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Abstract

This technical report presents an anytime algorithm for solving the multi-robot guaranteed
search problem. Guaranteed search requires a team of robots to clear an environment of a po-
tentially adversarial target. In other words, a team of searchers must generate a search strategy
guaranteed to find a target. This problem is known to be NP-complete on arbitrary graphs but
can be solved in linear-time on trees. Our proposed algorithm reduces an environment to a graph
representation and then randomly generates a spanning tree of the graph. Guards are then placed
on nodes in the graph to eliminate non-tree edges, and a search strategy for the remaining tree
is found using a linear-time algorithm from prior work. To reduce the number of guards, our al-
gorithm takes advantage of the temporal characteristics of the search schedule to reuse guards no
longer necessary at their previous locations. Many spanning trees are analyzed prior to search to
determine the tree that yields the best search strategy. At any time, spanning tree generation can
be stopped yielding the best strategy thus far. Our proposed algorithm is demonstrated on two
complex graphs derived from physical environments, and several methods for generating candidate
spanning trees are compared.
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1 Introduction

Imagine you are with a group in a large, complex building like a museum, supermarket, or office.
You suddenly realize that a member of the group is gone. You now need to coordinate the group
to find the lost person. After searching fruitlessly for a while, you may wonder if it is possible
to coordinate the group in such a way that you are guaranteed to find the lost group member.
We refer to this as the guaranteed search problem, where searchers work together to scour the
environment to ensure that they find a target if one exists. It is important to note that, depending
on the complexity of the environment, a given number of searchers may be insufficient to guarantee
finding the lost group member.

This paper examines the problem of guaranteed search in indoor environments with multiple
autonomous robots. The problem of coordinating teams of mobile robots to search large indoor
environments is relevant to many scenarios of interest in robotics. Military and first response teams
often need to locate lost team members or survivors in disaster scenarios. The increasing use of
search and rescue robots and mechanized infantry necessitates the development of algorithms for
autonomously searching such environments. Similarly, the major application that has motivated
this work is that of locating a lost first responder in an indoor environment (Kumar et al., 2004).
In this application, a moving first responder is lost during disaster response, and a team of robots
must locate him or her.

In general, multi-robot search problems scale exponentially with increasing searchers, which
makes them computationally intractable for large teams and large environments. This intractability
arises because multiple searchers must consider the joint action space over all searchers. The size
of this planning space grows exponentially in the number of searchers. Considering the joint action
space is an example of explicit coordination during which the searchers explicitly plan for their
teammates.

Alternatively, if each searcher plans individually without taking into account the future actions
of its teammates, the size of the search space does not increase. Since the searchers are no longer
coordinating in any way, this is an instance of no coordination. Paths generated without any coor-
dination often perform poorly because the searchers have no mechanism for reasoning about their
teammates’ actions. This is particularly problematic during guaranteed search because progress
may be impossible without coordination between searchers. Market-based techniques use synthetic
auctions to explicitly coordinate only when necessary. This is one way to strike a balance between
explicit coordination and no coordination at all, but determining when to explicitly coordinate and
how much explicit coordination is necessary is a difficult problem in itself.

If searchers share information during planning and execution, they can use this information
to improve the joint search plan. In this case, the searchers are not explicitly planning for their
teammates, but they are implicitly coordinating by sharing information. We present an algorithm
that utilizes implicit coordination to achieve better scalability than centralized and market-based
approaches. An implicitly coordinated solution is one in which robots share information but do not
plan the actions of their teammates.

Simple implicit coordination can provide poor solutions in domains like guaranteed search that
require tight coordination. To improve performance for these problems, searchers can perform
a shared pre-processing step, which transforms the environment representation into one solvable
through implicit coordination. This paper shows how generating spanning trees of the environment
can yield implicitly coordinated search strategies for guaranteed search. This approach leads to an
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“anytime” algorithm for guaranteed search. An anytime algorithm quickly finds a feasible solution
and then generates improved solutions over time. Our technique yields feasible guaranteed search
paths even in very large environments.

This paper presents a novel guaranteed search algorithm that improves its performance with
increasing runtime. The algorithm quickly generates a feasible solution and then finds better
solutions by sampling the space of spanning trees. This paper is organized as follows. Section 2
describes related work in graph search, pursuit-evasion, and approximation algorithms. A survey
of the literature shows that a scalable approximation algorithm for guaranteed search does not
exist. Section 3 formally defines the guaranteed search problem on both arbitrary graphs and trees.
Section 4 describes our anytime approximation algorithm for solving guaranteed search. Section 5
gives both theoretical and simulated experimental analysis of our proposed algorithm. Finally,
Section 6 draws conclusions and discusses avenues for future work.

2 Related Work

Guaranteed search on graphs has a long history in both robotics and mathematics. Parsons
developed some of the earliest methods for solving the adversarial pursuit-evasion problem on
graphs (Parsons, 1976). He considered the graph to be a system of tunnels represented by the
edges of the graph in which an evader was hiding, and he defined the search number of a graph
to be the minimum number of pursuers necessary to catch an adversarial evader with arbitrarily
high speed. Determining the search number of a graph was later found to be an NP-complete
problem (Megiddo et al., 1988). In this early work in pursuit-evasion, the evader can only hide
in the edges of the graph, which does not fit with the intuitive representation of many environ-
ments (e.g. the rooms of a building naturally correspond to nodes, not edges of a graph). This
research is primarily concerned with examining the hardness of the guaranteed search problem on
graphs. They do not present an algorithm for guaranteed search scalable to large teams in realistic
environments.

