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ABSTRACT

MULTI-AGENT teams can be used to perform tasks that would be very difficult or
impossible for single agents. Although such teams provide additional func-
tionality and robustness over single-agent systems, they also present addi-
tional challenges, mainly due to the difficulty of coordinating multiple agents

in the presence of uncertainty and partial observability. Agents in a multi-agent team must
not only reason about uncertainty in their environment; they must also reason about the
collective state and behaviors of the team.

Partially Observable Markov Decision Processes (POMDPs) have been used exten-
sively to model and plan for single agents operating under uncertainty. These models
enable decision-theoretic planning in situations where the agent does not have complete
knowledge of its current world state. There has been recent interest in Decentralized Par-
tially Observable Markov Decision Processes (Dec-POMDPs), an extension of single-agent
POMDPs that can be used to model and coordinate teams of agents. Unfortunately, the
problem of finding optimal policies for Dec-POMDPs is known to be highly intractable.
However, it is also known that the presence of free communication transforms a multi-
agent Dec-POMDP into a more tractable single-agent POMDP. In this thesis, we use this
transformation to generate ”centralized” policies for multi-agent teams modeled by Dec-
POMDPs. Then, we provide algorithms that allow agents to reason about communication
at execution-time, in order to facilitate the decentralized execution of these centralized poli-
cies. Our approach trades off the need to do some computation at execution-time for the
ability to generate policies more tractably at plan-time.

This thesis explores the question of how communication can be used effectively to en-
able the coordination of cooperative multi-agent teams making sequential decisions under
uncertainty and partial observability. We identify two fundamental questions that must
be answered when reasoning about communication: ”When should agents communicate,”
and ”What should agents communicate?” We present two basic approaches to enabling
a team of distributed agents to Avoid Coordination Errors. The first is an algorithm that
Avoids Coordination Errors by reasoning over Possible Joint Beliefs (ACE-PJB). We con-
tribute ACE-PJB-COMM, which address the question of when agents should communi-
cate. SELECTIVE ACE-PJB-COMM, which answers the question of what agents should
communicate, is an algorithm that selects the most valuable subset of observations from
an agent’s observation history.

The second basic coordination approach presented in this thesis is an algorithm that
Avoids Coordination Errors during execution of an Individual Factored Policy (ACE-IFP).
Factored policies provide a means for determining which state features agents should com-
municate, answering the questions of when and what agents should communicate. Addi-
tionally, we use factored policies to identify instances of context-specific independence, in
which agents can choose actions without needing to consider the actions or observations
of their teammates.
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NOTATION

〈α,S,A,P,Ω,O,R〉 a Dec-POMDP
α number of agents
S set of states
si one state in S
Ai set of individual actions for agent i

A = 〈A1, . . . ,Aα〉 set of joint actions
ai one joint action in A
aij agent j’s individual component of ai

P : S ×A× S → [0 . . . 1] the transition function
Ωi set of individual observations for agent i

Ω = 〈Ω1, . . . ,Ωα〉 set of joint observations
ωi one joint observation in Ω
ωij agent j’s individual component of ωi

O : S ×A× Ω→ [0 . . . 1] the observation function
R : S ×A → R the reward function

T the time horizon
γ ∈ [0 . . . 1] the discount factor

B set of possible beliefs
bi one belief in B
Σi set of messages that can be sent by agent i

Σ = {Σi}i∈α set of messages
Xi set of state features observed by agent i

X = {Xi}i∈α set of state features





CHAPTER 1

Introduction

T
HIS thesis explores the question of how communication can be used effectively

to enable the coordination of cooperative multi-agent teams making sequential

decisions under uncertainty and partial observability. The terms ”coordination”

and ”cooperative” have been defined in many different ways (Parker, 1998;

Gustafson and Matson, 2003; Gerkey and Mataric, 2004; Kalra et al., 2005). In this thesis,

we use the term with the following meaning:

• A cooperative team is one in which the goal of the team as a whole is to maximize

a global reward signal. This reward is shared equally among all members of the

team, and no team member is assumed to be self-interested or to have individual

preferences.

• Broadly, teams coordinate when, rather than ignoring its teammates or attempting

to model their actions as stochastic components of the environment, each agent

considers the effect of the interaction between its local action and the actions of

its teammates on the team performance. We are concerned specifically with the

problem of tightly-coupled coordination, an issue that arises whenever there are

instances in the problem space where the actions of one agent affect the optimal

action choice for other team members.

In addition to domains such as robot soccer in which a cooperative team is inherent

to the problem description (Fujita et al., 2000), multi-agent teams are useful for performing

tasks that would be difficult or expensive for a single agent. For example, in domains

such as planetary exploration (Goldberg et al., 2003), multi-agent teams provide additional

robustness to failure, or may enable a task to be completed faster and more efficiently than

would be possible with a single agent.

The behavior of multi-agent teams can be studied at different levels of abstraction,

from the high-level problems of coalition-formation and task-allocation (Dias and Stentz,
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2000; Vail and Veloso, 2003; Vig and Adams, 2006) down to the granularity of synchroniz-

ing the motions of cooperating robots, in domains such as box-pushing and multi-robot

assembly (Matarić et al., 1995; Sellner et al., 2006). Some complex domains, like RoboCup

Rescue (Nair et al., 2000), may require coordination at multiple levels of abstraction. In

this thesis, we model the problem of multi-agent coordination as a problem of sequential

decision-making under uncertainty and partial observability.

• Uncertainty refers to non-determinism in the outcomes of agents’ actions.

• Partial observability implies that agents will not always be able to determine, with

complete certainty, the current state of their environment.

In our models, agents choose and execute actions according to a pre-computed policy,

and in the absence of communication, are not informed by any external source about which

actions their teammates have chosen. As depicted in Figure 1.1, the collected individual

actions of the agents form a joint action that stochastically affects the state of the world.

Each agent then receives a local observation, which is a component of a joint observation

emitted by the environment. The observations may depend on the joint action of the team

at the previous timestep. Again, in the absence of communication, the agents do not know

what their teammates have observed. Because the state is partially observable, the agents

may not know the state at any given timestep. Instead, each agent must use the informa-

tion available to it, in this case, its own local action and observation, to form a belief that

estimates the state. Each agent then uses its belief to choose the next action.

The overall goal of the team is to maximize the cumulative expected reward that de-

pends, at each timestep, on the current state and, possibly, the joint action. Because of our

interest in tightly-coupled coordination, we seek to ensure that at every timestep, agents

will avoid coordination errors. We define a coordination error, or instance of mis-coordination,

as follows:

Given a joint policy and some belief about the current state, each agent

chooses an individual action. Together, these individual actions form a

joint action. This joint action constitutes a coordination error if any agent,

upon being informed of the fixed action choices of its teammates, would

choose to change its own individual action so as to improve team perfor-

mance under the current policy and given the agent’s current information

about the state.

Note that avoiding coordination errors is not equivalent to acting optimally. Rather, coor-

dinated actions are fixed points in the joint policy in which the agents attempt to respond,

given limited information, to the possible action choices of their teammates. In our work,
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while we do not guarantee that we will enable agents to act optimally, we do guarantee

that the agents will act in coordination as a team.

State

Belief Policy

Belief Policy

Joint ActionJoint Observation
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2
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w
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2

Belief

World

Agent 0

Agent 1
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Figure 1.1. Multi-agent sequential decision-making in the absence of communica-
tion. The agents choose individual actions (a0, a1, a2) according to their local poli-
cies, and receive individual observations (w0, w1, w2). State transitions, observa-
tions, and the overall reward accumulated by the team depend on the joint action.

Figure 1.1 shows the information flow within a team of agents making sequential de-

cisions under uncertainty, without communication. Each agent receives observations from

its environment and takes actions that affect that environment. However, no information

passes directly between the team members. Communication is an important tool that can

be used to improve the performance of cooperative agents. When agents share their local

observations with their teammates, they are able to form more accurate beliefs about the
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state. If agents are informed about the actions chosen by their teammates, they are better

able to avoid coordination errors. In this thesis, we address the effective use of communi-

cation for maintaining coordination within cooperative teams of distributed agents.

1.1. Motivation

The motivation for this thesis originates in our work on CMPack’02, a four-legged

AIBO robot soccer team (Roth et al., 2003; Vail and Veloso, 2003). Sony AIBOs are equipped

with a camera, located at the tip of the robot’s nose, which provides the primary means by

which the robots sense their environment. The robots are fully autonomous, performing all

sensing and reasoning on-board. Since 1998, robot soccer in the Four-Legged League has

been played by teams of increasingly sophisticated Sony AIBO robots (e.g, (Veloso et al.,

1998; Uther et al., 2002)). Figure 1.2 shows the model of AIBO used in the CMPack’02 team.

In 2002, a major change was introduced to the robots’ capabilities: wireless communica-

tion. The potential benefits of this new capability for our research on teams of autonomous

robots were enormous.

Figure 1.2. One of the Sony AIBO robots used in the 2002 RoboCup competition.
The robot is equipped with the ability for wireless communication.

Before 2002, cooperative behaviors between teammate AIBOs consisted of predefined

role assignments, such as goalie or attacker. Without communication and with limited vision

processing, which had to be focused on finding the ball and localization markers, both

attacker robots searched for the ball until they found it in their field of view, localized,

and kicked the ball towards the goal. Coordination between teammate attacker robots

was not explicitly designed, although it could sometimes emerge due to fortuitous spatial

distribution of the robots on the field. Because robots were unable to share information

with their teammates, each robot had to spend large portions of the game searching for the

ball. If two teammates saw the ball simultaneously, they would often get in each other’s
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way, although they could attempt to use local information to avoid each other (Lenser and

Veloso, 2003).

