
Hypothesis Pruning and Ranking for Large Plan Recognition Problems

Gita Sukthankar
School of EECS

University of Central Florida
Orlando, FL

gitars@eecs.ucf.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

katia+@cs.cmu.edu

Abstract

This paper addresses the problem of plan recognition for
multi-agent teams. Complex multi-agent tasks typically re-
quire dynamic teams where the team membership changes
over time. Teams split into subteams to work in parallel,
merge with other teams to tackle more demanding tasks, and
disband when plans are completed. We introduce a new
multi-agent plan representation that explicitly encodes dy-
namic team membership and demonstrate the suitability of
this formalism for plan recognition. From our multi-agent
plan representation, we extract local temporal dependencies
that dramatically prune the hypothesis set of potentially-valid
team plans. The reduced plan library can be efficiently
processed to obtain the team state history. Naive pruning
can be inadvisable when low-level observations are unreli-
able due to sensor noise and classification errors. In such
conditions, we eschew pruning in favor of prioritization and
show how our scheme can be extended to rank-order the hy-
potheses. Experiments show that this robust pre-processing
approach ranks the correct plan within the top 10%, even un-
der conditions of severe noise.

Introduction
Proficient teams can accomplish goals that would not other-
wise be achievable by groups of uncoordinated individuals.
Often when a task is too complicated to be performed by an
individual agent, it can be achieved through the coordinated
efforts of a team of agents over a period of time. In real life,
human teams can be found everywhere performing a wide
variety of endeavors, ranging from the fun (sports, computer
games) to the serious (work, military). Moreover, teams ex-
ist in the virtual world as well—in simulations, training en-
vironments, and multi-player games.

In this paper, we address the problem ofmulti-agent plan
recognition, the process of inferring actions and goals of
multiple agents from a sequence of observations and a plan
library. Although multiple frameworks have been devel-
oped for single-agent plan recognition, there has been less
work on extending these frameworks to multi-agent sce-
narios. In the simplest case, where all of the agents are
members of one team and executing a single team plan
(e.g., players executing a single football play), plan recog-
nition can be performed by concatenating individual agent

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observations and matching them against the team plan li-
brary (Intille & Bobick 1999). However, this is not pos-
sible for many complex multi-agent scenarios that require
agents to participate indynamic teamswhere team member-
ship changes over time (Tambe 1997). In such scenarios,
teams split into subteams to work in parallel, merge with
other teams to tackle more demanding tasks, and disband
when plans are completed. Although it is possible to model
and recognize such tasks using single-agent plan recogni-
tion techniques, we demonstrate that the existence of agent
resource dependencies in the plan library can be leveraged
to make the plan recognition process more efficient, in the
same way that plan libraries containing certain temporal or-
dering constraints can reduce the complexity of single-agent
plan recognition (Geib 2004).

We present an approach for multi-agent plan recognition
that leverages several types of agent resource dependencies
and temporal ordering constraints in the plan library to prune
the size of the plan library considered for each observation
trace. Thus, our technique can be used as a preprocessing
stage for a variety of single-agent plan recognition tech-
niques to improve performance on multi-agent plan recog-
nition problems. We also introduce a multi-agent planning
formalism that explicitly encodes agent resource require-
ments and illustrate how temporal dependencies extracted
from this formalism can be precompiled into an index to be
maintained in conjunction with the plan library. We demon-
strate the performance of our recognition techniques in the
domain of military plan recognition for large scenarios con-
taining 100 agents and 40 simultaneously-executing plans.
We further extend our method to robustly address the case
where observations may be unreliable due to low-level sen-
sor noise or recognition errors.

Problem Formulation
We formulate the multi-agent plan recognition problem as
follows. LetA = {a0, a1, . . . , aN−1} be the set of agents
in the scenario. Ateam consists of a subset of agents, and
we require that an agent only participate in one team at any
given time; hence ateam assignmentis a set partition on
A. During the course of a scenario, agents can assemble
into new teams; similarly, teams can disband to enable their
members to form new teams. Thus the team assignment is
expected to change over time during the course of a scenario.

