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Abstract

The boundaries of objects in an image are often considered a nuisance to be “handled”

due to the occlusion they exhibit. Since most, if not all, computer vision techniques

aggregate information spatially within a scene, information spanning these boundaries, and

therefore from different physical surfaces, is invariably and erroneously considered together.

In addition, these boundaries convey important perceptual information about 3D scene

structure and shape. Consequently, their identification can benefit many different computer

vision pursuits, from low-level processing techniques to high-level reasoning tasks.

While much focus in computer vision is placed on the processing of individual, static

images, many applications actually offer video, or sequences of images, as input. The extra

temporal dimension of the data allows the motion of the camera or the scene to be used in

processing. In this thesis, we focus on the exploitation of subtle relative-motion cues present

at occlusion boundaries. When combined with more standard appearance information, we

demonstrate these cues’ utility in detecting occlusion boundaries locally. We also present a

novel, mid-level model for reasoning more globally about object boundaries and propagating

such local information to extract improved, extended boundaries.

Building on these methods, we also demonstrate enhancement of two high-level vision

tasks by incorporating boundary information. First we employ boundary fragments to

suggest multiple “hints” of a scene segmentation and then use these suggestions collectively

to achieve more consistent and parsimonious delineation of generic whole objects. Second,

we augment a popular feature-based recognition technique for specific objects (the Scale

Invariant Feature Transform) with boundary information in order to yield a method more

robust to changes in background and scale.

This thesis thus contributes to research on occlusion at several levels, from low-

level motion estimation and feature extraction; to mid-level reasoning, classification, and

propagation; and finally to high-level segmentation and recognition. In addition, a new

video dataset is presented to enable further research in this area.
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Chapter 1

Introduction

Consider the scene depicted in Figure 1.1, taken from the LabelMe database [147]. There

are many overlapping objects and surfaces in this scene. Indeed, almost everything in the

scene is occluded by and/or occludes another object or surface! A user has begun to label

a few foreground objects thus far (indicated by the blue and red dots), but the process of

painstakingly labeling each and every inter-related boundary is daunting.

In natural images, however, this type of complexity is common. Objects are generally

not conveniently laid out in well-separated poses or in front of uniform backgrounds. As a

Figure 1.1: Example scene exhibiting extensive occlusion from [147]. Almost every object or
surface is occluding and/or occluded by another object or surface. Any computer vision method
which spatially aggregates information in this scene will almost certainly simultaneously consider
data from two different objects.
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consequence, occlusion and dis-occlusion at objects’ boundaries frustrate many processing

techniques frequently used in computer vision. Due to imaging noise and the inherent lack of

information (and resulting ambiguity) when considering an individual pixel, most processing

techniques in our field aggregate information spatially in images. This aggregation may be

the result of simple smoothing (e.g ., Gaussian blurring for the purpose of down-sampling

and multi-scale processing), the consideration of discrete patches of pixels (e.g ., for feature-

based object recognition or face/pedestrian detection), or the use of graphical models

connecting neighborhoods of pixels (e.g ., Markov, Conditional, or Discriminative Random

Fields [63, 92, 93]).

Figure 1.2: In cluttered scenes, any tech-
nique that aggregates information spatially,
such as a patch-based method, will erroneously
combine information from physically different
objects/surfaces, leading to poor results.

Each of these methods implicitly as-

sumes that all the nearby or connected

pixels “belong together” (e.g . are from the

same object, motion layer, etc.). But this

assumption is violated at object bound-

aries, where information from two different

physical surfaces is smoothed/transmitted

across the boundary or collected within a

single patch (as shown in Figure 1.2), and

thus subsequent results will be muddied

or completely incorrect. For this reason,

pixels near boundaries are often treated as

outliers to be handled by robust methods,

or multiple/adaptive-windowing techniques

are employed [61, 73, 84]. These sorts

of approaches are inherently focused on

reasoning based on information contained

within the regions enclosed by the boundaries. By contrast, the work of this thesis will

focus on boundaries themselves and will attempt to detect and reason about them directly.

Note that these two sources of information, regions and their boundaries, are complementary

and are each useful in their own way [56, 70, 163]; we are not advocating the exclusive use

of one over the other.

1.1 High-level Reasoning with Occlusion Boundaries

The boundaries present in a scene are not only a nuisance for many processing techniques,

they are also a valuable source of perceptual information important for understanding a

scene’s overall structure and content [20]. Since occlusion boundaries exist at locations in

an image where one physical surface is closer to the camera than another, they correspond
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to the physical extent of objects and structures in a scene, providing strong 3D shape cues

without explicit 3D reconstruction. In this thesis, we will focus on increasing performance

in two high-level tasks using detected occlusion boundaries: object segmentation and object

recognition.

1.1.1 Object Segmentation

There has been impressive progress in the last few years in recognizing specific objects

in images such as cars, bicycles, people, etc., by using, for example, methods based on

appearance features [15, 19, 28, 49, 87, 105, 106, 120, 124] or based on shape features [18,

31, 121, 153]. Progress is also being made in the related, but far more difficult problem

of recognizing categories of objects [46, 47, 82, 136]. But the problem of detecting generic,

never-before-seen objects — i.e. without a given library of knowns — remains a difficult

challenge. For example, how may we determine a telephone sitting on our desk is an

object separate from its surroundings, without already knowing what a telephone is? Or

as Adelson and Bergen put it [2], how do we distinguish the “things” from the “stuff?”

Imagine a system as capable as our own of understanding the structure of a visual scene

without necessarily having in its memory an instance of every specific object present, and

without explicit 3D reconstruction or geometry.

This goal, depicted in Figure 1.3, is variously known as object segmentation, pop-out, or

figure-ground labeling, and we believe that detected occlusion boundaries, which themselves

delineate the physical extents of objects, can provide a strong cue for tackling it. Thus,

in Chapter 5, we will use occlusion boundaries to provide segmentation “hints” which

we combine to compute a powerful affinity measure suitable for existing clustering and

segmentation algorithms.

1.1.2 Object Recognition

Consider the methodology employed by feature-based object recognition relying on ap-

pearance, e.g . the popular Scale Invariant Feature Transform (SIFT) approach due to

Lowe [106]. There are generally two stages: feature detection and feature description.

Image information is aggregated during both. During detection, filtering processes such as

Gaussian smoothing, which are used to create scale-space Difference-of-Gaussian pyramids,

will smear information across boundaries. Then, patches of image data which may cross

object boundaries are used to create descriptor vectors for matching. In particular, for

scale-invariant methods, larger and larger neighborhoods are considered as the scale of

detection/ description increases, resulting in many unusable large-scale features which

contain information from (multiple) objects and background. Equivalently, as an object

appears smaller and smaller within a scene, we must rely more heavily on its larger scale
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Figure 1.3: An example of object “pop-out”. Without prior knowledge of these four specific
objects (e.g . in a database of example images), we would like still to be able to differentiate them
from the background. Knowledge of their physical extents, as delineated by their boundaries, is
a strong cue for enabling this task.

features (relative to observed size of the object) for matching. Knowledge of the location

of object boundaries in a scene could be used to combat these problems and improve

recognition in cluttered scenes [165], as will be discussed in Chapter 6.

1.2 Locally Detecting Occlusion Boundaries

Given the motivations above for locating occlusion boundaries in a scene, we turn now to

methods of detecting them, which is the focus of Chapters 2-4. Usually, occlusion boundaries

are also visible as edges in images. In this work, then, we will explicitly distinguish

between the detection of typical edges, which may result solely from changes in appearance,

and occlusion boundaries which additionally correspond to 3D scene structure. In some

situations, the foreground and background surfaces may share indistinguishable appearance,

producing a camouflaged boundary. We do not address such situations explicitly in this

work, but we note that they are rather rare in general. Furthermore, when such camouflage

arises, it is often a local phenomenon. More global reasoning about boundaries in the scene

can help alleviate this type of difficulty; this is the subject of Chapter 4.

In our work, we will consider occlusion boundaries to be a subset of the edges in a

scene. Our goal, then, will be to identify those edges in an image which also correspond

to occlusion boundaries. We will employ tools from machine learning in order to learn

classifiers for this task from labeled data. This will require extracting and reasoning about

the various cues present at boundaries, particularly those cues that distinguish them from

edges.

Given the overlap between standard edges and the boundaries we seek, typical appear-

ance cues such as gradients of brightness, color, and texture are clearly important for
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our task. Unfortunately, non-boundary edges, such as simple surface markings or lighting

effects, can also give rise to these cues. Thus, while the use of sophisticated edge detectors

that can handle texture and color [114, 116, 148, 186] may offer improved results over a

simple Canny edge detector [30], they still (correctly) respond strongly to edges which do

not correspond to any physical occlusion. Note that Berkeley’s learned Pb detector [114],

which is becoming increasingly popular, has been trained to detect semantic edges (though

the authors refer to them as “boundaries” in that work) from a database of human-labeled

images and not necessarily boundaries which explicitly correspond to occlusion.

Many other cues have been proposed with respect to this problem and to the related

problem of figure-ground determination as described above, most notably those based on

Gestalt principles such as continuation, parallelism, proximity, and closure [135, 145, 164].

Though largely a product of human studies, many of these cues have received significant

attention in computer vision, e.g . [4, 71, 109, 140, 194].

Most of these cues can be exploited in a single image, but ours is a temporal experience,

and increasingly, image sequences and video are becoming commonplace. Indeed, while

some computer vision applications, such as image retrieval, necessarily limit the system to

the consideration of a single image, using only one instantaneous snapshot of the world as

input can unnecessarily over-complicate some problems. For vision applications operating

in the physical world, it is quite reasonable to assume a temporal sequence of images is

available. Why force a mobile robot, for example, to attempt to understand its surroundings

from disconnected still snapshots? It has the ability to move itself or to manipulate its

environment and observe the result as a continuous, connected event. In such a system,

the additional temporal dimension provided by the image sequence yields an extra source

of information that ought not be ignored: motion.

Thus another potentially powerful cue for our task, and one which is well-known in

psychophysics, is that of motion — specifically the relative motion discrepancies at the

depth discontinuities which occur at occlusion boundaries. Most often studied in controlled

laboratory experiments in order to elucidate or model human perception [16, 33, 85, 117,

173, 191], such motion cues have received comparatively little attention by computer vision

researchers for the purposes of boundary detection [20, 51, 126] or object segmentation and

pop-out, e.g . [4, 142].

We will therefore employ motion observed in a short video clip to help distinguish

between edges and boundaries in a single reference image from that clip. This motion may

be caused by camera movement, which induces parallax at depth discontinuities, or it may

be a result of dynamic objects in the scene (or a combination of the two). Our approach

handles either situation equivalently and is thus more general than motion detection work

that relies on a static camera for background subtraction, e.g . [142, 179]. We will discuss

the various motion cues available at occlusion boundaries in Chapter 2 and discuss their
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use in locally detecting those boundaries in Chapter 3. Note that despite our use of video

clips, we are still only concerned with the discovery of boundaries in a single “reference”

frame of the clip, namely the middle frame. The remaining frames serve only as additional

(temporal) information, allowing the computation of motion cues.

Focusing explicitly on motion at the edges in a scene will allow us to avoid dense motion

estimation and reasoning via full-blown optical flow followed by region-growing or clustering

approaches. In addition, we can detect local occlusion directly using a bottom-up approach

which is complementary to top-down approaches that rely on higher-level reasoning. As

discussed in Section 1.4, such methods often impose the restrictive assumption that the scene

consists of a set of distinct layers moving separately. Our approach will not require this

assumption. One challenge of a purely local, bottom-up approach, however, is estimating

and using motion information at exactly those locations (occlusion boundaries) at which it

is arguably the most difficult to obtain.

We recognize that depth cues are not strictly limited to temporal data (e.g . in the

form of motion): there exist monocular, static cues such as shading, shadows, familiar size,

perspective, and atmospheric effects, as well as proprioceptive/occulomoter cues such as

focus and convergence (i.e., binocular stereo). But it is currently difficult if not impossible

to extract and employ all such cues in a practical computer vision system. Many of these

cues require high-level, a priori information — often precisely the same information we

seek to extract from using those cues in the first place (one of the many “chicken and

egg” difficulties in computer vision). Low-level proprioceptive data is also generally not

available. This is not to say that these cues are useless. In some domains, they may in

fact be necessary, and continued research in these areas is certainly warranted. But their

extraction is beyond the scope of this work. Motion cues, however, are practical and readily

available in video.

1.3 Global Boundary Reasoning

Thus far, we have only discussed utilizing local motion and appearance cues for occlusion

boundary detection. Purely local strategies are generally limited and noisy. Moreover,

occlusion may not even be visible locally, as is the case along a section of boundary seen

in front of a uniform background (see Figure 1.4). Thus, a natural next step is to use our

local cues in a more global reasoning approach. In Chapter 4 we present such an approach,

which builds on the local methods described in Chapters 2-3.

There we combine many local cues into a single classifier, following recent approaches

to edge detection/classification in a single image [41, 90, 114], with the differences that

we use motion cues in addition to appearance cues, and we focus on physical occlusion

boundaries. We also utilize the region boundaries of an image’s (over-)segmentation as
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Figure 1.4: The need for propagation of local occlusion information. For the red/yellow dashed
boundaries in the scene, a purely local occlusion detection method will likely only be able to
detect occlusion within the blue boxes. We therefore need to propagate the higher-confidence
occlusion observations to the in-between sections of the boundary, for which labeling may be
less confident due to the lack of motion observed against the nearly-uniform background.

initial candidates to be labeled as occluding or non-occluding. This idea is largely due to

Ren [140], who used such an approach to induce a figure/ground labeling of the regions

themselves. An additional advantage of this approach lies in the improved spatial support

for extracting cues by relying on data-driven regions of support and more extended boundary

fragments instead of individual pixels. Finally, we also define a novel model for inferring

a globally consistent labeling of the boundary fragments by constructing a factor graph

capable of propagating measurements between local structures. This process is illustrated

in Figure 1.5.

1.4 Additional Related Work

In this section we will briefly discuss work closely related to (motion-based) occlusion

boundary detection and not necessarily explicitly covered elsewhere. Note, however, that

further discussion of related work is distributed throughout the remainder of this thesis.

Prior attempts to use motion cues to extract object contours (or object segmentations

implying the contours) can be divided roughly into two groups: those that segment regions

directly from the motion input, and those that detect the contours more directly via some

local computation on the motion data.
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Figure 1.5: In Chapter 4, we develop a framework for object/occlusion boundary detection
combining appearance cues, subtle instantaneous motion cues, learned classifiers, and a global
inference technique.

1.4.1 Segmentation-Based Techniques

The first category includes approaches that attempt to infer segmentation or scene structure

directly from reasoning about large-scale occlusions observed through dynamic object

motion [27, 128] or the use of multiple, calibrated cameras for obtaining silhouettes [65].

Also in this category is layered motion segmentation [38, 181], in which regions are

segmented from an input image sequence based on the consistency of motion within each

region, e.g . [78, 79, 80, 86, 91, 128, 158, 162, 184, 188]. Most of these techniques use a

parametric motion model for each layer, and employ various techniques, such as Expectation

Maximization, for estimating those models and for assigning pixels to the correct layer or

model. Typical models are restricted to near-planar, rigidly-moving regions (though an

exception can be found in [184]). In addition, many approaches assume a known, fixed

number of layers in the scene or do not scale well as that number increases. We argue

that attempting to explain the scene generatively in terms of a specific number of motion-

consistent connected regions may not be necessary, and instead we propose to detect a

large fraction of the objects’ boundaries by estimating local motion cues and using them in a

discriminative statistical classifier combined with a mechanism to enforce global consistency.

Quite recently, a method for binary segmentation of video was presented which combats

some of the difficulties of layered motion segmentation methods by combining clustered

motion features (akin to the textons popularized by recognition research) with a boosted

tree-based classifier [190].

Usually, the erratic results near boundaries are treated as outliers to an underlying

smooth process by using, for example, the methods described above. The subsequent

delineation of precise motion boundaries, if performed at all, is generally of secondary
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importance. A notable exception, however, is found in [70], where vertical and horizontal

between-pixel motion boundaries plus their interactions with nearby dense optical flow

vectors are considered in an MRF framework. Similarly, dual graphs on the pixels and

the edges between them (sometimes referred to as “cracks”) are considered in a normalized

cuts framework in [195]. Stereo or structure from motion techniques also have trouble near

occlusion boundaries and usually focus on the interiors of regions while handling data near

occlusions as complex special cases [61, 73, 84]. Our work, on the other hand, is not focused

on the precise, dense motion estimates themselves, nor on full 3D scene reconstruction; we

first seek only to identify boundary locations that correspond to visible occlusion and then

to employ those boundaries in higher-level reasoning.

Browstow and Essa [27] segment a static scene into planar relative depth layers by

observing the occlusions introduced by an object moving through that scene. The use of

edge detection and contour completion help provide good estimates of the layers’ (occluding)

boundaries. The approach, which is limited to a stationary camera, is aimed primarily at

compositing video and may also require manual intervention.

Because videos often include dynamic objects observed by stationary cameras, particu-

larly in surveillance applications, motion detection and background subtraction are closely

related topics [142, 179]. These techniques are limited to finding the boundaries of moving

objects, while we are interested in extracting boundaries of static objects as well. In fact,

our approach is completely agnostic as to the whether the camera is moving, the scene is

dynamic, or both.

1.4.2 Contour-Focused Techniques

In the second category, techniques have been developed based on the observation that

occluding contours can be defined as extremal boundaries, where the viewing ray is tangent

to the object’s surface. This led to the development of algorithms that rely on an explicit

geometric model of the motion of occluding contours [95, 150, 153, 178]. These approaches

are appealing because they rely on well-defined, mathematically correct, geometric models.

However, one drawback is their sensitivity to deviations of the actual data from the model.

An alternative is to use an implicit model, either learned from local motion cues

estimated from training data or based on some fixed model of the distribution of motion

cues in the vicinity of occluding boundaries [20, 51, 76, 126, 167, 168]. Our work falls in

this general category in that we do not attempt to precisely model the motion of occlusion

boundaries directly. Instead we rely on the statistical discrimination of relative local motion

cues at those boundaries.

Smith et al . [162] track edge fragments and use Expectation Maximization to then

segment the scene into regions with consistent motion. Their approach is one of the few
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that tracks edges/boundaries directly (along with [20, 51, 126] discussed below), but it still

assumes a strictly layered scene structure (and thus was also referenced in the previous

section). The method seems to work best on two-layer sequences as computation increases

exponentially with the number of layers. Also, the initial step in [162] of linking edge pixels

into chains which are part of a single surface is non-trivial, but quite crucial since it is a

hard decision imposed on the remainder of the system. One theme throughout our work

here is to follow the conventional wisdom of maintaining “soft” estimates for as long as

possible, thereby retaining as much information for as long as possible in processing. Thus,

as discussed in Chapter 4, we choose to avoid this type of brittle edge chaining procedure.

Black, Fleet, and Nestares also attempt to estimate local evidence of occlusion by

analyzing motion in the vicinity of boundaries [20, 51, 126]. They build a generative,

parametric appearance model of local occlusion within sampled circular regions in terms

of foreground/backgroud motion and a linear occlusion boundary offset from the region’s

center. They then estimate the posterior probability of this model using particle filtering.

Sampling the large parameter space for each region requires thousands of particles and

significant computational expense, a common problem with particle filtering in high-

dimensional spaces.

1.4.3 Other Approaches

For active detection of occlusion boundaries, it is possible to reason about the various

shadows produced by taking multiple images illuminated by offset flashes [48, 138].

Furthermore, [37] uses these occlusion boundaries to reconstruct entire surfaces, instead

of using traditional visual hull techniques [64, 115]. Our occlusion boundary techniques

may facilitate similar applications in a purely passive vision system.

Also related to occlusion detection is the classical problem of T-junction detection [62,

69, 89, 151, 193]. This problem was recently addressed in a discriminative framework by

Apostoloff and Fitzgibbon [4]. They utilize spatio-temporal data (as do we), as pioneered by

Baker and Bolles [10, 22], who introduced Epipolar-Plane Image (EPI) analysis for reasoning

about 3D scene structure from gradients in spatio-temporal slices of video. By detecting

T-junctions in those same spatio-temporal slices rather than in single images (though not

in spatio-temporal volumes as we will describe in Chapter 2), they demonstrates sparse T-

junction detection and limited extraction of occlusion boundaries. Furthermore, as will be

discussed in Chapter 5, the same authors later demonstrated the utility of their T-junction

detector for binary video segmentation [6]. For higher level reasoning, note that T-junction

detection may be a complementary source of information to the motion boundary detection

presented here.

Finally, and somewhat related to the notion of extremal boundaries discussed above,
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there exist many techniques for constructing visual hulls from multiple views or silhouettes

of an object, e.g . [65, 64, 115]. These methods generally rely on known camera geometry

and/or widely-spaced views to reason about visibility in 3D space and “carve” objects

out of their surroundings. Usually, the resulting boundaries are quite rough and thus our

boundary-focused approaches could be considered complementary.

1.5 Our Dataset

We first need appropriate data for testing our methods as well as ground truth labelings of

that data in order to train those techniques relying on learned classifiers. In addition,

using such a dataset with a significant number and variety of scenes offers a more

complete, quantitative analysis as compared to typical anecdotal examples often provided in

research using motion data. While segmentation datasets exist, most notably the Berkeley

Segmentation Data Set (BSDS) [113], they are not appropriate for our task for two reasons.

First, our use of a motion cue requires that we have at least one additional image of each

scene in order to observe the effects of camera/scene motion. The BSDS consists only of

single isolated images, as do all other segmentation datasets of which we are aware. Second,

the BSDS edge labels provided by the human subjects do not necessarily correspond to

physical occlusion boundaries: any edge which a subject found semantically salient may be

marked.

For these reasons, we have created — and made publicly available — a new dataset

which addresses both of these issues: 30 short image sequences, approximately 8-20 frames

in length, are provided to allow motion estimation, and only the occlusion boundaries are

labeled as ground truth in the reference (i.e. middle) frame of each sequence.1 The scenes

in this dataset are used throughout the experiments described in this thesis. We emphasize

that all results for boundary detection, object segmentation, etc., are reported for the

reference frame only; the additional frames are used only to provide extra motion cues.

Some example scenes are depicted in Figure 1.6 along with their ground truth

occlusion/object boundary labels. The dataset is quite challenging, with a variety of

indoor and outdoor scene types, significant noise and compression artifacts, unconstrained

handheld camera motions, and some moving objects. Though probably not appropriate for

outdoor scenes, the multi-flash imaging approach described in [138] could prove useful for

automating the labeling process for future additions to the database.

All sequences were collected with the same video camera at 15 frames per second

(thus they are approximately one to two seconds in duration). For those scenes in which

the camera is moving, that motion is generally horizontal (panning) with an effective

1Admittedly, some subjectivity in labeling is unavoidable, but we believe the boundaries we seek are
defined more clearly than typical edges.
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Figure 1.6: Ground truth occlusion boundaries labeled for 12 of the scenes from our dataset.
Each example is the reference (middle) frame of a short sequence, usually 8-20 frames.

total baseline on the order of ten centimeters. The objects of interest (not considered

as “background”) are roughly one to five meters from the camera, with between-object

distances ranging from a few centimeters to a few meters. The amount of motion within

the image plane is generally 2-20 pixels per frame. After stabilization (see Section 3.1.1),

this drops to half a pixel per frame on average.

1.6 Contributions and Overview

This thesis contributes to research on occlusion boundaries at several levels, from low-level

processing to high-level reasoning:

• We describe a novel patch-based, spatio-temporal edge detector which extends the

benefits of state-of-the-art spatial edge detectors to video, offering the ability to

estimate not only orientation but also normal edge speed [169]. See Section 2.2.

