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ABSTRACT 

Coalition forces are engaged in distributed collaborative decision making in time-pressured, 
high-stakes situations. Providing automated decision support for such environments is a very 
challenging problem, due to shortening decision cycles, the changing nature of threats, opponent 
tactics, and environmental unpredictability. Intelligent agents have the promise to provide timely 
assistance in various areas of decentralized, collaborative decision making, such as information 
gathering, information dissemination, monitoring of team progress and alerting the team to 
various unexpected events. In order to fulfil the promise of agent technology in providing 
effective team assistance, better understanding of robust human-agent teamwork is crucial. The 
goal of our research project is to develop a theoretically grounded and empirically tested 
framework to allow for effective agent support for human teams that are engaged in adaptive 
teamwork in dynamic environments. 

In order to (a) establish an experimental baseline of the performance of human-only teams and 
(b) understand where agents can provide the best utility in supporting human teamwork, we 
designed a scenario and experimentally evaluated team work where human teams performed a 
time-stressed, collaborative search task in a multi-player gaming environment.  The collaborative 
search task recreates some of the challenges faced by human teams during search and rescue 
operations in the real world.  In our experiments, we analyze (1) verbal communication between 
team members and (2) team coverage patterns.  By ascertaining the information processing and 
coordination requirements of this team task, we can identify ``insertion points'' for agent 
assistance to human teams. 

The search patterns demonstrated by the experimental subjects exhibited similar problems to the 
behavior of actual search and rescue teams: (1) the creation of accidental holes in the search 
pattern due to poor execution of the search plan, and (2) poor priority assignments in the search 
plan due to false clues and hunches.   We have identified that this is a promising area for agent 
assistance. By having agents monitor and track individual team members' coverage, gaps in the 
team coverage are exposed earlier in the search process allowing repairs to be made in a more 
timely fashion.  Our model predicts that aiding the state of coordination between team members 
will result in task performance improvement.  

 

 

 

 

 

 

 

 

 



1 Introduction  

This work is the initial step in our research plan towards addressing the fundamental question of how 
software agents can best aid distributed human teams performing collaborative decision making for time 
stressed critical tasks in uncertain and dynamic environments. Team decision making is a bundle of 
interdependent activities that involve gathering, interpreting and exchanging information; creating and 
identifying alternative courses of action; choosing among alternatives by integrating the often different 
perspectives of team members; implementing a choice and monitoring its consequences. Software agents 
can fill a critical need for (1) supporting human team members in accessing, filtering, and synthesizing 
information from disparate sources; (2) increasing team situation awareness; (3) aiding the formation of 
shared mental models; (4) supporting team coordination in making decisions related to resources, tactics, 
and goals to meet the overall planning objectives. Building effective human-agent teams requires 
overcoming several important scientific challenges that to date have not been addressed: (1) the creation of 
mutual understandability between humans and agents; (2) the development of coherent team interactions; 
(3) establishing human trust in agent judgments.  

It is well-recognized that proficient teams achieve goals and accomplish tasks that otherwise would not 
be achievable by groups of uncoordinated individuals. While previous work in teamwork theory (23) has 
focused on describing ways in which humans coordinate their activities, there has been little focus on 
which of those specific activities and information flows can be enhanced by being performed by software 
agents. The focus of our initial human team experimentation is to (a) establish a baseline of human-only 
teamwork for a given task domain and (b) ascertain the relative importance of different information flows 
for the team task in order to derive “insertion points” for agent assistance of human teams. These insertion 
points are not merely limited to coordination and information flows, but potentially include teamwork 
maintenance and task completion. In this paper, we describe our analysis of a collaborative search task, a 
team scavenger hunt, performed by human subjects in a multiplayer gaming environment. The results of 
this analysis will inform the future development of software agents to assist human teams performing 
search tasks.  

Proposing and experimentally validating theories and increasing understanding of human-agent 
teamwork is a scientific problem of longstanding importance to computer science, human-computer 
interaction, collaboration science and psychology. Additionally, facilitating collaborative team decision 
making has become crucial in the military due to increased decentralization of the C2 process, the 
requirement for increased collaboration, decision-action speed, and the rapid restructuring of joint and 
coalition commands for different types of conflicts. Supporting collaboration and joint decision-making is 
extremely challenging in the face of shortening decision cycles, the changing nature of the threats and 
personnel downsizing, thus requiring increased task automation and making the understanding of robust 
agent aiding of human teamwork a crucial problem. Agent assistance will be particularly critical to military 
teams, especially coalition operations, as their operations become more agile and situation specific. As 
unfamiliar forces are brought together for different coalition missions, the infosphere they establish 
between their networked information systems will become a primary mechanism for coordination. In this 
uncertain environment agent support of teamwork becomes crucial. Because the domain independence of 
teamwork agents would allow them to be rapidly deployed across a broad range of tasks and settings, 
creating technology that can support highly dispersed human teams is a particularly high payoff area for the 
US and UK military.  