The observable actions of a team are specified by a set of
behaviors, B. We assume that the sequence of observed
behaviors is the result of an execution of a team plan,Pr

drawn from a known libraryP.
Let T = {T0, T1, . . . , Tm−1} be the set ofagent traces,

where each traceTi is a temporally-ordered sequence of tu-
ples with observed behaviors and their corresponding agent
assignment:

Ti = ((B0,Ai,0), (B1,Ai,1), . . . (Bt,Ai,t)) ,

whereBt ∈ B is the observed behavior executed by a team
of agentsAi,t ⊂ A at timet. Note that the composition of
the team changes through time as agents join and leave the
team. However, each trace corresponds to the execution of
some plan in the library.

Our goal is to identify the set of plans,Pi that is consistent
with each trace,Ti, and the corresponding execution path
through each plan. This can be challenging since most of the
nodes in a plan tree do not generate observable behaviors,
and multiple nodes in a single plan tree can generate the
same observation (perceptual aliasing).

Multi-agent Plan Representation
Our work employs a multi-agent extension of the hierarchi-
cal task network plan libraries commonly used for single-
agent planning (Erol, Hendler, & Nau 1994). The princi-
pal purpose of our multi-agent representation is to correctly
model dependencies in parallel execution of plans with dy-
namic team membership. Each plan is modeled as a separate
AND/OR tree, with additional directed arcs that represent
ordering constraints between internal tree nodes. Observ-
able actions are represented as leaf nodes. These nodes are
the only nodes permitted to have sequential self-cycles; no
other cycles are permitted in the tree. Figure 1 shows a small
example plan tree.

Additionally all plans are marked with anagent resource
requirement, the number of agents required for the plan
to commence execution (additional agents can be recruited
during subsequent stages of a plan). For our military
team planning domain, most leaf nodes represent observ-
able multi-agent behaviors (e.g., movement in formation)
and thus require multiple agents to execute. Note that the
agent resource requirement specified in the top level node
does not represent the maximum number of agents required
to execute all branches of the plan, merely the number of
agents required tocommenceplan execution.

We use two special node types,SPLIT andRECRUIT ,
to represent the splitting and merging of agent teams. A
SPLIT node denotes that the following portion of the plan
can be decomposed into parallel subtasks, each of which is
handled by its own subteam. The node specifies the compo-
sition of each subteam and their tasks (which are simply plan
trees). Any agents not allocated to a subteam will continue
to execute the original plan until released. Merging teams
are represented byRECRUIT nodes.RECRUIT nodes are
a mechanism for teams to acquire more members to meet
an agent resource requirement; if no agents can be found,
plan execution blocks at theRECRUIT node until suffi-
cient agents (released from other tasks) become available.

Plan039
Init: 4 agents

AND

Wait: 2 agentsANDOR

RECRUIT
4 agents

SPLIT
Plan002: 4 agents
Plan025: 2 agents

AttackAdvanceWheel Defend

D
ep

th
 =

 3

Figure 1: Example plan tree. The top node lists the plan li-
brary index and the number of agents required (4) to start ex-
ecution of this team plan. Hexagonal nodes denote directly
observable behaviors; square nodes are effectively invisi-
ble to an external observer and must be indirectly inferred.
The RECRUIT node indicates when additional agents are
needed to continue plan execution. TheSPLIT node de-
notes where the plan requires multiple subteams to execute
subplans (002 and 025) in parallel. At the end of the plan,
any remaining agents are released for recruitment by new
plans.

SPLIT andRECRUIT are not directly observable actions
and must be inferred from changing team sizes in observ-
able leaf nodes. Since different observed actions can vary
in duration, we do not assume strong synchronization across
plans based on atomic action duration.