• We analyze the relationship of various local motion estimates to the discovery of

occlusion and demonstrate that the use of these motion cues improves detection

performance over techniques relying on appearance cues alone [166, 168]. See

Chapters 2 and 3.
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• We introduce a novel factor graph model with learned potentials (developed in

conjunction with Hoiem et al . [76, 167]), combine it with over-segmentation and

boundary hypothesis techniques, and demonstrate mid-level, global reasoning about

boundaries in an image using a variety of motion and appearance cues. See Chapter 4.

• We incorporate our boundary detections into a framework targeting whole-object

segmentation for unsupervised object discovery [170]. We employ current image

matting techniques, driven by our boundaries, to produce a set of segmentation

“hints” which can be combined to produce an affinity measure suitable for existing

clustering/segmentation methods. See Chapter 5.

• We suggest low-level modifications to a popular feature-based recognition technique,

Lowe’s SIFT [106], allowing inclusion of mid-level boundary knowledge to produce

high-level recognition which is more robust to variation in the background. We call

this the Background and Scale Invariant Feature Transform or BSIFT [165]. See

Chapter 6.

• As an additional contribution of this work, we have made our dataset of video clips

and corresponding ground truth boundary labels available online for use by other

researchers:

http://www.cs.cmu.edu/~stein/occlusion_data/

An overall schematic of the work presented here is provided in Figure 1.7. The following

chapters describe each of the processes in more detail, from low-level motion estimation

and feature extraction, to mid-level reasoning, classification, and propagation, and finally

to high-level segmentation and recognition. In the conclusion (Chapter 7), we will also

present possible future extensions of this work.

http://www.cs.cmu.edu/~stein/occlusion_data/
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Chapter 2

Local Motion Cues at Occlusions

Assume for a moment that we have detected a moving edge in an image. If that edge

corresponds to simple texture on the surface of a single object, we would expect the patches

on either side to exhibit motion consistent with the edge and with each other. If the edge’s

observation is the result of an occlusion boundary, we would expect, in general, the patch on

the background side of that occlusion to move inconsistently with the foreground and/or

the edge itself. Note that boundaries in front of a uniform background or at which the

background actually does move with the foreground, are not locally observable via this type

of motion reasoning.

Thus there exist two types of motion inconsistencies at occlusion boundaries: differing

observed motion on either side of the boundary and differing motion between the back-

ground and the boundary itself (which is assumed to be “attached” to the foreground

object [70]). Therefore, in exploiting motion cues for the detection of occlusion boundaries,

we are interested in two types of motion estimates: patch motion and boundary motion.

The estimation of these motions is the subject of this chapter. The subsequent use of these

motion cues for occlusion detection is covered in Chapters 3 and 4.

2.1 Patch Motion Estimation

A motion estimate for a patch of intensity data may be computed from the patch’s spatio-

temporal derivatives [107, 156, 175]. This idea is based on the brightness constancy

assumption and forms the fundamental building block for many optical flow, tracking, and

registration methods. Such estimation of image motion is a classical problem in computer

vision (see [53] for a recent tutorial on optical flow). In general, the goal is to determine

a motion vector (u, v) for each pixel or patch which indicates its displacement from one

frame to the next. Here, we will consider several consecutive frames of video and compute

multi-frame motion estimates. As compared to using only two frames, we find that using
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multiple frames produces substantially more robust estimates that are more discriminative

for our classification task (see Chapter 3).

Detected 
Oriented Edge

r

PL
PR

θθθθ

r
2

r
2

Figure 2.1: Patches for motion
estimation aligned to an oriented
edge.

For our purposes, since we are interested only in

motion estimates near edges (rather than a dense flow

field), we will choose patches of data PL and PR on either

side of each detected edge pixel, as shown in Figure 2.1. In

addition, because we have an estimate of each edge pixel’s

orientation, θ, we can align those windows to the edge in

order to prevent the collection of information across a

potential occlusion boundary. This technique is related

to adaptive/multiple-window techniques, e.g . in stereo

vision [73, 84] and in occlusion reasoning [166, 168].

Spatio-temporal alignment to moving edges can also

be performed as in [168]. In this case, patches are

aligned not only to the spatial orientation of the detected

edge, but also skewed to match its estimated motion

path through time (see Section 2.2).While this additional alignment is intuitively helpful

in reducing the potential corruption of foreground spatio-temporal derivatives with

background data (and vice versa), we have found that it is not strictly necessary. Careful

implementation of the multi-frame optical flow estimation procedure, as described below,

seems to be sufficient — and is not additionally dependent on accurate initial boundary

motion estimates.

Given a set of frames {I(n)}N
n=−N our goal is to find the translational motion, with

components u and v, which best matches a patch of pixels P in the central reference image,

I(0), with its corresponding patch in each of the other images, {I(n)}n6=0:
[

u

v

]

= arg min
N∑

n=−N

h(n)
∑

(x,y)∈P

w(x, y)
(

I(n)(x, y) − I(0)(x − nu, y − nv)
︸ ︷︷ ︸

r

)2
. (2.1)

Note that this implicitly assumes constant translation for the duration of the set of frames,

which is most reasonable over brief time periods.1 We employ Gaussian-shaped weighting

functions, w(x, y) and h(n) (centered at the middle of the patch in the reference frame

and with associated bandwidths σh and σw), to decrease the contribution spatially and

temporally of pixels distant from the center of the reference patch.

Aggregation of patches of data near occlusion boundaries is problematic and addressing

this problem specifically for optical flow estimation is the subject of extensive research,

1First performing a global, translational stabilization of each frame in the clip to the reference frame
can also help make the data better adhere to this constant-translation assumption — see Section 3.1.1 and
Figure 3.4 — in addition to removing large motions and focusing subsequent processing on the more subtle
relative motions that are most important for our task, as discussed in Chapter 3.
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including multiple motion estimation, robust estimators, line processes, and parametric

models [20, 53]. Recently, impressive results computing dense flow fields in spite of

significant occlusion boundaries by using a variational approach and bilateral filtering were

demonstrated in [187].

For our work, we iteratively estimate u and v using a multi-frame, Lucas-Kanade style

differential approach to find the minimum of (2.1). Iteration is employed because the use

of finite-sized patches may prevent us from finding the full translation vector (u, v) in one

application of least squares. Thus, to solve for the update, (u′, v′) to the current estimate

(uk, vk) at iteration k, we replace the residual (or error) term, r, in our objective function

(2.1) by

r = I(n)(x + nuk, y + nvk) − I(0)(x − nu′, y − nv′). (2.2)

Here, the position of the patch in frame n has been adjusted by the previous translation

estimate, which can be initialized to zero for the first iteration, when k = 0. According

to the classical brightness constancy assumption and a first-order approximation we can

approximate the second term as

I(0)(x − nu′, y − nv′) ≈ I(0)(x, y) − nu′I(0)
x (x, y) − nv′I(0)

y (x, y), (2.3)

where I
(0)
x (x, y) and I

(0)
y (x, y) represent the spatial derivatives of the reference frame,

estimated by finite central differences. Substituting into (2.2) yields

r = I(n)(x + nuk, y + nvk) − I(0)(x, y)
︸ ︷︷ ︸

It(uk,vk,n)

+nu′I(0)
x (x, y) + nv′I(0)

y (x, y)). (2.4)

Finally, the objective function at each iteration becomes

[

u′

v′

]

= arg min
N∑

n=−N

h(n)
∑

(x,y)∈P

w(x, y)
(

It(uk, vk, n) + nu′I(0)
x (x, y) + nv′I(0)

y (x, y))
)2

.

(2.5)

The corresponding linear least squares formulation is as follows (where Ix = I
(0)
x and

Iy = I
(0)
y for clarity):









n1Ix1
n1Iy1

n2Ix2
n2Iy2

...
...

nMIxM
nMIyM









M×2
︸ ︷︷ ︸

A

[

u′

v′

]

= −









It1(uk, vk, n)

It2(uk, vk, n)
...

ItM (uk, vk, n)









M×1
︸ ︷︷ ︸

b

(2.6)

AT A

[

u′

v′

]

= −AT b (2.7)



18 CHAPTER 2. LOCAL MOTION CUES AT OCCLUSIONS

[ ∑
n2I2

x

∑
n2IxIy

∑
n2IyIx

∑
n2I2

y

]

︸ ︷︷ ︸

G

[

u′

v′

]

= −
[ ∑

IxIt(uk, vk, n)
∑

IyIt(uk, vk, n)

]

, (2.8)

where the sums are taken over all M pixels within the patch, across all frames. (For

reduced clutter, we have omitted the weights, w(x, y) and h(n), in this formulation.) The

next translation estimate, (uk+1, vk+1), is computed from the previous estimate, combined

with the current update:

(uk+1, vk+1) = (uk, vk) + (u′, v′) (2.9)

As is well known, motion estimates near occlusion boundaries are prone to error [70],

but the estimates near such boundaries are a crucial component of our approach, rather

than outliers to be ignored or filtered out. Therefore, in addition to using the spatial and

temporal weighting functions w(x, y) and h(n), we use an M -estimator on the residual term,

r, in (2.1) — or (2.5) — rather than simply squaring it. This allows us to handle outliers

in the temporal difference (or error) term more robustly by preventing them from having

undue influence on the solution. The form of the M -estimator used in our work is

ρ(z) =
z2

z2 + σ2
. (2.10)

The resulting objective function,
[

u

v

]

= arg min
N∑

n=−N

h(n)
∑

(x,y)∈P

w(x, y)ρ(r), (2.11)

is of course non-linear. In practice, however, we can continue to find a solution via a linear

set of equations, as in (2.8), by employing the classical technique of Iteratively Re-weighted

Least Squares (IRLS) [17, 39, 77, 102], as follows. We found a minimum of the original

objective function in (2.1) by setting its derivative equal to zero, yielding our linear set of

equations corresponding to (2.8),

N∑

n=−N

h(n)
∑

(x,y)∈P

2 w(x, y)
∂r

∂u
r = 0, (2.12)

where u = [ u v ]T . We can do the same for our new robust objective function, (2.11):

N∑

n=−N

h(n)
∑

(x,y)∈P

w(x, y)
∂ρ

∂r

∂r

∂u
= 0. (2.13)

Trivially multiplying by 2r
2r (i.e. simply one) yields

N∑

n=−N

h(n)
∑

(x,y)∈P

w(x, y)

(
1

2r

∂ρ

∂r

)

︸ ︷︷ ︸

γ(x,y,n)

(
∂r

∂u
2r

)

= 0. (2.14)
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From (2.10), we see that

γ(x, y, n) =
1

2r

2rσ2

(σ2 + r2)2
=

σ2

(σ2 + r2)2
. (2.15)

So we are simply left with the same linear set of equations as in (2.12), but with a new

weighting term given by γ(x, y, n):

N∑

n=−N

h(n)
∑

(x,y)∈P

2 w(x, y) γ(x, y, n)
∂r

∂u
r = 0. (2.16)

Thus we can compute the update (u′, v′) from (uk, vk) according to (2.8) as before.

But we then refine that update within an additional loop, by iteratively adjusting the

weights γ(x, y, n) and re-solving (2.8), where the scale parameter, σ, of the m-estimator

is determined at each iteration according to a classical result from the field of robust

statistics [144, 198]:

σ = 1.4826 Median(r). (2.17)

Furthermore, we initially consider only I(0) and its two immediate neighbors. We then

gradually increase the temporal window, initializing with the previous translation estimate,

until finally considering all frames from −N to N . Since the true corresponding patches in

frames temporally distant from the reference frame could be quite far spatially from their

initialized locations, especially when there is significant motion, this process prevents frames

at extremes of the temporal window from pulling the solution to poor local minima of (2.1).

Note that the same effect could also be achieved by gradually increasing the bandwidth of

h(n). This approach alleviates the need to initially align the patches spatio-temporally to

the moving edge, as discussed above.

Finally, we place a prior on small motions, since the relative motions we seek are quite

subtle (see Section 3.3). In practice, this amounts to adding a small value, inversely

proportional to the expected variance of the motion components, to the diagonal of G

in (2.8):

[ ∑
n2I2

x + 1
2σ2

u

∑
n2IxIy

∑
n2IyIx

∑
n2I2

y + 1
2σ2

v

] [

u′

v′

]

= −
[ ∑

IxIt(uk, vk, n)
∑

IyIt(uk, vk, n)

]

, (2.18)

where we use σu = σv = 1 in this work.

We can now estimate the motions of the patches on either side of each edge, uL =

[ uL vL ]T and uR = [ uR vR ]T , using the IRLS approach outlined above. We will

discuss how these patch motions can be used in local occlusion detection in Chapter 3.
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2.2 Boundary Motion

A second type of motion cue available related to occlusions is the motion of the boundaries

themselves. One approach would be to attack this problem from a frame-to-frame matching

or tracking standpoint [162]. Edges could be detected in one frame and then matched

to detections in the next frame by solving a correspondence problem or using tracking

approaches like those used in feature tracking [175]. Unfortunately, tracking (which typically

relies on patches of local data) is notoriously difficult at edges and even more so at occlusion

boundaries. Tracking at any edge suffers from the so-called aperture problem, which limits

us to seeing only motion normal to the edge when considering only local information.

More global reasoning could help resolve resulting ambiguities, but not without substantial

computational machinery. If we try to group edges into more easily trackable chains [162]

— a hard, often brittle problem in its own right — we can suffer from an early commitment

problem.

x

y

x

y

x

t

x

t

tt

θθθθtθθθθt

Figure 2.2: A moving edge sweeps
out an oriented path in a temporal slice
of the video volume. The speed of the
edge is given by tan(θt).

At occlusion boundaries, the problem is even

worse. By definition, the data on either side of

the boundary belongs to different surfaces. Since

these two surfaces can move independently, they can

confound any tracking or matching approach which

assumes all the local data moves contiguously. Thus

it would be dangerous to employ local patches of

appearance data to estimate motion as described

above in order to estimate the boundary’s motion

by simple tracking. But without any appearance

data, simple line segments are not distinctive enough

to be matched reliably without again resorting to a

more global approach such as [98]. Instead, we need

boundary motion estimates derived independently

from the motion of neighboring patches.

On the other hand, consider treating the video

data as a spatio-temporal volume, rather than

processing individual frames separately. A moving

edge traces out an oriented path along the temporal

dimension of the data [1, 23, 68, 182], as depicted

for a simple vertical edge in Figure 2.2. The tangent

of the angle of this path, tan(θt), corresponds to its

speed. So applying an oriented edge detector to a

temporal slice of data would detect edges not at some spatial orientation in the image,
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Figure 2.3: A quadrature pair of spatio-temporal filters.

but at speeds corresponding to the orientation of the detector. Combining detectors for

spatial orientation and motion, it is possible to design a 3D spatio-temporal detector which

simultaneously detects edges at a given spatial orientation and a given speed of motion

normal to the edge. The spatial orientation and speed of such a detector will correspond

to the orientation of a spatio-temporal plane in the video volume, rather than an oriented

line in an single frame or temporal slice. Note also that this reasoning only requires a

consistently different appearance on either side of the edge as it moves, but it does not

make any assumptions about the consistency of motion on either side of that edge (which

still may or may not be an occlusion boundary).

Having cast the problem of motion estimation at boundaries into one of spatio-temporal

edge detection, we can rely on extensions of existing edge-detection techniques, of which

there are two main types: filtering-based and patch-based, with the former being the most

common.

2.2.1 Filtering-based Edge Detection

At their most basic level, filtering approaches model an edge as a step function of image

intensity. Therefore, edges can be detected by looking for positions in the image with high

derivative (or zero second derivative), e.g . using the response of the image to a derivative-

of-Gaussian filter. Other more complicated filters have been designed which can handle

somewhat more complex models of edges as well [12, 132]. By using steerable filters [57], it

is also possible to look for peak response with respect to spatial orientation. Furthermore, all

of these approaches can be made computationally efficient by exploiting the use of separable

filters.

For video data, 3D spatio-temporal filters, still based on Gaussian derivatives, were

designed in the classical work of [1, 68]. These filters have not only a spatial orientation but
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Simple Step Edge Filtering Response Texture Edge Filtering Response

Figure 2.4: While filtering-based methods respond well at simple step edges (left), they fail at
more complex texture edges (right). Here the mean intensity is exactly the same on either side
of the edge, so linear filtering completely fails to respond.

Original Color Image

(a)

Appearance Edges Found 

by Linear Filtering
(b)

Appearance Edges Found 

Using Patch-Based Detector 
(c)

Figure 2.5: A comparison of traditional filtering-based edge detection (b) to a patch-based
detector (c). Only the patch-based detector fires consistently on the edges which lie on occlusion
boundaries of the pole.

also a temporal one. An example quadrature pair of spatio-temporal filters can be found

in Figure 2.3. Thus, the combined spatio-temporal orientation of the maximum response of

such a filter indicates an edge’s orientation and speed simultaneously. Their potential for

efficient implementation via separability was recently reported [40].

Unfortunately, filtering performance is often poor at edges which do not conform to

the particular intensity profiles for which the filters were designed. An extreme case of this

problem is illustrated synthetically in Figure 2.4. In practice, this is a problem at boundaries

bordering textured or cluttered regions, as seen in Figure 2.5(b), where a filtering-based

method fails to consistently detect edges along the sides of the pole. Note that these edges

are also the ones providing the most evidence of occlusion since the texture and clutter —

i.e., the leaves of the bush behind the pole — can offer the indicative motion information.

Thus we need an edge detector which will perform well in such cases.
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2.2.2 Patch-based Edge Detection

Instead of using classical filtering, one can also take a more general, non-model-based view

of edges. In this case, the profile of the edge is not assumed to have any particular form.

Locally, an edge is instead defined to be a line segment which divides a patch of data into

halves which contain significantly different distributions of some property (e.g . brightness,

color, texture, etc.). By comparing histograms computed in each half of a circular patch,

such approaches have been shown to produce good results even on textured/cluttered

data [114, 116, 148, 186]. For example, consider the result in Figure 2.5(c), especially

comparing the performance along the pole’s boundaries versus the result in (b), obtained

using filtering.

Naturally, we would like this sort of improved performance for a spatio-temporal edge

detector as well, especially since the occlusion boundaries in which we are interested are

often observed at locations where one or both sides of the boundary are textured or

cluttered. First, we will describe the patch-based approach to edge detection in single

images in more detail before extending the method to video in the next section.

Consider a circular patch of pixels extracted from an image. The radius of this patch

is related to the scale of the edges we wish to detect. To evaluate the possibility that an

edge passes through the center of this patch at a particular orientation, we split the patch

in half along a line at that orientation. We estimate the distribution of the data — be it

raw intensity, color, textons, etc.— on either side of the proposed line by binning each half

of the patch into two histograms. The more these two histograms differ from one another,

the more likely an edge exists in this patch, at this orientation. By rotating the dividing

line about the patch center, we can evaluate edge strength for various orientations.

There exist several possible methods of measuring the difference between two distri-

butions. The simplest is to compute Euclidean distance between them by evaluating bin-

wise count differences. Quantization effects can make this approach a poor choice. Other

approaches include the Mallow’s or Earth Mover’s Distance (EMD) [101, 111] as used

by [148] or dynamic time warping (DTW) as used by [116], which each take the distance

between bins into account. While DTW can be made significantly more efficient than

EMD [116], both come at an unacceptable computational cost, especially once we transition

to video.

Here, we follow the approach suggested by [114] and use the χ2-Distance,

χ2(g, h) =
1

2

Nbins∑

i=1

(gi − hi)
2

gi + hi
(2.19)

between binned kernel density estimates g and h. This normalizes the difference between the

bins by their total count. Using a small Gaussian kernel when binning the data helps nearby

bins interact when differencing, thus avoiding quantization effects and approximating EMD
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Distribution Difference
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Texture Edge
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Figure 2.6: Schematic describing the detection of of an oriented texture edge by comparing
non-parametric distributions of intensity with a patch-based detector. Note that a detector
based on linear filtering fails to find this same edge, since it effectively compares only mean
intensity (see Figure 2.4).

to some degree. Note that instead of using a kernel each time we add a pixel to a histogram,

we can keep simple integer counts and smooth the result with that kernel to achieve

approximately the same result. Thus, we can replace the numerator and denominator

of (2.19) by smoothed versions of the histogram difference and sum, (kσ ∗ (g − h))2 and

kσ ∗ (g + h), respectively. Here, kσ is a Gaussian smoothing kernel with standard deviation

σ. The various parameters required, including number of bins, kernel bandwidth, etc., can

be learned from training data [114].

A diagram describing the operation of an oriented, patch-based edge detector is provided

in Figure 2.6. Here, the texture edge is successfully detected since this patch-based approach

employs histograms to retain higher-order, local statistical information at the edge. By

contrast, simple linear filtering approaches, such as the example in Figure 2.4, only use

the mean of the local data distributions, thereby throwing away the higher-order statistics

which actually indicate the presence of an edge in more complex cases.

Implemented näıvely, there is substantial redundancy in binning data from each half of

a circular patch into two histograms as we vary orientation. As shown in Figure 2.7 (a)-(b),

a substantial portion of each half covers the same data when we rotate the dividing line

from one orientation to the next. Furthermore, the slice which should be added to one half

is the same slice which must be removed from the other half, and vice versa. Therefore
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Figure 2.7: Circular patch used for patch-based edge detection. (a) The left and right halves
of the patch at one orientation. (b) Only a fraction of the pixels in the patch will change halves
as we rotate to the next orientation. (c) “Pie slices” for an 8-orientation detector.

we can first divide the patch into a “pie” of slices, as in (c), and bin the data in each slice

individually. Then we can sum the histograms of appropriate slices for each half, swapping

slices between halves as we rotate the dividing line [114].

2.2.3 Extension to Video

The use of 2D patches in images has become common practice for object recognition tasks

([3, 46, 106, 176] to name a few), but recently several researchers have begun to explore

the utility of spatio-temporal, volumetric patches extracted from video data, mostly in

the context of event/action detection and recognition [88, 94, 156]. In this section we

describe the use of spatio-temporal patches for the low-level vision task of simultaneously

detecting edges and their motion. Our approach extends to the spatio-temporal domain

ideas from existing spatial (2D) patch-based edge detectors described in the previous section,

which offer improved performance in textured/cluttered regions versus classical filtering

techniques. Since occlusion is most likely visible in such regions of an image, we need an

edge detection method which works well in such cases.

Patch-Based, Speed-Only Detector

Assume we first detect edges spatially using the circular patch-based method described

above. To then determine the speed of the detected (oriented) edges, we can use a cylindrical

detector, analogous to the spatial, circular one, but rotated into the temporal dimension

and aligned to the edge’s orientation. By dividing the cylinder into halves with a plane, we

can detect the speed of the edge’s motion in the direction normal to its orientation. (As

is always the case in local edge reasoning, we suffer from the aperture problem, limiting

us to normal speed estimates as opposed to 2D velocity vectors.) In Figure 2.8 we see a
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Figure 2.8: Three patch-based edge detectors. From left to right, we have a simple oriented
edge detector for a single frame, a cylindrical edge-speed detector for video data, and a spherical
detector capable of detecting spatial orientation and normal speed simultaneously.

standard patch-based, oriented spatial edge detector for use in a single frame to the left

and the analogous cylindrical, edge speed detector in the middle.

Simultaneous Speed-Orientation Detector

In the previous approach, we detected orientation first with a spatial, circular detector,

and then used a temporal, cylindrical detector to estimate speed. To detect the two

simultaneously, we can use a spherical spatio-temporal patch of pixels, as shown at the right

of Figure 2.8.2 We will split the patch into two hemispheres using an oriented plane. The

intersection of this plane with the image plane is a line which corresponds to the proposed

edge’s spatial orientation, as in existing 2D patch-based oriented detectors. The projection

of the dividing plane’s normal onto a second plane which is normal to the orientation line

corresponds to the motion of the proposed edge in the direction normal to its orientation.

This is illustrated in Figure 2.9. Thus we have two degrees of freedom to specify the dividing

plane for the sphere: the spatial orientation of the edge followed by the normal motion of

the edge with respect to that orientation.

This method samples spatial edge orientations, θs, directly. The normal motion speed

can be computed from dividing plane’s temporal rotation angle about this orientation axis

according to tan(θt). (The same is also true for the cylindrical detector above.)

