orienting, dynamic simulation, nonprehensile manipulation

Sponsor: National Science Foundation
Grant ID: IRI-9503648
Associated Center(s) / Consortia: Center for the Foundations of Robotics
Associated Lab(s) / Group(s): Manipulation Lab

Text Reference
Mark Moll and Michael Erdmann , "Uncertainty Reduction Using Dynamics," Proceeding of the 2000 Conference on Robotics and Automation, April, 2000.

BibTeX Reference
   author = "Mark Moll and Michael {Erdmann }",
   title = "Uncertainty Reduction Using Dynamics",
   booktitle = "Proceeding of the 2000 Conference on Robotics and Automation",
   month = "April",
   year = "2000",