Kaminka & Bowling (2002) developed the concept of
team coherence, the ratio of total agents to the number of
active plans, to represent the possibility of team coordina-
tion failures; they demonstrate that plan recognition can be
used as part of a scalable disagreement-detection system to
detect the existence of incoherent team plans. Here, we rep-
resent such teamwork failures as plan abandonment; if the
agents reconcile their differences and resume coordination,
it is detected as a new plan instance, rather than a continua-
tion of a previous team plan.

Method
In this section, we discuss our method of automatically re-
covering and utilizing hidden structure embedded in user-
defined multi-agent plan libraries. This hidden structure can
be efficiently discovered when the plan library is created,
indexed in tables that are stored and updated along with the
plan library, and used as part of a pre-processing pruning
step before invoking plan recognition to significantly reduce
the number of plan libraries considered for each observation
trace.

Implicit Temporal Dependencies
Traditional plan recognition would examine each traceTi

independently, and test each plan from the libraryPr ∈ P
against the trace to determine whetherPr can explain the
observations inTi. We propose uncovering the structure be-
tween related tracesTi andTj to mutually constrain the set
of plans that need to be considered for each trace.

Note that we cannot determine which traces are related
simply by tracking the observed actions of a single agent
through time as that agent may be involved in a series of
unconnected team plans. However, by monitoring team
agent memberships for tracesTi andTj , we can hypothe-
size whether a subset of agentsAj from Ti could have left
as a group to formTj . In that case the candidate plansPr

andPs for tracesTi andTj , respectively, must be able to
generate observations that explain both the final observation
of Aj in Ti (not necessarily the final observation inTi) and
the initial observation ofAj in Tj .1

Similar temporal dependencies also exist between consec-
utive observations during a single execution trace. For in-
stance, the observation sequence(Bp, Bq) can typically not
be generated by every plan in the library, particularly if|B| is
large or when plans exhibit distinctive behavior sequences.
These dependencies are implicitly employed by typical plan
recognition algorithms; our work generalizes this concept
across related execution traces.

Plan Library Pruning
Our method exploits the implicit temporal dependencies be-
tween observations, across and within traces, to prune the
plan library and to dramatically reduce the execution time
of multi-agent plan recognition. Our algorithm for recover-
ing hidden dependencies from the plan library proceeds as
follows. First, we construct a hash,h that maps pairs of ob-
servations to sets of plans. Specifically,h : Bp×Bq → {Pj}
iff some parent planPi could emit observationBp imme-
diately before subteam formation and its subplanPj could
emit observationBq immediately after execution.h can be
efficiently constructed in a single traversal of the plan li-
brary prior to plan execution. Intuitively,h is needed be-
cause the formation of a subteam (i.e.,SPLIT) is an invis-
ible event; one can indirectly hypothesize the existence of
a split only by noting changes in agent behavior. The pres-
ence of aSPLIT node can also be detected by observing a
drop in team size in the parent trace. Specifically,h cap-
tures relationships between pairs of plans of the form that
an observable behavior in the first plan can be followed by
an observable behavior in the second plan (i.e., a subset of
agents executing the first plan canSPLIT off to execute the
second plan). Given a pair of observations,h enables us to
identify the set of candidate plans that qualify as subplans
for the identified parent plan. This allows us to significantly
restrict the plan library for the child trace. Figure 2 illus-
trates the construction ofh for a highly-simplified plan li-
brary consisting of two plan trees.

The temporal dependencies that exist between consecu-
tive observations in a single execution trace can be exploited
to further prune the set of potential plans. This is also im-
plemented using a hash,g, that maps pairs of potentially-
consecutive observationswithin a plan tree to sets of plans,
which we also precompute using a single traversal of the

1For this constraint to hold if plan abandonment is possible,
we must assume that abandonment cannot occurduring subteam
formation—it either occurs before subteam formation or after the
execution of the subteam’s initial observed behavior.