This paper is organized as follows. Section 2 gives some background on human teamwork and how 
agents can be integrated into human teams. Section 3.1 describes the problems faced by expert human 
teams in performing search and rescue operations. In Section 3.2 we describe our team search task and 
simulation environment; Section 4 describes our experimental procedure and manipulations. In Section 5 
we present our preliminary findings and describe some promising research directions on agent-assisted 
human teamwork. 

 
 



2 Supporting Human Teamwork  

Research in human team performance suggests that experienced teams develop a shared understanding or 
shared mental model to coordinate behaviors by anticipating each other’s needs and adapting to task 
demands (10). Furthermore, for such teams, both tacit and explicit coordination strategies are important in 
facilitating teamwork processes. Explicit coordination occurs through external verbal and nonverbal 
communications, whereas tacit coordination is thought to occur through the metacognitive activities of 
team members who have shared mental models of what should be done, when, and by whom (5; 8; 15). A 
team’s shared mental model thus allows the team members to coordinate their behavior and better 
communicate depending on situational demands. Initial theorizing on training shared mental models 
suggests that for teams to successfully coordinate their actions, they must possess commonly held 
knowledge structures, such as knowledge of teammates’ roles and responsibilities along with team tasks 
and procedures.  

Creating this shared cognition between human and agent teammates is the biggest challenge facing 
developers of mixed-initiative human/agent organizations. The limiting factor in most human-agent 
interactions is the human’s ability and willingness to spend time communicating with agents in a manner 
that both humans and agents understand (27). Horvitz (16) formulates this problem of mixed-initiative 
interaction as a process of managing uncertainties: (1) managing uncertainties that agents may have about 
the human’s goals and focus of attention, and (2) uncertainty that humans have about agent plans and 
status. Creating agent understanding of human intent and making agents’ results intelligible to a human 
are problems that must be addressed by any mixed-initiative system, whether the agents reduce 
uncertainty through communication, inference, or a mixture of the two.  

2.1 Agent Roles in Human Teams  

Sycara and Lewis (27) identify three primary roles played by agents interacting with human teams.  
• Agents support individual team members in completion of their own tasks.  

              These agents often function as personal assistant agents and are assigned to specific team members       
(1). Task-specific agents utilized by multiple team members (e.g., (2)) also belong in this category.  

• Agents support the team as a whole. Rather than focusing on task-completion activities, these 
agents directly facilitate teamwork by aiding communication and coordination among humans and 
agents, as well as focus of attention. The experimental results summarized in (27) indicate that this 
can be a very effective aiding strategy for agents in hybrid teams.  

 
• Agents assume the role of an equal team member. These agents are expected to function as 

“virtual humans” within the organization, capable of the same reasoning and tasks as their human 
teammates (29). This is the hardest role for a software agent to assume, since it is difficult to 
create a software agent that is as effective as a human at both task performance and teamwork 
skills.  

 
There are additional research challenges, specific to the team role assumed by the agent. Agents that 

support individual human team members face the following challenges: (1) modeling user preferences; (2) 
determining optimal transfer-of-control policies (24); (3) considering the status of user’s attention in timing 
services (16). Agents aiding teams (21; 20; 19; 18), face a different set of problems: (1) identifying 
information that needs to be passed to other team members before being asked; (2) automatically 
prioritizing tasks for the human team members; (3) maintaining shared task information in a way that is 
useful for the human users. Agents assuming the role of equal team members (29; 7; 6) must additionally 
be able to: (1) competently execute their role in the team; (2) critique team errors; (3) independently 
suggest alternate courses of action. Perhaps because of these challenges, there are very few prior results on 
human-agent team aiding and teamwork. Examples of tasks that were investigated include target 
identification (21; 20), achievement of a military rendezvous plan (19; 18) and delivery of supplies to 
troops (7; 6). All of this prior work has uniformly found that human-agent teams exhibited superior 



performance over human-only teams not only in achievement of task objectives but also in performance 
stability. 

 
2.2 Teams in the Network-Centric Battlefield  

The network-centric battlefield demands intense coordination among network effectors (humans and 
automation) that are part of a larger interconnected social organization. In this context we define 
coordination as the timely and adaptive distribution of information among network effectors. We think of 
team coordination as analogous to cognitive processing at the individual level. Coordination is challenging 
in network-centric environments because entities are often geographically dispersed and may be unfamiliar 
with other entities as well as the specific task or mission. This situation leads to what has been called “team 
opacity” (9). and has been frequently associated with differences in process behaviors, poorer shared 
understanding, and lean communication, relative to co-located teams (4). In fact, teams often adapt to these 
situations through spontaneous self-organization of their coordination structure (3).  