Because the robots could not communicate with their teammates, more complex co-

operative behaviors, such as dynamic role assignment and strategic positioning were vir-

tually impossible. Wireless communication in the new 2002 robots provided robot soccer

teams with the potential ability to share information about their own positions and the po-

sitions of relevant objects not necessarily in a single robot’s own field of view, as well as to

explicitly coordinate their behavior in terms of dynamic role assignment and switching.

The first approach that we used to try to integrate wireless communication into the

CMPack’02 team was simply to direct the robots to communicate their entire local state

models. The AIBOs receive and process images at 20 frames per second, and build a world

model consisting of their own location (position and heading), the location of the ball, and

the positions of their three teammates (Lenser and Veloso, 2000). Because each image that a

robot processes may contain only a few (or none) of these relevant state features, the world

model also includes a time stamp associated with each element, indicating the last time that

it was observed. The most basic way for the AIBOs to share information was for each robot

to broadcast its complete world model to its teammates and build a new world model by

choosing the elements with the most recent time stamps from each received world model.

In this way, it was theorized that the team as a whole could share the most up-to-date

information observed by each individual robot.

This approach, however, proved to be ineffective. Communication latency was high.

On average, messages took 0.5 seconds to be received by all teammate robots, and in some

cases, latency was observed to be as high as 5 seconds. Without synchronized clocks, this

latency made it difficult for the robots to determine which observations were, in fact, the

most recent. The AIBOs also had limited computational power onboard. Receiving mes-

sages broadcast by teammates at 20Hz overloaded the AIBO operating system’s message

buffers. After a few minutes of attempting to broadcast their world models as they were

updated, the robots’ motion controllers were affected, causing the robots to slow down and

occasionally crash.

We were therefore challenged to research a better communication policy. Given the

high latency and the practical need to reduce the broadcasting rate, we devised a strategy

that separated each robot’s beliefs into an individual and a shared world model. We further de-

fined a set of rules by which robots updated and used these world models with communi-

cated information (Roth et al., 2003). Robots broadcasted their positions to their teammates
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at a rate of 2 Hz, and communicated the position of the ball only if they had actually ob-

served it since the last instance of communication. In addition, robots always trusted their

local observations before relying on communicated information. This strategy proved to

be quite successful, assisting the CMPack’02 team in becoming the 2002 RoboCup Four-

Legged League world champions by enabling novel and effective team coordination (Vail

and Veloso, 2003). Our experience working on the problem of communication for the CM-

Pack’02 robot soccer team prompted our interest in the more general problem of controlling

the use of communication within robot teams.

In 2002, there were few other teams, besides those involved in robot soccer, of real

robots acting in real time. We were very fortunate to have had an opportunity to directly

observe the challenges of communication in teams of robots. The difficulty of effectively incor-

porating communication into a team of robots with inevitable computational and sensing

limitations served as a motivation for this thesis, although the algorithms detailed in this

work are currently too computationally demanding to be applied to real-world problems.

Concretely, our experience with RoboCup showed us that, although communication is a

potentially valuable resource for robot and agent teams, ”broadcast all local state, all the

time” is not, in general, a successful communication strategy. The work detailed in this the-

sis therefore identifies and addresses two fundamental questions that must be answered

when developing communication policies for a cooperative team:

• When is communication necessary?

• What should be communicated?

1.2. Approach

In this thesis, we address the problem of using communication to coordinate the be-

havior of teams of cooperative agents. We are interested in domains that require tightly-

coupled coordination, in which agents need not only to reason individually about uncer-

tainty in their environment, they must also reason about the possible local states and ac-

tions of their teammates. To this end, we frame our work within the context of the Decen-

tralized Partially Observable Markov Decision Problem (Dec-POMDP) and Decentralized

Markov Decision Problem (Dec-MDP) models, which use decision theory to address the

problem of sequential decision making. By representing the effects of combinations of in-

dividual agent actions at each timestep on the team reward, Dec-POMDPs and Dec-MDPs

accurately represent both the cooperative and tightly-coordinated nature of the domains

with which this thesis is concerned.
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Unfortunately, for realistically sized models, Dec-MDPs and Dec-POMDPs are too

hard to solve optimally. Decision-theoretic models are concerned with the effect, no mat-

ter how small, of any single action choice on the overall expected reward. Developing an

optimal policy requires one to reason over all possible action choices in all possible states

that an agent could encounter. Because agents are distributed and do not know the obser-

vations received by their teammates or the actions that their teammates selected, reasoning

about the possible states that can be encountered requires agents to reason about all of the

possible experiences of their teammates.

Communication provides a valuable tool both for improving the performance of multi-

agent teams and, in some cases, for improving the tractability of team coordination. Free

and instantaneous communication enables perfect inter-agent coordination by transform-

ing a multi-agent problem into a large, centralized (equivalently, single-agent) problem.

Unfortunately, in most domains communication is a limited resource and therefore cannot

be treated as if it were free. Limited communication can still be used to improve team per-

formance by allowing agents to share information and thereby generate a more informed

estimate of the global state and the local states of each teammate. However, the need to

reason about communication decisions as part of the policy-generation process, in order to

use limited communication resources effectively or to minimize the cost incurred by com-

munication, means that in general, the presence of communication does not make policy-

generation more tractable.

Instead of attempting to make optimal communication decisions at plan-time, this

thesis investigates the use of execution-time communication heuristics. The overall approach

is as follows: At plan-time, a centralized policy is generated for the team as if the agents

had free communication available to them. However, because the agents are decentralized

at execution-time and communication is not free, the challenge is to enable the agents to

execute a centralized policy while avoiding coordination errors. The algorithms detailed

in this thesis show how agents can successfully avoid mis-coordination while using com-

munication to improve team performance.

Hypothesis - Reasoning about communication decisions at execution-time

provides a more tractable means for coordinating teams of agents under

partial observability than including all communication decisions in a com-

prehensive policy that is computed off-line, and can be done without sac-

rificing too much in terms of team performance.
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The trade-off involved in making communication decisions at execution-time is that

agents must reason about the value of communication in the midst of execution, rather

than simply following a pre-computed policy. We believe that this trade-off is justified for

several reasons: First, doing all computation, for both communication and domain-level

actions, at plan-time is intractable for teams acting in complex domains. By generating

a centralized policy, we reduce the computation that needs to be done at plan-time to a

less computationally complex problem. Secondly, the amount of reasoning involved in

making communication decisions at execution-time is less than what would be required

to generate a universal policy for communication at plan-time. The problem of generat-

ing a communication policy offline requires one to reason about all possible messages that

an agent could construct and choose to communicate. When reasoning about communi-

cation at execution-time, the agent must consider only the observation history that it has

actually observed; there is never a need for the agent to contemplate communicating other,

hypothetical, observation histories.

1.3. Issues in Communication

There are several issues that must be addressed when developing communication

heuristics. The two most basic issues, on which we focus in this thesis work, are when

and what a team of agents should communicate. Additionally, in teams of more than two

agents, there is a question of with whom each agent should communicate. Finally, when

designing a communication strategy, one must determine whether agents will decide to tell

what they know to their teammates unprompted, or ask their teammates for information

when they determine that it is needed.

1.3.1. When is communication necessary?

As agents operate independently with partial observability of the world, their beliefs

about the state of the world diverge from those of their teammates. It is clear that if, at a

particular timestep, all of the agents on a team share the same synchronized belief about

the state of the world, no communication is necessary. The challenge, then, is identifying

situations in which the agents’ beliefs have diverged sufficiently such that their collective

performance suffers, either because the agents begin to make coordination errors or be-

cause, individually, the agents do not have sufficient information to choose actions that

lead to high expected reward. By re-aligning the agents’ beliefs, communication can im-

prove team performance.
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How can the need to communicate be quantified? Consider the following: Suppose

that at one timestep (e.g. the first timestep, if the agents start with a synchronized belief

about the state of the world), the collective state of the team is such that communication

is not necessary. Each agent takes an action and receives an individual observation. There

are two possible outcomes. Either:

1. communicating anything that has been observed by one or more of the agents

over the course of execution will not change the team’s behavior in the current

timestep, in which case communication is not immediately necessary, or

2. at least one agent has accumulated information that, if communicated would

change the subsequent behavior of the team.

An agent can determine whether communication will change the team’s behavior, leading

to a change in expected long-term reward. This change in expected reward is the myopic

value of the information to be communicated. If the value of information is greater than

the cost of communication, it indicates that communication is cost-effective in the current

timestep.

There are two main challenges that must be addressed in order to answer the question

of when to communicate. First, agents must be able to estimate the effects of communi-

cation on team behavior and determine if the joint action and expected team reward will

change as a result of a hypothetical communication act. Second, if agents do not com-

municate at every timestep, there will be situations in which the teammates do not share

the same belief about the state of the world. The agents must have a policy that enables

them to effectively select individual actions and avoid mis-coordination when their local

knowledge differs. Chapter 4 discusses these issues and introduces an algorithm, ACE-

PJB-COMM, that enables an agent, at execution-time, to maintain coordination and choose

when to communicate to its teammates.

1.3.2. What should be communicated?

In addition to deciding when communication is necessary, agents must also reason

about what to communicate. The most restrictive form of communication is synchroniza-

tion, in which, if at least one agent initiates an instance of communication, all of the team-

mates are forced to communicate all of their observations since the last instance of com-

munication. Synchronization has been commonly used when designing communication

paradigms for decision-theoretic cooperative teams, because it has the useful property of

ensuring that each instance of communication returns all of the team agents to a shared be-

lief over world states (Xuan et al., 2001; Nair et al., 2004). This thesis introduces a slightly
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less restrictive communication paradigm (Roth et al., 2005), discussed in detail in Chap-

ter 4, in which agents need not communicate simultaneously, but an agent who chooses to

communicate broadcasts all of its observations that it has not previously communicated.