Recent work in graph search discusses several interesting variations of the guaranteed search
problem. The traditional formulation does not restrict the movement of searchers. In other words,
searchers are allowed to “teleport” between nodes in the graph without following the edges between
them. This enables searchers to clear disjoint parts of the graph without maintaining a route to a
starting node. Barriere et al. introduced the idea of connected search during which searchers must
maintain a connected subgraph of cleared nodes (Barrière et al., 2003). This guarantees that a path
exists to the starting nodes at all times and that searchers are connected by a cleared or “safe”
region of the graph. Barriere et al. argue that this is an important quality for search strategies in
the network decontamination domain.

Connectedness is also an important characteristic of guaranteed search strategies in the physical
world. Real robots cannot teleport between nodes in the graph because these nodes represent
physical locations. Instead, robots must restrict their search paths to those traversable in the
environment. Furthermore, domains like urban search and rescue and military reconnaissance
require a safe path back to the starting point to aid in evacuation. This motivates the examination
of connected search paths during guaranteed search. However, there is a “price of connectedness”
because clearing a graph with a connected search strategy may require more searchers than with
an unconnected one (Fomin et al., 2004).

Early research in guaranteed search showed that many variations of the problem are NP-hard
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on arbitrary graphs (Megiddo et al., 1988). This result suggests that exact solutions to the guaran-
teed search problem on large graphs are intractable (unless P = NP). The NP-hardness of search
problems has motivated researchers to develop guaranteed search algorithms on special cases of
graphs. Barriere et al. showed that an optimal connected search strategy with minimum searchers
can be found in linear-time on trees (Barrière et al., 2002). Polynomial-time algorithms for search-
ing hypercubes (Flocchini et al., 2008), tori, and chordal rings (Flocchini et al., 2007) have also
been developed. Unfortunately, most environments in the physical world cannot be represented by
these special cases. Our proposed guaranteed search algorithm extends the advantages of special
case solutions by transforming a graph into its spanning tree through the use of guards and then
running an exact search algorithm on the spanning tree.

Since many applications require guaranteed search in arbitrary environments, prior work has
proposed some approximation algorithms that provide good performance. Flocchini et al. exam-
ined a genetic algorithm approach for clearing arbitrary graphs (Flocchini et al., 2005). Their
approach does not take into account prior information about the environment, and it does not al-
low for extensive coordination between searchers. Thus, it can require many searchers (more than
the optimal) in fairly simple environments. We have shown that a dynamic programming inspired
algorithm, which attempts to iteratively maximize the number of cleared cells, can work well on
complex graphs (Kehagias et al., 2008). However, this algorithm does not provide a mechanism for
minimizing clearing times during search and often forces the searchers to take many unnecessary
steps before finally clearing the environment. In addition, this method is unable to find a mini-
mal search strategies on many complex graphs. On the other hand, this algorithm can produce
nonmonotonic searches and can deal with both finite evader speed and non-local visibility

A key insight in the development of approximate guaranteed search algorithms is the connection
between graph search and the graph parameters of treewidth and pathwidth (Dendris et al., 1994).
A tree decomposition of a graph is a new graph, which (a) is a tree; (b) has nodes which correspond
to sets of nodes of the original graph (these new “supernodes” are called bags); (c) satisfies some
additional technical conditions (listed in (Dendris et al., 1994)). The width of a tree decomposition
is the cardinality of its largest bag minus one. The treewidth of a graph G is the minimum of
the widths of all tree decompositions of G. A minimum width tree decomposition of G yields a
minimal (i.e., using minimum number of searchers) clearing schedule for the visible search problem
(i.e., when the searchers know the location of the target).1 Similarly, a path decomposition of a
graph G is a tree decomposition where the tree is also a path; the pathwidth of G is the minimum
of the widths of all path decompositions of G; a minimum width path decomposition provides
an minimal solution to the guaranteed (invisible) search problem. Approximation algorithms for
treewidth and pathwidth have been proposed (Klok, 1994), but they are not guaranteed to provide
connected or internal path decompositions.

Fraigniaud et al. proposed an algorithm for connected search by finding approximately minimal
width tree decompositions (Fraigniaud and Nisse, 2006). They show how these decompositions can
be used to find connected search strategies. Though polynomial-time, their algorithm grows in
complexity with both the search number and the size of the graph. In addition, their approximation
bound degrades fairly quickly with the size of the graph.

With robotic applications in mind, Guibas and LaValle extended guaranteed search techniques
to guarantee capture in polygonal environments (LaValle et al., 1997; Guibas et al., 1999; LaValle,

1Note that finding a minimal treewidth decomposition of an arbitrary graph G is an NP-hard problem.
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2006). Their algorithm discretizes polygonal environments into conservative visibility regions and
then uses an information space approach to develop complete algorithms that guarantee capture in
one-searchable graphs. For a single pursuer, these algorithms are guaranteed to find a solution if
one exists. When scaled to multiple pursuers, however, they lose this property. Additionally, these
algorithms are difficult to extend to complex environments because of the sheer number of (often
very small) cells necessary in a conservative visibility discretization.

Many of the methods mentioned above are not scalable to large teams of searchers. To im-
prove scalability, robotics researchers have applied auction methods to multi-agent coordinated
search domains. Kalra presented Hoplites, an algorithm that utilizes auction-based plan sharing
to perform tightly coupled tasks (Kalra, 2006). Hoplites allows searchers to actively coordinate by
running auctions when they are presented with high-cost situations, and it provides a framework
for incorporating team constraints, which she demonstrates in the constrained search domain. Ho-
plites depends on multi-robot auctions to generate good search plans, but it does not provide a
mechanism for deciding when to hold an auction if it is not obvious. Setting a synthetic threshold
is one option, but this leads to poor performance if the threshold is set incorrectly. Methods using
implicit coordination, on the other hand, provide an alternative that does not require the overhead
of auctions.