It is important to note that we do not consider coordination in information theoretic terms (26) in which 
information is encoded, decoded and passively moved from effector to effector with some degree of 
uncertainty based on channel capacity. Rather, coordination involves active communication or mediation 
among effectors in a social network (12). Consequently, our coordination metrics do not measure amount 
of information passed or uncertainty, but instead extend social network theory or coordination theory by 
quantifying the effectiveness of coordination patterns.  

Team coordination in network-centric battlefield settings is predictive of the performance of the team, 
and to some degree, the social system in which the team is embedded. However, team coordination is not 
identical to team performance. Sometimes poor coordination can result in fortuitously positive outcomes 
and even the best coordination can sometimes fail to prevent a negative outcome. Coordination is, however, 
a precursor of team performance, and in our view, a critical precursor for the network-centric battlefield, in 
that effector competencies, as well as effectors themselves, are dispersed across the battlefield.  

Based on our experimental data coordination improves with team experience and training, but decays 
over long retention intervals (3). The development of coordination skill is a large part of the development 
of collective competence of the social group. Coordination, therefore, is a team skill that can be trained. It 
is also a skill that can be quantified and modeled. The measurement and modeling of the development of 
coordination in networked command and control is challenging due to the nonlinearities associated with 
interactions in complex distributed systems (4). For instance, coupled effectors have capabilities for 
contributing secondhand information to the information available in the local environments of other, 
reciprocating effectors. This positive feedback mechanism entails nonlinear changes in overall system state 
as information is adaptively dissipated through the system. 

 
2.3 Improving the Performance of Human Teams  

We hypothesize that to improve the performance of human teams, agents must do some combination of the 
following:  

• 
 
reduce information processing costs;  

• decrease uncertainty in the task;  
• improve coordination between team members 
• directly accomplish part of the team task 

 
Galbraith observed that “the more uncertainty in a task, the more information processing necessary to 

achieve a given level of performance” (13). Hence, having the agents assist either in information processing 
or decreasing uncertainty should improve the team’s performance. Moreover, in cases where the task is 
time-stressed, having the agents simply perform part of the task for the humans has the potential to improve 
team performance as well, particularly in cases where the task reward is an increasing function rather than a 



thresholded one. Based on experiments of student project teams, Kraut suggests that a human team’s 
resultant state of coordination, defined as the degree to which interdependencies are managed well, is an 
important predictor of team performance (17). This state of coordination can be created by mechanisms 
such as communication, shared cognition, and team history. If agents can improve the state of coordination 
between team members or reduce the cost of achieving a good state of coordination, the team performance 
should improve.  

In addition to our primary hypotheses, we believe that the following dimensions affect the state of 
coordination between team members (31; 30):  

.1. Collaboration system characteristics  

.(a) Synchronous versus asynchronous collaboration: Is the collaborative process conducted in a same-
time manner or are participants collaborating at different times?  

.(b) Proximity of collaborators: Are the participants located proximally or are individuals geographically 
distributed?  

.2. Team characteristics  

.(a) Command structure: Are the participants organized in a hierarchical or flat structure?  

.(b) Homogeneity of knowledge: Do all participants possess the same knowledge or is there information 
asymmetry?  

.(c) Team size: How many individuals are required to collaborate on a team?  

.3. Task dimensions  

.(a) Collaborative output: Is the goal of the team to deliberate and process information or to determine a 
course of action (COA)?  

.(b) Time stress: Is the team subject to time pressure?  

.(c) Task complexity: How large and complex is the task?  

.(d) Task familiarity: Is the task a onetime or a recurring event?  

.(e) Nature of constituent subtasks: e.g., whether subtasks involve planning, decision making, cognitive 
conflict, creative and intellective subtasks etc.  
 

To evaluate our model of human-agent teamwork, we created a team task with the following 
characteristics: (1) synchronous, (2) geographically distributed, (3) flat command structure, (4) 
asymmetric information, (5) small team size, and (6) time-stressed. Other than differences in the 
command structure and team size, the task possesses similar characteristics to the tasks performed by real 
search and rescue teams, described in the next section. 

3 Collaborative Search  

For our initial set of experiments, we monitored teams of human subjects performing a collaborative 
search task in simulation. Search and rescue is a challenging, time-stressed team task with a potentially 
high payoff since inadequate team performance can result in fatalities. By developing software agents 
capable of improving human team performance on collaborative search tasks, we can positively impact 
coalition search and rescue operations.  

3.1 Wilderness Search and Rescue Operations  

In this section we provide a task analysis of how civilian human teams perform wilderness search and 
rescue operations summarized from (14; 25). We assume that many aspects of the task analysis are also 
applicable to military search and rescue teams, although military teams have access to different equipment 
and also often face the additional problem of rescuing victims from enemy territory. A goal-directed task 
analysis of wilderness search and rescue operations identified the following list of operational goals and 
subgoals (14). The italicized task elements are also applicable to our simulated collaborative search task.  