We note that there are two special cases of dividing planes. First, planes which are

orthogonal to the image (xy-plane) represent a non-moving edge at some spatial orientation.

2The radius of our patch in the temporal dimension is not restricted to be the same as that used for the
spatial dimensions (nor are the units of those dimensions even comparable). Thus, we may in fact have an
ellipsoidal patch of data rather than sphere. But we will consider a spherical volume for simplicity in the
discussion, without loss of generality.
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Figure 2.9: Our volumetric patch can be divided into histogram sections and oriented to
produce a detector for a given set of spatial orientations and normal motions. See text for
details.

Such planes are a direct extension of simple oriented-edge detection to video and are

essentially using the extra temporal information as additional support for determining

oriented strength while combating imaging noise. Second, planes which are parallel to

the image plane correspond to an edge moving “infinitely” fast through the local spatio-

temporal volume. These planes have completely ambiguous spatial orientation.

Once again, computing the histograms of data in each hemisphere for each plane

orientation would involve significant redundancy and inefficiency (especially now that we

are working with volumetric data). Unfortunately, directly extending the “pie-slice” idea

from the circular or cylindrical cases to this new spherical detector is non-trivial. It is not

a simple matter to divide the sphere into a regular set of sub-volumes which can easily be

combined to form the set of hemispheres we require. It may be possible to use an icosahedron

to uniformly sample normals from the unit sphere for our dividing planes [13] (rather than

specifying a set of spatial orientations and normal motions). Then a tessellation of the

sphere’s volume could potentially supply the solid angle sub-volumes analogous to our 2D

pie slices. These are themselves difficult problems, though their solutions could certainly

be pre-computed.

We have instead chosen a simpler approach. We choose a vertical edge as a canonical,

initial orientation. For zero motion, we divide our sphere in half along the y-t plane to

detect this edge. Rotating this dividing plane by θt about the y-axis will sample various

(horizontal) motions of this vertically-oriented edge. Here we can use a direct extension of

the 2D slices into 3D: we divide the spherical patch into sections like those of an orange,

oriented along this vertical edge, as in the left diagram of Figure 2.9. Combinations and

swaps of these sections as were performed with the pie slices in the 2D case can be used to
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construct any hemisphere, allowing us to sample motions for this spatial orientation.

For the next spatial orientation, we rotate this set of volume sections by θs about the

t-axis, as in the middle of Figure 2.9. This results in a new set of sections that can be used

to determine the motion strength for this new spatial orientation. We can pre-compute

which voxels change section membership due to the spatial rotation by θs, allowing us to

efficiently update each section from one spatial orientation to the next. As long as we always

evaluate the set of orientations in the same order, as is naturally the case in practice, we

can save substantial redundant binning — particularly as the radius of the sphere increases.

2.2.4 Experiments

In this section, we compare our results for determining instantaneous edge orientation and

motion using histograms built over a spatio-temporal patch to results using a classical

filtering approach.3 For the filtering results we use a steerable, oriented edge filter which

can detect composite intensity profiles [57, 132], but extended to a 3D spatio-temporal

version [1, 68]. Its form is the sum of squared responses of a quadrature pair, where the

even filter is the second derivative of the Gaussian (with the derivative taken across the

putative moving edge), and the odd filter is its Hilbert transform, as shown in Figure 2.3.

The filter kernel is set to the same size as the spatio-temporal patch used for our method,

and the standard deviations are chosen to provide ±3σ of support along each axis.

We also suppress non-local maxima of edge strength within the image (with respect

to the edge normal) and then fit parabolas to edge strengths along the edge normal to

determine the edge locations with sub-pixel precision [132]. Finally, we use a hysteresis

threshold to remove noisy detections. We scale the edge strengths such that the maximum

is one and use the same thresholds for either approach.

In the experiments that follow, we let ns = nt = 8. This corresponds to spatial

orientations linearly sampled every 22.5◦ (as with other oriented edge detectors, such

as [114]). Because the edge speed corresponds to tan(θt), the speeds are sampled non-

linearly between 0 and ±2.4 pixels/frame (and also including the “infinite” motion case,

as discussed earlier). Interpolation is used both to achieve sub-pixel edge localization and

sub-sample orientation/speed estimates. The temporal radius for the examples we consider

here is three to five frames. Note that the use of interpolation allows us to recover speeds

greater than 2.4 as well.

Synthetic and Semi-Synthetic Data: Due to the difficulty of obtaining ground truth

3A similar comparison can be achieved by simply taking the mean of the histograms in place of linear
filtering. Here, however, we show results compared to the more popular filtering approach (which also
effectively just takes the mean of the data) in order to emphasize the shortcomings of this commonly-used
technique in our domain.
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motion information for arbitrary video data, we will first compare results on synthetic data

where ground truth is known. Note that there are three quantities being estimated for each

edge: strength, orientation, and normal speed. Here, having “ground truth” means that we

know the exact motion in the image and thus the normal speed at the edges. The concept

of edge strength is qualitative and thus we do not have a means (nor need) for comparing to

any ground truth. For orientation, we know ground truth of simple horizontal and vertical

edges of course, but pixel-wise ground truth orientation for arbitrary curves is more difficult

to label — though fairly easy to evaluate qualitatively.

Figure 2.10: Representative frames for the
synthetic and semi-synthetic sequences.

The first sequence, whose middle frame

is shown on the left side of Figure 2.10,

consists of eight frames depicting a textured

square translating up and to the right in

front of a differently-textured background.

The square moves exactly 2 pixels along

each axis between every pair of frames.

Note that this speed was intentionally

chosen not to be in the set of sampled

speeds. In Figure 2.11, edge strength

maps are shown (after non-local maxima

suppression and hysteresis thresholding) for

filtering (top) and our method (bottom).

Clearly, only our approach can find the

square’s boundaries against the textured

background. In the center we show corresponding maps of absolute normal speed, where

we see that only those edges from the square are found to be moving. On the right we

provide a close-up view of the corner of the square displaying oriented edges and normal

motion vectors overlaid on a lightened version of the original data. (The color of the edges

corresponds to their strength: magenta is high, cyan is low.)

We see that both approaches respond to some of the horizontal and vertical structure

of the background texture, but the filtering approach totally misses the edges of the square

itself, which are arguably more useful in this sequence. Both methods correctly label the

background edges as not moving and the orientations are consistent. Our method, however,

also has a strong response at the square’s edges and estimates their motion and orientation

quite well. Note that this is due to the higher-order statistical information captured by the

histograms; there is no explicit preprocessing to handle the texture (e.g . using textons).

For the square’s edges, our method reports a mean normal speed of 1.8 (versus the correct

value of 2.0) with a standard deviation of 0.2. The only comparison we can make for the

filtering approach is for the few texture edges it found on the interior of the square. Since
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Figure 2.11: Results for the synthetic data. For standard filtering (top) and the proposed
method (bottom), the columns depict non-local maxima suppressed edge strength (left), speed
of edge motion normal to the edge (center), and a closeup view of oriented edges, color-coded
by edge strength, with normal motion vectors for the region of the image indicated by the red
dashed rectangle (right). Only our approach finds and estimates correct normal motion for the
square’s boundaries.

they are approximately vertical, their normal speed should also be near 2.0. The filtering

approach reports a mean speed of 2.1 with standard deviation 0.16 for those edges.

The second sequence, a frame of which is provided on the right side of Figure 2.10, is

a real image (obtained from [114]) which we synthetically translated to the right one pixel

per frame for six frames, e.g . somewhat simulating camera motion. Its results, are shown in

Figure 2.12. For the face and hair, both approaches do a good job detecting edges, but our

approach better estimates the motion, particularly on the bridge of the nose. (Recall that

we are only estimating normal motion of the edges, thus the motion vectors should not all

simply point to the right nor be the same length. For example, a horizontally-oriented edge

should have zero normal motion since the sequence moves entirely tangential to that edge.)

We also see that the polka-dots of the woman’s dress prevent the filtering approach from

performing well at all; edges of her body and arms are missed almost completely. For our

histogram result, notice the strong edges and consistent motion along the dress and arms.

If we assume the orientation of the edge detections are correct — and they qualitatively

appear to be fairly accurate — we do know what the normal speed at each edge should be
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Figure 2.12: Results for the semi-synthetic data. The columns depict the edge strength and
two close-up views of color-coded oriented edges and their normal motion vectors, overlaid on
the data. The filtering approach (top) makes motion errors on the face and cannot handle the
edges between the polka-dotted dress and smooth regions. Using our method (bottom) finds
those edges, as well as ones from the face, and correctly estimates their normal motion, while
ignoring spurious texture edges from the dots.
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Figure 2.13: Representative frames for the real image sequences.

given the known image translation. Considering only the area around the woman’s hair,

for which strong edges are detected by each method, our mean absolute error in normal

speed is 0.10 pixels/frame, with a standard deviation of 0.08. For the same region, the

filtering approach has an average error of 0.23 with a standard deviation of 0.41, making its

estimation of normal speed less precise and less accurate than using our proposed patch-

based method. More importantly, however, the patch-based approach can detect (and thus

meaningfully estimate the motion of) many more useful edges in the scene, i.e. those around

the arms and edges of the dress. Note that the speed error statistics for all edges in the

scene found using our method do not differ significantly from those reported for the region

around the hair. The same cannot be said for the filtering result: the errors are clearly

much worse on the woman’s dress and body.

Real Data: Results for a real video sequence are provided in Figure 2.14. This sequence

depicts a hand translating from right to left over a keyboard, as seen by a handheld, nearly-

stationary camera (see Figure 2.13 for a representative frame). We expect to see relatively

large normal motion for those edges perpendicular to the hand’s motion and small motion

vectors for the keyboard and background, due only to slight camera movements. For the

simple, high contrast edges, either method performs fairly well. But the histograms used

by our method are better able to distinguish the boundaries of the fingers seen against

the clutter of the keys. This type of complex edge created by an approximately uniform

foreground against cluttered background is not modeled well by the filtering approach. Also

note that clean motion boundaries of this type could be quite useful for a layered motion

segmentation since feature-based approaches will likely fail on such a uniform foreground

object.

Note that improving the filtering approach’s results is not simply a matter of choosing a

better threshold on edge strength since approximately the same strength is reported for the

boundaries of the fingers as the clutter. In fact, we consistently found in all our experiments
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Figure 2.14: Results for the real sequence from the “hand” sequence of Figure 2.13. Our
approach (bottom) finds stronger, more distinguishable edges for the fingers in front of the
clutter of the keys, and its normal speed estimates are more consistent with the motion observed
in the sequence, particularly for the background edges.

that our histogram-based method was much less sensitive to choice of threshold than the

filtering technique. It also appears that using filtering over-estimates the speed of the hand

slightly. For the edges detected on the keys, the orientations and speeds are completely

wrong, whereas our approach’s results are much more reasonable, in spite of the clutter.

Finally, significantly better results were also not possible simply by selecting a better patch

size (i.e. scale) for the filtering. Performance in some regions improved at the expense of

others, depending on the chosen scale. Once again, the histogram method also appeared to

be more stable with respect to selection of patch size, though a multi-scale detector could

also offer improvement.

The second real sequence is shown on the right of Figure 2.13. It depicts a concrete

bench in front of ivy clutter. In this sequence, the camera translates approximately in the

direction of the long axis of the bench, while rotating slightly around the bench’s center.

The results, shown in Figure 2.15, again demonstrate our method’s ability to detect edges

bordered by a cluttered texture. For example, we detect a strong, consistent edge along the

top side of the bench, while filtering performs very poorly there. We also see fewer bogus

motion estimates by our method, e.g . around the markings on the surface of the bench and

in the clutter. For the long edges of the bench, our method correctly estimates little to no

normal motion (recall the camera translates approximately along these edges). At the close

end of the bench, the correct normal motion is also shown. Even in the clutter, the motion
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Figure 2.15: Results for the real sequence from the “bench” sequence in Figure 2.13. Our
approach (bottom) finds the boundaries of the bench much more consistently despite the clutter
of the ivy, and the normal speed vectors are consistent with the camera motion. The filtering
approach proposes bogus motion estimates on the surface of the bench and in the background
clutter.

estimates are consistent with the actual camera motion. Some of the motion estimates by

the filtering approach do appear to be reasonable, for example those along the underside of

the bench, where a strong edge is resolved. But in general, the result using our method is

far superior.

2.3 Discussion

The relatively poor performance of energy-based linear filtering for the boundary-motion

experiments in the previous section is consistent with the findings of Barron et al . [14]. Their

results also suggest that phase-based approaches to optical flow [52] may perform better,

though they do not focus explicitly on determining the normal motion of detected edges but

rather the extraction of dense flow fields. An exhaustive comparison and characterization of

optical flow techniques (either for estimation of patch motion as in Section 2.1 or boundary

motion as in Section 2.2) is beyond the scope of this thesis. For more in-depth analysis, work

such as [14] or [53] may be consulted. Instead, we have presented here a novel extension

of current spatial edge detection techniques to the domain of boundary-motion estimation,

and we have explained the particular method for multi-frame patch motion estimation we

use. In the next two chapters, we will use each of these motion estimates in reasoning about

occlusion boundaries, which is the primary focus of this document.



Chapter 3

Local Occlusion Detection

In the previous chapter we described the local motion cues which arise due to the depth

discontinuity present at occlusion boundaries and provided methods for extracting those

cues. In particular, we expect to see some form of motion inconsistency in the vicinity of

an occlusion boundary. For example, the foreground and background patches may move

differently from each other, reflecting the parallax due to the relative distance to the two

surfaces or the independent trajectories of the objects to which they belong. In other

cases we may witness an inconsistency between the motion of the boundary itself and the

background.

In some situations, the inconsistency can be fairly complex. In the case of a rotating

cylindrical object, such as a soda can (as in [20]), the foreground side of the boundary

apparently “disappears” as the can rotates (rather than moving according to some simple

motion model), while the boundary and the background remain stationary.1 In this case,

our translational motion model from Section 2.1 will not accurately capture the true motion

of the foreground patch. Still, the inconsistency between the foreground and background

motion estimates — even if they are not individually correct — offers evidence of occlusion

here. Thus we emphasize the subtle point that accurate motion estimation is not our

goal. Instead we seek only to identify relative motion inconsistencies. In other words,

relative motion information can provide a strong discriminative cue for occlusion even if

the individual motion estimates themselves do not adhere to a generative model capable of

completely explaining the observed image sequence.

In Section 3.1, we will explore the detection of occlusion boundaries based on such local

relative motion cues.

Most occlusion boundaries are also visible as appearance edges, however, exhibiting

changes in color, brightness, texture, etc., in addition to relative motion cues. But many

1For in-depth analysis on the motion behavior of boundaries as objects rotate or viewpoint changes,
see [95, 150, 153, 178].
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Original Color Image

(a)

Appearance Edges Found 
by Linear Filtering

(b)

Appearance Edges Found 
Using  Pb

(c)

Edges Classified as 
Occlusion Boundaries

(d)

Figure 3.1: Only the patch-based edge detector (c) fires consistently on the vertical occlusion
boundaries of the pole, giving subsequent classification (d) a chance of succeeding.

appearance edges arise solely due to surface markings or illumination effects and not

occlusion boundaries. In addition, accurate local motion estimates may be difficult to obtain

in many cases. Therefore neither motion nor appearance alone is likely to be sufficient for

the detection of occlusion boundaries. In Section 3.2, we will combine multiple appearance

cues, captured by state-of-the-art edge detectors, with local motion cues to show that

together these distinct sources of information produce superior detection results to using

either cue alone.

In particular, our goal is to determine the subset of initially-detected appearance edges

that also correspond to occlusion boundaries, thereby framing our problem as one of

classification. Thus we will first find “all” appearance edges with non-trivial response to a

standard edge detection approach. We will then employ local motion cues (in Section 3.1)

or local motion and appearance cues (Section 3.2) to classify those initial detections as

occlusion boundaries or not. In Figure 3.1, we see again in (a) the same scene from the

previous chapter, comparing the edges detected by filtering (b) to those found using a patch-

based approach (c). In addition, we see an example of the type of classification we seek

in (d), which was obtained by classifying the edges in (c) as occlusion boundaries. Such a

result would be impossible to achieve using the filtering responses in (b), where edges were

not consistently detected along the vertical boundaries of the pole.

3.1 Detection from Motion Only

Before moving to combined motion-plus-appearance classification in Section 3.2, we will first

explore methods of detecting occlusion boundaries based solely on local motion information,

i.e. using local spatio-temporal derivatives. For each edge identified in a scene, we would

like to define a motion-based score which will be near zero for edges at which no occlusion

is visible and one for edges where there is clear evidence of occlusion [168]. From two

patches, PL and PR, aligned to either side of the edge, we estimate motion vectors uL =

[ uL vL ]T and uR = [ uR vR ]T , as described in Chapter 2, and compute their difference
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ud = uL − uR.

Increasing Confidence 
in Motion Estimate

Increasing Patch Texture

Figure 3.2: As horizontal and verti-
cal texture within a patch increases,
so too does our confidence in the
estimated motion.

While one can always find a solution to the least

squares formulation for motion estimation in Equation

(2.8), our “confidence” in the resulting estimated

vector, (u, v), depends on the presence of strong spatial

gradients within the patch. Loosely speaking, in a

patch taken from a nearly-uniform region of the image,

the uncertainty on the estimated motion will be much

higher than the uncertainty for a patch containing

strong gradient information (see Figure 3.2).

It is important that we take this uncertainty

into account when comparing motion estimates from

different patches [14, 161], especially since it is common

in practice that one side of an occlusion boundary

is nearly uniform, particularly for indoor scenes. In

solving for (u, v) according to (2.8), the Hessian matrix G,

G =

[ ∑
I2
x

∑
IxIy

∑
IyIx

∑
I2
y

]

, (3.1)

defines the shape of the solution surface around the particular local minimum of our least

squares formulation in (2.1). Considered in a probabilistic sense, this local minimum also

corresponds to the Maximum Likelihood solution for (u, v) under an assumption that the

data likelihood, Pr(It|u, v), can be approximated by a Gaussian. When a prior is added,

as in (2.18), we find the Maximum a Posteriori (MAP) solution. In either case, G specifies

the covariance of that Gaussian distribution. Thus we can use this matrix to capture the

uncertainty in our solution: when G indicates a flat solution surface around our estimated

minimum or, equivalently, a Gaussian with large covariance, then we are less certain about

the precise location of that minimum than if the surface or Gaussian is strongly peaked. It is

worth nothing that the Gaussian assumption does not always hold [161]. In our experience,

though, it is a good enough approximation to be of practical utility in a large number of

cases. In addition, resorting to local sampling techniques in order to obtain better estimates

of the true underlying distribution of Pr(It|u, v) can be computationally prohibitive [20].

Since we have two G matrices, one from each side of the patch, we will consider two

motion estimates, uL and uR, to be consistent if their difference is small according to either

side’s Gaussian model. Thus, we will take the maximum of the two consistency scores to

accomplish this logical OR operation, as will be seen below. A matrix of spatio-temporal

derivatives was also used by [156] to evaluate motion inconsistencies directly, as will be

discussed — and to which we will compare — in Section 3.1.1.
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Figure 3.3: In the leftmost example, we are equally confident in the motion estimates on either
side of the vertical edge because of the strong horizontal and vertical texture in each patch. In
the middle and rightmost examples, however, we are less confident in the vertical motion on the
left side of the edge. Taking these covariances into account via a Mahalanobis distance thus
influences the occlusion scoring.

To make this discussion more concrete, consider the patch of data taken around a

vertically-oriented edge shown in the left half of Figure 3.3. Assume we have used Eq. (2.8)

to estimate the indicated motions on either side of the edge. In the left example, we are

fairly confident in both motion estimated, as indicated by the covariance ellipses (which

correspond to the Gaussian distribution indicated by G). Thus the distance between the

left and right motions in (u, v) space (corresponding to the degree of occlusion) is similar

whether or not we take the uncertainty into account.

For the middle example, however, we cannot be very sure of the estimated vertical

motion on the left side of the edge due to the lack of significant horizontal texture

there. Without taking the covariance into account, the difference in motion appears to

be significant, which would indicate occlusion. But using G to normalize the distance

computation (i.e. computing a Mahalanobis distance) allows us to be more “forgiving”

along the vertical direction since we are less sure about the left side’s motion in that
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direction. Thus, this edge will receive a lower (albeit non-zero) occlusion score, as desired.

In the rightmost example, we see the same data but with different estimated motion

for the right patch. In this case, we are still fairly confident that there is no horizontal

motion in the left half, but we are also confident that the right half did undergo some

horizontal translation. In this case, the two points’ motions plotted in (u, v) space are

roughly the same (simple Euclidean) distance apart as they were for the previous example,

so without taking covariances into account, either example would have approximately the

same degree of motion inconsistency (and thus the same occlusion score). But because the

variance on the horizontal component of our motion estimate in the left patch is small,

we will trust the disagreement in horizontal motions between the two sides and give the

correct high occlusion score for this example. Note that this is true despite the fact that

the difference in the horizontal components is actually smaller than the difference in the

vertical components. These examples demonstrate that the covariance estimates help us

utilize the most informative motion component when determining occlusion.

We can then compute the consistency of the left and right motion vectors according

to each patch’s spatial information, encoded in GR and GL. As discussed, we will keep

the maximum of the the two scores. Finally, to convert to a measure of inconsistency, and

thus a measure of occlusion, we will subtract the result from one. The following equation

captures this process:

score = 1 − max

{

exp

(

−uT
d GLud

2

)

, exp

(

−uT
d GRud

2

)}

(3.2)

We can use this equation to score each edge as also being an occlusion boundary. Results

using this approach are provided in the next section.

3.1.1 Motion-Only Experiments

Given one of our video clips, we can first find edge pixels and then estimate whether they

exhibit occlusion within the image sequence. It is important to note that this approach is

purely local and can therefore only reason about occlusion at an edge if visible occlusion

actually occurs at that location within the observation’s timespan. We may observe edges

which lie in front of a uniform background for the duration of the video clip. These edges

will not exhibit any motion cues of occlusion locally, and thus they will not be detected

as occlusion boundaries by this method. The mid-level reasoning necessary to handle such

situations is addressed in Chapter 4.

We initially pre-process the data to remove dominant motion. This prevents large

observed motion due to camera movement from overshadowing the relative motion between

surfaces (i.e. the parallax), which provides the evidence of occlusion and is usually quite

subtle. In addition, stabilizing the motion makes the assumption of locally constant velocity
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Figure 3.4: The same spatio-temporal patch of data around an occlusion boundary, shown
before (left) and after (right) stabilization. The yellow line indicates the boundary’s path through
time, where the reference frame is at the center of the patch.

more realistic as more complex motions from camera shake, for example, are effectively

filtered out. This step simply consists of a full-frame, translational registration of each frame

in the sequence to the reference frame. See for example Figure 3.4, where we compare a

spatio-temporal patch of data around an occlusion boundary before and after stabilization.

First we compute oriented edge strength at each spatial location using a patch-based

edge detector as described in the Section 2.2.2. Non-local maxima of edge strength are

suppressed [132], and the result is hysteresis thresholded. Left and right patches of data

are then extracted on either side of each edge, aligned to its spatial orientation. The

translational motion vectors are estimated for each patch as described. Finally, the measure

of occlusion given by (3.2) is computed.

Shechtman and Irani have recently proposed an efficient method for computing motion

(in)consistency from two spatio-temporal intensity patches without explicitly estimating

motion itself [156]. Their work, however, was in the context of behavior recognition. We

compare their rank-based score to our explicit motion comparison score in the results that

follow. Each score is computed using the same initial edge detections and extracted patches.

For each occlusion scoring method (i.e. Equation 3.2 and the rank-based score from [156]),

we vary the threshold on the score and count true and false positives. We can then generate

and compare plots of pixelwise precision versus recall for each example using both scoring

methods. (For these results, we dilate the ground truth boundary labels by one pixel

when comparing to the score images in order to mitigate difficulties in precisely localizing

boundaries when labeling images by hand.) Here recall refers to the number of pixels labeled

as occlusion boundaries out of the total number of occlusion boundary pixels in the ground

truth image that also received non-zero edge strength: we wish to compare the occlusion

scoring methods rather than evaluating the edge detector. The precision is the number of

those pixels that were in fact occlusion boundaries.