Gerkey et al. also developed a parallel stochastic hill-climbing method for small teams that
is closely related to auction-based methods (Gerkey et al., 2005). Rather than using the market
metaphor, they frame guaranteed search as a parallel optimization problem. Their algorithm
dynamically forms teams of searchers that work together to solve tasks. Team formation and path
generation are guided by a heuristic, which makes their algorithm’s performance sensitive to the
choice of heuristic. Regardless of the heuristic used, the algorithm requires explicit coordination
within teams, which can lead to high computation in large environments.

While auction-based algorithms are more scalable than coupled planning approaches, they still
rely on auctions and/or team formation, which can consume large amounts of communication
bandwidth and planning time. We demonstrate that implicit coordination with the addition of an
informed pre-processing step allows for quick, near-optimal solutions to guaranteed search problems.

3 Problem Setup

Guaranteed search requires the coordination of multiple robotic searchers such that a target cannot
escape detection. This situation arises in at least two cases. The first is if the target is acting
adversarially, and the second is if an accurate motion model of the target is unavailable. In both
cases, the searchers wish to guarantee that the target will be found regardless of its movement
pattern. In contrast with efficient search, which seeks to exploit a motion model to maximize
capture probability (Hollinger and Singh, 2008), guaranteed search makes a worst-case assumption
on the target’s path.

To formulate the guaranteed search problem, we need to describe the environment in which the
searchers and target are located. We first divide the environment into convex cells. The convexity
of the cells guarantee that a searcher in a given cell will have line-of-sight to a target in the same cell.
The searcher’s goal is now to move into the same cell as the target. Gaining line-of-sight is relevant
to most sensors that a mobile robot would carry including cameras and laser rangefinders. Our
method for discretization takes advantage of the inherent characteristics of indoor environments. To
discretize an indoor map by hand, simply label convex hallways and rooms as cells and arbitrarily
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collapse overlapping sections. Alternatively, a suitable discretization can be found automatically
using a convex region finding algorithm (such as Quine-McClusky (Singh and Wagh, 1987)).

Taking into account the cell adjacency in a discretized map yields an undirected graph that
the searchers can traverse. Figure 1 shows two example floorplans used our experiments. We use
the two large floorplans for simulated trials in Section 5. The museum floorplan is particularly
challenging because it contains many cycles by which the target can avoid line-of-sight contact
with the searchers.

Figure 1: Example floorplans (top) and graphical representation (bottom) of environments used
for guaranteed search trials. The office (left) and museum (right) were used for simulated testing.

Let G(N, E) be the undirected environment graph with vertices N and edges E. At any time t,
the k-th of K searchers exists on vertex sk(t) = u ∈ N . The searchers’ movement is deterministically
controlled, and they may travel to vertex sk(t + 1) = v if there exists an edge between u and v.
A target also exists on this graph on vertex e(t) = u ∈ N . The target moves along edges between
vertexes. A searcher “captures” the target by moving onto the same vertex (i.e., ∃k, t : sk(t) = e(t)).
In this paper, we assume that a searcher on a given node will always detect a target on the same
node and that the target may have potentially unbounded speed. At any time during the search,
there are cells that may contain the target (dirty cells) and cells that may not (cleared cells). The
searchers’ goal is to progressively decrease the set of dirty cells to the empty set, thus guaranteeing
capture of any target in the environment.

This paper examines the guaranteed search problem on graphs with the understanding that
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both the target and searchers exist on the vertices of the graph. We refer to this problem as node
search. This is different from the edge search problem discussed in the literature, during which the
target exists in the edges of the graph (Parsons, 1976). Searching indoor environments lends itself
to the node search formulation because rooms and hallways can be easily decomposed into nodes
on the graph. The edge search formulation, on the other hand, describes a situation in which the
edges on the graph are contaminated (e.g. with poison gas) or the search is performed in a system
of tunnels. This paper deals with the node search formulation because of its direct connection with
indoor searching.

This paper presents an algorithm for guaranteed node search on graphs by searching their
spanning trees. The proposed algorithm draws on a previous algorithm by Barrière et al. for
guaranteed search on trees that runs in O(|N |) time, where |N | is the number of nodes on the
tree (Barrière et al., 2002). It is important to note that this algorithm generates search paths
that are monotonic, connected, and internal. Internal search paths restrict the movement of the
searchers to the edges of the graph (i.e. searchers cannot teleport), and connected search paths
always maintain a connected subgraph of cleared cells. Both of these characteristics are desirable
in robotic search applications. The movements of robots in the real world are restricted to those
that are physically possible. In addition, robot teams will often start in the same location, thus
allowing the cleared regions to grow as a connected subgraph from that location.

4 Algorithm Description

This section describes an algorithm for guaranteed search on arbitrary graphs generated from
floorplans. It is first shown that simple implicit coordination can generate poor search schedules
for guaranteed search. It is then shown how augmenting the environment representation with a
spanning tree allows for better implicitly coordinated solutions.

4.1 Simple Implicit Coordination

In prior work, we presented an approximation algorithm for solving the efficient search path plan-
ning problem (Hollinger and Singh, 2008). In this domain, searchers must maximize the probability
of finding a non-adversarial target. During our efficient search approximation algorithm, searchers
plan paths by enumerating all possible strategies to a finite-horizon. The robots do so sequen-
tially, which allows for linear scalability in the number of searchers. Planning sequentially and
sharing information is a form of implicit coordination because the robots do not explicitly plan for
their teammates. We showed that this approximation algorithm yields near-optimal strategies for
efficient search.

It is possible to extend this approximation algorithm to guaranteed search with a simple mod-
ification. During finite-horizon planning, the searchers can limit their paths to those that do not
cause recontamination (i.e. paths that do not allow clean cells to become dirty). If the searchers
plan sequentially and share their paths, this leads to a piggyback effect during which each successive
searcher extends the clearing schedule further in the environment. By interleaving planning and
execution on the receding horizon, the searchers can find a clearing schedule in this manner.