.1. Stage preparation  
 (a) Reporting party call  



 (b) Activation call  
 (c) Assemble (prepare for search)  

.2. Acquire missing person description  
 (a) Gather missing person information  
 (b) Determine missing person’s intent  

.3. Develop search plan  
.(a) Create a perimeter  
.(b) Assign priority to clues  
.(c) Update map information  
.(d) Create a priority pattern  
.(e) Organize resources for search execution  
.(f) Communicate search plan  

.4. Execute search plan  
.(a) Follow plan  
.(b) Find signs (or absence of)  

   (c) Keep searchers safe  
    (d) Communicate acquired information  

    5. Recover victims  
.(a) First aid for victims  
.(b) Rescue, extract, or recover the missing person  

6. Debrief search team  
.(a) Determine what happened  
.(b) Evaluate how the team can improve  

 
Civilian search and rescue operations are directed by an incident commander who develops the search 

plan and collates information collected by the search teams. The search teams include trained volunteers 
who search the areas by foot or vehicle, along with technical specialists who search special types of terrain 
(e.g., divers to search water or climbers to scale cliffs). In civilian search and rescue situations, the search 
team starts by constructing a profile of the missing person to guide the team’s search priorities. Depending 
on the person’s age, physical condition, and wilderness experience, certain areas are marked as being 
higher or lower priority in the search plan. For instance, victims in poor physical condition are more likely 
to drift to downhill regions, whereas a victim with wilderness experience in good physical condition will 
move uphill to get his/her bearings. Victims with special limitations (e.g., autistic children) have unusual 
inclinations, such as avoiding roads and moving away from noise, that need to be taken into consideration 
by the search teams.  

When executing a wilderness search plan, the teams employ four distinct types of search: hasty, 
constraining, high probability region, and exhaustive. During hasty search, the searchers rapidly check high 
probability areas to determine the missing person’s location or direction of travel. This type of search is 
often used in the initial part of the search plan. During constraining search, the searchers attempt to build a 
perimeter bounding the victim’s location; an example of constraining search would be having searchers 
check a large snowy field for tracks to localize the victim to one side of the field. Hasty search and 
constraining search are used by the incident commander to find clues and establish search priorities. After 
search priorities have been established, the incident commander divides the search area into regions and 
deploys search teams to search high probability regions. Exhaustive search is done by having the searchers 
form a line and walk abreast through an area; this type of search is used to find clues such as clothing or 
wrappers after other forms of search have failed.  

Wilderness search and rescue operations pose the following challenges to expert human teams: (1) 
information overload of the incident commander while assimilating information collected by the field 
teams; (2) the creation of accidental holes in the search pattern due to poor execution of the search plan by 
the field teams; (3) poor priority assignments in the search plan due to false clues and hunches. We believe 
that software agent assistance can potentially reduce the information overload of the incident commander 
and minimize errors during the execution of the search plan. In the next section, we describe our 
experimental version of the collaborative search task, the team scavenger hunt, which tests the ability of 
human subjects to collaborate to develop and execute a team search plan in a simulated environment. 



 
3.2 Experimental Task: Team Scavenger Hunt  

The collaborative search task that we designed for our experiments, the team scavenger hunt, recreates 
some of the challenges faced by expert human teams during search and rescue operations. To implement 
the task, we reconfigured a scenario in the multiplayer game and battlefield simulator, Operation Flashpoint 
(OFP version 1.96) (11), by customizing the pre-game briefing, map, object triggers, and scoring 
mechanism.  

In the team scavenger hunt, human subjects have to read a map, navigate a 3D simulated environment 
and recover a collection of objects (bottles) within a bounded amount of time (Figure 1). The task is 
designed to evaluate the team’s ability to develop and execute a search plan under time-stress. As an 
experimental task, the team scavenger hunt offers several advantages: (1) it can be learned and executed 
within a short period of time by novice subjects; (2) it can be simulated within a variety of testbeds; (3) it 
offers a simple team performance metric: number of objects collected.  

The team scavenger hunt task can be made arbitrarily complicated by adjusting the following 
parameters: (1) task uncertainty, (2) reward function, (3) adversaries. Task uncertainty is increased if 
subjects are not provided with maps and have to simultaneously explore the area while searching for 
objects. Another way to increase task uncertainty is to have subjects locate objects based on clues or 
probability distributions, rather than precise locations. Varying reward functions can be used to elicit 
different types of team behavior. Individual players can be awarded incentives for high performance vs. 
having the rewards split equally among team members. A simple reward function is to have the reward be a 
linear function of items acquired across all team members; another option is to award points for portfolios 
of objects. A portfolio of objects is a collection that contains a specified number of unique objects with 
desired characteristics, e.g., a portfolio consisting of a table, a chair and a telephone, all of the same color. 
Having a portfolio based reward system makes a subject’s optimization problem harder because it penalizes 
locally greedy acquisition strategies. Adding adversaries to the task forces the players to replan to 
overcome unexpected obstacles. The game can be made more dynamic by adding mobile objects, 
automated adversaries to hinder the searchers, or having teams compete against each other.  