Figure 3.5 shows the middle frame of the same 8-frame synthetic sequence from
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Middle Frame of Sequence Edge Strength Our Occlusion Score Rank-Based Score

Figure 3.5: Results for a 6-frame synthetic sequence depicting a square moving 2 pixels up
and 2 pixels to the right in each frame. Ground truth occlusion boundaries are displayed in red.
For edge strengths and scores in this figure and in Figure 3.6, darker color corresponds to larger
values.

Section 2.2.4, depicting a square translating up and right in front of a textured background.

The hand-labeled ground truth occlusion boundaries are overlaid in red, and the edge

strength is also provided. Using our method, we see that the boundaries of the square —

and not the background’s texture edges — correctly receive a high occlusion score. Using

the rank-based score provides visually similar discrimination between edges and occlusion

boundaries. When we compare the scores’ precision-recall plots in Figure 3.7 (a), we see

that ours is slightly superior in the high-recall regime.

The results for three real sequences from a handheld video camera, each 8-10 frames

in length, are provided in Figure 3.6. Each shows qualitatively that we are generally

able to distinguish occlusion boundaries from texture edges using the described approach.

Furthermore, we see in Figure 3.7 (b)-(d) significantly better performance using our scoring

approach, regardless of choice of threshold.

3.2 Combining Appearance and Motion

Though the initial results above for occlusion boundary detection using motion only are

promising, we found that performance was not uniform across a wide variety of scenes.

While motion is a strong cue for occlusion, we are still ignoring potentially useful information

in the appearance cues present at boundaries as well. Furthermore, the hand-designed

“score” function is not easily-adaptable to incorporate other cues directly. So instead

of continuing with this type of scoring function, we will now turn to a more principled

approach based on learning a classifier for each edge pixel, given labeled training data.

This classifier should label each edge pixel as occlusion boundary or not, using a combined

set of appearance and motion cues as input.
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Middle Frame of Sequence Edge Strength Our Occlusion Score Rank-Based Score

Figure 3.6: For handheld video sequences observing a bench in front of ivy (top) and a tree
trunk (middle), and a set of objects on a textured couch (bottom), we see a representative frame
of data with ground truth occlusion boundaries labeled in red, the detected edge strengths, and
the two different occlusion scores, from left to right respectively.

3.2.1 Motion Cues

For our motion cue, we will continue to use the difference in estimated translational motion

between the left and right patches, ud = uL − uR. In the results below we will simply use

the Euclidean norm of the ud vector to capture the relative motion between the surfaces

on either side of a potential occlusion boundary. This distance, d, will serve as one of the

cues to the classifier desribed in Section 3.2.3 below.

In these experiments with a learned local classifier, this Euclidean metric proved to be

just as useful as a Mahalanobis distance or the score function in (3.2). This is likely due to

the difficulty of obtaining in practice good estimates of the necessary covariance information

on the motion components, without resorting to expensive sampling techniques [20]. Using

the Hessian, G, from (2.8) directly as described above is a start, but appears not to be

sufficient. We will, however, return to the idea of incorporating motion uncertainty into

our classifiers in Chapter 4.
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Figure 3.7: Precision vs. Recall plots for each example, showing significant performance gain
when using our motion-estimation score over the rank-based motion inconsistency measure
from [156].

3.2.2 Appearance Cues

As presented above, edge detectors generally assign a “strength” to each pixel, which

captures the degree to which an edge exists there, based on the contribution of various

perceptual cues such as local contrast in brightness, color, or texture. These are exactly

the sort of appearance cues we would like to incorporate into our classifier.

There has been significant progress recently in combining these sorts of cues, resulting

in improved edge detection. As described in the previous chapter, this progress has been

achieved in part by moving beyond classical model-based views of edge detection, which

rely on linear filtering [30, 132], and instead using non-parametric comparisons of statistical

distributions of cues within local patch of data [90, 114, 116, 148, 186]. Furthermore,

multiple cues can be employed by applying this type of patch-based detector to each cue

and then using data-driven, machine learning methods to combine the various detector

responses into a single edge strength [90, 114].

Thus, we have chosen to use the popular Berkeley “Pb” detector for our experi-

ments [114], which offers a publicly available implementation and already incorporates three

appearance cues: brightness contrast, L*a*b* color contrast, and texture contrast (using

comparisons of texton distributions [81, 199]). As an added benefit, the Pb detector’s
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default parameters were learned on a large set of human-segmented data [113], allowing us

to avoid tedious parameter tuning. The resulting edge strength, e, captures a variety of

appearance cues in a single measurement and will serve as the second cue for our classifier

below.

3.2.3 Learned Classifier
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Figure 3.8: The empirical distribution
of relative motions ud at occlusion
boundaries reveals the subtlety of the
relative motion cue we employ in our
classifier.

Our goal is to label edges suggested by the patch-

based Pb detector as occlusion boundaries or not.

We do so by using the posterior probability of

the existence of an occlusion boundary given our

features, Pr(B|f), where f may represent the

motion difference d, the edge strength e, or both

{d, e}. Given the substantial, scene-dependent

variation in the fraction of appearance edges that

are also occlusion boundaries, we assume a uniform

prior on Pr(B) and use Bayes’ Rule to estimate this

posterior (note that we found estimating a prior

from the training data to be unhelpful):

Pr(B|f) =
p(f |B)

p(f |B) + p(f |¬B)
. (3.3)

Given training data, we can sample our edge strength and motion difference features to

estimate the necessary data likelihoods, p(f |B) and p(f |¬B), as described in the next

section. Thresholding this ratio yields the classifier used for our experiments. In the future,

it may be possible to achieve better performance by learning adaptive priors for a given

image sequence.

3.3 Experiments

For our experiments, we first extract our edge strength feature by applying the Berkeley

Pb code to the reference frame of each sequence, using all default parameters (i.e. those

learned from the BSDS training data [113]). Then, as described in Section 3.1, we align

small patches (r = 12 pixels) on either side of each edge according to the edges’ detected

orientations (see Figure 2.1). Using (2.8), we estimate the translational motion of each

patch separately and compute the Euclidean distance between the two estimates. We use

a temporal window radius of N = 3 frames and spatial and temporal weighting function

bandwidths of σh = N and σw = r, respectively. As shown by the distribution in Figure 3.8,

most relative motions ud at occlusion boundaries are quite small, with a mean of only 0.14
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pixels/frame. This supports our claim that the motion cue available for our task is quite

subtle.

3.3.1 Training

We randomly select half of our dataset to use for training. We first determine the correct

label for all detected edge pixels in an image by matching them to occlusion boundary

pixels from the ground truth data. Because of localization inaccuracies (in labeling and

detection), we use an approach similar in spirit to the one outlined in Appendix B of [114],

which seeks to find a one-to-one correspondence between detected edge pixels and nearby

hand-labeled boundary pixels. A given training set consists of 15 scenes, yielding a total of

approximately 80, 000 individual examples of edge pixels for training. Unfortunately, these

examples are taken from contiguous edges and therefore the patches used in generating

their appearance and motion cues overlap significantly. Thus they are highly dependent

samples, making it inappropriate to use them all for training.

To alleviate this problem somewhat, we consider only a random subset of the edges

available in the training set. This subset is selected such that no two samples which come

from the same image could have utilized overlapping patches of data in estimating motion

or computing Pb. Thus, for these experiments, we sample edges that are at least r = 12

pixels apart. This is depicted in Figure 3.9. The resulting subset contains approximately

6000 examples, which we use for the training described below. (For testing in Section 3.3.2,

we classify all edges detected in a given image.)

Using the edge strength and motion features for all (sub-sampled) edge pixels cor-

responding to ground truth occlusion boundaries, we construct kernel density estimates

of each cue likelihood independently, p(e|B) and p(d|B), as well as their joint likelihood,

p(e, d|B). Similarly, we use any detected edges that are not occlusion boundaries as negative

examples to learn p(e|¬B), p(d|¬B), and p(e, d|¬B). We use a Gaussian kernel with σ = 1

Figure 3.9: Since the patches of data for cue extraction overlap for adjacent edge pixels along
a contour (left), we sub-sample when training our classifier (right).
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Figure 3.10: Independent distributions and ratio scores for our two cues.

bin, and ±3σ support. For each cue, we use 50 bins (and thus the joint likelihood estimate

contains 50 × 50 bins). In our experience, using a kernel does offer improved results,

despite the fairly coarse binning, particularly in terms of generalization from training to

test data. To emphasize the importance of distinguishing the very small motion differences

(see Figure 3.8), the bins used for estimating the likelihood of the motion-difference cue are

logarithmically spaced between 10−3 and 102 (where very large motion is indicative of noise

or lack of texture). The bins for edge strength are linearly spaced between 0 and 1.

The resulting independent cue likelihoods are shown in Figure 3.10. As evidenced by the

separation of the distributions for each class, these cues do contain some distinct information

for our classification task. The distributions also make intuitive sense: higher edge strength

and larger motion differences more commonly correspond to occlusion boundaries. It is

worth noting that the motion difference cue is fairly weak (i.e. the distributions overlap

significantly). While improved motion estimation techniques may help, this suggests that

the use of optical flow alone for finding occlusion boundaries, as is common practice in

segmentation schemes based on motion, could produce poor results on natural scenes which

lack texture at many true occlusion boundaries.

The estimated joint likelihoods are shown in Figure 3.11. We have estimated the

full two-dimensional joint distributions p(e, d|B) and p(e, d|¬B) as well as approximate

joint distributions p(e|B)p(d|B) and p(e|¬B)p(d|¬B), which assume our two cues are

conditionally independent. Given the visually similar estimates, it would appear safe to

make such an independence assumption and approximate the joint in this manner. We will

test our classifier with both versions below.

Next we compute the posterior probability according to (3.3). For the separate cues,

the result is overlaid on the likelihoods in Figure 3.10. For the combined cues, the posterior

estimates are found in the rightmost pair of Figure 3.11. Rather than fitting an arbitrary

model to the posterior, we have chosen to use the estimates as non-parametric lookup tables.

Finally, we evaluate the learned classifier on the training data itself. After estimating
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Figure 3.11: Learned joint likelihood distributions and ratio scores for our two cues. Left and
right of each pair shows the result using the full and approximated joint, respectively.

Pr(B|f) at each edge pixel, we generate precision-versus-recall curves by varying the

threshold on that posterior estimate and recording the number of correctly labeled pixels.

As seen in the left plot of Figure 3.12, each cue separately provides some information, but

the two together perform better, with the full joint providing the best result. The precision

levels of these curves also capture a notion of the difficulty of our task and dataset.

We can repeat the entire training process with a different randomly-selected set of

sequences for training. Doing so allows us to compute the error bars on the precision recall

curves shown in Figure 3.12. These error bars represent plus/minus one standard deviation

(σ̂) for n = 50 trials. Thus they indicate the typical distribution of the curves for various

divisions of the data. The confidence intervals based on standard errors (σ̂/
√

n) are very

tight and visually imperceptible from the mean (and thus are not shown). This indicates a

statistically significant difference between the mean curves in the plots.
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Figure 3.12: Precision vs. recall curves for the training and test sets (left and right,
respectively), using various combinations of cues. Error bars indicate plus/minus one standard
deviation of the curves for 50 randomly selected divisions of the dataset.

3.3.2 Testing

For testing, we use the remainder of the dataset, extracting motion and edge strength cues

as before. This includes the other half of the scenes, with approximately 80, 000 edge pixels

to be classified. Again, we classify each edge by thresholding the estimated posterior. We

can vary this threshold to produce the precision-recall curves shown in the right plot of

Figure 3.12. Here we see confirmation that the learned classifier can generalize to novel

scenes. We see similar performance between the full and approximated joint distributions,

with marginal improvement using the approximation. This may indicate that the full joint

estimate is slightly overfitting the training data. Once again, by repeating the experiment

with different test sets, we can also generate error bars.

Aggregated quantitative results as provided in Figure 3.12 give a general sense of

performance, but here we also provide a few anecdotal examples from the dataset to

exhibit more concretely the information sometimes hidden in such cumulative comparisons.

Figure 3.13 shows a scene with ground truth overlaid. To illustrate the improvement when

using both cues together, we have selected the threshold for each classifier that results in

60% recall, as indicated on the precision-recall plot. For the indicated window of the original

scene, the right four boxes compare the ground truth labeling and the classification results

using the cues individually and together. As shown, the best result (with significantly higher

precision) is achieved using both cues. For example, combined cues yield improved detection

with fewer false positives on the left side of the leg as compared to the result using individual

cues alone. Similarly, the examples in Figure 3.14 demonstrate classification improvement

using combined cues.
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Figure 3.13: Example classification result at a chosen operating point of 60% recall. Combining
appearance and motion cues produces superior precision than either cue alone. Note in the
combined result the increased detection on the left of the leg as compared to using edge strength
alone, and the decreased spurious detections as compared to using motion alone.
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Figure 3.14: Two additional example classification results. Combining appearance and motion
cues produces superior precision at the selected recall operating point than using either cue
alone. Note the decreased false positives when using the combined cues.

3.4 Motion-Based Edge Detection

Because the performance of any local edge detector is limited, some edges will always be

missed. By restricting ourselves to the classification of only the appearance edges which are

detected, we therefore inherit those limitations when trying to find the subset of occlusion

boundaries. As detectors improve (e.g ., in detecting very weak edges), so too will our

approach. For our dataset, however, the edge detector fires with non-zero strength on 83.5%

of the ground truth boundaries, indicating that our technique is viable in practice. Still,
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a complementary approach including the detection motion-based edges directly is worth

investigation.

Using the recent, state-of-the-art optical flow technique by Brox et al . [29], we can first

compute dense estimates of motion vectors (u, v) throughout the image. To find edges

in these motion fields, we again employ a compass-style detector in order to compare

distributions of motion at each location, rather than distributions of various appearance

cues as in Section 2.2.2. By comparing the degree to which these motion distributions

differ at various orientations, via the χ2-distance, this captures information analogous to

our motion difference cue used thus far. An example is provided in Figure 3.15.

Using this “motion edge strength” cue, we can perform the same local occlusion

detection experiments as before and examine the resulting precision versus recall. In the top

row of Figure 3.16, we see the same example scenes from Figures 3.13 and 3.14. Each shows

the classification and precision given motion-based edge strength, thresholded to achieve

the same recall operating points from the previous figures. In the bottom row, the overall

precision versus recall for occlusion detection is presented using these motion-based edges,

as compared to our multi-frame motion-difference cue from before (i.e. the same curve from

the right graph in Figure 3.12).

While there exist some examples, such as the bench in Figure 3.15, for which computing

edge strength directly from the optical flow data provides good results, the results in

Figure 3.16 indicate that our motion-difference cue is superior for our task. This is partially

due to the poor localization of the motion-based edges (probably owing to the coarse-to-fine

strategy employed by [29]), e.g . around the right foot in the first example in Figure 3.16.

If one is willing to sacrifice localization, however, detections further from the ground truth

boundaries can be considered to be correct, i.e. true positives for computing precision and

recall. In this case, we found that the precision performance using motion-based edge

detection improves in the low-recall regime (and surpasses our motion-difference cue), but

remains lower in the high-recall regime. In addition, this and many other highly-accurate

optical-flow methods are quite computationally expensive, and for our purposes, can waste

time computing dense flow estimates away from the boundaries in which we are most

interested.

3.5 Discussion

The sort of approach described in the previous section may in some cases allow for the

detection of occlusion boundaries visible only due to motion, such as those often studied in

psychophysics [1, 33, 67], but in our experience these cases are relatively rare in practice and

may not justify the associated increase in computational cost for dense motion estimation.

Furthermore, as discussed earlier, failure to detect weak texture-less edges is a much more



3.5. DISCUSSION 51

Input Scene Horizontal Motion (u) Vertical Motion (v) Motion−Based Edge Strength

Figure 3.15: Motion-based edge detection using a compass-style edge detector directly on
dense optical flow computed according to [29].
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Figure 3.16: Results for occlusion detection using dense optical flow estimates for motion-
based edge detection. The detection results in the top three scenes can be compared to the
motion-difference results in Figures 3.13 and 3.14, which were thresholded at equivalent recall
points. The overall precision versus recall plot also suggests that our motion-difference cue is
superior for our task of differentiating occlusion boundaries from other edges.

frequent phenomenon. We note that motion cues at these same edges would almost certainly

not be informative anyway since they rely on the presence of some texture for accurate

estimation. In such cases, we believe better local edge detection (via incorporation of

motion information, etc.) is likely not the answer. Instead, mid-level reasoning, such as the

approach described in Chapter 4, is more important.

Local estimates of any kind, including the Pb detector and our motion difference feature,
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are inherently noisy and ambiguous. They are most useful when incorporated into more

global reasoning, e.g . using a graphical model. Rather than blindly using local estimates for

mid- and high-level tasks, however, we believe it is important, if not crucial, to evaluate the

utility of these low-level cues themselves (separately and in combination). Having verified

here the benefit of using motion in this chapter, we are now ready to describe in the following

chapter methods of globally reasoning about object/occlusion boundaries which build on

the combined local cues described here and in Chapter 2. In addition, the learned classifier

up to this point is still fairly simplistic. It does not incorporate any notion of uncertainty

of the motion estimates, nor does it reason about the boundary motion as discussed in

Chapter 2. These and other improvements will be covered in the next chapter.



Chapter 4

Global Boundary Reasoning

In the preceding chapters, we described methods for detecting occlusion boundaries based

on local motion and appearance cues, and we demonstrated that the consideration of

subtle relative motion cues provides improved performance. Such low-level, local processing

techniques, however, cannot be expected to solve the problem entirely. Several challenges

remain:

• Spatial Support. Thus far we have considered identifying and classifying single-

pixel edges based on rectangular patches of a set size. Since boundaries are themselves

extended contours in the image, we would instead prefer to consider edge elements

with more informative extent than a single pixel. In addition, the regions of support

for the patches that we extract on either side of a potential boundary ought to be

data-driven rather than set to an (arbitrary) spatial shape and/or size.

• Boundary Motion. Though we introduced the motion of the boundaries themselves

when reasoning about occlusions in Chapter 2, we subsequently ignored this cue,

lacking a natural strategy for integrating it into the classifiers and scores described in

Chapter 3.

• Motion Uncertainty. We motivated the consideration of motion uncertainty in

Chapter 3 and incorporated it to some extent in a hand-designed “inconsistency” score

function (at least for patch motion estimates). But it was not clear how to employ

effectively this type of confidence information in our initial learned classifier, which

was based on a simple likelihood ratio. Intuitively, this confidence information should

be taken into account in reasoning about occlusion boundaries since motion estimates

can be unreliable (and therefore misleading for classification) in many situations.

• More Cues. Related to the previous two points, it is not straightforward to introduce

potentially large numbers of additional cues, including uncertainty and boundary



54 CHAPTER 4. GLOBAL BOUNDARY REASONING

motion, into our simple likelihood-ratio classifier from Chapter 3. In particular, it

becomes infeasible to populate and employ non-parametric lookup tables in higher

dimensions. Nor do the methods used thus far address the problem of feature selection.

• Propagation of Local Information. Locally in an image, occlusion may in fact not

be visible at all. We need a higher-level method of propagating occlusion information

more globally between local, potential boundary elements.

In this chapter we will present a more global processing approach, relying on mid-

level reasoning, which combats the problems above by building on the analyses in previous

chapters. First we will describe the extraction of improved boundary elements and

associated regions of support on either side. Then we will describe a more powerful inference

model which utilizes learned classifiers capable of considering a larger set of cues, including

uncertainty and boundary motion. Using this model, we will offer a more powerful approach

to tackling the mid-level problem of boundary identification.

4.1 Initial Segments and Fragments

We will begin by over-segmenting the image in order to generate candidate boundary

elements, or fragments, and associated patches for cue extraction, or segments (also known

as “super-pixels” [141]). In particular, the boundaries of these segments will serve as our

set of hypothesized boundary fragments, and the segments on either side of each fragment

will provide data-driven regions of support for our motion and appearance cues.

Another option could be to start from (pixel-level) edge detections and then perform an

edge chaining procedure, as in [104, 162] for example. But edge chaining is inherently brittle

in natural cluttered scenes, and perhaps more importantly, the over-segmentation approach

offers two distinct advantages for our model. First, by construction, fragments meet at

intersections of regions, and thus closed contours are immediately available. This produces

a natural graph structure suitable for global inference without the need to impose artificially

such structure later (e.g . with Constrained Delaunay Triangulation [139]). Second, a direct

link is established between fragments and segments. It is clear that a set of segments in

an image imply a set of boundaries, but working in the opposite direction to obtain a

segmentation from a set of disconnected boundary fragments is non-trivial.

We use a watershed-based over-segmentation driven by the output of a learned,

statistical, multi-cue edge detector, after non-local maxima suppression. We have chosen

the Pb detector [114], though others exist, e.g . [90]. The use of such a detector allows

the over-segmentation simultaneously to consider color, brightness, and texture in choosing

where to create initial segments, as described in Section 3.2.2. We chose the watershed

approach for its more regularly-shaped segments as compared to other methods [35, 45],



4.1. INITIAL SEGMENTS AND FRAGMENTS 55

(a) Input Image (b) Pb Edge Strength

(c) Seeded Edge Map (d) Distance Map (e) Watershed Segmentation

Figure 4.1: For an input image (a), we use the Pb edge detector to get edge strength at
each pixel (b). After suppressing non-local maxima, we introduce random “seeds” to help
break apart large uniform regions and increase segment regularity (c). Then, from a distance
transform (d) of the resulting edge map, we use a standard watershed algorithm to produce our
over-segmentation (e).

and its simplicity and speed compared to methods relying on normalized cuts [122, 123, 141].

We first use non-local maxima suppression on the raw Pb responses. Next we introduce

random “seeds” into large empty regions in the resulting edge map. This helps break apart

potentially large segments and also helps increase regularity. The watershed segmentation

algorithm is then applied to the distance transform computed from this edge map. See

Figure 4.1 for an example of this process. A similar technique, which uses the Pb detector’s

output directly in a watershed segmentation, is suggested in [7], but we found that our

approach tends to produce segments with more regular shape. This allows for better cue

extraction later, particularly in the case of motion.

From the over-segmentation, we produce a set of fragments along the boundaries of each

segment, starting and stopping at junctions with other segments. Rather than operating

at the level of pixels when chaining, however, we operate instead on the “cracks” between

the pixels. These cracks naturally form a graph and offer a very simple, efficient domain

on which to chain. For details on our crack-chaining procedure, see Appendix A. Besides

efficiency, the fact that cracks have no width in the image offers important advantages.

There is no need to decide which segment’s pixels are boundary pixels (and thereby

effectively assign boundary ownership prematurely). Explicit handling of “mixed pixels”,

where pixels at a boundary have fractional membership to the surfaces on either side of
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that boundary, could be also be used. Using cracks, however, is far simpler and very

efficient. Furthermore, their lack of width remains consistent even as an image is resized,

e.g . for scale-space processing, as in the feature detection process for object recognition

discussed in Chapter 6, where cracks are also used to represent boundary information. In

addition, a maximum of four fragments can meet at any junction, limiting the number of

junction labeling cases we must consider when performing the global inference described in

Section 4.2 below.

4.2 A Global Boundary Model

Given segments and fragments from the over-segmentation, the next step is to compute a

set of cues associated with each fragment. As before, these cues will be used in estimating

the likelihood that each fragment is part of an occluding contour. Based on the findings in

Chapter 3, we will incorporate two general types of cues: motion-based and appearance-

based. The specific form of these cues will be explained in Section 4.3.1 below. A similar

model and learning approach to the one described here is presented in [76], where boundary

detection is formulated without using motion by instead employing geometric context

cues [74].