Both synchronization and the paradigm utilized in Chapter 4 essentially answer the ques-

tion of what to communicate by saying ”everything,” thus reducing the problem of com-

munication solely to a question of when to communicate.

One approach to addressing the question of what to communicate is to allow agents

to choose a subset of their observation histories to communicate to their teammates. There

are many criteria by which these observations could be chosen. For example, the most

”informative” observations, defined as those observations that cause the highest reduction

in the entropy of a teammate’s belief, could be communicated (Rosencrantz et al., 2003).

By contrast, Chapter 5 discusses an algorithm, SELECTIVE ACE-PJB-COMM, that extends

the ACE-PJB-COMM algorithm by selecting observations according to the value of their

information, approximated by observing their effect on changing the team’s actions (Roth

et al., 2006).

Although choosing a subset of ”most valuable” observations from a complete obser-

vation history does begin to address the question of what to communicate, it still restricts

communication to complete observations. Consider the robot soccer domain discussed

above. In that domain, it is most important for robots to know their own position and the

position of the ball. Most of the other state elements that they observe, such as the posi-

tion of other robots on the field, are frequently irrelevant, or so noisy as to be useless. In

many cases, a complete answer to the question of what to communicate includes a list of

those state features that are currently most valuable to team performance. Chapter 6 shows

how a factored model of the state can be used to facilitate the communication of state fea-

tures (Roth et al., 2007). This allows a more natural understanding of the question of what

to communicate.

1.3.3. Additional Concerns Regarding Communication

In addition to answering the questions of when and what to communicate, a compre-

hensive communication policy should also address the issue of with whom agents should

communicate, meaning with which of its teammates. Communication in the context of

multi-agent systems can be classified as either broadcast or peer-to-peer. In broadcast com-

munication, when an agent sends a message, that message is received by every member

of the team, and the question of with whom an agent should communicate is irrelevant.

In peer-to-peer communication, however, agents direct messages to particular teammates,
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and only those teammates receive the message. Therefore, when an agent chooses to com-

municate, it must also determine with whom it will do so. The algorithms discussed in

Chapters 4 and 5 assume the presence of broadcast communication. Chapter 6 shows how

factored representations can be used to indicate not only what state feature to commu-

nicate, but also which agent should communicate that feature, making it applicable to

peer-to-peer communication.

Finally, there remains the question of how communication is initiated, and in which di-

rection information flows between agents. We consider three communication types (Xuan

et al., 2001):

• tell, in which one agent determines that its local information may be useful to its

teammates and chooses to broadcast its own observations,

• query, in which an agent asks one or more of its teammates for a particular piece

of information that it believes will be useful,

• and sync, in which agents all agents simultaneously communicate their local in-

formation to all of their teammates.

These different communication paradigms are useful in different situations. As discussed

above, sync may be preferable in some domains because it guarantees that agents will reach

a unified belief about the world after each instance of communication. On the other hand,

sync may also be unnecessarily wasteful of communication resources, in that it may force

agents to communicate information that will not be useful to their teammates. Chapters 4

and 5 deal with tell communication. Because the algorithms detailed in those chapters in-

volve agents modeling the possible states of the team as a whole, it is easier for an agent

executing those algorithms to calculate whether its own local observations will be useful

to the team than to wonder about the possible observations that its teammates could have

observed and ask for them. Chapter 6, however, deals with a situation in which agents do

not model the possible beliefs of their teammates. Instead, agents employ query commu-

nication, and ask their teammates for information whenever they believe that something a

teammate could have observed will affect their individual action choice.

1.4. Thesis Contributions

This thesis makes contributions in the area of using communication to improve the

coordination of multi-agent teams.

• The approach presented in this work, namely generating a centralized policy for

the team at plan-time and making communication decisions at execution-time to

facilitate the decentralized execution of this centralized policy, is a novel solution
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to the problem of generating heuristic policies for the highly intractable Dec-MDP

and Dec-POMDP models. Our focus in this thesis is on developing algorithms

that guarantee that agents will Avoid Coordination Errors (ACE) during execu-

tion.

• This thesis introduces two approaches for enabling the decentralized execution

of a centralized policy:

– Agents Avoid Coordination Errors by reasoning about and selecting actions

over the distribution of Possible Joint Beliefs (ACE-PJB) of the team as a whole.

– Agents Avoid Coordination Errors by using Individual Factored Policies (ACE-

IFP) to identify those portions of the state space in which they can act inde-

pendently.

• Three algorithms detailed in this thesis address the questions of when, what, and

in the case of our work on factored policies, to whom a team of agents should

communicate.

The approaches presented in this thesis are verified experimentally in a number of

domains, chosen for their illustrative properties. The ACE-PJB-COMM algorithm in Chap-

ter 4 is tested primarily in the Two-Agent Tiger domain (Nair et al., 2003), detailed in Ap-

pendix A.1, which has become a standard benchmark problem in the Dec-POMDP litera-

ture (Nair et al., 2004; Emery-Montemerlo et al., 2004; Seuken and Zilberstein, 2007). The

Two-Agent Tiger problem is particularly useful as an explanatory aide, given its size of

only 2 states, 3 individual actions, and 2 individual observations. Our results in the two-

agent tiger domain indicate that using the ACE-PJB-COMM algorithm to make commu-

nication decisions enables a team to communicate, on average, 48.7% fewer observations

and 82.3% fewer messages than a team executing with full communication. With respect

to performance, however, ACE-PJB-COMM causes the agents to act more conservatively

than they would with free communication, achieving 74.4% of the mean discounted re-

ward. In addition to the tiger domain, we verified the performance of ACE-PJB-COMM

in another common benchmark domain, the multi-access broadcast channel (MABC) do-

main (Hansen et al., 2004; Seuken and Zilberstein, 2007), described in Appendix A.2. We

demonstrated that the ACE-PJB-COMM algorithm and the overall approach of reasoning

over the distribution of possible joint beliefs is applicable to teams of more than two agents

by constructing a three-agent tiger domain.

In Chapter 5, we explore the question of what to communicate by presenting an al-

gorithm that selects for communication the most valuable subset of observations from a
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complete observation history. While we performed experiments with the SELECTIVE ACE-

PJB-COMM algorithm in the two-agent tiger domain, we needed to construct a domain in

which different observations have different informative values. In the tiger domain, the

two possible individual observations are symmetric with respect to the state and there-

fore convey the same amount of information when communicated. We therefore introduce

a new domain, the Colorado/Wyoming Problem, described in Appendix A.3, in which

agents observe 4 possible individual observations of varying qualities that help them to

distinguish whether they are in Colorado or Wyoming. The problem is a variant of the

common Meeting-Under-Uncertainty benchmark domain (Xuan et al., 2001; Goldman and

Zilberstein, 2003; Bernstein et al., 2005), where agents are attempting to meet in a goal lo-

cation. Our experimental results show that the agents are able to use the SELECTIVE ACE-

PJB-COMM algorithm to reason effectively about which of their observations are the most

valuable to the team performance, reducing communication by 46.3%, on average, over the

baseline ACE-PJB-COMM algorithm, with no significant decrease in performance.

Chapter 6 is concerned with the use of factored representations of state, both to in-

forming agents about when and what to communicate, and also to enable agents to act

independently in some cases without considering the actions of their teammates. The ACE-

IFP algorithm described in this chapter is currently applicable only to Dec-MDP domains.

We are particularly interested in demonstrating our approach on domains in which the

independence of agents from their teammates during portions of execution is intuitively

obvious. We therefore performed experiments in a two-agent Meeting-Under-Uncertainty

domain, described in Appendix A.4, in which agents must meet their teammates at a goal

location before performing a simultaneous SIGNAL action. In this domain, teams execut-

ing individual factored policies required communication of, on average, 43.8% fewer state

variables than teams executing with full communication, with no loss of expected reward.

We also demonstrate the performance of ACE-IFP in a modification of the taxi domain (Di-

etterich, 1998), detailed in Appendix A.5, a domain that has received significant attention

in the multi-agent reinforcement learning literature (Ghavamzadeh and Mahadevan, 2004).

In this domain, agents achieved an average communication savings of 46.1% state features

over a team with full communication, while accumulating the same mean discounted re-

ward.

1.5. Thesis Outline

• Chapter 2 provides background information on the various decentralized sequen-

tial decision-theoretic models that form the framework for this thesis.
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• Chapter 3 gives an overview of related work.

• Chapter 4 discusses the ACE-PJB algorithm that enables a team of agents to rea-

son about the possible joint beliefs of the team, and introduces the ACE-PJB-COMM

algorithm for making decisions about when to communicate.

• Chapter 5 presents the SELECTIVE ACE-PJB-COMM algorithm, that reasons about

what observations a team should communicate.

• Chapter 6 discusses ACE-IFP algorithm, in which a factored representation of

state is used to answer the question of which features a team should communi-

cate and to enable agents to act independently in some situations, without con-

sidering the actions and observations of their teammates.