Such an algorithm is an application of simple implicit coordination to the guaranteed search
domain. Unfortunately, simple implicit coordination can perform poorly because it spreads the
searchers out and requires a large number of stationary guards. This stems from the requirement

6



Algorithm 1 Edge labeling for trees
Input: Tree T (N,E), Start node b ∈ N
A ← N \ b
while A 6= ∅ do

l ← any node in A with exactly one unlabeled edge
if l is a leaf then

e ← only edge of l
λ(e) = 1

else
e ← unlabeled edge of l
e1, . . . , ed ← labeled edges of l
λm ← max{λ(e1), . . . , λ(ed)}
if multiple edges of l have label λm then

λ(e) ← λm + 1
else

λ(e) ← λm

end if
end if
A ← A \ l

end while
Output: Edge labeling λ(E)

of tight coupling between the searchers’ actions. In other words, the searchers must work together
to make any progress in clearing the environment.

Given the potentially poor performance of implicit coordination during guaranteed search, it
may be tempting to utilize market-based techniques or other methods of injecting explicit coordi-
nation into the search schedule. The algorithm presented below provides an alternative method
for improving the performance of implicit coordination by exploiting the relatively easy problem of
finding a guaranteed search schedule on trees.

4.2 Guaranteed Search on Trees

A linear-time algorithm for guaranteed edge search on trees was given by Barrière et al. (Barrière
et al., 2002). This section describes an implementation of this algorithm that does not require
recursion. Eliminating the need for recursion allows for the direct application of implicit coordina-
tion (see Section 5). This section also proves that the tree search algorithm applies directly to the
situation in which the target hides on the nodes (node search).

Assume that the starting node of the searchers is known and the same. Label this starting
location as s ∈ N . First, label the edges on the tree T (N,E) with λ : E → Z+ as in Algorithm 1.
The mapping λ(e) describes the number of searchers that must move down the tree along that edge
during the search strategy.

Now, make the edges directional by pointing them down the tree from the start node to the
leaves. Double the edges and give these new edges opposite direction. Label the doubled edges
with λ(e2) = −λ(e), where e2 is the double of edge e. The negative values represent recursive steps
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Algorithm 2 Guaranteed search schedule for trees
Input: Tree T (N,E′), Edge labeling λ : E′ → Z, Start node b ∈ N
Define sk(t) as the node occupied by the k ≤ µ searcher at time t
t ← 0
Let sk(t) ← b for all searchers
Mark all nodes except b as uncleared
while some nodes are uncleared do

t ← t + 1
for all searchers k do

if searcher cannot move without recontamination then
c ← sk(t− 1)

else if a positive edge label exists incident to current cell then
c ← cell reached through lowest labeled edge
Decrement λ(e) of edge traversed

else
c ← cell reached through negative labeled edge
Increment λ(e) of edge traversed

end if
sk(t) ← c

end for
Mark nodes occupied at time t as cleared

end while
Output: Searcher paths sk for all k, clearing time t

back up the tree after clearing. Refer to the set of edges and their doubles as E′.
An optimal edge search strategy can be generated from this labeling in a distributed man-

ner. Algorithm 2 describes how to generate such a strategy. Algorithm 2 is equivalent to the
recursive algorithm in prior work, and it will clear the edges of tree T with the minimum number
of searchers (Barrière et al., 2002). The number of searchers necessary is equivalent to the edge
labeling of an edge entering the start node. Refer to this value as µ.

4.3 Edge Clearing and Node Clearing

As already remarked, we are interested in node clearing. However, Algorithm 2 is an adaptation
of Barriere’s algorithm, which performs edge clearing. Hence we must show that Algorithm 2 (and
also Algorithm 4) also performs node clearing.

Let us define two search games: the edge game and the node game. Both games are played in
discrete time t = 0, 1, 2, ... on a graph G = (N,E) by a team of searchers who may perform the
following moves.

1. At t = 0, K searchers are placed in the same node u0 ∈ N (u0 will be called the base node).

2. At every t ∈ {1, 2, ...} any number of searchers may slide from node u to node v.

We can fully define a search strategy S (of finite length tf ) by specifying the base node u0, the
number of searchers K and the moves (edge slides) at times t = 1, 2, ..., tf . We will write a move as
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u → v (where u, v ∈ N and uv ∈ E) thus specifying the edge being traversed and also the direction
of the traversal. Note that, given a graph G, the same search strategy can be used in an edge game
and a node game.

The clearing rules are different for the edge and the node game .

1. In the edge game all edges start dirty; an edge is cleared when traversed and becomes dirty
again (recontaminated) if there is a free path from it to a dirty edge.

2. In the node game all nodes start dirty; a node is cleared when entered and becomes dirty
again (recontaminated) if it is unguarded and there is a free path from it to a dirty node.

It will be useful to define clear / dirty nodes in the edge game: we say a node is e-dirty (edge-
game dirty) if it is unoccupied and adjacent to a dirty edge; otherwise it is e-clear. Dirty and clear
nodes in the node game will be called n-dirty and n-clear, to stress the difference from e-dirty /
e-clear.2

In the edge game we denote by EC (t) the set of edges clear at time t and by NC (t) the set of
nodes e-clear at time t.

We will study a restricted family of search strategies: they must be such that they satisfy (in
the edge game) the following.

1. Monotonicity : for all t, we have EC (t− 1) ⊆ EC (t).

2. Connectedness: for all t, (NC (t) , EC (t)) is a connected subgraph of G.

In addition, to avoid certain trivial cases, we will require that at time t = 1 the strategy S
clears an edge.