For now, we assume that we have extracted a set of appearance and motion cues for

each fragment, using the information found along the fragment and within the segments

it separates. Our goal, then, is to classify which fragments are occlusion boundaries.

While we hope our local appearance and motion cues will provide strong evidence for

this classification, it is unreasonable to hope that a purely local solution will suffice. To

facilitate global reasoning and propagation of local estimates, we define here a probabilistic

graphical model to capture the structure of our problem.

Our objective is to find an interpretation of the scene’s boundaries that is most probable

given the observed appearance and motion cues. The toy example in Figure 4.2 depicts the

type of labeling we will use. Each fragment can take three possible labels. First, the

fragment can be labeled “off”, indicated by a dashed line, meaning it is believed not to lie

on an occlusion boundary, i.e. it is a surface marking, lighting edge, etc. Otherwise it can

be labeled “on” (as an occlusion boundary) with the “foreground” — or closer surface —

on a specified side indicated by onL or onR when appropriate. (We will let the label on

represent either, with the appropriate foreground side implied by context.) In the figure,

this is indicated by a solid line with an arrow, where the left side of the arrow is the closer

side. Where three or four fragments meet, we have a junction, indicated by a solid dot.

Note that fragments along the borders of the image itself are also included in our graph

to allow for consistent reasoning about occlusion and closure throughout the image, i.e.

without requiring special cases at the image borders. There is a special case, however, when
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Figure 4.2: A toy labeling example showing the fragments of a simple scene labeled with one
of three possible labels (non-occlusion or occlusion with specified foreground side). Note that
the borders of the image itself are also considered fragments to be labeled.

a set of segments is fully enclosed within another segment. In this case, two disconnected

graphs are formed. Though information will not flow between the two (in this work we have

not explicitly avoided this situation), inference as described below can be performed on the

two graphs simultaneously. In the extreme case, a single segment could be enclosed within

another, and its enclosing fragment would thus be considered and classified completely

independently (and therefore entirely based on local information).

To find the most likely labeling of a scene, we need to define the probability of a

particular choice of labels for the fragments f given the cues x. Our goal is to maximize

this probability, Pr(f |x), by selecting the best set of consistent labels. In our model, we

will consider fragments labeled as boundaries and fragments labeled as non-boundaries

to be independent. Furthermore, we will assume (1) that each complete boundary, B,

is independent of the other boundaries and (2) that each non-boundary fragment is

independent of the other fragments. Thus we can approximate the desired probability

as

Pr(f |x) ≈
∏

B

Pr({f ∈ B} = on|x)
∏

j

Pr(fj = off|x). (4.1)

For a particular closed boundary, which is made up of a set of directed fragments (where

the direction indicates the foreground side of the boundary), we assume that each fragment

along the boundary is conditionally independent of the other fragments in that boundary,

given the preceding fragment. Thus,

Pr({f ∈ B} = on|x) ≈
∏

{i→j}∈B

Pr(fj = on|fi = on, x), (4.2)

where {i → j} ∈ B represents the set of pairs of fragments in boundary B such that fi

precedes fj when traversing that boundary according to its directed labeling. Of course,

the “on” labels must also specify the same foreground side in order to be consistent.
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If B corresponds to an open boundary, i.e. the boundary of an object which is occluded

by another object in the scene (or by the border of the image), the starting fragment of

that boundary does not have a preceding fragment on which to condition its probability.

So we must consider it separately:

Pr({f ∈ B} = on|x) ≈ Pr(fB0 = on|x)
∏

{i→j}∈B

Pr(fj = on|fi = on, x), (4.3)

where fB0 represents the initial fragment of boundary B. For closed fragments, this term

is ignored, as in (4.2), since the set of fragments forms a loop where each fragment can be

conditioned on its predecessor.

Now we can compute the probability of a given labeling of all fragments f using

(4.1), (4.2), and (4.3). Direct inference using this model, which would require explicit

identification and chaining together of open and closed boundaries as well as a varying

graph structure depending on the current labeling, would be quite cumbersome. We can

instead simplify matters by focusing on the labeling of fragments and junctions of those

fragments. Thus we can write the desired probability as a product of fragment potentials

and junction potentials,

Pr(f |x) ∝
∏

i

ψ(fi)
∏

k

φk, (4.4)

where ψ(fi) represents the potential function for an individual fragment fi and φk represents

the potential function for the set of fragments meeting at junction k, {fj}Nk

j=1, where Nk ∈
{3, 4}. In practice, it is more convenient (and numerically feasible) to take the negative log

of this probability and work in terms of minimizing an energy function,

E(f) = − log (Pr(f |x)) =
∑

i

log (ψ(fi)) +
∑

k

log (φk) . (4.5)

Defined carefully, these potentials can capture exactly the same model as in (4.1), (4.2),

and (4.3). First, we define the unary fragment potential, based on its fragment’s label, as

ψ(fi) =

{

1 fi = on

Pr(fi = off|x) fi = off
(4.6)

The junction potential φ is defined and evaluated for all junctions depending on the

labelings of their constituent fragments. A junction of three fragments, each with three

labels, would imply a set of 27 possible label combinations for that junction. However, only

11 of those are unique under circular permutations. Of those 11, we consider five to be

physically valid and consistent with our mdel. These are shown in Figure 4.3, with the

shaded regions indicating foreground (i.e. the left side of the fragment, when moving in

the direction of the arrow), and the darkest region being the closest one. These junctions

consist of a single continuous boundary occluding another boundary (i)–(ii), the meeting
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of three non-boundary edges (iii), or a single continuous boundary passing through the

junction with an adjacent non-boundary edge (iv)–(v), .

(i) (ii) (v)(iv)(iii)

f3 f2

f1

f3 f2

f1

f3 f2

f1

f3 f2

f1

f3 f2

f1

Figure 4.3: The five types of valid three-fragment junctions. The shaded regions are the
foreground regions, with darker being closer. Similar types exist for four-fragment junctions.

The other six types of three-fragment junctions are shown in Figure 4.4. These junctions

are considered “invalid” because the foreground/background labels of their constituent

fragments are inconsistent or physically impossible, as in (vi)–(ix), or because we have

chosen to discourage the abrupt starting or stopping of a boundary, as in (x)–(xi), in favor

of closed boundaries.

(x) (xi)(vii)(vi) (ix)(viii)

Figure 4.4: The six types of invalid three-fragment junctions. Similar types exist for four-
fragment junctions.

Analogous reasoning is used for the four-fragment junctions as well, though we will not

explicitly list all possible labelings here for the sake of brevity.

Now we can define the potentials for each type of junction implied by a particular

labeling. First, we strongly discourage the invalid labelings shown in Figure 4.4 by setting

the potentials of such junctions to a very small value (10−4 in our experiments1). The five

valid junctions in Figure 4.3 have potentials shown in Table 4.1. The combination of these

junction potentials with the fragment potential defined in (4.6) results in the same set of

terms in the original model from (4.1), (4.2), and (4.3); i.e. we consider “off” fragments

independently and effectively walk along the “on” fragments, which make up boundaries,

without double-counting any fragments. In particular, the definition of certain terms in

1We avoid using potentials with values of exactly zero since we work in practice with log probabilities,
as indicated in (4.5).
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Type Potential (φ)

(i) Pr(f3 = on|f1 = on, x) Pr(f2 = on|x)
(ii) Pr(f2 = on|f3 = on, x) Pr(f1 = on|x)
(iii) 1
(iv) Pr(f2 = on|f3 = on, x)
(v) Pr(f3 = on|f2 = on, x)

Table 4.1: Junction potentials corresponding to junction types in Figure 4.3.

some potentials as having a value of one — such that they have no effect on the products

in (4.4) — helps make this possible, at the expense of a somewhat obfuscated model at first

glance.

The overall labeling probability Pr(f |x) can now be computed for any assignment of

labels to fragments: for each junction we find the type that is induced by its fragments’

labels, and we use the corresponding expression of φ to compute the contribution of that

junction. The resulting inference problem (finding the assignment of labels f that maximizes

Pr(f |x)) is intractable in its exact form on our loopy graph. However, an approximation of

the MAP solution can be found by loopy belief propagation [58, 108, 130, 131, 185, 189],

where the messages passed are based on the potentials defined above for each fragment

or junction. Specifically, we use an implementation of the sum-product message-passing

algorithm suggested in [72], and also exponentiate each potential factor in (4.4) by 1/T

(with T = 0.5 in our experiments) to provide “soft-max” estimates, according to the mean

field approximation suggested by [197].

We note that this approach bears some similarity to classical approaches to line drawing

interpretation [66, 180]: we have essentially reduced the problem to labeling the junctions

using a dictionary of five junction types. A key difference here is that we use soft potentials

in a machine learning framework for our reasoning, instead of relying on hard constraint

propagation as in the more classical setting.

4.3 Fragment Classification

Despite the various complex junction cases described in the previous section, note that

all the potentials in our model are defined in terms of just two probabilities: a three-

class unary probability that a fragment is “on” (and which side is foreground) or “off”,

Pr(fi = {onL, onR, off}|x), and a pairwise probability that a fragment is “on” given that

the preceding fragment is also “on”, Pr(fj = ons|fi = ons, x), such that the foreground

side, s, is consistent. (Though we have not listed them here, one can also define the four-

fragment junctions in terms of these same probabilities by following analogous reasoning.)
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We will now describe a classifier used to estimate these probabilities, as functions of features

(x) extracted from labeled training data. For simplicity, we will return to omitting the

foreground-side indicator for “on” labels in the following discussion.

We employ Adaboost [34] to learn our classifiers, where the weak learners used by the

boosting process are decision trees [59, 76, 167], instead of using the simple likelihood ratio

as in Section 3.2.3. Passing the results through a logistic function and normalizing such that

they sum to one over our classes yields estimates of the desired probabilities for each class.2

Since boosted decision trees are well-suited to feature selection, we can provide a variety

of potentially over-complete, or redundant, appearance and motion features, as described

below, and allow the classifier to choose the most discriminating ones based on the training

data. Such an approach has also been shown to be successful for reasoning about the 3D

structure and layout of single images [75].

4.3.1 Appearance and Motion Cues

All of the probabilities used to define the potentials in our model are conditioned on features

or cues, x. In this section, we will describe the corresponding set of appearance and motion

cues extracted from the vicinity of the fragments and their associated segments.

For our appearance features, which also include some “geometric” information, we

provide the following to the unary classifier, Pr(fi = {on, off}|x):

• Average Pb-strength along the fragment.

• Fragment length.

• Ratio of fragment length to the perimeter of the larger of the two neighboring

segments. (Intuitively, we may want the classifier to be reluctant to turn “off” a

small fragment which would effectively merge one large segment into another.)

• Difference in area between neighboring segments. (This captures some of the same

intuition as the previous cue.)

• Euclidean distance between the average colors (in L*a*b* space) of the neighboring

segments.

• The χ2-distance between L*a*b* color distributions provided by kernel density

estimates within the neighboring segments. (This is akin to the patch-based edge

detection techniques described earlier, such as Pb strength, but with color only and

regions of support given by the over-segmentation instead of a standard circular patch.

Texture/brightness could be added as well.)

2Henceforth, we will adopt a slight abuse of terminology and refer somewhat interchangeably to the
estimated probabilities and the classifiers from which they are estimated.
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Figure 4.5: We can use a cylindrical, spatio-temporal edge detector (left), as described in
Section 2.2, at each point along a boundary fragment (middle), aligned to the fragment’s local
orientation. Each detector will yield a normal speed estimate (right, red arrows), which can be
combined into a single motion vector for the fragment (larger black arrow) using Equation 4.8.

The first type of motion cue we employ is analogous to the relative patch motion used

in the previous chapter. Now, however, the segments from Section 4.1 naturally specify

the spatial support for estimating left- and right-side motions for each boundary fragment

(as opposed to the oriented, rectangular patches used before). And since each segment is

bounded by multiple fragments, we need only compute the motion for each segment in the

scene once, instead of repeatedly computing motions from overlapping neighboring patches.

We use the same motion estimation procedure as before (see Section 2.1), now with a spatial

weighting function w(x, y) which decreases the contribution of pixels near the boundaries

of the segment.

Unlike the initial classifier in Chapter 3, here we will also use fragment motion estimates

as a second type of motion cue. Thus we will employ the cylindrical, spatio-temporal edge

detection approach described in Section 2.2 (the local orientation is already specified by

the fragments’ normal vectors, so the spherical detector is unnecessary here). Recall that

this approach only offers (1D) estimates of normal motions at each location due to the

aperture problem. We can, however, combine normal estimates along the fragment to get a

full 2D (u, v) motion estimate for the whole fragment [42, 182, 183], as shown in Figure 4.5.

We use a linear system of equations based on comparisons of the individual 1D speed

estimates (computed at each pixel along the fragment) to the fragment’s overall motion

vector projected onto the local normal vectors:
[

u

v

]

= arg min
∑

i∈F

w(i) (nx,iu + ny,iv − si)
2 , (4.7)

where nx,i and ny,i are the components of the normal at point i on the fragment F , and

si is the corresponding speed from the spatio-temporal detector. Each point contributes to
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the solution with a weight, w(i), corresponding to the underlying edge strength reported

by the local detector.

As was described in Section 2.1, in practice we employ the M -estimator in (2.10) instead

of simply squaring the error term in (4.7), and again we use Iteratively Re-weighted Least

Squares to find a robust solution to this system. At each iteration, we solve the following

system, incorporating the current M -estimator weights into w at each step (see Section 2.1

for further details):

[ ∑
wn2

x

∑
wnxny

∑
wnynx

∑
wn2

y

]

︸ ︷︷ ︸

H

[

u

v

]

=

[ ∑
wnxs

∑
wnys

]

. (4.8)

Increasing Confidence 
in Motion Estimate

Increasing 
Fragment Curvature

Figure 4.6: Our confidence in the
estimate of a fragment’s motion
increases the more corner-like that
fragment is.

As with the patch or segment motions, we would

like to have a notion of confidence associated with

these fragment motion estimates. For example, we are

more sure of the motion vector computed for a corner

fragment, which constrains the fragment’s motion in

two dimensions, than for a straight fragment, which is

unconstrained along the fragment and thus effectively

continues to suffer from the aperture problem despite

combining multiple estimates via (4.8) [160]. Thus the

confidence is tied to the variation of the local normals

along the fragment (see Figure 4.6). By employing a

least squares formulation, our motion estimate for the

fragment is the maximum likelihood solution for (u, v)

under a Gaussian assumption. The matrix H from

(4.8) — which is constructed from the local normal vectors along the fragment — defines

the covariance of that Gaussian, and thus captures our confidence in the estimated motion

components. See Section 3.1 for further details, where we used G from (2.8) to model patch

motion uncertainty in an analogous setting.

Given the fragment and segment motion estimates, we can compute a set of motion

features suitable for our classifier. We compare the fragment motion estimate with each of

its neighboring segment motion estimates in addition to comparing the segment motions

to each other (as with the simple rectangular patches in Chapter 3). For each of these

comparisons, we compute the following features to add to the appearance features listed

above:

• Absolute difference between individual u and v motion components.

• Simple Euclidean distance between motion vectors.
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• Confidences of motion estimates.

• The Mahalanobis-like motion inconsistency score used in Section 3.1.

Once again, these cues are somewhat redundant, deferring the selection of the “right” set

of features to the boosted classifier.

For the pairwise classifier, Pr(fj = on|fi = on, x), there are a few additional pair-specific

features we can use. Thus the feature set for this term includes the unary cues above for

each fragment of the pair, augmented by the following:

• The relative angle between the two fragments (to capture a notion of continuity).

• The difference between the motions of the two fragments.

• The motion and color differences between the two fragments’ foreground-side seg-

ments.

4.3.2 Training the Classifiers

Given a set of training data, we apply the over-segmentation and fragment-chaining

approaches described in Section 4.1 and compute each cue defined above. We then train

the unary classifier, Pr(fi = {on, off}|x), directly from the individual ground truth labels

using the extracted set of cues.

For the pairwise classifier, we first extract pairs of fragments in the ground truth for

which fj follows fi and both are labeled “on.” These pairs are our positive examples while

negative examples are collected from those pairs for which fj is “off” but is connected

via the graph to an fi that is “on”. From these examples, we learn the second classifier,

Pr(fj = {on, off}|fi = on, x). For all our experiments, we allow ten iterations of boosting

with ten-node decision trees, each of which is fit using an implementation of [26] available

in Matlab.3

For training each of these classifiers, we must match the fragments created by our over-

segmentation with ground truth boundaries drawn by hand. This is accomplished by first

determining through which segments the hand-drawn boundaries pass. Then, the fragments

corresponding to those segments are used to get the closest approximation to the ground

truth boundary. This process is depicted in Figure 4.7.

In Figures 4.8 and 4.9, we plot histograms indicating the frequency with which each of

our features was used by the boosted decision tree classifiers learned in the experiments

below. As shown, each classifier frequently uses motion and appearance features. In fact,

the two most-used features employed by the unary classifier (Figure 4.8) are the Euclidean

distance between segment motion vectors and the difference in color distributions on either

3See treefit, treefitw, treeval, and the related suite of commands.
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(a) (b) (c)

Figure 4.7: For the over-segmentation and overlaid human-drawn boundary in (a), we find the
segments through which that boundary passes (b). In (c), the fragments associated with those
segments (shown in red) are then used to approximate the human-specified boundary (shown in
blue). The error between the two, indicated by the yellow arrows, has a mean of 2.6 pixels and
a median of 0.8 pixels across our dataset. Substantial errors (deviations greater than ten pixels,
e.g . where the over-segmentation completely misses a true boundary) occur in only 4.9% of the
boundaries, measured pixel-wise.

side of the fragment. Furthermore, the classifier regularly uses different forms of the

confidence information derived from computing segment and fragment motion estimates.

Perhaps somewhat surprisingly, the “relative angle feature” used for capturing the

continuity between a pair of fragments is not often utilized by the pairwise classifier, despite

being a common Gestalt cue for reasoning about saliency and continuation in perceptual

organization, e.g . [99, 109, 139] and references therein. Its limited utility here may be tied to

the fact that the graph implied by our over-segmentation procedure, which seeks regularly-

shaped segments, tends to have plausible relative angles for almost any pair of fragments

meeting at a given junction. Thus, the relative angle may not be a very discriminating

feature in our construction.

Finally, the addition in this chapter of features based on fragment motion, rather than

patch or segment motion only, does appear to be helpful. Fragment motion cues are used

regularly, especially those estimated for fragment j in the pairwise classifier.

4.4 Experiments

We first over-segment each scene’s reference frame and extract fragments as described.

There are approximately 20,000 total fragments available in our dataset for testing and

training. For each fragment and segment, we compute the set of appearance and motion

cues listed in the previous section. From a training set constructed using half the scenes in

the database, we then learn the two classifiers which define the potentials used by our model.

Using these classifiers for the other half of the scenes, we can estimate the probability of

labeling each fragment as an occlusion boundary, first by using the learned unary classifier
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Figure 4.8: Frequency with which each computed feature is used by the learned unary fragment
classifier.

in isolation and then within the global inference model. We repeat this procedure, swapping

the test and training sets in order to obtain results for all scenes in the database.

We would like to verify that both global inference and motion information result in

improved performance overall. We see in Figure 4.10 that this is indeed the case in a plot

of precision versus recall for final fragment labelings of the entire dataset in aggregate. The

parameter varied in creating each plot is the threshold on the likelihood of each fragment

being “on”. We see that using appearance cues alone results in the worst performance on

the graph.4 In fact, including motion cues but only reasoning on individual fragments,

without global inference, offers equivalent or superior results to using global inference with

appearance cues alone. Finally, global inference with combined motion and appearance

information consistently yields the highest precision. Also note that the low precision point

at 100% recall (corresponding to the trivial solution of labeling all fragments as occlusion

4We do not show results using motion cues alone, but as with the initial classifier from the previous
chapter, this yields similar or worse performance than using appearance alone.
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Figure 4.9: Frequency with which each computed feature is used by the learned pairwise
fragment classifier.
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Figure 4.10: Precision vs. Recall for the entire dataset, showing that using motion and
global inference results in the most accurate identification of those edge fragments which are
occlusion/object boundaries.

boundaries) provides some indication of the difficulty of our task and our dataset.

While aggregate statistics captured by precision-recall plots are useful for understanding

performance in general, they do hide important semantic measures of quality which can

only be understood by looking at individual results. In Figures 4.11-4.14, we provide a

few such examples out of the 30 in our database. (Additional examples can be found in

Appendix B.) In each, the reference image of the sequence and the ground truth labeling

are provided in the top row. In the remaining rows we compare the use of appearance only

(left column) to that of appearance and motion combined (right column). The second row

displays fragments overlaid on the image with brightness and line width proportional to the

confidence that they are occlusion boundaries according to their independent classification

results (i.e. before global inference). Thus, the brighter red and thicker a fragment is,

the more the system believes it to be an occluding boundary. The next row displays the

same type of result but after performing global inference on the initial classifications. The

final two rows show these global inference results thresholded at equal recall rates for fair

comparison. Note how the motion-plus-appearance approach sustains higher precision (i.e.

fewer false positives) even as the recall is increased. This indicates that the motion adds

significant confidence to the classifier’s decision.
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Figure 4.11: Example result: The appearance-only classifier’s lack of confidence becomes
obvious when we use use a higher-recall operating point. With the addition of motion, very
high precision is maintained.
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Figure 4.12: Example result: Using motion allows for sustained high precision, even at higher
recall.
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Figure 4.13: Example result: On this more difficult example, the motion+appearance classifier
still performs best.
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Figure 4.14: Example result: The squirrel in this scene is nearly invisible to the appearance-
based classifier, but its movement makes its boundaries much more readily detectable when also
using motion cues.
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Figure 4.15: A harshly-lit, low-texture scene (left) causes difficulties for our approach. The
middle example shows the over-segmentation failing to offer the true occlusion boundary as a
hypothesized fragment for classification. At the right, we see false positives resulting from a
combination of harsh lighting and lack of texture which would provide good motion estimates.

In Figure 4.15, we provide an example of a scene on which performance is consistently

poor using our approach. This stems largely from two problems. First, the extremely harsh

lighting creates high-contrast edges which result in an over-segmentation whose fragments

do not correspond to the true occlusion boundaries in the scene. In such cases (which are

rare, see Figure 4.7), there is no hope of the subsequent classifier succeeding, since the

true boundaries are not even in the set of fragments to be classified. Secondly, the lack of

texture (in combination with the lighting) results in several false positives since it prevents

confident motion estimation which could otherwise be used to disambiguate and correctly

classify lighting-based edges as non-boundaries.

Due to the variety of scenes in our dataset, it is not surprising that there exist cases

for which motion does not help. Some object boundaries simply are easily identified by

basic appearance cues, such as color, and the scenes may lack enough texture or depth

variation to provide the necessary relative motion cues. However, it is also very rare that

using motion hurts performance, and in those cases where appearance information simply

does not capture the properties of occlusion boundaries well, motion cues often provide

substantial improvement. This improvement is realized in reduced false positives since,

in many cases, only motion information may allow the system to recognize and filter out

high-contrast surface markings which confuse an appearance-only approach.

4.5 Discussion

In this chapter, we presented a mid-level framework capable of reasoning more globally

about the existence of occlusion boundaries. In so doing, we alleviated deficiencies in

earlier approaches by improving spatial support based on an initial over-segmentation,

by incorporating boundary motion as well as motion confidence information, and by
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introducing a graphical model with learned classifiers as potentials for propagating local

information derived from a combination of appearance and motion cues.

In the future, it may be interesting to explore the use of feedback between the final

boundary labeling and the over-segmentation processes in order to improve iteratively the

hypothesis of boundaries, the subsequent delineation of spatial regions of support for feature

extraction, and the labeling of those hypotheses based on the improved features. Initial

results using this type of reasoning for segmentation, via iterative region merging, was

recently presented in [76].

Now armed with a capable boundary detection approach, we will present in the following

chapters improvement in higher-level processes, including object segmentation (Chapter 5)

and object recognition (Chapter 6), by incorporating boundary information.