In our initial version of the experimental task, the subjects have some uncertainty— they are provided 
with a terrain map, but only objects within a certain visibility range are revealed on the map. The current 
version of the game requires having the searchers collect static objects; subjects are rewarded based on 
their total team score, rather than their individual score, at collecting objects within an adversary-free 
environment. 

 
3.3 Testbed  

The experiments focused on the activity of three human players acting through virtual characters in the 
Operation Flashpoint (OFP version 1.96) simulated physical environment to find and crush liquor bottles in 
a twenty minute period. OFP is distributed with a simple but versatile scenario editor that greatly facilitates 
the creation of multiplayer military and civilian scenarios and missions.  

Terrain around and including the village of Flers on the island of Normandie was chosen as the focal 
point for the one practice and two experimental scenarios (Figure 2). The area is a tract of land that is 512 
meters long in a north–south direction (N/S), and 768 meters long in an east–west direction (E/W); in all, 
393,216 square meters. On the 2dimensional (2D) Operation Flashpoint map, this area corresponds to 4 
map squares N/S, 6 map squares E/W, where each map square corresponds to 128 meters by 128  



 

Figure 1: Subject world view during bottle collection. This is a zoomed-in view that has an increased density 
of bottles for illustrative purposes; the actual 3D environment is much larger and contains a much lower 
bottle density.  

meters. Exploratory benchmarks determined that, depending on search technique and ability, it could take a 
single OFP civilian virtual character from sixty to ninety minutes to explore all 24 map squares of this 
scenario. In twenty minutes, a civilian character can thoroughly explore roughly ten map squares of the 
surrounding countryside. The village of Flers occupies four map squares; part of the village is organized in 
a radial street plan and another part has a N/S, E/W grid of streets and buildings. Given the area and layout, 
we have observed that it requires from ten to twenty minutes for the virtual civilian character to search the 
area. 

 
4 Experiments  

4.1 Procedure  

Seventeen teams of three persons, each, were recruited to participate in the pilot study. Human subjects 
self-assessed and reported their abilities to play first person video games in terms of the following 
classification: novice, medium expertise, or expert. Combined expertise of the teams varied from “two 
novices and a medium expert” to a team of “three experts” (see Table 2).  

Each team member played the game through an assigned and dedicated laptop. All three members of a 
team sat at the same large table arranged in such a way that they could not look at each other’s screen. The 
human subjects were forbidden to share  



 

Figure 2: The 2D terrain map available to players in the Operation Flashpoint simulation environment. In 
addition to the terrain map, the subjects are provided with simulated versions of binoculars, compass, and 
watch.  
computer screens, note sheets or other such aids — they could only describe their locations, intentions and 
actions in the game by using verbal communications and the 2D OFP map of Flers. All verbal 
communications, though face-to-face, were logged using TeamSpeak (28).  

Time was taken during a practice session to instruct the players on the key and mouse commands for 
the game. Players were instructed on how to move their characters, find and crush bottles, query bottle 
counts, and how to use additional aids that are available to their avatars. After sighting a bottle, a player 
must move their avatar to within a couple of meters of it in order to crush it and get credit for the crush. 
When they are close enough to crush the bottle, the command to crush that type of bottle,  
e.g. Crush Martini Bottle, will appear in the player’s command menu at the bottom right corner of their 
screen. Feedback to the player is given in multiple ways: (1) the sound of a vehicle crashing into a wall, 
(2) puffs of oily black smoke emanating from the morphing bottle, (3) the morphing of the bottle into a 
crumpled form. If the player queries their bottle count, they will see that it has increased by one.  

Once a player has crushed a bottle, the command to crush it is removed from their menu, never to 
appear again for that bottle, even if they happen upon its crushed remains at a later time. If a player 
encounters the remains of a bottle that was crushed by a teammate, they can choose to invoke the 
command to crush it in order to avoid false detection of that crushed bottle at a later time. No penalty was 
assessed for attempting to crush an already crushed bottle.  

The five ways of detecting a bottle are:  

1. visual detection, in which the human player “sees” a bottle via the unmagnified vision of their 
avatar,  
2. magnified visual detection, in which the human player slightly magnifies (roughly, 3X) their 
avatar’s field of vision,  
3. visual detection via binoculars, in which the avatar uses binoculars for a narrower but more distant 
field of view,  
4. non-visual proximity sensing, in which the player is notified of a bottle’s presence whenever their 
avatar comes within “sensing range” of the bottle. A bottle is sensed based on the expertise of the OFP 
avatar and if the player is proximate to it. This game effect is useful if the bottle is on the other side of 
a hedge or if the player accidentally passes the bottle. It does not work if the bottle is in a terrain 
depression, or more than a few meters away from the player. The notification consists of the player’s 
command menu appearing in the bottom right corner of their screen, with the added command, “Crush 



X Bottle”, where X indicates the type of bottle.  
5. tool tip sensing of the bottles from the 2D map view of the world. OFP avatars can navigate the 
environment in a 2dimensional map view. When in 2D map view, the player’s avatar is represented as 
two concentric red circles with a radial line indicating the avatar’s bearing. If the human user moves 
the mouse cursor over the area of the map in the vicinity of the avatar, they can detect any objects that 
they could normally see in the visual detect mode. When an object is detected, a “tool tip” label 
appears next to it, indicating the object’s type.  