• Chapter 7 contains concluding remarks and a discussion of possible directions

for future work.
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CHAPTER 2

Decentralized Decision-Theoretic Models

M
ARKOV Decision Problems (MDPs) are the basic framework for model-

ing sequential decision theoretic planning under uncertainty (Howard,

1960). MDPs model fully observable domains, domains in which the act-

ing agent has complete knowledge of the current world state at each

timestep. When solving an MDP, the goal is to find a policy that maximizes the agent’s

expected reward by specifying which (potentially noisy) action the agent should take in

every possible state. Partially Observable Markov Decision Problems (POMDPs) extend

the MDP framework to address partially observable domains, those domains in which the

agent is unable to directly observe the world state, but instead must estimate the state

based on noisy or incomplete observations (Sondik, 1971).

This chapter discusses cooperative multi-agent extensions to the Markov Decision

Problem framework and gives an overview of some tools used in this thesis. In multi-

agent systems, the two classes of observability, full observability and partial observability,

take on slightly different meanings. Section 2.1.1 describes the Decentralized Partially Ob-

servable Markov Decision Problem (Dec-POMDP), which models teams operating under

partial observability, sometimes referred to as collective partial observability. Multi-agent

teams may also exhibit a class of observability called collective observability, discussed in

Section 2.1.2. Teams that operate under collective observability, modeled by Decentralized

Markov Decision Problems (Dec-MDPs), are those in which, while each agent may not be

able to determine the world state independently, the union of the local observations of all

of the teammate agents uniquely identifies the world state. Section 2.1.3 discusses the fully

observable Multi-agent Markov Decision Problems (MMDPs), in which each agent, with-

out needing to share information with its teammates, is able to uniquely identify the state

of the world.
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Section 2.2 discusses the computational complexity planning, both centralized and

decentralized, for these multi-agent models. The basic Dec-POMDP and Dec-MDP mod-

els do not admit explicit communication between agents. In Section 2.2.3, we address the

impact of explicit inter-agent communication on the complexity of solving decentralized

problems and situate this thesis within the spectrum of observability and communication

availability of decentralized decision theoretic models. Section 2.3 discusses POMDP solu-

tion methods, particle filters, and factored representations, all of which served as tools for

the work in this thesis.

2.1. Decentralized Models

The deliberative, as opposed to behavioral, approaches to the coordination of multi-

agent teams tend to be classified as belonging to one of three main philosophies: ”Belief-

Desire-Intention” (BDI), market-based, and decision theoretic. The models that form the

framework for this thesis, Decentralized Partially Observable Markov Decision Problems

(Dec-POMDPs) and Decentralized Markov Decision Problems (Dec-MDPs), were chosen

because they use decision theory to address the problem of sequential decision making.

While BDI frameworks are useful for finding qualitative solutions to team coordination

problems, they have difficulty providing a quantitative analysis of team performance (Brat-

man, 1987; Georgeff et al., 1999). The BDI framework is, therefore, poorly suited to our

needs in this thesis, as we are interested in quantitatively analyzing the impact of commu-

nication on the performance of multi-agent teams. Market-based approaches are primarily

useful for solving the problem of task allocation (Gerkey and Mataric, 2004; Dias et al.,

2006), but are difficult to use for coordinating teams of agents at the level of individual

actions. Dec-MDPs and Dec-POMDPs represent the effects of combinations of individual

agent actions at each timestep on the team reward. In this sense, decision theoretic models

accurately represent both the cooperative and tightly-coordinated nature of the domains

with which this thesis is concerned.

2.1.1. Dec-POMDP: Collective Partial Observability

There are several equivalent multi-agent POMDP frameworks (e.g., Decentralized

POMDP (Dec-POMDP) (Bernstein et al., 2002), Markov Team Decision Problem (MTDP)

(Pynadath and Tambe, 2002), Partially Observable Identical Payoff Stochastic Game (PO-

IPSG) (Peshkin et al., 2000)), all of which model cooperative multi-agent teams operating

under partial observability. In such teams, the agents take individual actions and receive

local observations, but accumulate a joint team reward. Partial observability means that
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not only is each individual agent unable to identify the current world state, but that even if

the agents were able to share their local observations, these pooled observations would be

insufficient to determine the state of the world with certainty. Robot soccer is an example

of one such domain. Even if the agents communicate all of their observations to their team-

mates, the observations still contain noise and do not identify, with certainty, the positions

of all of the relevant objects in the robots’ environment.

In this work, we describe multi-agent POMDPs using notation which defines a Dec-

POMDP as a tuple 〈α,S,A,P,Ω,O,R〉 (Bernstein et al., 2000). The components of the tuple

are:

• α, the number of agents in the team,

• S, the set of n possible world states, s1 . . . sn,

• A, the set of possible joint actions of the team, where each joint action ai is com-

posed of α individual actions, 〈ai1 . . . aiα〉,

• P , the transition function (P : S × A × S → [0 . . . 1]), which depends on joint

actions and gives the probability associated with starting in a state si and ending

in a state sj after the team has executed the joint action ak,

• Ω, the set of possible joint observations, where each joint observation, ωi, is com-

prised of α individual observations, 〈ωi1 . . . ωiα〉,

• O, the observation function (O : S×A×Ω→ [0 . . . 1]), which gives the probability

of the team observing a joint observation ωi after taking joint action ak and ending

in state sj ,

• R, the reward function (R : S × A → R), which indicates the joint reward that is

received when the team starts in a state si and executes the joint action ak.

We denote the set of possible individual actions of an agent i as Ai, and likewise, the set

of possible individual observations as Ωi. A Dec-POMDP may also have a specified finite

time horizon, T , while an infinite-horizon Dec-POMDP may have a discount factor, γ, that

ranges between 0 and 1.

In this formulation, the observation function O depends only on the end state and

the joint action of the team, and the reward function R depends only on the starting state

and joint action. This does not limit the generality of the model, as domains in which

observation probabilities depend on the start state or rewards depend on the end state, or

only on the start state and not the joint action, can be transformed into models that fit this

template through a straightforward expansion of the state space.

Although the observation function is written in terms of joint observations, it is impor-

tant to note that each agent observes only its local component of the joint observation, and

17



CHAPTER 2. BACKGROUND

does not know what its teammates have observed.1 Likewise, without communication,

each agent knows only its own individual action and not the actions taken by its team-

mates. Because the transition and observation functions depend on the joint action of the

team and are not, in general, factorable into functions over individual actions, agents must

know or reason about the possible actions of their teammates in order to correctly evaluate

the likelihood of a particular state transition or observation.

2.1.2. Dec-MDP: Collective Observability

Decentralized Markov Decision Problems (Dec-MDPs) model teams of agents operat-

ing under collective observability (Bernstein et al., 2002). In a Dec-MDP, the joint observation,

composed of the union of individual agent observations at a given timestep, uniquely iden-

tifies the current state of the world, even though the individual agents themselves may be

unable to determine the state independently. The tuple components for a Dec-MDP are the

same as those for Dec-POMDPs.

Because Dec-MDPs are collectively observable, there are restrictions on the structure

of the observation functionO. Although not all Dec-MDPs take this form, the state in some

Dec-MDPs may be factorable into local state components for each agent, such that for each

si ∈ S, si = 〈si1 . . . siα, sishared〉 where sik is agent k’s local component of state si and sishared
is some global state component that is shared by all agents. In such a domain, there is often

a one-to-one mapping between agents’ local states and observations:

O(〈sik, sishared〉, a, ω
j
k) =

{
1.0 : i = j
0.0 : i 6= j

In this case, the agent deterministically observes its local state and the shared state. For

each combination of an agent k’s local state sik and shared component sishared, the obser-

vation function O, independent of the joint action a, returns 1.0 if and only if the individ-

ual observation is the corresponding observation ωik. However, this one-to-one correspon-

dence between states and individual observations is not universally true for Dec-MDPs.

It is only necessary that the state be deterministically identifiable by the joint observation

composed of all individual observations2:

O(si, a, ωj) =
{

1.0 : i = j
0.0 : i 6= j

1In this work, we make the common assumption that the individual observations of the agents are condi-
tionally independent given the world state and the joint action. Therefore, the joint observation function can also
be written as the cross-product of individual observation functions for each agent.

2There need not be a one-to-one mapping between states and joint observations. The mapping may be
one-to-many, as long as there is no ambiguity regarding the state identified by each observation.
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2.1.3. MMDP: Full Observability

Fully observable domains in which each agent, independent of its teammates, can iden-

tify the current world state at every timestep, are modeled by Multi-agent Markov Decision

Problems (MMDP) (Boutilier, 1999). Because no observations are necessary to inform the

agents about the state of the world, an MMDP model is simply the tuple 〈α,S,A, T ,R〉,

where the model components have the same meanings as those defined above for a Dec-

POMDP.

2.2. Issues in the Complexity of Planning for Decentralized Models

In this section, we discuss the computation complexity of generating optimal policies

for Dec-POMDPs, Dec-MDPs, and MMDPs. Like the work discussed in this thesis, most

research on planning for these decentralized models has addressed the problem of central-

ized planning and decentralized execution. In Section 2.2.2, however, we also discuss a

problem that arises during decentralized planning for MMDPs, as it relates to our work in

Chapter 6 on transforming centralized policies into decentralized policies. The presence of

and limitations on communication in decentralized teams also impacts the complexity of

optimal planning, discussed in Section 2.2.3.

2.2.1. Centralized Planning

The problem of generating optimal policies for Dec-MDPs and Dec-POMDPs, even us-

ing a centralized planner, is a challenging one. It has been shown that the decision problem

for a Dec-POMDP with at least two agents (α ≥ 2),

”For a given Dec-POMDP with finite time-horizon T , there exists a pol-

icy which yields an expected reward of at least K,”

is NEXP-complete (Bernstein et al., 2002). Furthermore, the problem of generating optimal

policies for Dec-MDPs is also NEXP-complete for teams of two or more agents. Single-

agent POMDPs, by contrast, are known to be PSPACE-complete (Papadimitriou and Tsit-

siklis, 1987). Since NEXP is provably more complex than PSPACE, we know that Dec-

POMDPs are fundamentally harder than single-agent POMDPs. Additionally, known up-

per bounds for complexity hold only for finite-horizon problems where T < |S|. Problems

with longer or infinite time horizons are likely to be more intractable.