Insert into
across-plan hash h:
-B,X Plan006
-B,Y Plan006
-C,X Plan006
-C,Y Plan006

Plan022
Init: 6 agents

AND

X

C

SPLIT
Plan006: 2 agents

Z

B

OR

Plan006
Init: 2 agents

OR

X

Y Z

AND

Figure 2: Example of across-plan relationships captured by
hashh. h captures observable behaviors across a team split.
In this case, theSPLIT node in the parent plan (022) could
be preceded by observationB or C, while the first step in
the subplan (006) will generate eitherX or Y. Therefore,h
will contain four entries, all pointing to Plan006. Observing
one of these four sequences is an indication that the system
should consider the possibility of aSPLIT .

Insert into within-plan hash g:
-A,B {Plan032,Plan123}
-A,C {Plan032}
-B,C {Plan123}
-B,D {Plan032}
-C,A {Plan123}
-C,D {Plan032}

Plan032
Init: 3 agents

AND

A

C

D

B

OR

Plan123
Init: 5 agents

OR

A

CAND

B

Figure 3: Example of within-plan relationships captured by
hashg. g captures all plans where two observations can be
observed in sequence. For instance, the observed sequence
of three agents executingA,B could be generated by either
of the plan trees whereasA,C could only be the result of
Plan032. These temporal constraints can significantly prune
the set of possible plan hypotheses.

plan library. Figure 3 illustrates a simple example with a
plan library consisting of two plan trees. Some observable
sequences could only have been legally generated by one of
those two trees (e.g.,C,A), while others are ambiguous (e.g.,
A,B).

The size of these hash can beO(|B|2|P|) in the worst
case since each entry could include the entire set of plans.
In practiceh and g are sparse both in entries and values.
Applying h requires one lookup per execution trace whileg
requires a linear scan through the observations.

Analyzing Scenarios with Dynamic Team
Membership
The techniques described here rely on the availability of
agent team assignments for multi-agent behavior traces. Re-
covering this information can be challenging in scenarios
with dynamic team assignment, during which the compo-
sition of the team changes over the course of the plan.
The pool of possibleagent-to-team assignmentsgrows very
quickly with the number of agents and is equivalent to the
number of partitions of a set.

Fortunately, for many applications involving physically-
embodied agents it is possible to robustly infer team mem-
bership from spatio-temporal data. In cases where the agent
teams are physically well-separated, clustering can be used

to recover team assignments. In more complicated scenar-
ios, one can use algorithms such as STABR (Sukthankar &
Sycara 2006). In many cases, one can assume that all the
agents concurrently executing the same behavior are part
of the same team as is done in (Avrahami-Zilberbrand &
Kaminka 2007).

Robustness to Observation Noise
In some simulation environments, one can collect highly-
accurate low-level behavior traces from multiple agents and
humans acting in the virtual world. However most real-
world activity recognition systems that monitor the activity
of humans using cameras (Nguyenet al. 2005), GPS read-
ings (Liao, Fox, & Kautz 2004), or wireless signal strength
measurements (Yin, Chai, & Yang 2004), report error rates
ranging from 5%–40% in accurately classifying behaviors
from position data. These error rates pose a challenge for our
algorithm since we rely on the existence of temporal depen-
dencies between behavior observations, across and within
traces, to prune the plan library. If these dependencies were
corrupted by observation noise, then the pruning algorithm
as described above could incorrectly prune correct plans be-
cause the noisy observation traces might contain observed
transitions that would be “illegal” according to the correct
plan. On the other hand, observation failures resulting in
fewer behavior transitions being recorded would not ad-
versely affect pruning accuracy since the absence of tran-
sitions cannot trigger the deletion of a plan from the hypoth-
esis set.