Each experimental session was composed of a twenty minute practice period and three twenty minute 
search tasks. We evaluated the three experimental conditions: (1) # Bottles Known in which the subjects 
knew how many total bottles they were trying to recover; and (2) # Bottles Unknown in which they did 
not know how many bottles were hidden in the search area. By knowing the total bottle count, we 
hypothesize that subjects have a better sense of task progress and can assess their individual search 
performance. Comparing the team performance of subjects with the bottle count information vs. no bottle 
count information might predict the benefits of introducing agents to teams for search tasks. 

 
4.2 Analysis of Team Communication  

To analyze the coordination demands of the collaborative search task, we logged all communication 
between team members. We looked at the following categories of communication:  

• increasing situation awareness (SA) This category includes all communications that increase the 
team members’ situation awareness. Examples include communicating one’s location, querying 
teammates for their positions, and discussions about terrain features or object locations.  

• sharing hints (Hints) Occasionally subjects shared personal search techniques with their 
teammates, such as scanning large regions in a 2D map view or using binoculars while standing on 
high terrain features.  

• team planning This category includes any discussion proposing, accepting or declining team 
search strategies; for example, team members often took responsibility for covering a certain 
region or suggested that other team members should redirect their search to a different area. We 
separated team planning into two categories: (1) planning before execution (Pre Plan) and (2) 
planning during execution (In Plan). Within these categories we examined two types of commu-
nications: (1) role allocation and (2) division of execution space.  

• monitoring task progress (Monitor) Often subjects exchanged information about object counts, 
coverage progress, or time left remaining in the session.  

• sharing world beliefs (Beliefs) Sometimes the subjects discussed their hypotheses about the 
relative frequency distributions of the bottles in different regions and speculated about the 
existence of bottle caches.  

• miscellaneous Some of the communication between team members was not directly related to 
the experiment, such as social interaction or complaints over system issues (e.g., unexpected key 
lockups or display slowdowns).  

A: okay do we want someone to stay in the courtyard and do those bottles?  
B: I’ll do that and then head east.  
C: I’ll do the same area that I did before.  
B: I’ll clear the courtyard and then clear the road to the south.  
A: I’ll work on the northern part and 64.  
C: I think I’m going to stay closer to the town and circle around.  

Figure 3: Transcript of communication between subjects at the beginning of the search. This group of 
utterances was categorized as an example of team planning before execution. The “64” refers to a row on 
the map. There are significant pauses between the utterances; during one such pause, one of the subjects 
changes their mind and decides to cover a different area.  



Most of the team planning discussions were related to the division of the execution space: how to 
allocate the efforts of the team members to cover the entire map within the 20 minute time period. 
Although some teams agreed on a division of labor at the beginning of the task period, many teams 
modified their search strategies during execution based on their perceived task progress or their assessment 
of which areas contained a higher bottle density. The transcript shown in Figure 3 is a typical example of 
team planning communication at the beginning of a search session. The three subjects quickly develop a 
search strategy in which each subject assumes responsibility for covering a certain region.  

To assess the communication demands of the collaborative search task, we compiled frequency counts 
of the different types of team communication (Figure 4). We believe that the categories of increasing team 
situation awareness and monitoring task progress are amenable to agent assistance. Our model of human-
agent teamwork predicts improved team performance if we can reduce the cost of information processing 
for the team. 

 
4.3 Team Search Patterns  

During the experiments, we had the subjects report their search patterns and self-assess their coverage of 
the area by annotating a hardcopy printout of the map; many subjects used these notes to track their 
coverage progress. We observed a variety of search strategies among the subjects: (1) scanning the map by 
quadrants; (2) following terrain features such as roads or hedges; (3) focusing effort in regions with higher 
bottle counts. Figure 5 shows an example of one subject’s search strategy. For each group of subjects, we 
measured (1) number of quadrants covered per subject; (2) number of quadrants covered per team (the 
union of each subject’s coverage areas). The number of quadrants covered per team is a good measure of 
team coordination. On average each subject was able to cover 49% (mean of both conditions in Table 1) of 
the region within 20 minutes; therefore, all three team members were required to perfectly cover the region. 
Figure 5 shows an example search pattern that was reported by a subject in Team 4. This annotation was 
used to estimate the number of quadrants that the subject was able to cover; team coverage was determined 
by examining the union of all team  

 

Figure 4: Communication frequency averaged across four teams of subjects. Subjects appear to spend 
more time monitoring their task progress in # Bottles Known condition, whereas in the # Bottles Unknown 
condition more communications are devoted to increasing the team’s situation awareness. Also, the subjects 



appear to be spending more time planning prior to execution in the # Bottles Unknown condition.  