The complexity of Dec-POMDPs can be explained intuitively as follows. To plan an

optimal policy, an agent modeled by a POMDP must reason about the possible sequences

of observations that it could experience. The transition and observation functions for Dec-

MDPs and Dec-POMDPs depend on the joint action of the team and cannot, generally, be
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factored into functions over individual actions. Therefore, an optimal policy for an agent

in a multi-agent team must take into account not only the agent’s own possible observa-

tion histories, but the possible observations of its teammates and the possible actions that

they may choose to execute. It is this double branching factor, over both possible obser-

vations and possible actions, that leads to the increased complexity of decentralized teams

operating under partial observability.

By contrast, the problem of finding an optimal policy for a team modeled by a fully

observable MMDP is P-complete, the same complexity as a single-agent MDP (Pynadath

and Tambe, 2002; Papadimitriou and Tsitsiklis, 1987). The reasoning is as follows: An

MMDP policy is a mapping from states to joint actions. Because agents can identify the

complete world state, independently of their teammates, they can therefore also determine

what action their teammates will execute. Therefore, agents do not need to reason about

the possible actions their teammates could choose; there is only one possibility. In practice,

however, MMDPs, even with few agents, grow very quickly. The possible joint actions

of the team are formed by the cross-product of the possible actions of individual agents,

thereby growing exponentially with α. Additionally, the state space may grow rapidly

with the number of agents, as the amount of information needed to capture the complete

state of the team increases.

2.2.2. Decentralized Planning

Thus far, we have discussed the challenges of generating policies using a centralized

planner. An additional challenge arises if a decentralized approach is used to generate

individual policies for the teammate agents: the challenge of avoiding coordination prob-

lems introduced by equilibrium selection. This occurs when there are multiple possible

optimal joint policies. To ensure optimal behavior, all of the agents must select the same

joint policy. Figure 2.1 shows an MMDP in which this problem can arise. The MMDP

shown in the figure has two optimal policies. In both of them, agent 1 selects action a from

state s1. Then, in state s2, to achieve the maximum reward, the agents must execute the

same individual action, which can be either a or b. However, if the agents choose different

actions, such as the joint action 〈a, b〉, the team receives a negative reward.

A centralized planner could easily resolve this potential coordination problem by

breaking the tie arbitrarily, choosing either joint action and dictating coordinated individ-

ual policies to the two agents. However, any decentralized algorithm in which the indi-

vidual agents compute their own policies separately must concern itself with ensuring that

agents will execute complementary policies and avoid coordination errors. In Chapter 6,
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Figure 2.1. A two-agent MMDP with an equilibrium-selection problem (Boutilier, 1999).

we discuss how agents can transform centralized factored policies into individual factored

policies. Although we calculate the centralized policies using a centralized planner, the

process of transformation has the potential to introduce equilibrium-selection coordina-

tion errors. This thesis contributes a means by which it can be ensured that coordination

errors are avoided.

2.2.3. Communication

One obvious question is, how does the capability for communication between team-

mates affect the complexity of generating policies for multi-agent teams? Teams can be split

into three categories according to the presence and type of communication available (Py-

nadath and Tambe, 2002; Goldman and Zilberstein, 2004):

• no communication, in which agents either do not have the capability to send mes-

sages to each other or the cost of communication is so high as to make it imprac-

tical in all cases,

• free communication, where messages can be exchanged instantly between team-

mates with no cost,

• and general communication, in which the capability to send messages exists but

communication may be limited or incur a cost.

In the absence of communication, the complexity of DEC-POMDPs and DEC-MDPs

is NEXP-complete (Bernstein et al., 2000). The COM-MTDP framework is an extension of

MTDP (Multi-agent Team Decision Problem) that enables a formal analysis of the effect

of communication on computational complexity (Pynadath and Tambe, 2002). MTDP is a
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framework that is equivalent to DEC-POMDP, that, for the purpose of analysis, includes

an additional parameter, B, defined as:

• B, the set of possible combined belief states for all agents, where the possible

individual beliefs of a single agent are defined as the set of the agent’s possible

observation histories

COM-MTDP adds an additional parameter, Σ, and extends R to include separate reward

functions for communication and the domain-level actions in A. Thus, COM-MTDP is

defined as the tuple 〈α,S,A,Σ, T ,Ω,O,B,R〉, where:

• Σ = {Σi}i∈α, the set of possible messages available to the agents, where Σi is the

set of messages that can be sent by agent i

• R = RA + RΣ, where RA is the basic reward function, defined over states and

actions as for a Dec-POMDP, andRΣ is the communication reward function (RΣ :

S × Σ→ R) with which the cost of communication can be expressed

Using the COM-MTDP framework, it can be formally demonstrated that free com-

munication transforms a DEC-POMDP into a POMDP (and likewise, a DEC-MDP into an

MDP), with PSPACE-complexity. This proof is shown by assuming that, at every timestep,

every agent broadcasts its local observation to its teammates, with no effect on reward. This

allows the the team to construction the joint observation and allows policies to be written

and executed over joint observation histories. It can also be demonstrated that if commu-

nication is free, it is always better, or at least as good, for a team of agents to communicate

their observations at every timestep than to apply a communication policy that chooses

not to broadcast certain observations. Less intuitively, it is shown that for cases of general

communication, where broadcasting a message may incur a negative reward, the problem

of finding an optimal policy for a DEC-POMDP, which now includes a communication

policy that indicates when messages should be broadcast, remains NEXP-complete (Pyna-

dath and Tambe, 2002). This result has reinforced the motivation of researchers to explore

heuristic approaches for generating communication policies, as discussed in Chapter 3. Ta-

ble 2.1 summarizes the impact of communication on the complexity of generating optimal

policies for distributed teams.

MMDP Dec-MDP Dec-POMDP
No Comm. P-Complete NEXP-Complete NEXP-Complete

General Comm. P-Complete NEXP-Complete NEXP-Complete
Free Comm P-Complete P-Complete PSPACE-Complete

Table 2.1. The effect of communication on the complexity of decentralized sys-
tems. (Pynadath and Tambe, 2002)
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In this thesis, we address multi-agent teams with general communication. The ACE-

PJB-COMM and SELECTIVE ACE-PJB-COMM algorithms introduced in Chapters 4 and

5 are applicable to teams operating under both collective partial observability and collective

observability, modeled by Dec-POMDPs and Dec-MDPs. In Chapter 6, we limit ourselves to

addressing teams with collective partial observability, modeled by Dec-MDPs. Overall, the

planning problems that we address are NEXP-complete, motivating us to study execution-

time communication heuristics.

2.3. Tools

In this section, we discuss several tools that were used in this thesis. First, we discuss

Partially Observable Markov Decision Processes (POMDP) and present several methods

for generating POMDP policies. Next, we discuss particle filters, which model arbitrary

probability distributions with a fixed amount of memory. Finally, we give an overview of

factored Markov Decision Problems.

2.3.1. Partially Observable Markov Decision Problems

We assume that the reader is generally familiar with Partially Observable Markov

Decision Problems (POMDPs). Therefore, this section provides only a brief review of the

concept of belief, and its use in generating and executing POMDP policies.

Policies for Markov Decision Problems, π take the form of a mapping from states to ac-

tions (π : S → A), specifying an action to be executed in each state. A policy is considered

”optimal” if executing it will lead an agent to accumulate the maximum possible expected

reward. An agent modeled by a POMDP does not directly observe the world state, and

therefore is unable to execute a policy specified in terms of states. Instead, agents in par-

tially observable domains receive observations that allow them to make inferences about

the state of the world. A policy for a POMDP could, therefore, be written as a mapping

from observation histories to actions.

A more efficient representation, however, can be developed utilizing concept of a belief

state, or simply belief, that serves as a sufficient statistic for summarizing an observation

history (Åström, 1965). A belief is a probability distribution over the possible states of the

world. Given a POMDP model and an initial belief distribution b0 ∈ B, the belief at the

next timestep can be computed recursively from the current belief, taking into account the

action a and the observation ω at the previous timestep (Kaelbling et al., 1998):

bt+1(s′) =
O(s′, a, ω)

∑
s∈S T (s, a, s′)bt(s)

Pr(ω|a, bt)
(2.1)
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Pr(ω|a, b) is a normalizing factor that describes the likelihood of seeing a particular obser-

vation ω after taking action a, when the current belief is b:

Pr(ω|a, b) =
∑
s′∈S
O(s′, a, ω)

∑
s∈S
T (s, a, s′)b(s) (2.2)

POMDP policies can therefore be written as mappings from beliefs to actions (π : B → A).

There has been extensive work done on efficiently finding solutions, both exact and

approximate, to POMDPs. The work in this thesis, specifically Chapters 4 and 5, relies

on the use of POMDP policies as input sources for generating Dec-POMDP solutions. As

such, we have made use of two publicly distributed POMDP solvers:

• pomdp-solve, which provides a common syntax for specifying POMDP problem

domains and implements several standard algorithms from the POMDP solution

literature (Cassandra, 2005)

• and ZMDP, which implements heuristic search algorithms for solving both PO-

MDPs and MDPs (Smith, 2007).