Theorem 1 For every graph G, if a monotone and connected search strategy S is edge clearing in
the edge game, it is also node clearing in the node game.

We give a proof sketch of Theorem 1 in the Appendix. We also show in the Appendix that
Algorithm 2 and hence our full algorithm (Algorithm 4) always provide node clearing strategies.

It is important to note that the converse of Theorem 1 is not true. Any node search strategy is
not necessarily an edge search strategy because the target can hide in the edges even if the nodes
are clear. It is also important to note that an optimal edge search strategy is not necessarily an
optimal node search strategy.

Algorithm 2 restricts the movement of the searcher to moves that do not recontaminate nodes
in the tree. Node recontamination occurs if a searcher leaves a node unguarded and one or more of
its adjacent nodes are uncleared (with the exception of the node the searcher is moving into). Node
recontamination can improve the search number for connected search on arbitrary graphs (Yang
et al., 2004). However, situations in which recontamination helps are exceedingly rare in realistic
environments.

2It will not be necessary or useful to define the concept of clear / dirty edges in the node game.
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Algorithm 3 Randomized depth-first search spanning tree algorithm
Input: Graph G(N, E), Start node b ∈ N
V, S, B ← ∅
x ← b
while some edges are in neither S nor B do

V ← V ∪ x
R ← ∅
for all nodes y adjacent to node x do

if y ∈ V then
B ← B ∪ e(x, y)

else if y not already visited from x then
R ← R ∪ y

end if
end for
if R is empty then

x ← parent of x
else

Choose random node z ∈ R
Set parent of z to x
S ← S ∪ e(x, z)
x ← z

end if
end while
Output: Set of tree edges S, Set of back edges B

4.4 Random Search of Spanning Trees

The algorithm described above for trees does not apply to arbitrary graphs with cycles because
the edge labeling is not possible. However, additional searchers can be used as guards to transform
an arbitrary graph G(N, E) into a tree T (N,S). The non-guard searchers can then traverse the
resulting tree using the algorithm described above. This reduces the guaranteed search problem to
that of generating a “good” spanning tree on which to base the search.

The problem of uniformly sampling the space of spanning trees has been heavily studied. Wil-
son’s algorithm based on the use of loop-erased random walks is both efficient and conceptually
simple (Wilson, 1996). As an alternative, we propose Algorithm 3, which gives a randomized depth-
first search algorithm for finding a spanning tree. This algorithm focuses the search on trees that
have back edges incident to few nodes. This intuitively leads to trees that require fewer guards.
Using either of these generation techniques, the spanning tree that produces the best search strat-
egy can be utilized for searching the original graph. We compare these methods for spanning tree
generation in Section 5.

Any spanning tree will always contain |S| = |N |− 1 tree edges and |B| = |E|− |N |+1 non-tree
edges. The maximum number of guards necessary is |B|, which can grow to be a very high number
in graphs with many cycles. The next section describes how implicit coordination and the temporal
nature of a search plan can be exploited to reduce this number.
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Algorithm 4 Guaranteed search with tree decomposition
Input: Graph G(N, E), Start node b
while time is available do

Find a spanning tree using Algorithm 3
Label edges of T (N, S) using Algorithm 1
Generate µ tree searchers
while graph is not completely cleared do

Move tree searchers according to Algorithm 2
if a tree searcher reaches a node c with incident non-tree edge then

if guard can move without recontaminating then
Move guard to node c

else
Generate new guard and move to node c
Increment number of guards

end if
end if

end while
Record η = number of tree searchers plus guards

end while
Output: Search strategy with lowest η

4.5 Temporal Task Allocation

Given a set of tree edges S and a set of non-tree edges B, a naive search strategy can be found
by assigning guards to a node incident to each non-tree edge and then searching the tree as in
Algorithm 2. This technique ignores two important characteristics of the problem. First, adding
a guard for every non-tree edge will likely be redundant. If several non-tree edges are incident to
a single node, one guard will suffice for both of them. Second, the search strategy occurs over a
time interval. Guards that are necessary at earlier times may be free to guard other edges at later
times. Algorithm 4 shows how these observations can be taken into consideration during search.

Note that Algorithm 4 can be modified to more conservatively use guards. Instead of calling
for a guard whenever a tree searcher reaches a node with incident non-tree edges, the algorithm
can wait for all tree searchers to reach such nodes. This ensures that moving tree searchers will not
release a previously stuck searcher. Furthermore, the algorithm can reassign tree searchers that
are no longer necessary. For instance, three searchers may be needed to clear an early portion of
the graph, but the remaining subgraph may only require two. In this case, a tree searcher can be
reassigned as a guard after it is no longer needed as a tree searcher. These reassignments may affect
search number because they can provide extra guards later in the search schedule. To modify the
algorithm, simply check to see if any tree searcher is waiting on another to move. If this is not the
case, any tree searchers moving along negative edge labels may be assigned as guards. These two
extensions are used in Section 5.

Situations also arise in which a surplus number of guards exist, but the algorithm does not
currently take advantage of these situations. It is important to note that using more tree searchers
than the minimum (or dynamically switching guards to tree searchers) will not improve the search
number, though it may improve the clearing time.
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The temporal task allocation step can be seen as an instance of implicit coordination. Each
searcher determines where it can best assist the search schedule and then broadcasts that infor-
mation to the other searchers. The tree searchers do not explicitly coordinate with the guards to
cover the non-tree edges. Instead, the searchers utilize the shared spanning tree representation to
help determine their task assignments. The generation of a spanning tree is a shared pre-processing
step, which occurs before implicit coordination.