 

Figure 5: Map of search area annotated by one of the subjects in Team 4. The numbers and letters at the 
edge of the map are the coordinates for quadrants. After each search, the subjects were asked to report 
their search pattern by drawing on a printout. These annotations were used to calculate the individual and 
team coverages (see Table 1).  

members’ individual coverages at the quadrant level. Table 1 contains the individual (Columns A, B, and 
C) and team terrain coverage performance for all eight teams. Team scores are lower than the sum of 
individual scores due to coverage area overlap. On average, team coverage was 60% of the map for both 
the # Bottles Known and # Bottles Unknown conditions.  

To be successful at covering the entire region, teams had to effectively divide the execution space and 
be proactive at diagnosing and repairing accidental gaps in the search pattern. Instead of attempting to 
cover the entire region, some teams hypothesized that certain quadrants had a high bottle density and 
focused on thoroughly searching those quadrants at the expense of less promising areas. The search 
patterns demonstrated by the experimental subjects exhibited similar problems to the behavior of actual 
search and rescue teams: (1) the creation of accidental holes in the search pattern due to poor execution of 
the search plan, and (2) poor priority assignments in the search plan due to false clues and hunches. This is 
a promising area for agent assistance; by having agents track individual team members’ coverage, gaps in 
the team coverage are exposed earlier in the search process allowing repairs to be made in a more timely 
fashion. Our model predicts that aiding the state of coordination between team members will result  
 
 
 
 
 
 
 
 



 
 
  Number of Bottles is Known Number of Bottles is Unknown 
Team 
# Ann Jon Tom Team 

% 
Ovrlap Ann Jon Tom Team 

% 
Ovrlap 

1 50% 25% 33% 75% 44% 42% 33% 42% 79% 47% 
2 58% 50% 29% 100% 38% 50% 46% 25% 96% 26% 
3 21% 54% 38% 75% 50% 33% 46% 38% 79% 47% 
4 33% 42% 38% 100% 13% 33% 46% 50% 100% 29% 
5 54% 38% 46% 88% 57% 42% 46% 67% 96% 61% 
6 71% 50% 38% 96% 65% 63% 67% 38% 83% 100% 
7 38% 42% 25% 88% 19% 33% 42% 29% 75% 39% 
8 83% 33% 54% 100% 71% 29% 21% 79% 96% 35% 
9 88% 63% 63% 100% 113% 63% 63% 67% 100% 92% 
10 58% 75% 54% 100% 88% 33% 54% 50% 88% 57% 
11 46% 54% 79% 100% 79% 42% 58% 79% 96% 87% 
12 21% 58% 38% 83% 40% 50% 42% 42% 92% 45% 
13 58% 25% 50% 79% 68% 38% 17% 63% 79% 47% 
14 17% 71% 25% 88% 29% 38% 38% 42% 75% 56% 
15 92% 88% 54% 100% 133% 79% 58% 67% 96% 113% 
16 83% 54% 33% 96% 78% 92% 71% 71% 96% 143% 
17 54% 38% 42% 96% 39% 54% 33% 38% 96% 30% 
Mean   49%   92% 60%   49%   89% 62% 
 
Table 1: Terrain Coverage  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Team 
# Subject Expertise 

# 
Bottles 
Known

# Bottles 
Unknown Highest % Score Executed 2nd? 

1 novice, medium, expert 84.62% 78.57% 0 
2 novice, expert, expert 73.33% 54.76% 1 
3 novice, novice, expert 60.53% 66.67% 1 
4 novice, novice, medium 77.27% 35.71% 1 
5 medium, expert, expert 86.36% 73.81% 0 
6 novice, medium, medium 59.52% 52.38% 1 
7 expert, expert, expert 81.82% 76.19% 0 
8 medium, expert, expert 94.00% 80.95% 1 
9 medium, medium, expert 76.60% 80.95% 1 
10 expert, expert, expert 97.78% 64.29% 1 
11 medium, expert, expert 80.85% 90.48% 1 
12 novice, novice, expert 82.93% 83.33% 1 
13 medium, expert, expert 88.24% 69.05% 1 
14 medium, expert, expert 67.44% 73.81% 1 
15 expert, expert, expert 95.35% 90.48% 1 

16 
medium, medium, 

medium 84.62% 76.19% 0 
17 novice, medium, medium 74.42% 71.43% 0 

Mean — 
80.33 ± 
11.07%

71.71 ± 
14.03% 70.59% 

 
 
Table 2: Bottles Retrieved  

 
in task performance improvement. Another potential assistance strategy would be to have agents help the 
subjects form better priority assignments by noting the number of bottles found in each quadrant and 
informing team members about quadrants with higher bottle densities. 