Another POMDP solution method utilized in this work is the Q-MDP heuristic (Littman

et al., 1995). Q-MDP can be used to solve challenging POMDPs by first solving the under-

lying MDP, consisting of the state transitions that occur as a result of agent actions. This

underlying MDP is solved by assuming that, at policy-generation time, the world state is

fully observable. The MDP solution yields a set of value functionsQa(s) that, for each state

s, give the expected future reward for taking action a in that state and henceforth acting

optimally. At execution time, Q-MDP selects the action that maximizes expected reward,

conditioned on the current belief. Because the problem is a POMDP, and not an MDP, at

execution time the true state is not known. However, the belief b gives a probability distri-

bution over possible states and can be calculated at run-time from the observation history.

The best action can be chosen by examining the average value of each action in every state,

weighted by the probability of being in that state at the current time:

Q-MDP(b) = arg max
a

∑
s∈S

b(s)×Qa(s) (2.3)

Q-MDP is a greedy and optimistic heuristic that chooses actions as if the world were going

to become fully observable in the next timestep. Therefore, unlike optimal algorithms that

consider the value of information that can be gained by the possible actions, Q-MDP will

not see potential value in taking information-gathering actions that do not immediately

generate reward, causing it to suffer in comparison to other solution methods.
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In addition to using Q-MDP to generate a policy for the Colorado/Wyoming domain

introduced in Chapter 5 and detailed in Appendix A.3, Q-MDP also serves as inspira-

tion for the Q-POMDP heuristic introduced in Chapter 4. Just as Q-MDP approximates

the solution to a POMDP by solving the underlying MDP, Q-POMDP finds approximate

solutions for Dec-POMDPs by using the policies for the underlying centralized POMDPs.

2.3.2. Particle Filters

When the state space is large, the amount of memory needed represent belief exactly as

a vector of probabilities may be intractable. In continuous state spaces, an exact represen-

tation of belief is impossible. Particle filters are a sample-based method for approximating

arbitrary probability distributions using a fixed amount of memory, and have been used

extensively in POMDP research (Thrun, 2000; Poupart et al., 2001). Particle filters represent

probability distributions by storing a fixed number of samples of the possible states being

modeled. At each timestep, the state of each sample is propagated forward according to

the transition function T , given the action that was taken. Then, a weight is given to the

new particle based on the probability of the observation that was received. New parti-

cles are resampled according to the weights that were assigned to represent the new belief

distribution.

In Chapter 4, we use a particle filter to represent the distribution of the possible joint

beliefs of a team of agents. As we discuss in that chapter, the number of distinct possible

joint beliefs grows approximately exponentially over time. It therefore quickly becomes

intractable to model the distribution exactly. A particle filter is useful because it can repre-

sent this growing distribution in constant space. However, there is an explicit tradeoff that

must be dealt with between the size and the accuracy of a given particle filter. Updates for

a particle filter composed of few particles can be performed quickly, but the distribution

model encoded by those particles will be inaccurate. A particle filter with many parti-

cles can model a belief distribution more accurately, but may be very slow to update. We

explore this tradeoff empirically in Chapter 4.

2.3.3. Factored MDPs

Markov Decision Problems use a flat representation of state, in which each possible

state is enumerated, and the transition and reward functions indicate the relationship be-

tween individual states and actions. Although MDPs are P-complete (Papadimitriou and

Tsitsiklis, 1987), there still exist MDP domains in which the state space is so large that ex-

isting algorithms for finding an optimal policy based on this flat state representation are
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too computationally expensive to be practical. Instead, factored representations have been

proposed to both reduce the size of the problem representation and to speed up the com-

putation of policies. The state S in an MDP can be decomposed into n state features or

variables X = 〈X 1 . . .Xn〉, where each state si is an assignment of values to each variable

in X (Boutilier et al., 1999).3 Therefore, the transition function can be written to represent

the probability of each variable taking on a particular value, given the values of its parent

variables and the action in the previous timestep. Dynamic decision networks have been

used to represent the conditional relationships between parent and child variables across

timesteps (Dean and Kanazawa, 1989).

Taking advantage of these compact representations is challenging. In general, there

are two classes of approaches that use factored representations to efficiently compute poli-

cies for large MDPs. One approach is to define basis functions over the state variables (Koller

and Parr, 1999). Each basis function depends on some subset of the state variables, and a

complete MDP policy is a weighted sum of basis functions. Because each basis function

depends on only a small subset of state variables, computing policies over the set of basis

functions is more efficient than doing so over the complete state representation. Currently,

the fastest MDP solution algorithms utilize this basis function representation (Guestrin

et al., 2003; Lagoudakis and Parr, 2003). However, the problem of defining useful basis

functions is a difficult one, and is a current area of active research.

We base the work in Chapter 6 on a different approach to factored representations.

Instead of basis functions, we are interested in factored policies that can be represented as

decision trees, with state variables at the internal nodes and actions at the leaves (Boutilier

and Dearden, 1996). One algorithm developed to generate these tree-structured policies is

called Structured Policy Iteration (Boutilier et al., 2000). Structured Policy Iteration (SPI)

takes as input an MDP representation in which the conditional probability table for each

state variable is represented as a decision tree branching over that variable’s parent vari-

ables from the previous timestep. SPI also requires that the reward function be specified as

a tree, and that it depend only on the current state, and not states and actions. Structured

Policy Iteration returns a compact tree-structured policy by taking advantage of a property

called context-specific independence (Boutilier et al., 1996), in which a variable is dependent

on some parents only for certain values of other parents, and independent otherwise. As

we show in Chapter 6, the concept of context-specific independence can be extended to

3This representation is general. Domains in which the state cannot be decomposed can still be represented
with factored MDPs, where |X | = 1 and ∀i, si → X = i.
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multi-agent domains, and is a useful property for identifying situations in which one agent

can act without needing to consider state variables observed only by its teammates.
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CHAPTER 3

Related Work

T
HE Dec-POMDP and Dec-MDP models that form the underlying representa-

tions for the work in this thesis have attracted considerable attention in re-

cent years. In this chapter, we present an overview of prior work aimed

at finding policies for teams modeled by these representations. Section 3.1

discusses how Dec-POMDPs and Dec-MDPs can be solved optimally. However, because

Dec-POMDPs and Dec-MDPs are NEXP-complete, and therefore optimal algorithms will

never allow the solution of large problems, the majority of work in this area has focused

on heuristic solutions that generate sub-optimal policies. Section 3.2 describes some of

these approximate solution methods. Finally, like the work in this thesis, there has been

some attention to the challenges of including communication in reasoning about cooper-

ative multi-agent teams. Section 3.3 discusses other work that has been done in this area,

with particular attention to how previous approaches compare to the work presented in

this thesis.

3.1. Exact Solutions

There are many decision-theoretic models that, like the Dec-POMDP formulation in-

troduced in (Bernstein et al., 2000), can be used to represent cooperative teams operating

with uncertainty in the outcomes of their actions and under partial observability. Some

can model both cooperative and non-cooperative teams, such as the Interactive POMDP

framework (I-POMDP) (Gmytrasiewicz and Doshi, 2005), which requires agents to main-

tain recursive beliefs about their teammates and their teammates beliefs about them and so

on, and Partially Observable Stochastic Games (POSG), which use a game theoretic repre-

sentation to model the interactions of agents (Emery-Montemerlo, 2005). The Multi-agent

Team Decision Problem (MDTP) includes in its model an explicit representation of the pos-

sible belief states of each agent (Pynadath and Tambe, 2002). What all of these models
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have in common is their intractability. Nonetheless, there has been some attention to the

question of finding optimal solutions to Dec-POMDPs and Dec-MDPs.

Dynamic programming has commonly been used to solve sequential decision-making

problems (most notably in work based on the Bellman update (Bellman, 1957)). Hansen

et al. introduce a dynamic programming algorithm that generates optimal policies for

POSGs (Hansen et al., 2004). Because POSGs represent multi-agent decision problems as

iterated games, the authors were able to apply game theoretic techniques to iteratively

prune those strategies for each agent that are weakly dominated. By reducing the size of

the problem space to be searched, this dynamic programming algorithm is able to solve

larger problems than can be solved by brute-force search. Unfortunately, the problems that

can be solved with dynamic programming are still very small, both in terms of domain

size (i.e. state space, number of actions, number of observations) and time horizon. Allen

and Zilberstein have recently begun attempting to characterize multi-agent domains by

predicting how easily they can be solved by dynamic programming techniques (Allen and

Zilberstein, 2007). They define a metric, the influence gap, that measures the effect of each

agent’s actions on the outcome of a domain’s transition and reward functions. Preliminary

experimental results indicate that domains in which there is a large influence gap, meaning

that one agent affects the behavior of the system considerably more than its teammate, can

be solved with dynamic programming to longer time horizons than problems with small

influence gaps, in which the agents affect the system equally.

Another approach extends the A* algorithm from classical planning to multi-agent do-

mains. Multi-agent A* (MAA*) finds optimal policies for multi-agent POMDPs via heuris-

tic search in the space of possible policies (Szer et al., 2005). Like the classical A* algo-

rithm, MAA* requires a heuristic function that optimistically estimates the future values of

states to be expanded, in this case policies at time t + 1. With some simple value estima-

tion heuristics, MAA* was shown to solve small Dec-POMDPs with time horizons up to

4. Heuristics that provide a tighter upper bound on the value of a policy could allow for

faster solutions, as shown by (Oliehoek and Vlassis, 2007), who compared the performance

of MAA* using the Q-MDP (Littman et al., 1995), Q-POMDP (Roth et al., 2005), and Q-BG

heuristics (Oliehoek and Vlassis, 2007).