4.6 Example

Figure 2 shows a simple example of a small house environment. Assume the spanning tree in
the moddle of Figure 2 was found. This spanning tree (ignoring the non-tree edges) requires two
searchers to clear because a searcher must remain in cell four to prevent recontamination. Assume
that the searchers start in cell three. The searchers first move down the spanning tree to cell four.
Then one searcher must remain at cell four while the other searcher clears the rest of the graph.
Since cell four is the only cell that needs to be guarded to remove the non-tree edges, this yields a
two searcher clearing strategy of the original graph. This is also the minimal number of searchers
capable of clearing this example.

Even in this simple example, all spanning trees do not yield a minimal (two searcher) strategy.
Consider the right spanning tree in Figure 2. Ignoring the non-tree edges, this spanning tree
requires two searchers to clear. However, when clearing the original graph, an extra guard must be
placed on one of the cycles. The guard at cell four cannot be reused because its movement would
cause recontamination. Thus, this spanning tree does not yield a minimal search strategy. This
motivates the generation of random spanning trees to reduce the number of searchers.

Figure 2: Example discretization of house environment (left) and two example spanning trees of
resulting graph (right). Black edges (solid lines) are spanning tree edges, and cyan edges (dashed
lines) are non-tree edges. If searchers start in cell three, the middle spanning tree gives a two
searcher clearing schedule while the right spanning tree gives a three searcher clearing schedule.
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5 Analysis and Results

5.1 Theoretical Analysis

This section gives theoretical analysis regarding the performance of the proposed algorithm and its
running time.

The most important characteristic of the search schedules generated by the algorithm is the
number of total searchers (guards plus tree searchers) required to clear the graph. Barrière et al.
show that the worst-case bound on trees is µ ≤ log2(|N |) (Barrière et al., 2002). This is an upper
bound on the number of tree searchers needed for a graph with |N | nodes. The proposed algorithm
requires both tree searchers and guards. As described above, the maximum number of guards
needed is |B| = |E| − |N |+ 1. Thus, the worst case total number of searchers η for the algorithm
is η ≤ log2(|N |) + |E| − |N |+ 1. It can now be shown that Algorithm 4 will always terminate with
a successful clearing schedule (see Theorem 2).

Theorem 2 Algorithm 4 is guaranteed to terminate on an arbitrary graph G(N,E) with a success-
ful clearing schedule with at most η ≤ log2(|N |) + |E| − |N |+ 1 searchers.

Proof Let Ts be the spanning tree generated for G. This generates exactly |E| − |N |+ 1 non-tree
edges in G. The spanning tree requires at most log2(|N |) tree searchers to clear (Barrière et al.,
2002). If Algorithm 4 must generate a new guard whenever a guard is needed for a non-tree edge,
it must generate |E| − |N |+ 1 guards. This guards all non-tree edges allowing the spanning tree to
be cleared.

The maximum number of searchers in Theorem 2 can be considered a worst case bound on the
performance of the first spanning tree generated for a graph. Randomly searching over the space
of spanning trees and using temporal aspects of the search to reuse guards significantly reduces
this number on all graphs examined. With this in mind, the proposed algorithm can be considered
an “anytime algorithm” for guaranteed search. The searchers begin the initial step of generating
spanning trees. If an acceptable strategy has been found or time has run out, the best spanning
tree is utilized to perform the search. At any time during tree generation, a clearing algorithm is
available, though perhaps one requiring a large number of searchers.

The initial step of generating a spanning tree before guaranteed search serves as a “locker room
agreement” (Emery-Montemerlo, 2005) between the searchers. The searchers agree to utilize a
shared spanning tree to allocate the tasks of guards and tree searchers. This agreement serves to
simplify the problem into one requiring only implicit coordination, the temporal task allocation
step.

The running time of every component of the algorithm is linear in the number of nodes |N |.
Finding a spanning tree using depth-first search only requires visiting each node once to label its
edges and is thus O(|N |). As described by Barrière et al., edge labeling and determining search
schedules on trees can be done in linear time (Barrière et al., 2002). The search schedules of the
guards can also be determined in linear time simply by following the tree searchers along the tree
(or with slightly more computation using A∗ between guard points). Thus, the computational
complexity of the algorithm is O(α|N |), where α is the number of randomly generated spanning
trees. In the experiments below, we were able to generate, label, and determine a search strategy
for 1500 spanning trees in one second on the 70 cell museum graph.
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The computational complexity of the proposed algorithm is limited by the number of random
spanning trees that need to be generated. For large graphs, an exponential number of spanning
trees are possible. Thus, determining a spanning tree with the minimal number of searchers may
be intractable. Our algorithm leverages the fact that many spanning trees will yield good search
schedules (though not necessarily minimal ones).

5.2 Simulated Results

We tested our anytime guaranteed search algorithm in simulation on the two complex environments
shown in Figure 1. The office environment has two major cycles, and the museum environment has
many cycles by which the target can escape capture. Both of these environments are considerably
larger than those searched by many authors using comparable methods (Guibas et al., 1999; Gerkey
et al., 2005).

The office map is 100 m× 50 m discretized into 60 cells with 64 edges. Kirchhoff’s matrix-tree
theorem shows that the office has 3604 different spanning trees. The museum map is 150 m×100 m
discretized into 70 cells with 93 edges (5.3 ∗ 1014 spanning trees). Thus, we can exhaustively search
the space of spanning trees for the office but not for the museum. It is not immediately obvious,
but the office can be cleared with three searchers and the museum with five.3

We implemented and tested three methods for generating spanning trees. They are described
below. Our software is able to generate, label, and search approximately 1500 spanning trees per
second using any of the above methods. This demonstrates the low computational complexity of
our algorithm.

1. Spanning tree enumeration (Char, 1968): Char’s algorithm for enumerating all spanning trees.
This is a brute force method for generating all possible spanning trees.