 
4.4 Team Performance  

Table 2 reports the performance of all the teams in our initial set of experiments, measured by percentage 
of bottles crushed by each team. We had each subject self-assess their expertise at computer games; this 
information is reported in the second column. During each session, we evaluated the performance of the 
teams on three search tasks:  
(1) an initial practice session during which the subjects were learning the user interface (results not shown), 
(2) a session in which the subjects knew the total number of bottles hidden on the map (labeled in the table 
as # Bottles Known), (3) a session in which the subjects did not know how many bottles they were trying 
to recover (# Bottles Unknown). Based on these preliminary results, it appears that knowing the total 
bottle count improved the performance, which indicates that this might be a promising area for agent 
assistance. 

 



5 Discussion  

This initial phase of experiments was designed to (1) create a baseline of expected team performance and 
(2) determine where agent aiding is likely to have the greatest impact. From our preliminary results we 
noted a few trends:  

• The categories with the highest communication traffic were situational awareness (e.g., 
communicating one’s location to the team) and task monitoring (communicating bottle counts, 
time, and coverage). In the # Bottles Known condition, subjects actually had fewer task 
monitoring communications, but more communications relating to situational awareness. Pre-
planning seemed to increase in the # Bottles Unknown condition.  

• The team coverage did not differ in the # Bottles Known or # Bottles Unknown conditions; 
subjects reported that they were searching about the same amount of the map, although their bottle 
retrieval performance was lower.  

• Team performance, measured by number of bottles retrieved, was poorer in # Bottles Unknown 
condition.  

• Gaming expertise was predictive of individual bottle collecting performance, but not of an 
individual’s terrain coverage. 

 
Based on these results, we plan to focus our agent aiding on these areas: 
 

• reducing the cost of communication between teammates by having agents assist the subjects 
at increasing situational awareness and monitoring task progress. We believe that this will 
free the humans’ time to communicate about other aspects of the task, such as sharing search hints 
and team planning.  

• improving the coordination between team members at dividing the execution space Subjects 
were not accurately able to self-assess their team coverage and often left holes in their search 
patterns. Helping teams accurately monitor team coverage is a very promising future area for 
agent assistance.  

 
Listening to the recordings of the players was very valuable and gave us some insights. All teams 

adopted the common sense strategy of forming a team plan and dividing the search space. Most teams also 
replanned during execution when the following events occurred: (a) subjects finished their assigned 
coverage areas, (b) when new bottles were discovered, (c) as the deadline approached. Some teams 
evaluated themselves on terrain coverage whereas others focused on total bottle count. Often subjects 
formed hypotheses about areas with high bottle counts, similar to following false hunches in search and 
rescue operations, and speculated about the existence of hidden bottle caches. Although teams were 
allowed to self-organize, none of them elected a commander. Some players voluntarily assumed roles such 
as timekeeping or tallying bottle counts.  

In the future, we plan to evaluate agent aiding in a version of the task that requires tighter coordination. 
By examining a task with more interdependencies, we believe that we will observe more planning, 
especially during execution. In the new version of the task, each subject has to retrieve a portfolio of seven 
bottles, one of each type (whiskey, martini, etc.). We hypothesize that coordination confers a huge benefit 
to the subjects if they pool information about bottle types that they have already acquired, the location of 
bottles that they do not need, and their portfolio requirements. Without team coordination, it is hard for 
even expert gamers to collect a portfolio of bottles, since it is more likely that they will collect a larger 
number of bottles without being able to find one of each type. 
 
6 Conclusion  

Our ongoing research objectives include understanding how agent-based team support affects team 
performance in critical, time-stressed situations and the impact of agents on the adaptive decision-action 
cycle of the team. To understand the effects of agent aiding on team support, we designed a collaborative 



search task, the team scavenger hunt, that recreates some of the challenges faced by expert human teams 
during search and rescue operations. As an experimental task, the team scavenger hunt offers several 
advantages: (1) it can be learned and executed within a short period of time by novice subjects; (2) it can be 
simulated within a variety of testbeds; (3) it offers a simple team performance metric (4) it can be extended 
in different ways to evaluate concepts like team trust and adversarial reasoning. The team scavenger hunt 
problem touches on some interesting problems in artificial intelligence such as the multi-agent traveling 
salesman problem and preference satisfaction over sets of objects. We believe that it is a useful benchmark 
problem for other groups studying team behavior and agent assistance. This initial set of pilot experiments 
has allowed us to create a baseline of non-assisted team performance and also has given us some valuable 
clues as to where agent aiding is likely to have the greatest impact. 
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