To address this challenge, we extend the approach de-
scribed above by shifting the focus frompruning to pri-
oritization. Rather than eliminating from consideration
those plans that could not legally generate the observed
behavior transitions, we order plans based on their likeli-
hood of generating the observed sequences. This likeli-
hood is estimated according to the same criteria employed
for pruning—temporal dependencies between observations,
both within and across traces. We pre-process the plan li-
brary in the same manner, to construct the hashesg (within-
trace constraints) andh (across-trace constraints). However,
these hashes are employed in a different manner against the
observed data. For pruning, the hashes were used to delete
plans from the hypothesis set; here they are used to augment
the likelihoods of plans that are consistent with the given
observation. By assuming conditional independence of ob-
served transitions, we can approximate the log-likelihood of
matching a given observation to a particular plan as the sum
of independent contributions from each transition. In the
absence of additional information from the low-level recog-
nizer, we can treat these contributions as equal. This leads to
the following approach for plan ordering. For each observed
trace, we accumulate a score that is a linear combination of
contributions from observations that are consistent withg
andh. The plan library is sorted according to this score (this
ordering is specific to each trace), and the behavior recog-
nizer is applied to the plans from most promising to least
promising until a suitable match is found.

As with the pruning method, the prioritization approach is
agnostic to the choice of behavior recognizer. Although all

Table 1: Default plan generation parameters

Parameter Default
Number of agents|A| 100
Plan library size|L| 20
Plan tree depth (average) 4
Plan tree branching factor (avg) 3
Number of observable behaviors|B| 10
Parallel execution traces (average) 12

of the plans in the library can be sent to the recognizer for
detailed analysis, in practice we apply the recognizer only to
the most promising plans (i.e., the top 10%). This decision
is supported by the experimental results shown below.

Results
Before describing the results of our experiments, we first
present our methodology for creating a plan library and sim-
ulating execution traces that respect both temporal and re-
source constraints.

Plan Library Generation
We follow the experimental protocol prescribed by
Avrahami-Zilberbrand & Kaminka (2005), where simulated
plan libraries of varying depths and complexity are ran-
domly constructed. Randomly-generated plans do not reflect
the distinctive structure of real-world plans and are therefore
a pessimistic evaluation of our method since it relies so heav-
ily on regularities between consecutive observations (both
within and between plans). The plan trees are randomly as-
sembled fromOR, AND, SPLIT , RECRUIT nodes, and
leaf (behavior) nodes. Adding a higher percentage ofSPLIT
nodes into the tree implicitly increases the number of exe-
cution traces since our simulator (described below) creates a
new execution trace for each subplan generated by aSPLIT .

Execution Trace Generation
Given a plan library and a pool of agents, the execution trace
generator simulates plan execution by allocating agents from
the pool to plans as they commence execution and blocking
plans atRECRUIT nodes while agent resource constraints
remain unfulfilled. Note that a given plan tree can generate
many node sequences; the same node sequence will execute
differently based on which other plans are simultaneously
drawing from the limited pool of agents.

Evaluation
To evaluate the efficacy of our method, we examine three
pruning strategies over a range of conditions. The default
settings for each parameter are shown in Table 1. To reduce
stochastic variation, the following graphs show results aver-
aged over 100 experiments. All of the strategies employed
the same depth-first search with backtracking to match exe-
cution traces against plan hypotheses.

On average, the across-trace (h) and within-trace (g)
hashes are at 19% and 70% occupancy, respectively. The

average number of plans hashed under each key is 1.14 and
2.87, respectively. The average wall-clock execution time
for the default scenario, on a 3.6 GHz Intel Pentium 4, is
only 0.14s, showing that multi-agent plan recognition for a
group of 100 agents is feasible.

Since plan recognition methods can return multiple hy-
potheses for each trace, the natural metrics for accuracy
are precision and recall. The former measures the frac-
tion of correctly-identified traces over the number of re-
turned results while the latter is the ratio between the number
of correctly-identified traces to the total number of traces.
Since all of the methods evaluated here are complete, it is
unremarkable that they achieve perfect recall on all of our
experiments. Precision drops only when multiple plan trees
match the observed trace. In these experiments, precision
was near-perfect for all methods, indicating that there was
little ambiguity in the generated traces. In a small num-
ber of cases (where the observable action vocabulary was
small), our method achieved higher precision than the base-
line because it was able to disambiguate otherwise identical
traces based on parent-child dependencies. However, we do
not claim better precision in general over baseline methods
since these cases are infrequent; rather, the primary focus of
this paper is to present a more efficient scheme for team plan
recognition that exploits inter-plan constraints.