2. Uniform sampling (Wilson, 1996): Wilson’s algorithm for uniformly sampling the space of
spanning trees using loop-erased random walks. The algorithm generates a random spanning
tree sampled uniformly from the space of all spanning trees.

3. Depth-first sampling (Section 4): Randomized depth-first search to generate spanning trees.
This does not sample the entire space of trees, but it biases sampling towards trees requiring
a small number of guards.

Table 1 shows results from the exhaustive search on the office map. Twenty-eight distinct trees
yield a minimal (three) searcher schedule on this map. The table also shows the number of trees
examined using uniform sampling before finding all minimal trees. Uniform sampling is able to
generate all search strategies in less than four seconds. Since depth-first sampling does not search
the the entire space of trees, it is only able to find two of the 28 minimal trees. Figure 4 shows a
histogram of the number of searchers required for both exhaustive search and depth-first sampling.
The histogram demonstrates both the limited number of trees sampled by depth-first sampling
and the improved search numbers of those trees. Thus, depth-first sampling heuristically trades off
sampling completeness for empirical efficiency.

3While it is not proven that five is the minimal search strategy in the museum, we have been unable to find a four
searcher strategy on this map using any method.
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Table 2 shows a comparison of uniform sampling and depth-first sampling given a fixed operating
time (one minute). Since depth-first sampling focuses on trees requiring fewer guards, it is able to
find over sixty times more minimal search strategies than uniform sampling. Furthermore, Figure 4
displays histograms of searchers required to clear trees generated by both uniform sampling and
depth-first sampling in the museum. Depth-first sampling clearly generates trees requiring fewer
searchers.

Figure 3 illustrates the anytime behavior of our guaranteed search algorithm. This figure shows
the best spanning tree found by depth-first sampling and uniform sampling as the number of
generated trees is increased. Similarly, Table 3 compares the time to generate a single minimal
spanning tree. In both environments, depth-first sampling generates solutions with fewer searchers
much more quickly than uniform sampling. This improvement stems from depth-first sampling’s
bias towards trees requiring few guards.

Figure 5 shows example spanning trees yielding minimal search schedules in the office and mu-
seum. The minimal number of searchers is three for the office and five for the museum (determined
by inspection). Videos of our guaranteed search results are available online at the following URL.

http://www.frc.ri.cmu.edu/~gholling/videos/
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Figure 3: Demonstration of anytime behavior of guaranteed search with spanning trees in the office
(left) and museum (right). In both environments, depth-first sampling is able to more quickly
generate a spanning tree with few searchers. The exact number of trees searched before finding
minimal search schedules are given in Table 3.
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Figure 4: Histograms of number of searchers on different spanning trees for the office (left) and
museum (right). In the office, exhaustive search is compared to depth-first sampling. Depth-first
sampling greatly limits the space of spanning trees searched but generates trees that require fewer
searches. In the museum, uniform sampling of 30,000 trees is substituted for exhaustive search.
Again, depth-first sampling generates spanning trees requiring fewer searchers.

Table 1: Comparison of exhaustive search versus randomly generated spanning trees in the office.
Uniform sampling covers the entire space of spanning trees. Depth-first sampling covers a limited
space and is only able to find some of the minimal spanning trees.

Time (seconds) Trees searched Minimal trees found
Exhaustive Search 1.1 3604 28
Uniform Sampling 3.7 10,981 28

Depth-First Sampling 0.01 13 2



Table 2: Comparison of two methods for randomly generating spanning trees in the museum.
Depth-first sampling is able to find sixty times the number of minimal spanning trees as uniform
sampling given a fixed running time.

Time (seconds) Trees searched Minimal trees found
Uniform Sampling 60.0 99,357 7

Depth-First Sampling 60.0 106,129 481

Table 3: Comparison of two methods for randomly generating spanning trees in the office and
museum. Depth-first sampling more quickly finds its first minimal spanning tree than uniform
sampling in both environments.

Office
Time (seconds) Trees searched Minimal trees found

Uniform Sampling 0.1 253 1
Depth-First Sampling 0.006 2 1

Museum
Time (seconds) Trees searched Minimal trees found

Uniform Sampling 16.7 25,932 1
Depth-First Sampling 0.2 319 1



Figure 5: Example spanning trees found for the office (top) and museum (bottom) that yield
minimal search schedules. The office spanning tree yields a search strategy with three searchers,
and the museum tree yields one with five. Green edges denote edges in the spanning tree, and
red edges denote edges that need to be guarded during search. The square denotes the searchers’
starting position.



6 Conclusions and Future Work

This technical report has presented an anytime guaranteed search algorithm applicable to complex
physical environments. We have shown that simple implicit coordination can generate poor guar-
anteed search schedules, and an algorithm has been proposed that utilizes a shared pre-processing
step before implicit coordination. The proposed algorithm decomposes the environment into an
arbitrary graph and then generates spanning trees of that graph. Stationary searchers guard the
non-tree edges in the graph allowing the remaining searchers to solve the much easier problem of
guaranteed search on trees. We have derived an upper bound on the number of searchers required
by the algorithm, and we have demonstrated how implicitly coordinated temporal task allocation
can greatly reduce this number. The pre-processing step can be stopped at any time yielding a
complete search strategy on the best spanning tree generated thus far. The proposed algorithm
runs in time linear in the number of nodes in the graph, which makes it applicable to very large
graphical representations of physical environments.

Our proposed algorithm provides search schedules with the minimal number of searchers in
two complex, realistic environments. On a large map with many cycles, a minimal search strategy
was found in merely 0.2 seconds. We have also demonstrated a depth-first randomized sampling
strategy for tree generation that biases sampling towards trees requiring a small number of searchers.
These results show that implicit coordination with shared pre-processing can provide solutions to
a multi-robot planning problem requiring tightly coupled coordination.