Chapter 5

Boundary-Based Matting for

Improved Object Segmentation

It is well known that general scene segmentation is a poorly-defined problem whose “correct”

solution is largely dependent on the application, if not completely subjective. Objective

evaluation of segmentations is itself the subject of significant research (see [177] for a recent

review). Here we consider instead the more specific problem of whole object segmentation;

i.e., our goal is to accurately and concisely segment the foreground objects or “things”

without necessarily worrying about the background or “stuff” [2]. As we will explain, we

use hypothesized boundary fragments to suggest partial segmentation “hints” to achieve

this goal. Once the objects of interest are identified (which admittedly could itself involve

some subjectivity), it becomes somewhat easier to define natural and intuitive measures of

segmentation quality on a per-object basis.

In addition, segmentation results are intimately tied to the selection of the parameter

controlling the granularity of the segmentation (e.g ., the number of segments or clusters, or

a bandwidth for kernel-based methods). Instead of seeking a single perfect segmentation,

the integration of multiple segmentations obtained over a range of parameter settings has

become common [75, 110, 137, 146, 172]. In such approaches, segmentation is treated as a

mid-level processing step rather than an end goal. This reduces the pressure to obtain —

or even define — the one “best” result, while also side-stepping the problem of parameter

selection.

We are motivated by approaches such as [146], in which Russell et al . showed that it is

possible to discover objects in an unsupervised fashion from a collection of images by relying

on multiple segmentations. Systems using segmentation in this way, effectively as a proposal

mechanism, should benefit from an underlying segmentation method which accurately and

frequently delineates whole objects. Thus we will present a novel segmentation strategy

designed to outperform existing methods in terms of two inter-related and intuitive measures
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Input Image

High−Probability
Boundary Fragments

Pairwise Affinities

Object Segmentation
... ...

Segmentation "Hints"

Figure 5.1: Starting with an image and hypothesized boundary fragments (only high-probability
fragments shown for clarity), we generate a large set of segmentation “hints” using automated
matting. Combining information from those mattes into an affinity matrix, we can then generate
a segmentation for each of the foreground objects in the scene.

of object segmentation quality. First, we take into account accuracy in terms of pixelwise,

per-object agreement between segments. Second, we also consider conciseness in terms of

the number of segments needed to capture an object.

Following the classical Gestalt view [145] as well as Marr’s theories [112], we recognize

that a key cue in differentiating objects from each other and their background lies in the

discovery of their boundaries. Therefore we use the hypothesized boundary fragments

described in the previous chapter as input for our segmentations. Of course, perfect

boundary extraction would imply perfect object segmentations, but the challenge in

practice is to derive strong evidence for segmentation from imperfect, fragmented boundary

information. Not only do boundaries indicate the spatial extent of objects, however, they

also suggest natural regions to use in modeling those objects’ appearances. The pixels

on either side of a boundary provide evidence which can offer a “hint” of the correct

segmentation by indicating discriminative appearance information, even if that information

is only local and partial in nature. The overall procedure is illustrated in Figure 5.1.

In practice, we use the soft classification offered by α-matting approaches to generate
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Figure 5.2: Example matting results from [100]. The input image is on the left of each pair,
shown with user-marked foreground (white) and background (black) pixels.

these segmentation hints. There has been a recent surge of interest and impressive results

in interactive approaches for matting [5, 9, 32, 100, 149, 171]. Using only a sparse set of

user-specified constraints, usually in the form of “scribbles” or a “tri-map”, these methods

produce a soft foreground/ background matte of the entire image. Example matting results

from [100], the method we will use in our work, can be found in Figure 5.2.

As initially demonstrated in [6], such methods can potentially be automated by replacing

user-specified “scribbles” with constraints indicated by local occlusion information. Thus

we will use each hypothesized boundary fragment from the approach presented in Chapter 4

to provide the matting constraints. Based on the combination of the set of mattes suggested

by all of the fragments, we then derive an affinity measure which is suitable for use with any

subsequent clustering algorithm, e.g . Normalized Cuts [159]. Through this combination of

individually-weaker sources of information (i.e. fragmented boundaries and impoverished,

binary mattes), we relieve the pressure to extract the one “perfect” matte or the “true”

set of extended boundary contours, and yet we are still able to segment multiple objects in

the scene accurately and concisely. Though beyond the scope of this work, it is our hope

that such improved segmentation strategies will benefit methods which rely on multiple

segmentations to generate, for example, object models automatically from unlabeled data.

In the remainder of the chapter, we will describe the details of how we generate a set

of multiple mattes from given boundary fragments, combine those mattes into affinities,

and then segment scene objects. We will also provide an intuitive method of evaluating

the ability of a set of segmentations to depict whole objects accurately and parsimoniously

according to ground truth. Finally, we offer experiments comparing our method to other

existing segmentation methods from the literature.
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5.1 Segmentation “Hints” via Multiple Mattes

As discussed above, we will use image matting to produce segmentation “hints” for

generating affinities useful in segmentation via clustering. After first providing an overview

of matting, we will explain how we use our boundary fragments to imply multiple mattes

for estimating these affinities.

5.1.1 α-Matting

In a standard matting approach, one assumes that each observed pixel in an image, I(x, y),

is explained by the convex combination of two unknown color classes, F and B. A soft

weight, α, controls this combination:

I(x, y) = α(x, y)F (x, y) + (1 − α(x, y)) B(x, y) (5.1)

In this formulation, then, pixels with an α-value near one are clearly part of the F class,

while those with an α-value near zero are clearly part of the B class. Values near 0.5

indicate mixed pixels whose “membership” may be considered unknown. Typically, F and

B correspond to notions of “foreground” and “background”, but we will explain in the next

section that these semantic assignments are not necessary for our approach.

Simultaneously solving for F , B, and α in (5.1) is of course not feasible. In general, a

user specifies a small set of pixels, often referred to as “scribbles” or a “tri-map”, which

are then constrained to belong to one class or the other. These hard constraints are then

combined with assumptions about α (e.g ., smoothness) to find a solution at the unspecified

pixels [5, 9, 32, 100, 149, 171]. We have adopted the approach proposed by Levin et

al . [100], which offers excellent results via a closed-form solution for α based on reasonable

assumptions about the local distributions of color in natural images.

Note that methods also exist for constrained “hard” segmentations, e.g . [24] —

potentially with some soft matting at the boundaries enforced in post-processing [143] —

but as we will see, using fully-soft α-mattes allows us to exploit the uncertainty of mixed

pixels (i.e. those with α values near 0.5) rather than arbitrarily (and erroneously) assigning

them to one class or the other. In keeping with the philosophy of the rest of this thesis,

we follow the conventional wisdom of avoiding this kind of early commitment throughout

our approach. Hard thresholds or grouping decisions are avoided in favor of maintaining

soft weights until the final segmentation procedure. In addition to retaining the maximum

amount of information for the entire process, this methodology also avoids the many extra

parameters required for typical ad hoc decisions or thresholds.
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5.1.2 Multiple Mattes → Affinities

In an automated matting approach, the goal is to provide a good set of constraints without

requiring human intervention. Since object boundaries separate two different objects by

definition, they are natural indicators of potential constraint locations: F on one side and

B on the other. In [6], T-junctions were used to suggest sparse constraints in a similar

manner. An example input image and its boundary fragments (shown in differing colors),

can be found on the left side of Figure 5.1. For clarity, only the high-probability fragments

are displayed, though all are used for the matting procedure described below. The benefit of

matting techniques here is their ability to propagate throughout the image the appearance

information offered by such local, sparse constraints.

For each fragment, we can generate an image-wide matte according to [100] as described

in Section 5.1. The middle of Figure 5.1 depicts a sampling of such mattes generated

from the differing constraints (or “scribbles”) implied by various fragments. The super-

pixels1 on either side of a fragment naturally designate spatial support for the required

labeling constraints. Since super-pixels from an over-segmentation generally capture fairly

homogeneous regions, however, we have found it better to expand both the F and B

constraint sets for a fragment. For each, we therefore use a triplet of super-pixels formed

by incorporating the super-pixels of the two neighboring fragments most likely to be

boundaries. This process is illustrated in Figure 5.3. Note also that our approach avoids any

need to choose the “right” boundary fragments (e.g . by thresholding), nor does it explicitly

attempt to extract extended contours using morphological techniques or some sort of ad

hoc chaining procedure, both of which are quite brittle in practice, as discussed previously.

Instead we consider only the individual short fragments, which have an average length of

18 pixels in our experiments.

A remaining problem is that the approach described thus far only offers a binary (albeit

soft) decision about a pixel’s membership: it must belong to either F or B, which are

usually understood to represent foreground and background. How then can we deal with

layered, multi-object scenes?

We recognize that the actual class membership of a particular pixel, as indicated by its α

value in a single matte, is rather meaningless in isolation. What we wish to capture, however,

is that locations with similar α values in a given matte (whether both zero or one) are more

likely to belong to the same object, while locations with different values are more likely to be

part of different objects. While existing methods, such as Intervening Contours [36, 56, 99],

may attempt to perform this type of reasoning over short- and medium-ranges within the

image using standard edge maps, our use of mattes simultaneously factors in the boundaries

1In this chapter, we will refer to the “segments” of the over-segmentations from Chapter 4 as “super-
pixels” instead [141]. This is to avoid confusion with the “segments” of the final object segmentations we
seek in this chapter.
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Figure 5.3: The F and B constraint sets for a given fragment are initialized to its two
neighboring super-pixels (left). To improve the mattes, these constraint sets are expanded to
also include the super-pixels of the fragment’s immediate neighbors with the highest probability
of also being object boundaries (right). Thus we use a triplet of super-pixels to specify both
the F and B constraint sets at a fragment.

themselves as well as the global appearance discrimination they imply. Moreover, matte

values near 0.5 indicate uncertainty about the relationship between locations.

Each of the NF potential boundary fragments in the scene generates an image-wide

matte in this manner, yielding an NF -length vector, vi, of matting α-values at each pixel i.

If we scale the α-values to be between −1 and +1 (instead of 0 and 1), such that zero now

represents “don’t know”, then the agreement, or affinity, between two pixels i and j can be

written in terms of the normalized correlation between their two scaled matting vectors:

Aij =
vT
i Wvj

|vi||vj |
, (5.2)

where W is a diagonal matrix of weights corresponding to the likelihood of each fragment

actually being an object boundary, as reported by the approach described in Chapter 4.

Thus mattes derived from fragments less likely to be object boundaries will not significantly

affect the final affinity. Note that this combines all hypothesized fragments in a soft manner,

avoiding the need to choose some ideal subset, e.g ., via thresholding. Figure 5.4 provides

an example schematic describing the overall process of employing boundary fragments to

suggest mattes, which in turn generate an affinity matrix. In [44], a different but related

method for image segmentation is presented which also combines various individually-

weaker partitions (provided by proposals of sources and sinks in a min-cut framework).

The value of Aij will be maximized when the matting vectors for a pair of pixels usually

put them in the same class. When a pair’s vectors usually put the two pixels in opposite

classes, the affinity will be minimized. The normalization effectively handles discounting

the “don’t know” (near-zero) entries which arise from mattes that do not provide strong

evidence for one or both pixels of the pair. Our use of pairwise comparisons in this manner

captures whether locations in the image are part of the same or different objects. Therefore,

despite the fact that each individual hint only suggests a (soft) binary segmentation of the
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Figure 5.4: Each potential boundary fragment found in the original image (three shown in
yellow here) implies a set of constraints (F and B) used to generate a matte. Vectors of
matting results at each location in the image (vi and vj) can be compared in a pairwise fashion
to generate an affinity matrix, A, suitable for clustering or segmentation.

image, the combination of many different hints allows the actual number of objects to

remain unknown at this point — and certainly more than two (i.e. simple “foreground”

and “background”). Thus, using these subtle pairwise relationships in aggregate can yield

segmentations with more than two classes.

We have now defined a novel matting-based affinity measure which can be used with

any off-the-shelf clustering technique. This affinity takes into account boundary knowledge

and utilizes global appearance reasoning. An additional unique and noteworthy aspect of

our affinities is that they are defined based on feature vectors in a space whose dimension is

a function of the image content — i.e. the number of detected fragments, NF — as opposed

to an arbitrarily pre-defined feature space of fixed dimension. In our view, it is intuitively

preferable to use this type of data-driven feature space, whose complexity is likely better

matched to the image content, rather than defining an ad hoc feature space which may not

be appropriate for all images.

5.2 Image Segmentation by Normalized Cuts

Given our pairwise affinity matrix A, which defines a fully-connected, weighted graph over

the elements in our image, we will use spectral clustering according to the Normalized Cut

Criterion to partition it into an image segmentation with K segments [159]. To obtain a set

of multiple segmentations, we can simply vary this parameter K within a specified range.

Using the boundary-detection approach described in Chapter 4, we not only obtain

a better set of hypothesized boundary fragments and probabilities of those fragments

corresponding to physical object boundaries (i.e. for use in W from (5.2)), but we can also

use the computed super-pixels as our basic image elements instead of relying on individual

pixels. In addition to offering improved, data-driven spatial support, this drastically reduces
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the computational burden of constructing (and storing) Aij , making it possible to compute

all pairwise affinities between super-pixels instead of having to sample pixelwise affinities

very sparsely.

The benefit here is more than reduced computation, however, particularly when using

the popular spectral clustering technique of Normalized Cuts (“NCuts”). Other authors

have noted that non-intuitive segmentations typical of NCuts stem from an inability to

fully populate the affinity matrix or the topology of a simple, four-connected, pixel-based

graph [174]. By computing affinities between all pairs of super-pixels, we alleviate somewhat

both of these problems while also improving speed.

We will not review here all the details of spectral clustering via the Normalized Cut

criterion (see [127] for details), but the general approach involves computing the eigensystem

of the graph Laplacian L = D−1A, where D is a diagonal matrix whose ith entry along the

diagonal is the sum of the ith row of our matting-based affinity matrix, A. The final

clustering of the data is determined by discretizing into K clusters the eigenvectors of L

corresponding to the largest eigenvalues. Different methods exist for this discretization step,

but we use k-means on the rows of the matrix whose columns are the top K eigenvectors of

L [127].2 For multiple segmentations, we can compute the eigensystem of L just once and

simply repeat the discretization for each specified value of K.

We compare our segmentations obtained using NCuts on our matting-based affinities to

two popular segmentation approaches from the literature, each of which also uses NCuts and

offers a publicly-available implementation. First is the recent multiscale approach of Cour

et al . [36], in which affinities are based on Intervening Contours [99]. Second, we compare to

the segmentations produced by the Berkeley Segmentation Engine (BSE) [56, 114], which

relies on a combined set of patch-based and gradient-based cues (including Intervening

Contours). For discretizing the eigenvectors of the graph Laplacian, the BSE also uses k-

means, while the multiscale NCuts method uses a discretization procedure which attempts

to find an optimal rotation of the normalized eigenspace [196]. Finally, both methods

compute a sparsely-sampled, pixelwise affinity matrix.

Certainly, other image segmentation techniques exist. We performed some initial

experiments using mean-shift [35], as well as medoid-shift [157], directly in the space

of matting vectors, v. These methods did not perform as well for our goal of whole-

object segmentation, however, and may be better-suited to scene segmentation or over-

segmentation. This may be in part due to the sparse population of the high-dimensional

matting-vector space, particularly when super-pixels are used (this is especially true for

medoid-shift). We also found it more natural to specify a range of K for NCuts than

to specify the bandwidth parameters for mean-shift. Finally, the use of NCuts offered a

2We also note here the connection between the use of k-means to cluster the graph Laplacian’s eigenspace
and the grouping of our matting vectors captured by our affinity measure in (5.2).
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straightforward comparison to the two recent methods described above.

It is also worth noting that methods do exist for attempting to select automatically the

best K for a particular clustering using NCuts. We implemented the approach described

in [8], which considers a random walk on the graph implied by the affinity matrix in order to

suggest a small set of values for K. This method is geared towards use in multi-scale setting,

so there are still multiple values (typically three to five) for K. Thus, we are still left with a

set of multiple segmentations, albeit a much smaller one. Though theoretically appealing, it

was not clear that using this smaller set of segmentations offered any advantage over using

the full set resulting from using the whole range of K — beyond potential computational

savings. In other words, the set of K chosen by the algorithm in [8] did not necessarily

correspond to the best settings for producing segments corresponding to whole objects, as

discussed in more detail in the next section.

5.3 Evaluating Object Segmentations

In this section, we will present an intuitive approach for determining whether one set

of segmentations is “better” than another set generated using a different method. For

the eventual goal of object segmentation and discovery, we propose that the best set of

segmentations will contain at least one result for each object in the scene, in which that

object can be extracted accurately and with as few segments as possible. Ideally, each object

would be represented by a single segment which is perfectly consistent with the shape of

that object’s ground truth segmentation.

Thus, we define two measures to capture these concepts: consistency and efficiency. For

consistency, we adopt a common metric for comparing segmentations, which conveniently

lies on the interval [0, 1] and captures the degree to which two sets of pixels, R and G, agree

based on their intersection and union:

c(R,G) =
|R ∩ G|
|R ∪ G| . (5.3)

Here, R = {A, B, C, . . . } ⊆ S is a subset of segments from a given (over-)segmentation S,

and G is the ground truth object segmentation.

At one extreme, if our segmentation were to suggest a single segment for each pixel in

the image, we could always reconstruct the object perfectly by selecting those segments (or

in this case, pixels) which corresponded exactly to the ground-truth object’s segmentation.

But this nearly-perfect consistency would come at the cost of an unacceptably high number

of constituent segments, as indicated in the rightmost example in Figure 5.5. At the opposite

extreme, our segmentation could offer a single segment which covers the entire object, as

shown in the leftmost example. In this case, we would achieve the desired minimum of one

segment to capture the whole object, but with very poor consistency.



84 CHAPTER 5. BOUNDARY-BASED OBJECT SEGMENTATION

Number of
Segments Required

1
3

6

250+

Inreasing Segmentation Consistency

Figure 5.5: The trade-off between segmentation consistency (or accuracy) and efficiency (or
the number of segments required to achieve that consistency). As desired consistency increases,
so too does the number of segments required to achieve that consistency.

Thus we see that there exists a fundamental tradeoff between consistency and the

number of segments needed to cover the object, or efficiency.3 Therefore, when evaluating

the quality of a scene’s (over-)segmentation S, we must take into account both measures.

We define the efficiency as the size of the minimal subset of segments, R, required to achieve

at least the desired consistency, cd, according to the ground truth object segmentation, G:

ecd
(S,G) = min |R|, such that c(R,G) ≥ cd. (5.4)

Note that with this definition, a lower value of e(S,G) implies a more efficient (or

parsimonious) segmentation.

We can now specify cd and compute the corresponding ecd
, which is equivalent to asking,

“what is the minimum number of segments required to achieve the desired consistency for

each object in this scene?” By asking this question for a variety of consistency levels, we can

evaluate the quality of a particular method and compare it to other methods’ performance

at equivalent operating points.

Referring once again to Figure 5.5, the middle two examples indicate that we can

achieve a reasonable level of consistency with only three segments, or if we raise the desired

consistency a bit higher (perhaps in order to capture the top of the mug), it will require us

to use a different segmentation from our set which covers the mug with six segments. In

general, the best method would be capable of providing at least one segmentation capable of

yielding a desired high level of consistency with the minimum degree of over-segmentation

of any particular object, i.e., we seek minimal ecd
(S,G) at maximal cd.

The search over all segment subsets R possibly required to achieve a particular cd is

combinatorial. This is only an issue for evaluation and not at run time, but it is still desirable

3It may be helpful to think of these measures and their tradeoff as being roughly analogous to the
common notions of precision and recall, e.g ., in object recognition.
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to avoid a computational explosion that could make assessment of results intractable. In

practice, we only need to consider those segments which actually overlap the ground truth

object (other segments can only decrease consistency if included). We also limit the number

of those overlapping segments we are willing to use, and we select them in order of their

individual consistencies with the object of interest, i.e. according to (5.3). Using no more

than twenty such segments keeps computation tractable and still allows us to consider every

overlapping segment for nearly all examples. Finally, since we are really only interested in

segmentations which require a relatively small number of segments to capture an object,

we limit the size of R to a maximum of ten segments. Thus, in practice we evaluate the

consistency of all 20-choose-k combinations of our selected subset of overlapping segments

and choose the combination with the highest consistency for each value of k ∈ {1, . . . , 10}.

5.4 Experiments

For each of a set of test scenes, we have labeled the ground truth segmentation for foreground

objects of interest, which we roughly defined as those objects for which the majority of

their boundaries are visible. From the scenes in our dataset, we have labeled ground truth

segmentations for 50 foreground objects on which we will evaluate our approach.

We generate a set of segmentations for each scene by varying K between 2 and 20 while

using either our matting-based approach, multiscale NCuts [36], or the BSE approach [56,

114].4 Recall that the latter two methods compute affinities in a pixelwise fashion. To verify

that any improvement offered by our approach is not solely due to our use of super-pixels,

we also implemented a baseline approach which computes affinities by comparing pairs of

L*a*b* color distributions, obtained via kernel density estimates within each super-pixel.

As was used earlier in this thesis, we compare distributions with the χ2-distance metric.

For our proposed approach, we use each of the individual boundary fragments to suggest

constraints for mattes as described in Section 5.1.2. In practice, we ignore those fragments

with an extremely low probability (less than 0.01) of being boundaries, since the resulting

mattes in those cases would have almost no effect on computed affinities anyway. From an

initial set of 350-1000, this yields approximately 90-350 fragments (and mattes) per image

for computing pairwise, segment affinities according to (5.2).

We first selected a set of ten desired consistency levels, from 0.5 to 0.95. Then for

each labeled object in a scene and for each segmentation method, we pose the question,

“what is the minimum number of segments required to achieve each desired consistency in

segmenting this object?” We can then graph and compare the methods’ best-case efficiencies

4Note that, via post-processing, we force segments to be spatially contiguous and to have a minimum
area of 0.1% of the image area. This may add or remove segments, meaning that the actual total number
of segments in a final segmentation may not strictly match the specified K.
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as a function of the desired consistencies.

A typical graph is provided at the top of Figure 5.6, in which bars of different colors

correspond to different segmentation methods. Each group of bars corresponds to a certain

consistency level, and the height of the bars indicates the smallest number of segments

required (or maximum efficiency possible) to achieve that consistency. Thus, lower bars are

better. Bars extend to the top of the graph when a method required more than the maximum

ten segments to achieve a particular desired consistency. Thus we see that our approach is

able to achieve similar consistency with fewer segments — until cd reaches 0.85, at which

point all methods fail on this image. Not surprisingly, the relatively simplistic appearance

model of the color-only baseline tends to over-segment objects the most.

We can also examine the actual segmentations produced by each method at corre-

sponding desired consistency levels, as shown at the bottom of Figure 5.6. For the input

image and selected ground truth object shown, we provide for comparison the individual

segmentations produced by each method. Each displayed segmentation is the one which

used the minimum number of segments while still achieving at least the desired consistency

indicated to the left of the row. Also shown are the segments used for our method and the

color distribution approach, along with a high-probability subset of the boundary fragments

used in the proposed approach. We display only a subset of the fragments actually used

simply for clarity. Below each segmentation are the actual consistencies and efficiencies (i.e.

number of segments) obtained. For visualization, the individual segments corresponding to

the object, i.e. those used to compute the displayed c and e values, have been colored

with a red-yellow colormap, while background segments are colored blue-green. Note how

our method achieves comparable consistencies with fewer segments — even when other

methods may not be able to achieve that consistency at all. More results are provided in

Figures 5.7-5.8 and in Appendix C.

Not surprisingly, when the desired consistency is fairly low, any method is usually

capable of capturing an object with a minimal number of segments. But as the desired

consistency increases, it becomes more difficult, or even impossible, to find a small number

of segments to recover that object so accurately. Finally, as the desired consistency becomes

too high, all methods begin to fail. We find, however, that for many objects our matting-

based approach tends to maintain better efficiency (i.e. decreased over-segmentation) into

a higher-consistency regime than the other methods.