Given the difficulty inherent in solving the general class of Dec-POMDPs and Dec-

MDPs optimally, there has been some work done to characterize sub-classes of these prob-

lems that may admit more tractable solution. The most significant sub-class to be identi-

fied contains Dec-MDP problems possessing the property of transition independence (Becker

et al., 2003). A transition-independent Dec-MDP is one in which the world state can be
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partitioned into a set of local states, one for each agent. An agent’s individual actions affect

only its own local state transitions and not the state of its teammates. However, because the

agents are connected through a shared reward function that depends on the joint action,

the system cannot be treated as a set of individual MDPs.

The class of transition independent Dec-MDPs may be further subdivided to separate

out those domains in which agents’ observations are independent of their teammates’ ac-

tions. Domains exhibiting both transition and observation independence, in which each

agent has full observability of its local state, have been shown to be NP-complete, making

them provably less complex than non-independent Dec-MDPs (Becker et al., 2004). Ad-

ditionally, if the problem is goal-oriented, meaning that there is a single goal state that the

agents are attempting to reach, and if the cost for each action in the attempt to reach that

goal is uniform, then a transition and observation independent Dec-MDP is P-complete

(Goldman and Zilberstein, 2004).

One might suppose that because these sub-classes have lower computational com-

plexities than the general case of Dec-POMDPs and Dec-MDPs, problems within these

classes can be easily solved by solution techniques designed for Dec-POMDPs and Dec-

MDPs. Interestingly, an analysis of agent influence in these domains shows that this may

not be the case (Allen and Zilberstein, 2007). Because each agent exerts complete control

over its local state, the overall contribution of each agent to the behavior of the system is ap-

proximately equal. This small influence gap has been shown experimentally to correspond

to an inability by dynamic programming techniques to generate policies for transition in-

dependent domains efficiently, indicating that specialized solution techniques will need to

be developed to exploit the lowered computational complexity of these domains.

3.2. Approximate Solutions

The majority of recent work in the area of Dec-POMDPs and Dec-MDPs has focused

on finding approximate policies. One class of approaches looks at speeding up the calcu-

lation of Dec-POMDP policies by restricting the types of policies that can be discovered.

Peshkin et al. presented a method for solving POIPSGs (Partially Observable Identical

Payoff Stochastic Games, or POSGs in which the agents are cooperative and receive a team

reward) by using gradient descent methods to learn a finite state controller with fixed mem-

ory for each agent (Peshkin et al., 2000). Bernstein et al. also restrict the policies that their

algorithm can learn to consist of a finite state controller per agent (Bernstein et al., 2005).

However, because they allow stochasticity in the controllers’ state transitions and action
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selections, they are better able to capture the observation sequences of the team. They fur-

ther improve the performance of these fixed-size policies by introducing a shared source

of randomness for all of the agents, what they call a correlated joint controller. This shared

randomness, which improves team coordination, does not constitute a form of communi-

cation, as the joint controller does not observe the behavior of the system.

Another class of approaches looks at reducing the amount of computation that needs

to be done to generate policies by placing limits on the granularity at which agents model

their beliefs about the states and actions of their teammates. One such algorithm is the

Bayesian game approximation (BaGA) introduced in (Emery-Montemerlo et al., 2004). In

that work, agents use Bayesian games to model a subset of the possible action and obser-

vation histories of their teammates. Agents can then calculate greedy policies by choosing

actions that maximize expected reward in combination with how the game predicts their

teammates will behave. As agents model larger subsets of their teammates’ possible histo-

ries, they can expect performance to improve. Likewise, to model a team of agents exactly,

I-POMDPs require each agent to keep an infinitely deep recursive belief, called the inter-

active state, about the other agents and their beliefs (Gmytrasiewicz and Doshi, 2005). In

practice, the recursion in the interactive state must be terminated at some finite depth. At

this terminating depth, agents assume a no-information model, supposing that each agent

i thinks that agent j models i as if all of i’s action choices are equally likely. Shallower

recursive beliefs trade off model accuracy for more tractable computation. I-POMDP com-

putation can be further sped up by using a particle filter to represent both the interactive

state and beliefs about the world state (Doshi and Gmytrasiewicz, 2005).

There has been some work directed at speeding up dynamic programming for Dec-

POMDP policy generation. Szer and Charpillet define a multi-agent belief state for each

agent consisting of a probability distribution over world states and a belief about the future

behavior of the other agents (Szer and Charpillet, 2006). Inspired by sample-based tech-

niques that have been used effectively to solve single-agent POMDPs (e.g. (Pineau et al.,

2003)), point-based dynamic programming for Dec-POMDPs samples likely beliefs within

the set of possible multi-agent belief states and generates policies accordingly. Memory

Bounded Dynamic Programming (MBDP) uses top-down heuristics to search for likely be-

lief states (Seuken and Zilberstein, 2007). These belief states are then used to prune the

policy subtrees generated by each timestep of dynamic programming, so that only a fixed

number of possible policies is preserved. In this way, MBDP bounds the amount of mem-

ory used by dynamic programming. If there are only a few reachable belief states, this
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pruning may be very effective, allowing for the computation of policies to much longer

time horizons than could be computed with an optimal dynamic programming algorithm.

Finally, there are approaches that focus on finding locally-optimal policies. One such

algorithm is JESP, Joint Equilibrium-based Search for Policies (Nair et al., 2003). In this

method, agents take turns improving their policies by finding the best response to the fixed

policies of their teammates. This process is repeated iteratively until it converges when no

single agent can improve the team reward by changing only its own policy. JESP is guar-

anteed to converge, although not to the globally optimal solution, because the agents are

cooperative and change their policies only when this change would cause a net gain in

expected team reward. In practice, JESP converges quickly on some small test domains,

although in the worst case, the algorithm may iterate through all possible policies. There

have been numerous extensions to JESP. One such extension, LID-JESP (Locally Interacting

Distributed JESP), uses distributed constraint optimization techniques to speed up policy

computation in domains where agent interaction is localized, meaning that each agent’s

transition and observation functions depend on the actions of only a few of the agent’s

teammates (Nair et al., 2005). Whereas most Dec-POMDP solution algorithms depend on

the problem starting from a single, known distribution over world states, another exten-

sion of JESP, CS-JESP (Continuous [Belief] Space JESP) solves Dec-POMDPs with arbitrary

initial belief distributions (Varakantham et al., 2005). CS-JESP combines JESP with single-

agent POMDP solution techniques that find policies over ranges of beliefs, and speeds up

computation by pruning unreachable belief states.

3.3. Communication

The focus of this thesis is on the effective use of communication as a means to facilitate

the decentralized execution of centralized policies and improve team performance through

information sharing. Although it is known that the presence of communication does not

change the complexity of solving Dec-POMDPs and Dec-MDPs unless it is free and un-

limited (Pynadath and Tambe, 2002), communication is nonetheless an important resource

for multi-agent coordination. There has been some work that looks at how communication

can be used during policy generation to facilitate decentralized planning (e.g. (Guestrin

et al., 2002; Shen et al., 2003)). In this section, however, we focus on approaches that, like

the ideas presented in this thesis, employ a centralized planner and use communication to

assist teams with decentralized execution.

There are many ways to classify communication approaches that have been researched

in the area of Dec-POMDPs and Dec-MDPs. We identify several here:
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• Is the approach applicable to general Dec-POMDP or Dec-MDP domains, or to

restricted domains as discussed in Section 3.1?

• With which of the three communication types, tell, query, and sync (Xuan et al.,

2001), is the algorithm compatible?

• Does communication replace a domain-level action in the timestep in which it

takes place (OR-communication), or can both communication and action take place

in the same timestep (AND-communication) (Emery-Montemerlo, 2005)?

The algorithms detailed in this thesis are applicable to general Dec-POMDPs (Chapters 4

and 5) or Dec-MDPs (all algorithms), and utilize the AND- model of communication. The

ACE-PJB-COMM and SELECTIVE ACE-PJB-COMM algorithms in Chapters 4 and 5 employ

tell communication, and the work in Chapter 6 uses the query paradigm.

Goldman and Zilberstein point out that, as in unrestricted Dec-POMDPs and Dec-

MDPs, the presence of limited or costly communication in restricted domains does not

reduce the computational complexity of finding optimal policies. Therefore, finding action

and communication policies for Dec-MDPs with independent state transitions and obser-

vations remains NP-complete. Nonetheless, there has been significant work addressed at

developing heuristic algorithms to utilize communication in transition- and observation-

independent Dec-MDP domains. In an early approach, Xuan et al. propose to study the

impact of AND-communication on agent team performance by extending each agent’s lo-

cal state to include a communication history (Xuan et al., 2001). Agent policies, there-

fore, depend, not only on world state, but on information received from their teammates.

Within this context, the authors propose a communication heuristic called ”no news is

good news.” Agents start out by communicating to determine the current world state and

calculate an optimal plan based on this initial state. Each agent executes its individual com-

ponent of the plan, initiating communication when it discovers that the current plan is no

longer achievable. When one agent initiates communication, all of the teammates sync to

discover the global state, and compute a new plan. This approach is primarily applicable

in goal-directed Dec-MDPs, in which there is a clearly defined goal state or set of goal states.