Our algorithm also serves as an efficient method for generating connected path decompositions
of planar graphs. These decompositions are similar but not exactly the same as those studied in
the literature (i.e., ours are derived from a node game rather than edge game). Generating path
decompositions is an important graph theoretic problem with applications outside of guaranteed
search (Klok, 1994). The linear scalability of our algorithm makes it well-suited for the generation of
path decompositions on very large graphs. Future work includes studying the relationship between
path decompositions generated from a node search game and those generated from an edge search
game.

Our findings open up several interesting avenues for future work. In the current paper, trees
were selected randomly using one of two methods. Alternatively, informed heuristics could be used
to intelligently generate spanning trees with a high likelihood of yielding low-searcher strategies.
The development of such heuristics is left to future work. Furthermore, our proposed algorithm
does not provide a bound on the current solution quality relative to optimal. In other words, when
the search is stopped, we cannot say whether or not we have found a minimal (or near-minimal)
search strategy. Solving this problem requires a method of bounding the minimum number of
searchers from below. The development of such a technique would lead to a bounded approximation
algorithm for guaranteed search. Such a technique also opens up the possibility of pruning the space
of spanning trees in a branch-and-bound manner.
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8 Appendix: Proof of Theorem 1

Theorem 1 For every graph G, if a monotone and connected search strategy S is edge clearing in the edge
game, it is also node clearing in the node game.

Proof This Appendix gives a sketch of the proof of Theorem 1. The proof uses the following facts (the
proofs of which are straightforward but tedious and are omitted).

Fact 1 The strategy S is monotonic not only with respect to the edges but also with respect to the nodes,
i.e. for every t we have NC (t− 1) ⊆ NC (t).

Fact 2 Let the t-th move of S be u → v. Then either the clear graph remains the same or it is expanded by
the node v and the edge uv.

Fact 3 For every t, the set of e-clear nodes NC (t) is exactly the set of nodes visited by a searcher up to time
t.

Fact 4 If at any time t node u is e-clear, node v e-dirty, and there exists an edge uv, then u is guarded at
time t.

Now let S be an edge clearing strategy of length tf . We will show inductively that NC (t) (the set of
e-clear nodes at time t) and N̂C (t) (the set of n-clear nodes at time t) are equal.

This is certainly true at time t = 0, when NC (0) = {u0} = N̂C (0). Suppose it is also true at time t.
More specifically, suppose that

NC (t) = {u1, ..., uK , v1, ..., vL} = N̂C (t)

ND (t) = {w1, ..., wM} = N̂D (t)

where the wm nodes are dirty, the uk nodes are clear and unlinked to wm nodes, and the vl nodes are clear
and linked to wm nodes (and hence also guarded, from Fact 4). Here, clear means both e-clear and n-clear.

At time t + 1 an edge is traversed. The starting node is either one of the uk’s or one of the vl’s.

1. If it is one of the uk’s, it is not linked to a wm node. Hence no new edge or node is e-cleared; also,
from Fact 1, no node becomes e-dirty. Hence NC (t + 1) = NC (t). Also, since no wm node is entered,
no previously n-dirty node is n-cleared; and since the vl’s remain guarded, no node becomes n-dirty.
Hence N̂C (t + 1) = N̂C (t). And so NC (t + 1) = N̂C (t + 1).

2. If the starting node is one of the vl’s, and it contained more than one searcher, then all of the vl’s remain
guarded, so there is no free path between N̂C (t) and N̂D (t). So all the nodes of N̂C (t) remain both
e-clean and n-clean. If the ending node is one of the wm’s, then (Facts 2 and 3)

NC (t + 1) = NC (t) ∪ {wm} = N̂C (t) ∪ {wm} = N̂C (t + 1) ;

otherwise
NC (t + 1) = NC (t) = N̂C (t) = N̂C (t + 1) .
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3. Next suppose the starting node is one of the vl’s (without loss of generality let it be v1), the ending node
is one of the wm’s (without loss of generality let it be w1) and v1 contains a single searcher (so after
the move it becomes unguarded). The ending node is added to both NC (t + 1) and N̂C (t + 1). No
previously e-clear node can become e-dirty, because (Fact 1) the searching strategy is node-monotonic.
Also, it is not possible for a previously n-clear node to become n-dirty: the only possible path from
one of w2, ..., wM to one of the previously n-clear nodes will have to pass through v1 and include one
previously clear edge (v1 cannot be isolated from the connected clear graph GC (t)); but the search
strategy was assumed edge-monotonic and so no edge recontamination is possible.

4. The final case to examine is when the starting node is one of the vl’s, the ending node is one of the uk’s
or vl’s and vl is left unguarded. We omit a detailed treatment, because it is similar to the previous
one.

Hence we conclude that NC (t + 1) = N̂C (t + 1). Proceeding inductively, we finally conclude that, if S
is an edge clearing strategy of length tf , then NC (tf ) = N = N̂C (tf ), i.e. S is a node clearing strategy as
well.

Corollary 1 For every tree T , Algorithm 2 generates a node clearing strategy.

Proof As proved by Barriere et al. (Barrière et al., 2002), the search strategy generated by Algorithm 2 is
monotone, connected, and edge clearing for every tree. Hence, from Theorem 1, it is also a node clearing
strategy for every tree.

Theorem 3 For every graph G, Algorithm 4 generates a node clearing strategy.

Proof Take an arbitrary graph G, find a spanning tree T , and apply Algorithm 4. Since T contains all
the nodes of G, the edge clearing strategy of Algorithm 2 will clear all the nodes of T and hence also of
G, provided no node recontamination occurs. Preventing recontamination is exactly what the use of guards
ensures in Algorithm 4.
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