To capture this more quantitatively over all objects, we can compute the difference

between the number of segments our method requires at each consistency level and the

number required by the other methods. We would like to see that our method often requires

significantly fewer segments to achieve the same consistency. Certainly, there are some

“easier” objects for which the choice of segmentation method may not matter, so we would

also expect to find that our method regularly performs only as well as other methods. But
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Figure 5.6: Top: A typical graph of segmentation efficiency vs. consistency for a set of desired
consistency levels. Our method is able to achieve similar object segmentation consistency
with fewer segments. Bottom: The corresponding input data (1st row) and the resulting
segmentations at two consistency levels (2nd, 3rd rows), as indicated by cd = {0.70, 0.80} to
the left of each row. For clarity, only high-probability boundary fragments used by our approach
are shown, using a different color for each fragment. For visualization, the individual segments
corresponding to the object, i.e. those used to compute the c and e values displayed below each
segmentation, have been colored with a red-yellow colormap, while background segments are
colored blue-green.
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Figure 5.7: Another example showing our method’s ability to achieve comparable consistency
with fewer segments.
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Figure 5.8: Another example like those in Figures 5.6-5.7. Note only one of the three objects
in the scene is shown here.
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we also must ensure that we rarely do worse. We also expect the potential benefit of our

approach to be most obvious within a reasonable range of desired consistency: all methods

will tend to perform equally as well at low consistencies, and all methods will tend to fail

equally as often at very high consistencies.

Figures 5.9 and 5.10 offer evidence that our approach does indeed outperform the other

methods as desired. Histograms in Figure 5.9 display the relative number of segments

required by our approach as compared to the other methods. The height of the bars

corresponds to the fraction of the total number of objects for which we achieve the specified

relative efficiency on the x-axis. Thus, bars at zero, in the center of the graph, correspond

to cases when we perform just as well as the other approaches. Bars to the right (left)

correspond to cases where we perform better (resp., worse), using fewer (resp., more)

segments than the competition. As indicated, each plot corresponds to a different desired

consistency level (increasing down the rows). Bars at the extreme left and right also include

complete failure cases. Summary statistics averaged over all objects and methods for our

improvement or degradation in performance are also provided on the plots in Figure 5.9 and

in separate graphs in top half of Figure 5.10. As expected, we perform just as well (e.g .,

Figure C.1 or C.22) — or poorly (e.g ., Figure C.32) — as other methods for many of the

objects, particularly at very low or very high desired consistencies. But we require fewer

segments per object in a significant number of cases. Furthermore, our approach rarely

hurts; we do not often require more segments on average than the other methods.

In the bottom half of Figure 5.10, we plot the same relative performance summary,

but for separate experiments performed with the weights, W in (5.2), which control the

contribution of each segmentation hint, derived from the average Pb strength along each

fragment (i.e., instead of using the boundary probability for our approach in Chapter 4).

Note that performance is similar, indicating the power of the matting-based affinities

independent from the method of boundary detection. However, improvement is achieved

for fewer of the objects (top plot), and the discrepancy between the relative number of

segments required is lessened (bottom plot). This indicates that our method of boundary

reasoning also offers useful information, beyond the Pb measure, for effectively weighting

the combination of individual segmentation hints.

5.5 Discussion

Debate continues over whether high-level reasoning, e.g . object recognition, should precede

figure-ground perception [134], or if purely bottom-up, local reasoning can account

for this process [135, 164]. Our work takes the more bottom-up perspective, since

knowledge of specific objects is not required (unlike [140]), but our use of matting

incorporates more powerful, semi-global reasoning as compared to purely-local methods.
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Our experiments indicate that by maintaining “soft” reasoning throughout, and by

combining multiple, individually-imperfect sources of information in the form of fragmented

boundary hypotheses and oft-uncertain mattes, our novel method for addressing object

segmentation yields promising results for use in subsequent work on unsupervised object

discovery or scene understanding. While here we have evaluated our affinities in isolation,

as compared to existing methods, it is certainly possible that combining multiple types of

affinities would offer further improvement.

In this work, we employ the motion-based techniques for boundary fragment identifi-

cation described in previous chapters in order to improve performance by offering better

boundary estimates and, in turn, better mattes. We are not, however, incorporating motion

estimates (e.g ., optical or normal flow) directly into our segmentation affinities [158, 188],

nor is the approach described in this chapter fundamentally tied to the use of motion.

Furthermore, for close-up static scenes where the only “motion” cue arises from the slight

parallax generated by small camera movements, the macro-scale character of this motion

may not be suitable for motion segmentation techniques which are designed to model or

differentiate between gross, object-wide movements over longer timeframes.

Using boundaries and mattes as described simultaneously implies the grouping and

separation of segments on the same or opposite sides of a given boundary, respectively. We

also performed experiments with the technique described in [194] to incorporate separately

such “attraction” and “repulsion” evidence via spectral clustering, rather than simply

treating the two as equivalent sources of information with opposite signs. This sometimes

yielded very good results, but it was fickle: when it failed, it often failed completely (i.e.,

at all consistency levels). Future research in this direction is warranted, however.
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Figure 5.9: Overall Performance. Histograms of the relative number of segments required
by our approach as compared to the other methods. The height of the bars corresponds to
the fraction of the total number of objects for which we achieve the specified relative efficiency
on the x-axis. Thus, bars at zero, in the center of the graph, correspond to cases when we
perform just as well as the other approaches. Bars to the right (left) correspond to cases where
we perform better (resp., worse), using fewer (resp., more) segments than the competition. As
indicated, each plot corresponds to a different desired consistency level (increasing down the
rows). Bars at the extreme left and right also include complete failure cases.
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Figure 5.10: Top Half: Summary statistics for the relative performance of our matting-based
approach as compared to the other methods, corresponding to the results in Figure 5.9. For
the desired consistency levels along the x-axis, the upper graph compares the percentage of
objects for which our method offers improvement or degradation. Note that the percentages
do not sum to one since cases where there is no change in performance are not counted.
At the corresponding consistencies, the lower graph indicates how much better or worse our
performance is, in terms of number of segments required. For both graphs, we want the red
bars to be as high as possible and the yellow bars to be as low as possible. Bottom Half: The
same summary statistics, but using the average Pb strength along each fragment to provide the
weights W in (5.2) — instead of our boundary probabilities from Chapter 4.





Chapter 6

Boundary Reasoning for Object

Recognition

A popular approach to object recognition is to match objects from a database efficiently

to those seen in novel images using a sparse set of information-rich features extracted from

images [15, 19, 28, 31, 49, 87, 105, 106, 120, 121, 124]. Because the features only require local

support, matching can be successful even in cluttered scenes. And when the features are

specifically designed to be discriminative, only small numbers of matches are necessary to

provide high confidence in an object’s detection. These methods have also been motivated

from a biological perspective [106, 176].

There are two broad steps involved in any feature-based recognition approach. First,

features — also referred to as keypoints or interest points — are detected within an image.

For this step, repeatability of detection is crucial [118]. If the detected locations (or

scales/orientations) of interest points on an object vary from image to image, there is no

hope of successful matching later. Second, descriptive signatures — or descriptors — are

computed from local image values for each detected interest point in order to distinguish

between them. The goal is to design a highly distinctive descriptor for each interest point in

order to facilitate meaningful matches, while simultaneously ensuring that a given interest

point will have the same descriptor regardless of the object’s pose, the lighting in the

environment, etc. So both steps, detection and description, rely on robustness to changes

in various properties for success.

Much past work in this area has focused on producing interest points and descriptors

that are invariant to scaling of the image [43, 83, 106, 118]. All of these approaches operate

in scale-space to detect each interest point’s characteristic scale [54, 55, 103]. Rotation

invariance during detection is usually accomplished “for free” by using rotationally invariant

image measures, such as the Laplacian. There are generally two approaches for creating

rotationally invariant descriptors. Lowe [106] attaches a coordinate frame to each descriptor
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(a) (b) (c)

Figure 6.1: The need for background invariance in feature-based recognition methods arises
particularly in cases of (a) objects with concavities, (b) objects with little texture and
correspondingly few features which we therefore cannot afford to miss, and (c) objects appearing
relatively small in an image, for which we must rely on larger features for which overlap with
the background is more likely.

while others, e.g . [118], again use rotationally-invariant measures computed locally, such

as local jets [54, 152]. The former produces more distinctive features, while the latter

produces more invariant ones. It is important to note that this balance between the degree

of invariance and the level of descriptiveness is a fundamental tradeoff.

Lowe’s features also have some invariance to affine transformation engineered into them,

but others have designed truly affine-invariant features. In [15], Baumberg describes

a method for creating affine-invariant descriptors around scale-invariant interest point

detections. Mikolajczyk and Schmid go a step further in [119], combining the detection

and description phases into an iterative scheme such that both steps are invariant to affine

transformation.

Unfortunately, because all of these methods rely on the use of local image information

at various scales, both detection and description of features near object boundaries will

incorporate information from both the object and the background, as shown in Figure 6.1.

Therefore, when the object is seen with different backgrounds, its features would necessarily

be different (both in location and description). In particular, this problem is exacerbated as

the size of the object relative to the image decreases. As small features completely contained

within the object become impossible to detect for lack of resolution, we must depend on

larger-scale features, which are more likely to overlap with the background.

Ideally, the detection and description of an object’s features would be the same regardless

of the background on which it is seen. This implies that there is another type of

invariance which would be desirable for feature-based methods: background invariance.

To that end, we have developed a method for incorporating knowledge of (partial) object
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boundary information, of the type discussed earlier in this thesis, into the detection and

description processes of Lowe’s popular SIFT feature [106]. Our approach, which we call

the Background and Scale Invariant Feature Transform (BSIFT) [165], is the subject of this

chapter.

It should be noted that the discussion thus far has centered around features derived

from image intensity information directly. Recently, edge-based features have emerged

which exhibit some degree of background invariance in order to recognize wiry shapes in

cluttered scenes [31, 82, 121]. Such methods build local features from edge maps in order

to capture shape rather than texture. It is likely that future feature-based systems will

leverage both shape and texture information for successful recognition of a wide variety

of objects. To our knowledge, the work desribed here is the first to address background

invariance when using appearance/texture information.

6.1 Background Invariant Feature Detection

Our method builds directly on Lowe’s Scale Invariant Feature Transform (SIFT) because

of its popularity. Relevant portions of the SIFT method will be briefly reviewed here since

our modifications occur at a fairly low level, but for complete details see [106].

Initial keypoints are detected as local extrema of a scale-space Laplacian pyramid.

In practice, this Laplacian pyramid is efficiently approximated by the construction of a

Difference-of-Gaussian pyramid instead. It is here, at the very beginning of the detection

process, where we introduce our first modification.

Note that smoothing an image with a Gaussian filter blurs information across object-

background boundaries. We can, however, replace this isotropic smoothing with more

local process which respects arbitrary boundary conditions. This idea of using anisotropic

smoothing has been extensively studied, e.g . [21, 133, 192]. We will only present here the

basic concepts relevant to our specific goals. The key (classical) observation is that Gaussian

smoothing is equivalent to performing iterative local heat diffusion by updating each pixel

according to:

I(k+1)(x, y) ← I(k)(x, y) + τ∇2I(k)(x, y), (6.1)

where

∇2I(x, y) =
∂2I

∂x2
+

∂2I

∂y2
. (6.2)

If we diffuse at each pixel (x, y) in an image I for k iterations according to (6.1), then

as the “timestep” τ → 0, we have equivalently smoothed the image by a Gaussian with

σ =
√

2kτ . To keep the diffusion process numerically stable, we use τ = 0.2. The advantage

of using a local diffusion process over standard Gaussian filtering (i.e. via convolution with a

Gaussian kernel) is that we can naturally enforce arbitrary boundary conditions anywhere
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in the image, namely at object boundaries. In practice, this is accomplished by using

Neumann boundary conditions when computing the second derivatives necessary for (6.2),

allowing us to switch the diffusion process on or off according to local boundary information.

In contrast to most prior work using anisotropic smoothing (e.g ., for noise removal), we use

boundary information from a separate reasoning process, as opposed to diffusing the image

based simply on local intensity gradients. Otherwise, every edge visible in the image could

suppress information flow across it, while we are only interested in preventing information

flow across those edges that correspond to physical object boundaries. Figure 6.2 shows an

example of smoothing the image of a Sony Aibo1 by simple Gaussian filtering as compared to

a diffusion process which incorporates boundary information. Note how diffusion degrades

gracefully as holes are introduced in the boundary information. Thus we do not require

perfect boundary detection (nor, equivalently, a perfect segmentation).

We can now build a boundary-respecting Gaussian pyramid by pausing our diffusion

process at appropriate intervals to obtain each desired level of smoothing. As pointed out

by Lowe [106], if we start with an initial smoothing of σ0, the desired scale-normalized

Laplacian pyramid can be closely approximated by a Difference-of-Gaussian pyramid with

the degree of smoothing at each level L chosen according to σL = 2L/sσ0, where s is the

number of samples per scale octave (typically 3 or 4).

Once the Difference-of-Gaussian pyramid is constructed, sub-pixel local extrema are

identified in scale-space and low-contrast and edge-like features are filtered out, all

following [106]. A synthetic example is shown in Figure 6.3, where the Aibo image has

been pasted onto two differently-textured backgrounds. Interest points are plotted as X’s

with circles representing their corresponding scales. Only the detections whose locations

and scales are the same regardless of background are plotted, with lines connecting them.

In the center we see that when using regular SIFT, with no boundary information, only

38.3% of the detections with the brick background are also detected at the same location

with the rocks background. On the right, where boundary information (here derived from

the known silhouette of the Aibo) was incorporated into the detection process as described

above, 98.4% of the detections are the same regardless of background. We emphasize

that correspondence here is only in the sense of location and scale. No notion of descriptor

matching has been incorporated into this example. The use of boundary information enables

the detection of more features along the narrow legs of the Aibo. In addition, the boundary

information has allowed for consistent detection of larger features, which are arguably more

meaningful [176].

1Aibo is a registered trademark of Sony Corporation.
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Gaussian Smoothing 
σ = 4

Iterative Diffusion
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Iterative Diffusion 
using boundary info
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Iterative Diffusion 
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Noisy Boundary InfoPerfect Boundary Info

Figure 6.2: A comparison of Gaussian smoothing by simple filtering versus diffusion with
boundary knowledge. With no boundary information diffusion and filtering produce identical
results. With boundaries, however, diffusion prevents information from bleeding between the
object and background, degrading gracefully as noisy holes are introduced.

6.2 Background Invariant Feature Description

Now that we have a method for detecting interest points in a background-invariant manner,

we need to generate descriptors for those interest points which will also remain the same

regardless of background. Again, our descriptors are direct modifications of Lowe’s SIFT

descriptors, so further details may be found in [106].

For each interest point, image gradient magnitudes and orientations are extracted within

a patch whose size is determined by the scale of the interest point. The orientations are

binned into a histogram weighted by their magnitudes and by distance from the patch

center in order to determine a dominant orientation for each interest point. (Note that,

in practice, multiple peaks in this orientation histogram may result in multiple interest

points at the same location, but with differing orientations.) At this point, without any
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Original Images
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identical detections

Regular SIFT

60 of 61 (98.4%)    
identical detections

Using Boundary Information

Figure 6.3: The incorporation of boundary information allows for more consistent feature
detection on the same Sony Aibo object image pasted onto different background images.

modification, background invariance is violated since we are working with a patch of image

values which will often overlap object and background pixels, particularly for detections near

object boundaries. In order to impose background invariance on this step of the descriptor

generation, we use a boundary-respecting weighting mask in the creation of the orientation

histogram, rather than a simple Gaussian. This lessens the importance of samples further

from the interest point while also effectively removing samples not on the object.

The creation of a weighting mask by heat diffusion as above might seem to be the natural

(a)

Interest Point with 
Local Boundaries

(b)

Simple Gaussian 
Weight Mask

(c)

Weight Mask 
by Diffusion

(d)

Weight Mask 
by Distance Marching

(e)

Distance Transform from 
Local Boundaries

Figure 6.4: Weighting masks around an interest point for incorporating a nearby object
boundary into descriptor creation.
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choice here, given its use in detection above, but it turns out not to have the desired effect

in this case. Figure 6.4 compares different weighting masks for an interest point marked

by the red X with local boundary information as shown in (a). Without utilizing the local

boundary information, a simple Gaussian weighting mask (b) as used by SIFT clearly gives

non-zero weight to pixels which do not lie on the object, resulting in a non-background-

invariant descriptor. But if we diffuse outward from the interest point according to (6.1) in

order to produce a boundary-respecting Gaussian mask (c), we see that the weight values

build up like a “snowdrift” at the boundaries, resulting in a weight mask which is no longer

truly a function of distance from the interest point (note that the darkest part of the mask

is not at the X as we would like). If we instead use a distance marching procedure [154] to

propagate distances away from the interest point while respecting boundary information,

however, we obtain the correct weight mask (d). Such a mask gives zero weight to pixels

not on the object and weight proportional to distance from the interest point for pixels on

the object. In addition, this procedure is more efficient than repeated diffusion at every

interest point.

One might question the necessity of this method of weight mask generation. Why

not just truncate the simple Gaussian weight mask in Figure 6.4 (b) with the boundaries

from (a)? The problem with that straightforward approach becomes apparent when perfect

boundary information is no longer available. Certainly we do not want our proposed method

to be dependent on an unrealistic assumption that perfect boundaries are provided. But

just as the iterative diffusion process used for feature detection degraded gracefully as holes

in the boundary were introduced (see Figure 6.2), so too does our method of weight mask

generation by distance marching. In Figure 6.5, we have introduced holes into the local

boundaries around the interest point marked by the red X in (a). But we see that the

resulting weight mask in (b) will still put much less emphasis on pixels on the opposite

side of the boundary; only minor leakage occurs through the holes. It is not clear how to

achieve this effect by starting with a full Gaussian weighting function and then attempting

to “truncate” it using such imperfect boundary information.

Finally, we also found that adding a weighting mask based on distance from the nearest

boundary increased performance. The idea here is to lessen the contribution of pixels which

lie close to object boundaries, whose precise locations may not by known in practice. This

weighting function can be computed using a distance transform from local boundaries and

is point-wise multiplied by the Gaussian weighting mask described above. An example with

perfect boundaries is given in Figure 6.4 (e) and with imperfect boundaries in Figure 6.5 (c)

— here again we see that this weighting function is largely unaffected by the holes in the

boundary. Thus the final weighting mask becomes a balance between increasing weight as

we approach the interest point and decreasing weight as we approach a nearby boundary.

An example of a combined weight mask is show in Figure 6.5 (d).
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Figure 6.6: Descriptor creation: A set of six-
teen histograms of gradient orientation (marked
by red dots) are aligned to the dominant orienta-
tion of an interest point (green X). Each sample
(e.g . the blue square) contributes its orientation
to the four nearest histograms (yellow arrows)
according to its magnitude, distance to each of
those histograms, and distance to the interest
point itself.

Once a dominant orientation is as-

signed, a coordinate system is aligned to

that direction. The gradient orientations

at each site within the local patch are

placed into sixteen histograms, each with

eight bins, positioned relative to the aligned

coordinate system. Each orientation sam-

ple’s contribution to a given histogram is

weighted by its magnitude, distance from

that histogram’s position in the coordi-

nate frame, and distance from the interest

point itself. This process is illustrated

in Figure 6.6. For the interest point

marked by the green X at the center, a

coordinate frame has been aligned to the

dominant gradient orientation as found by

the procedure outlined above. Each square

in the grid represents a sample site for

the patch surrounding the interest point,

where a sample consists of the gradient

orientation and magnitude for that location

in the image. The sixteen histogram centers are designated by the red dots. The blue shaded

sample is shown to contribute to its four nearest histograms with a weight which is bilinearly

interpolated based on distances to those histograms’ centers.

To add background invariance to this standard SIFT descriptor, a boundary-respecting

weighting mask produced by fast marching is again used to weight each sample’s histogram

contribution according to its distance from the interest point. The distance-from-nearest-

(a)

Interest Point with 
Imperfect Local Boundaries

Weight Mask by 
Distance Marching

(b)

Distance Transform 
from Local Boundaries

(c)

Combined Weights

(d)

Figure 6.5: Descriptor weighting masks in the presence of imperfect boundary information,
showing graceful degradation of the masks despite holes in the nearby boundary.
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boundary weight as described above is used here as well. Finally, all sixteen histograms’

bin values are concatenated into a 128-vector, which is then normalized into a unit vector.

Following [106], this vector is further adjusted by clipping all values at 0.2 and then

renormalizing. The resulting vector forms the 128-dimensional descriptor for an interest

point.

In Figure 6.7, we have manually chosen the same interest point for the Sony Aibo object,

but with different backgrounds. Note that the large scale of the interest point and the

shape of the object cause significant inclusion of background pixels. In comparing the SIFT

descriptors computed with the brick background (upper bars) and the rocks background

(lower bars), we see that the two are very different. There is no hope of matching them

as the same descriptor. But when boundary information is incorporated into the weight

masks as described, we see that our resulting descriptors, are exactly the same (i.e. they

have a Euclidean match distance of zero in descriptor space).

We now have all the pieces necessary for what we refer to as a Background and

Scale Invariant Feature Transform (BSIFT). In the following sections, we will compare

the performance of our BSIFT method to standard SIFT.

6.3 Synthetic Experiments

In order to evaluate our method’s performance, we need to know ground truth boundaries

for a library of objects. To facilitate large-scale evaluation with a database of objects and a

non-trivial number of example images, we artificially paste object images from a database

of 110 objects onto a set of 25 background images. The set of backgrounds consists of about

half indoor office/lab scenes and half outdoor natural scenes. The database of objects and

backgrounds is a concatenation of some of our own images with many others from various

online databases [60, 97, 125]. Each object has been hand segmented into foreground and

background pixels, so precise object boundaries are known. Furthermore, features have

been extracted from the objects with and without using boundary information (i.e. using

BSIFT and SIFT, respectively), and all of these features are stored in one large database

consisting of over 8000 features for each method.

In order to guard against implementation differences and ensure the only variable being

tested is the inclusion or lack of boundary information, we do not use Lowe’s publicly-

available SIFT library to test against our BSIFT implementation. Rather, we use only

our own code, supplying boundary information to test BSIFT or withholding boundary

information to test SIFT. (Without any boundary information, our method defaults to

using standard Gaussian smoothing and Gaussian weighting masks.) We therefore expect

that our baseline performance will differ from the more mature SIFT library available from

Lowe, though we have verified that our implementation performs comparably with Lowe’s.
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Figure 6.7: Incorporating boundary information into the descriptor creation allows us to
compute exactly the same descriptor for an interest point, despite its overlap with two different
backgrounds. SIFT, on the other hand, produces drastically different descriptors.

Finally, it is worth noting that the database includes many low-texture objects as well as

objects with narrow appendages. Both are difficult for existing feature-based methods. A

random selection of some of the objects in our database is shown in Figure 6.8.

For each test, a random background and object pair is chosen and the object is pasted

onto the scene at a random location, orientation, and scaling (60-100%). In addition,

we can simulate to some degree the effect of errors in object boundary extraction by

introducing random contiguous breaks in the boundaries. This degradation is quantified by

the percentage of the original boundary that is eroded away. Our performance criterion is

the percentage of interest points present for the object in the database that are correctly

matched to the object in the generated image — where a correct match implies that both the

object’s identification and location are correct. For reliable results, [106] suggests defining

a match to be found when the ratio between the closest and second-closest descriptors in

the database, using simple Euclidean distance, is less than a threshold (we use 0.6 in for

all the experiments described here). The interesting cases are those when our method finds



6.3. SYNTHETIC EXPERIMENTS 105

Figure 6.8: Example objects from the database used in our synthetic recognition experiments.
The objects used are a combination of objects from our lab and images from various online object
databases. Note the inclusion of low-texture objects as well as objects with narrow appendages.
Both are difficult for existing feature-based methods, which rely on image patches.
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Figure 6.9: As expected, as boundary degradation increases, BSIFT’s performance resembles
that of regular SIFT more and more.

substantially more matches than SIFT, or better still, when SIFT fails to find any matches

and our method succeeds.