We perform a set of experiments to evaluate the efficiency
of three approaches to team plan recognition:

Unpruned: depth-first matching of the observation trace
against each plan in the library.

Team Only: prune plan libraries for each observation trace
using across-trace dependencies fromh before running
depth-first matching.

Team+Temporal: prune plan libraries using both within-
trace dependencies stored ing, and across-trace depen-
dencies fromh, before running depth-first matching.

Figure 4(a) shows how plan recognition time (as mea-
sured by the number of leaf node comparisons) scales with
growth in library size (number of plan trees). We see that
the Unpruned and Team Only approaches scale approxi-
mately linearly with library size while the cost for combined
Team+Temporal pruning remains almost constant. This is
because the set of plan trees that could explain a givensetof
observed traces remains small.

Figure 4(b) examines how the performance of the three
methods scales with the number of observed execution
traces. It is unsurprising that the time for all of the meth-
ods grows linearly. However, pruning significantly reduces
cost. In this case, Team+Temporal achieves a consistent but
less impressive improvement over Team Only. We see that
the pruning strategies enable us to run plan recognition on
much larger scenarios.

Figure 4(c) presents the cost of plan recognition against
the average depth size of plan trees in the library. Since the
number of nodes in a plan tree increases exponentially with
depth, we expect to see a similar curve for each of the three
approaches. However, we do see a dramatic reduction in
cost due to pruning.

(a) Plan library size (b) Parallel execution traces

(c) Plan tree depth (d) Observation labels

Figure 4: Cost of plan recognition, as measured by leaf node
comparisons, for different pruning strategies under varying
conditions: (a) size of plan library; (b) average number of
plans executing in parallel; (c) average depth of plan tree;
(d) number of observable behaviors. Pruning usingh andg
enables dramatic improvements for large plan libraries.

Figure 4(d) shows how increasing the number of
distinctly-recognizable low-level behaviors (number of ob-
servation labels) impacts the cost of team plan recognition.
As the number of potential labels grows, it becomes easier to
disambiguate sequences of observed actions. Consequently,
the benefits of pruning within-trace (using hashg) become
increasingly important. This is evident in our results, where
Team+Temporal pruning shows clear benefits.

Robustness to Observation Noise
To evaluate the efficacy of our prioritization method, we ex-
amine the robustness of the ranking with respect to obser-
vation noise. These experiments were conducted with a li-
brary with 100 plans (average depth 4). The observation
traces were generated as above and then corrupted by iid
noise (conditions ranging from 0% to 50% probability of
misidentification). A corrupted observation was replaced by
a random observation drawn with uniform probability from
the set of 10 observable actions.

The observed transitions were used to generate likelihood
estimates for each of the 100 plans. The rank of the correct
plan (known from ground truth) serves as a measure of the
quality of the prioritization. Ideally, one would like the cor-
rect plan to be at rank 1; in practice, we would be satisfied
if the correct plan appears reliably in the top 10%, since this
gives us an order of magnitude improvement over a brute-
force matching approach.

Figure 5 summarizes the average results from 100 inde-
pendent trials for prioritization over a range of noise con-
ditions. We make several observations. First, we note that
the prioritization is very effective at scoring the correct plan
within the first few ranks (average rank is only 5.2 out of

Figure 5: Average rank of correct plan in conditions of in-
creasing observation noise. The prioritization scheme is ef-
fective at ordering plans such that the correct one is within
the top 10%.