For a set of 3000 experiments, we found that the average correct match (true positive)

rate using our method was 80% while SIFT’s was only 55%. Our method had a strictly

greater number of correct matches (meaning more confident object recognition) 68% of the

time. In fact, our method found at least one match while SIFT failed completely in 26%

of the experiments. In 9% of the experiments SIFT found more matches than our method,

and in 15% neither method found any matches (thus demonstrating the existence of some

rather difficult objects in our database).

As expected, our method’s performance and its superiority to regular SIFT decrease as

boundary degradation increases since information derived from object boundary locations

is the only difference between the two methods. Figure 6.9 shows a plot of performance

values versus the amount of boundary degradation for a set of 1000 experiments in which

scaling was set at 100% and boundary degradation varied between 0 and 60%. BSIFT’s

performance falls off gracefully rather than completely failing as boundaries are eroded
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away and information leaks through during the diffusion and distance marching processes.

Finally, in Figure 6.10, we also see that BSIFT is more resistant to the effects of scaling.

For a set of 1000 experiments in which scaling varied uniformly between 60 and 100%

(while edge degradation was disabled), we see that the matching rate for BSIFT does not

fall off as significantly as for SIFT. For BSIFT the matching rate drops about 10% as the

scaling decreases, whereas SIFT’s performance — which is consistently much lower than

our method’s — drops more than 20%.

6.4 Real Experiments
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Figure 6.10: As scaling decreases, SIFT’s performance
remains below that of BSIFT and falls off more quickly.
BSIFT achieves over 80% correct matching performance
over the scaling range.

Having verified in a controlled man-

ner that the use of boundary in-

formation as described can improve

recognition performance, we now

turn to several proof-of-concept ex-

amples on real images. Noting

that BSIFT is not strictly tied

to the boundary detection meth-

ods presented in previous chapters,

we present results using three dif-

ferent sources of boundary infor-

mation: background subtraction,

stereo disparity, and our approach

from Chapter 4.

In the top row of Figure 6.11,

a toy car has been placed on a

desktop such that it is quite small

with respect to the image size. Thus, there is not enough resolution to find many features

on the object. We see that SIFT finds two feature matches while BSIFT finds six. In the

bottom row, a set of dry-erase markers — which exhibit very little texture — have been

placed in an office scene, again such that they are small with respect to the image size.

Here, SIFT fails to find any matches, while our method finds four. Note that there are

only nine and eleven total features detected for the markers’ training image using SIFT and

BSIFT, respectively.

Figure 6.12 shows results using boundary information derived from a stereo disparity

map. In this case the test image has limited resolution as compared to the training image

(which is not uncommon in practice). The smaller features normally available on the fan,

which regular SIFT could correctly match, are of little use in this case because of the lack of
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Original Image Background Subtraction SIFT: 2 Matches Found BSIFT: 6 Matches Found

Original Image Background Subtraction SIFT: 0 Matches Found BSIFT: 4 Matches Found

Figure 6.11: BSIFT outperforming SIFT using background subtraction for a toy car object
(top row) and a set of dry-erase markers (bottom row). Note that only three matches for the
dry-erase markers are visible because two are at the same location but with different orientations.

resolution. The texture of the couch in the background contaminates any large-scale SIFT

features, but BSIFT is able to correctly match them. Indeed, SIFT fails to find a single

match, while BSIFT finds four.

Finally, in Figure 6.13, we provide an example linking the BSIFT approach described

in this chapter with the boundary detection process presented in Chapter 4. As with

the previous example using stereo, the training image of the object here is much higher

resolution than the scene image. Using regular SIFT, two correct matches are found and one

incorrect match is also returned. Using BSIFT, with boundaries detected by our approach,

however, we find seven correct matches.

6.5 Discussion

In this chapter we described a straightforward, intuitive method for incorporating boundary

knowledge into the detection and description processes of feature-based object recognition.

We demonstrated on controlled, synthetic experiments the desired improvement and

graceful degradation offered by our approach. Finally, we presented initial results linking a

few methods of boundary detection, including our own, to the BSIFT approach described

here. Large-scale experiments integrating these approaches more completely into a single

system would be an interesting line of future work.
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Figure 6.12: Using object boundary information derived from a stereo disparity map, BSIFT is
able to find matches on the fan despite the low resolution/scale. SIFT fails completely on this
example. Note that the training (top) and test image (bottom) are shown at actual relative
scale.
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BSIFT
(Boundary detections using our method)

7 Correct Matches
0 Incorrect Matches

Regular SIFT
(No boundary information)

2 Correct Matches
1 Incorrect Match

Figure 6.13: Using BSIFT with boundaries detected using the methods presented in this thesis,
we find seven correct matches (right), as compared to two correct matches and one incorrect
match found using regular SIFT (left). The boundary information used by BSIFT in the right
example is indicated in red. Note that the training (top) and test image (bottom) are shown at
actual relative scale.



Chapter 7

Conclusion and Future Directions

Occlusion is a pervasive, often-overlooked visual phenomenon which is a significant

stumbling block for most, if not all, computer vision pursuits. But occlusion boundaries are

also an important part of perceptual reasoning. To ignore or avoid them simply as noisy

outliers throws away valuable information useful in higher level processing. In this thesis,

we have described the various motion cues available at occlusion boundaries and presented

methods for estimating them from short video clips, including an extension of powerful

patch-based edge detection techniques to the spatio-temporal domain. In combination with

appearance information, we have used those motion cues to demonstrate local, pixelwise

boundary detection. By then incorporating improved spatial support and a novel graphical

model, we have also suggested an approach for more global reasoning about boundaries.

Furthermore, we demonstrated methods for employing boundary information (from our

described detection strategy or others) into higher-level processing. First, we used the

boundaries to suggest segmentation “hints” via state-of-the-art matting techniques and

combined a set of such hints into a pairwise affinity measure suitable for whole-object

segmentation. In addition, we used boundary information to add a form of background

invariance to feature-based recognition methods.

The dataset of video clips used throughout this work has also been made available

publicly for use by other researches.

7.1 Improvements and Extensions

In this work, we have addressed occlusion boundaries from a wide range of perspectives

including low-level feature extraction and local detection, mid-level reasoning and propa-

gation, and high-level reasoning in the form of segmentation and recognition. Certainly,

further research is possible for digging deeper at any of these levels. Below we will discuss

potential enhancements and directions building on our work.
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7.1.1 Low-Level Improvements

Complex Spatio-Temporal Edges

The use of a plane to divide our spatio-temporal patches for boundary speed estimation

restricts us to detecting locally linear edges undergoing locally constant-velocity motion.

Using those planes as an initialization, one could also adapt the shape of the dividing

surface in space, time, or both to account for more complex edge shapes undergoing more

complex edge motion. This could potentially be performed via energy minimization in an

active-contour (snake) framework or using level sets [154]. Though this may lessen the need

for stabilization (i.e. dominant motion removal) to some extent, it would likely be quite

computationally expensive.

Improved Motion Estimation

Our multi-frame approach to patch motion estimation — see Equation (2.8) — currently

incorporates only spatial derivatives Ix and Iy of the reference frame. Since, by construction,

the location of the patch in the reference frame is constant as we iteratively update the

motion estimate, the matrix G of spatial derivatives can potentially be pre-computed. This

is computationally convenient, but it may be worthwhile to explore other motion estimation

procedures which make use of the spatial derivatives across all frames [11, 53], or related

techniques such as “congealing” [96]. In particular, heavy reliance on the reference frame

can be problematic when motion blurs the data in that specific frame. In such cases, it is

less likely that the necessary gradient information will be blurred out for the entire duration

of the spatio-temporal patch, so utilizing all available spatial gradients could be helpful.

Super-pixel Matting

The main computational bottleneck of our whole-object segmentation strategy in Chap-

ter 5 is currently in producing the mattes associated with each fragment using Levin’s

method [100]. Unfortunately, the mattes obtained with the much faster approach presented

in [9] were far less useful. While for our experiments we achieved significant speed-up of

Levin’s publicly-available implementation by improving “vectorization” of the Matlab code,

it should be much more advantageous to convert that pixelwise implementation to operate

on super-pixels instead. This appears to be possible, though not completely trivial since the

“propagation” effects offered by the use of overlapping 3× 3 windows (as claimed in [100])

would need to be extended carefully to the super-pixel domain.

7.1.2 Mid-Level Enhancements

Using Regions

As discussed in the introduction, we have focused mainly on reasoning at boundaries

themselves. The regions enclosed by those boundaries could be further integrated into
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a system capable of utilizing both the techniques presented here and existing region-based

methods. For example, it may be beneficial in some situations to incorporate other, region-

based measures of affinity into the segmentation strategy described in Chapter 5.

Feature Improvement via Feedback

Continuing in this vein, one avenue of research here might be the feedback of our detected

boundaries into the initial boundary hypothesis procedure. Confident boundary estimates

could be used to merge initial segments, thereby producing longer fragments and larger

regions of support for features [76]. Ideally, iterating the processes of segment/fragment

hypothesis, feature extraction, propagation, and classification could potentially lead directly

to further improvements in object segmentation — still without high-level, object-specific

knowledge.

While this may be reasonably straightforward for many appearance/geometry features,

care would need to be taken in updating fragments’ and segments’ motion estimates. We are

able to rely on fairly simple translational models of motion in this work because translation

is locally able to capture perceived motion quite well. As segments expand and fragments

extend, such a model may not be appropriate. But venturing straight down the road of

applying more complex motion models may be dangerous and could suffer the same pitfalls

as many layered motion segmentation techniques.

In the extreme, non-rigid (or articulated) objects such as people, animals, or cloth may

not adhere to any reasonably concise motion model. In other words, it may be quite difficult

to find or estimate a single model which explains the motion of all the constituent pixels

on such an object. For segmentation of this type of object, it may be more useful to rely

largely on grouping of the boundaries (whose foreground/background motions may still

be locally translational) and simply employ some form of (piecewise) smoothness on the

enclosed segments’ motion estimates.

Figure/Ground Analysis

We have not performed specific analysis and evaluation of figure/ground assignment to

our boundaries in this work. While a notion of the foreground side of a boundary was an

important part of label propagation in our factor graph model in Chapter 4, our focus has

mainly been on the detection of boundaries and their utility for high-level tasks. Indeed, it is

interesting to note that explicit figure/ground labels were not absolutely necessary to yield

the results presented in Chapters 5 and 6 for object segmentation and recognition. Still,

further research in this direction is warranted. In our experience, our method generally

achieves qualitatively consistent foreground assignment along boundaries, but sometimes

the entire boundary’s foreground/background labeling is reversed. We believe this to be

partly an artifact of impoverished local cues combined with the limited ability of existing
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inference techniques to propagate local information effectively over large distances on dense,

loopy graphs. Further incorporation of ideas from Ren’s work [139, 140], which focuses on

the figure-ground assignment problem given the object boundaries, may prove beneficial

here.

Integrated Training

The classifiers needed to compute the potentials for our factor graph model in Chapter 4 are

currently trained independently (from each other and from the inference procedure itself).

It could be beneficial — though also quite expensive — to train them together and within

an inference loop. This is akin to the training of parameters in Discriminative Random

Fields [92] and could help avoid the over-confident fragment classifications and the over-

eager closure of small boundary loops we have sometimes observed in our experiments. In

addition, other machine learning techniques, such as bagging [25], could be employed.

Boundaries through Time

All of our work has sought to discover the occlusion boundaries present in a single reference

frame of a short video clip. A next step could be the application of our techniques on a

per-frame basis (or every nth frame), with additional temporal reasoning/filtering, in order

to utilize more fully the temporal aspect of video data. One difficulty in this domain may

be the labeling of several (or all) frames of video for quantitative analysis or training.

7.1.3 High-Level Applications

Object Discovery

Our object segmentation results are encouraging in that they tend to delineate whole objects

in small numbers of segments. A next step given such segmentations is the actual automatic

discovery or “pop-out” of those objects from a scene or set of scenes, as discussed in [146].

Also interesting could be the incorporation of other cues or affinity measures, alongside our

boundary-based “hints”, into the segmentation procedure.

Shape-Based Recognition and Reasoning

We focused here on incorporating boundary knowledge into appearance-based recognition,

but good boundary estimates should also be helpful for shape-based recognition [31, 50, 82,

121, 129, 155]. Indeed, the boundaries we seek are precisely those which correspond to an

object’s silhouette, which is nearly analogous to its 2D shape and can be used in 3D shape

reasoning as well [95, 150, 153, 178].
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7.2 Summary

To summarize our work in this thesis, we emphasize that though occlusion boundaries

may at first glance be problematic for many tasks in computer vision, they are in fact

themselves important sources of information and should not simply be avoided or treated

as outliers. The relative motion cues observed across those boundaries, though quite subtle,

can be carefully estimated and combined with typical appearance cues to help differentiate

them from appearance-only edges which may lack structural meaning. Furthermore, their

utility becomes apparent when boundary-based reasoning is carefully incorporated into

segmentation and recognition tasks. Finally, we encourage for any task the explicit

combination of a variety of information sources and cues, the use of data-driven spatial

support and decision-making methods, the incorporation of uncertainty where available,

and the delay of hard, irreversible decisions for as long as possible.





Appendix A

Crack Chaining

In this appendix we present in more detail the crack chaining approach used in extracting

potential boundary fragments from an over-segmentation, as discussed in Chapter 4.

Consider the example segmentation of a simple image consisting of 4 × 4 pixels at the

left of Figure A.1. There are four segments, each indicated by a different color, with thicker

lines at their borders which lie along the cracks of the image’s pixels. In the center of the

figure, the four-way intersections of the pixels, where four cracks also meet, are labeled with

circles. At the right, the corresponding “crack graph” is shown, whose vertexes and edges

correspond to the pixel intersections and the cracks, respectively.

Each crack in this graph can take on a binary label indicating whether or not it

corresponds to a segment border in the original segmentation, again indicated by thicker

lines. Furthermore, each vertex (a) − (i) can take on one of exactly twelve possible labels,

depending on the labeling of its four cracks. These labels, representing the presence of

local junctions, (non-)boundaries, and corners, are shown in Figure A.2. Note that the four

cases corresponding to a single crack being labeled as a segment border are not possible

a b c

d e f

g h i

Segmentation “Crack” GraphPixel Intersections

Figure A.1: The cracks between the pixels in a segmentation form a graph we can use for
chaining.
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Figure A.2: The possible labels for each type of pixel intersection, based on the binary labelings
of their four associated cracks. Some labels are invalid in our approach, which seeks closed
boundaries.

when working with the closed borders of an over-segmentation. (Though not indicated in

Figure A.1, we consider the borders of the image to be segment borders in practice.)� �� �
Figure A.3: Bits corresponding
to each crack at an intersection.

If we associate each crack at a particular vertex with a

bit in that vertex’s four-bit label, as indicated in Figure A.3

and below each intersection shown in Figure A.2, we can

efficiently chain together intersections of the graph by

simple logical bit checks. For example, we know vertex d in

the graph from Figure A.1 is chained to vertex e by simply

checking that the second bit of d’s label and the fourth bit

of e’s label are both set. Vertex d is not connected to g,

however, since neither d’s third bit nor g’s first bit are set.

Based on this reasoning, we start at those intersections

labeled as junctions (those with three or more bits set) and chain along the crack graph

until reaching another junction. Note that it is also necessary to consider the special case of

a segment completely enclosed by another, larger segment. In this case, a single fragment

encircles the whole inner segment, and does not begin or end at a junction.

The cracks linked together in this way form the graph of “fragments” used in our work.

Note that there are no thresholds (e.g . on edge orientation variation, edge strength, etc.)

required and that the resulting fragments will naturally form closed graph structures since

they are based on an underlying over-segmentation of the image.
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Additional Boundary Detection

Results

We include here additional examples from our dataset for boundary detection via the global

reasoning described in Chaper 4. For each example below, we provide the middle (reference)

frame from the video clip, the precision versus recall curve, and boundary detections at

various recall operating points (which are indicated on the precision vs. recall plots by

vertical dashed lines). We show thresholded boundary detections after global inference

when using appearance information alone (left column) and when appearance and motion

information are combined (right column). We have chosen operating points for each example

to highlight the performance increase when using motion information (i.e. when using

motion, the number of false positives is generally lower – and thus the precision is higher

– for a given recall point, as compared to using appearance information alone). Note that

the selected recall point is always the same between the columns of a given example, to

facilitate fair comparison.

The last two figures (B.10 and B.11), show difficult examples. In these cases, very

harsh lighting conditions create high contrast shadow edges that confuse our system. In

addition, large un-textured regions combined with reflections and specularities visible on

the car make motion estimation difficult.
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Figure B.1: Chair
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Figure B.2: Car
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Figure B.3: Coffee Stuff
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Figure B.4: Couch Corner
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Figure B.5: Couch Objects
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Figure B.6: Hand
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Figure B.8: Trash Can
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Figure B.9: Tree
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Figure B.10: Car (Difficult Case)
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Figure B.11: Fence (Difficult Case)



Appendix C

Additional Object Segmentation

Results

In this appendix, we provide additional example results (Figures C.1-C.38) of the same

type as the examples in Chapter 5, but over a larger range of desired consistency. On

individual examples, either BSE or the Multiscale NCuts approach sometimes outperforms

our method, but neither does so in general. Our matting-based approach offers solid

performance, if not marked improvement, more consistently. We also show examples of

“easy” objects, for which all methods work well, and “hard” (often small) objects, which

prove challenging for all methods.

At the top of each figure is the bar graph displaying the number of segments required

by each method to achieve the desired consistency on the x-axis. Below this graph is

a comparison of the segmentations produced by each method which achieve the desired

consistency indicated at the left of each row, while using the minimum number of segments.

Recall that the approaches shown in the two middle columns use pixelwise affinities,

while our approach and the color-based approach both use super-pixels. For visualization,

the segments used in computing the actual per-object consistency and efficiency values

(displayed beneath each segmentation) are colored using a red-yellow colormap, while the

non-object segments are colored with a blue-green colormap. Thus, all of these figures

are best viewed in color. Note that a separate figure exists for each object of scenes with

multiple objects (the Ground Truth Object Mask will differ in these cases).
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Figure C.1: Bench. An “easy” example for
which all methods work quite well.
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Figure C.2: Car.
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Figure C.3: Chair. Both super-pixel-based
methods perform well on this (and other)
objects with narrow structures, unlike the
pixelwise approaches which tend to break such
objects apart with “cheap” cuts across narrow
parts. Not surprisingly, color alone is sufficient
for this object, though it is worth noting that
the matting-based approach does not hurt (and
actually helps some).
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Figure C.4: Tree
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Figure C.5: Sign. As discussed in Chapter 5,
evaluating segmentation is difficult. Numerical
results do not always tell the whole story: our
approach and BSE offer the same consistency
(0.91) with only one segment, but qualitatively,
our segmentation seems “better.”
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Figure C.6: Coffee sugar.
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Figure C.7: Coffee creamer.
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Figure C.8: Coffee mug. Some subjectivity
in selecting “whole objects” remains: the mug
has been labeled together with straws and
plastic-ware inside it, but each method clearly –
and justifiably – attempts to separate the white
mug from the black contents.
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Figure C.9: Origami ball. Both pixel-based
methods have trouble with this small object.
The super-pixel approaches fare better, but
the matting-based approach achieves superior
efficiency, despite the ball’s multiple colors.
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Figure C.10: Tea Box.
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Figure C.11: Despite the hypothesized
boundary fragments between the two parts of
the couch, the appearance reasoning of the
mattes puts the whole couch in one segment
for our approach. Also, the use of super-pixels
seems to help avoid a cheap cut through the
object to the bottom of the image.
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Figure C.12: The high-contrast illumination
and shadows in this scene make it very difficult.
They seem to confuse the boundary-hypothesis
step and, in turn, our matting-based approach.
(See also Figures C.13-C.14.)
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Figure C.13: Difficult fencepost scene.
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Figure C.14: Difficult fencepost scene.
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Figure C.15: Hand 1. Here, color alone is a
strong cue for segmentation, but our approach
also performs fairly well. All methods are
reluctant to include the differently-colored bit
of sleeve labeled in the ground truth.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

3

4

5

Not Possible

Desired Object Segmentation Consistency

# 
S

eg
m

en
ts

 R
eq

ui
re

d

Segments Required to Achieve Specified Consistency

 

 
Color Distribution Affinity
Multiscale NCuts
BSE
Our Proposed Matting Affinity

c=0.74, e
c
=1.00

c d ≥
 0

.6
0

Color Distribution
Affinity

c=0.78, e
c
=1.00

Multiscale NCuts

c=0.65, e
c
=1.00

BSE

c=0.81, e
c
=1.00

Our Proposed
Matting Affinity

c=0.74, e
c
=1.00

c d ≥
 0

.6
5

c=0.78, e
c
=1.00 c=0.65, e

c
=1.00 c=0.81, e

c
=1.00

c=0.74, e
c
=1.00

c d ≥
 0

.7
0

c=0.78, e
c
=1.00 c=0.74, e

c
=3.00 c=0.81, e

c
=1.00

c=0.79, e
c
=2.00

c d ≥
 0

.7
5

c=0.78, e
c
=1.00 c=0.75, e

c
=4.00 c=0.81, e

c
=1.00

c=0.84, e
c
=3.00

c d ≥
 0

.8
0

c=0.82, e
c
=2.00 Not Possible c=0.81, e

c
=1.00

c=0.86, e
c
=4.00

c d ≥
 0

.8
5

Not Possible Not Possible c=0.86, e
c
=4.00

Not Possible

c d ≥
 0

.9
0

Not Possible Not Possible Not Possible

Input Image
Ground Truth
Object Mask Super−Pixels

High−Probability
Boundary Fragments

Figure C.16: Hand 2. The texture of the
blanket behind the hand serves to confuse
all methods, but ours does a good job of
extracting the fingers. Here again, super-pixels
seem to help with the extraction of narrow
structures (particularly as compared to BSE).
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Figure C.17: Car.
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Figure C.18: Cat in window. The very low
contrast between the cat and the shadowed
window frame make this a difficult scene.
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Figure C.19: Bookend. Another “easy”
object for which all methods perform well.
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Figure C.20: Beer stein.
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Figure C.21: Mug.
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Figure C.22: Cutting board. With such
uniform appearance, this is not a difficult
object for any method. It is somewhat sur-
prising, however, that neither pixelwise NCuts
approach split the object with a cheap cut as in
other examples, e.g . at the very narrow point
between the bottom of the blue cup and the
image border. Such unpredictable performance
is a common side effect of standard, pixelwise
affinities.
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Figure C.23: Coffee mug.
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Figure C.24: Cup.
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Figure C.25: Post.
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Figure C.26: Rocking horse. The low contrast
between the top of the horse’s head and the
brick cause region “bleeding” for many results.
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Figure C.27: Squirrel. Good boundary
hypotheses along with the strong appearance-
reasoning offerend by the mattes help our
method outperform the the other approaches
on this difficult example, similar to the one in
Chapter 5.
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Figure C.28: Kleenex box. Again, color
alone seems sufficient here, but unlike the other
methods, our matting-based approach does not
hurt – and even offers some improvement.
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Figure C.29: Tape dispenser.
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Figure C.30: Stapler 1.
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Figure C.31: Stapler 2.
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Figure C.32: Staple remover. All methods
have a difficult time with this small object,
particularly since the top is the same color
(black) as the stapler behind it (and thus,
the underlying over-segmentation is actually
incorrect: the correct boundary fragment is not
even hypothesized).
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Figure C.33: Car, rear.
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Figure C.34: Trash can.
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Figure C.35: Tree.
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Figure C.36: Wooden statue. Again, narrow
structures prove challenging for the methods
relying on pixelwise affinities.
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Figure C.37: Cat 1.
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Figure C.38: Cat 2.
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