100 even in extremely noisy conditions). The standard de-
viations for these results ranged from 1.2 (for 10% noise)
to 12.4 (for 50% noise). Thus, in moderately noisy condi-
tions, it is reasonable to expect that the correct plan will fall
within the top 10%. Second, we can see that although the
across-team constraints alone are fairly effective at ordering
the plan library, one can achieve significant improvements
by also incorporating within-trace information. This is par-
ticularly valuable in high-noise conditions where the chance
of corrupting a key observation spanning sub-team forma-
tion is non-negligible. Finally, we note that these experi-
ments exploited no additional domain knowledge, such as
better sensor models (e.g., confusion matrices for which ob-
servations are likely to appear similar) nor indications about
which observations might be outliers based on higher-level
plan knowledge. These additional sources of domain infor-
mation can complement our prioritization strategy and fur-
ther improve performance. This validates our belief that a
prioritization-based strategy could significantly improve the
efficiency of multi-agent team behavior recognition.

Discussion
Geib (2004) discusses the problem of plan library author-
ing and suggests that users should refrain from including
plans that share a common unordered prefix of actions in
their libraries due to the enormous increase in potential ex-
planations for a given observation sequence. Our approach
identifies characteristics of the plan library thatcompressthe
number of potential explanations. The benefits of imple-
menting this as an automatic preprocessing step include the
following:

1. By automatically recovering this hidden structure, we re-
move some of the burden of plan library authorship from
the user.

2. Pruning and prioritization of the plan library works with
a variety of plan recognition algorithms.

3. Prioritization of plans improves efficiency of plan recog-
nition in the presence of observation noise.

Although there is some amount of hidden temporal struc-
ture in single-agent plan libraries, when plans involve the
formation of teams, additional structure is created by the en-
forcement of agent resource requirements.

Conclusion
This paper presents a method for efficiently performing plan
recognition on multi-agent traces. We automatically recover
hidden structure in the form of within-trace and across-trace
observation dependencies embedded in multi-agent plan li-
braries. Our plan library pruning technique is compatible
with existing single-agent plan recognition algorithms and
enables these to scale to large real-world plan libraries. We
extend our pruning approach to robustly handle scenarios
with significant observation noise by generating an ordering
over the plans in the library. An effective estimation of a
given plan’s likelihood of generating a particular observa-
tion trace enables the correct plan to reliably appear within
the top 10%, allowing efficient recognition. We are currently
applying this method to activity recognition for physically-
embodied agent teams, such as squads of military operations
in urban terrain (MOUT).

Acknowledgments
This work was supported by AFOSR grant F49620-01-1-
0542, as well as the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number
W911NF-06-3-0001.

References
Avrahami-Zilberbrand, D., and Kaminka, G. 2005. Fast and com-
plete symbolic plan recognition. InProceedings of IJCAI.

Avrahami-Zilberbrand, D., and Kaminka, G. 2007. Towards dy-
namic tracking of multi-agents teams: An initial report. InPro-
ceedings of Workshop on Plan, Activity, and Intent Recognition
(PAIR 2007).

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning: Com-
plexity and expressivity. InProceedings of AAAI.

Geib, C. 2004. Assessing the complexity of plan recognition. In
Proceedings of AAAI.

Intille, S., and Bobick, A. 1999. A framework for recognizing
multi-agent action from visual evidence. InProceedings of AAAI.

Kaminka, G., and Bowling, M. 2002. Towards robust teams with
many agents. InProceedings of AAMAS.

Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and inferring
transportation routines. InProceedings of AAAI.

Nguyen, N.; Phun, D.; Venkatesh, S.; and Bui, H. 2005. Learning
and detecting activities from movement trajectories using Hierar-
chical Hidden Markov Models. InProceedings of CVPR.

Sukthankar, G., and Sycara, K. 2006. Simultaneous team assign-
ment and behavior recognition from spatio-temporal agent traces.
In Proceedings of AAAI.

Tambe, M. 1997. Towards flexible teamwork.Journal of Artificial
Intelligence Research7:83–124.

Yin, J.; Chai, X.; and Yang, Q. 2004. High-level goal recognition
in a wireless LAN. InProceedings of AAAI.