Another approach, also intended for Dec-MDPs with independent transitions and ob-

servations, is similar in concept to the factored approach detailed in Chapter 6 (Xuan and

Lesser, 2002). Both approaches look at how communication can be used to process a cen-

tralized policy and transform it into individual policies for each agent. As with the work in

this thesis, Xuan and Lesser seek to reduce the amount of communication needed during
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execution by identifying states in which it can be determined that communication is unnec-

essary. However, unlike our work, Xuan and Lesser’s algorithm instructs agents to com-

municate their complete local states, rather than identifying relevant state features, and

requires agents to sync whenever one agent initiates communication. In their approach,

each agent executes by maintaining, at each timestep, the complete set of possible world

states. This set, called the local belief set, consists of that agent’s local state and all of the

possible local states of that agent’s teammates. Every state in the local belief set maps to a

joint action in the team’s centralized policy. Each agent i examines the set of possible joint

actions elicited by its local belief set and determines if its own local component action is

the same in every joint action. If so, the agent may execute that action without communi-

cation. However, if there is ambiguity in the agent’s local action choice, the agent initiates

a sync communication, and all agents communicate their local states, returning the team to

a synchronized belief consisting of the true global state. Communication in this approach

is AND-communication, and does not replace domain-level actions.

Becker et. al formally analyze the limitations of myopic assumptions when making

communication decisions in transition-independent Dec-MDPs (Becker et al., 2005). They

consider a sync, AND-communication framework. The myopic assumption explored in their

work is one in which agents make communication decisions by supposing that they have

the option to communicate in the current timestep, but will never be allowed to communi-

cate again. Under this assumption, agents compute the value of communication as the differ-

ence between the expected value after a sync and the expected value if no communication

takes place. In this thesis, particularly in Chapters 4 and 5, we make a different myopic

assumption. Agents decide whether to communicate in the current timestep, assuming

that there will be free communication in all future timesteps. Despite the difference in the

assumptions, Becker et. al point out a limitation of myopic approaches that is shared by

our work. Agents making myopic communication decisions assume that their teammates

never initiate communication. In a sync paradigm, this limitation leads agents to systemat-

ically under-estimate the expected value of not communicating. In a tell paradigm, agents

may under-estimate the value of communication because they fail to consider the syner-

gistic effect of multiple agents communicating.

Two models have been proposed to capture the inclusion of communication in general

Dec-POMDP domains. One such model, Dec POMDP Com (Goldman and Zilberstein,

2003), adds two components to the original Dec-POMDP model:

• Σ - the set of possible messages

• CΣ - the cost function for each sending messages (CΣ : Σ→ R)
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Another model, COM-MTDP, also extends the equivalent MTDP formulation by adding

a set of possible messages Σ. However, rather than a fixed cost per message, CΣ, COM-

MTDP extends the reward function to include a component RΣ that depends on both the

message and the current state (RΣ : S ×Σ→ R) (Pynadath and Tambe, 2002). In principle,

these models can admit either tell or sync communication, although all experimental results

utilize sync. Both COM-MTDP and Dec POMDP Com explore the problem of generating

a communication policy for the team. For each agent, its communication policy maps its ob-

servation and communication history to a communication decision at each timestep. The

models assume AND-communication, meaning that agents first decide whether and what

to communicate, and then use the outcome of that timestep’s communication to make

an action decision. Dec POMDP Com and MDTP are useful for proving the theoretical

properties of Dec-POMDP teams with communication (such as the fact that the decision

problem for Dec POMDP Com where CΣ(σi) > 0 for some message σi or COM-MTDP

where R(si, σj) > 0 for some state si and message σj is NEXP-complete). However, while

there may be some domains that can be successfully modeled using Dec POMDP Com and

COM-MTDP, they cannot be used in practice to model domains with arbitrary communica-

tion. Consider the problem of enumerating, a priori, all possible messages that a team may

wish to communicate. In some cases, it may be useful for agents to communicate any of the

possible observation histories that they could experience. The set of possible individual ob-

servation histories is |Ωi|T , exponential in the number of possible individual observations,

and potentially infinite if time horizon T = ∞. Additionally, because MTDP contains an

explicit representation, B of the possible beliefs of each agent, COM-MTDP must define

how each possible instance of communication will affect the belief state, which is imprac-

tical.

Most work on communication in Dec-POMDPs and Dec-MDPs, including the formal

models described above, have assumed an AND- model of communication, where each

timestep is divided into a communication phase, in which agents may or may not choose

to communicate, and an action phase, in which each agent executes a joint action. COM-

MUNICATIVE JESP uses OR-communication to extend the JESP algorithm (Nair et al., 2004).

Instead of producing a separate communication policy, to be executed during the commu-

nication phase of each timestep, COMMUNICATIVE JESP extends domains by adding an

additional domain-level action, SYNC. As indicated by the name, if one agent chooses the

SYNC action, it initiates a sync in which it, and all of its teammates, broadcast their com-

plete observation histories since the last sync. In this way, SYNC returns the team to a single

synchronized belief over world states. Because it both leads to a more compact policy and
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restricts the action choices of the other agents, communication not only improves team

performance but also speeds up policy computation. To further increase policy computa-

tion speed, COMMUNICATIVE JESP can be used with a communication heuristic requiring

agents to communicate at least once every K timesteps. There is a tradeoff between ease of

computation and the value of the computed policy, as larger K-values lead to better per-

formance. 1 As with JESP (Nair et al., 2003), COMMUNICATIVE JESP is not guaranteed to

converge to an optimal policy and may, in the worst case, require the same time as a brute

force search to converge.

BAGA-COMM (Emery-Montemerlo, 2005) is the approach that is most similar to the

ACE-PJB-COMM algorithm detailed in this thesis. Like ACE-PJB-COMM, BAGA-COMM

is applicable to general Dec-POMDPs, employs tell communication, and is an AND-comm-

unication approach, with separate communication and action phases in each timestep. The

primary difference between the two algorithms is that ACE-PJB-COMM maintains strict

joint action coordination among the agents, ensuring that the team avoids all coordination

errors, while BAGA-COMM allows occasional instances of mis-coordination while seeking

to enable good team performance on average. Like BAGA (Emery-Montemerlo et al., 2004),

agents executing BAGA-COMM model a subset of possible team beliefs, called the types

of the teammate players. Each agent’s own type encodes its local action and observation

history. To choose an action, each agent looks for the team type whose belief is most similar

to the belief elicited by its own type and executes the local component of the joint action

associated with that team type. Because agents use local information to choose actions,

they are not guaranteed to avoid mis-coordination.

In BAGA-COMM, as in ACE-PJB-COMM, agents decide whether to communicate by

looking at how communicating their local information would change the team type, choos-

ing to communicate if this change would lead to a gain in expected reward greater than the

cost of communication. BAGA-COMM answers the question of what to communicate by

clustering possible agent types and assigning each possible cluster an identifying number.

Then, when an agent decides to communicate, it broadcasts its cluster ID to its teammates.

This cluster representation compresses similar agents types, reducing some of the redun-

dant information that would be otherwise communicated by an algorithm like ACE-PJB-

COMM that communicates complete observation histories. However, it does not have the

flexibility of SELECTIVE ACE-PJB-COMM, which is able to look at the impact of communi-

cating arbitrary subsets of the observation history.

1In the extreme cases, K = ∞ is unrestricted communication, and K = 1 replaces every domain-level
action with SYNC.
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3.4. Summary

The work detailed in this thesis presents a heuristic approach to coordinating multi-

agent teams modeled by Dec-POMDPs and Dec-MDPs, using communication to facilitate

the decentralized execution of centralized policies. The methods presented here are ap-

plicable to unrestricted Dec-POMDP or Dec-MDP domains. We use AND-communication,

assuming a separate communication and action phase in each timestep, so that communi-

cation facilitates better domain-level action selection, rather than replacing domain-level

actions. We do not require agents to sync whenever one agent chooses to communicate.

Instead, we present some algorithms in which agents reason about what to tell their team-

mates and some in which the agents decide to query their teammates for information. The

unique feature of our research, which is not shared by any of the approaches described in

this chapter, is that our algorithms guarantee that teammates will avoid coordination er-

rors during execution. This makes our work particularly applicable to domains that require

tight coordination, in which the cost of mis-coordinated joint actions is high.
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ACE-PJB-COMM: Choosing When to Communicate

B
ECAUSE the problem of generating optimal policies for Dec-MDPs and Dec-

POMDPs is known to be NEXP-complete (Bernstein et al., 2002), heuristics

must be found to allow their application to the coordination of teams of agents.

The overall approach presented in this thesis is to generate centralized policies

for the teams off-line, ignoring the decentralized nature of the problem, and then use com-

munication to facilitate decentralized execution of these policies at run-time. This chapter

provides a mechanism by which a decentralized team of agents can execute a centralized

policy and Avoid Coordination Errors by reasoning about the Possible Joint Beliefs of the

team (ACE-PJB). In this chapter, we also address the question of when agents should com-

municate their observations to their teammates.

Section 4.1 introduces the concept of joint beliefs, which can be computed by a central-

ized team of agents to model the distribution of possible world states, and which would

enable the team to execute a joint policy. However, because the teams we are concerned

with in this work are decentralized, Section 4.3 discusses how a team can instead execute

a centralized policy by modeling the distribution of possible joint beliefs. We show how the

possible joint beliefs of a team of decentralized agents can be modeled as a tree, where

each leaf in the tree is one possible joint observation history of the team. We illustrate

decentralized execution based on the distribution of possible joint beliefs with an exam-

ple in the two-agent tiger domain. The ACE-PJB-COMM algorithm, which addresses the

question of when communication can assist a team with decentralized execution of a cen-

tralized policy, is introduced in Section 4.4. Section 4.5 empirically compares performance

of ACE-PJB-COMM to a team with free communication in a number of domains. In Sec-

tion 4.6, we show how a particle filter can be used to implement a constant-space variant

of the ACE-PJB-COMM algorithm, and illustrate via experimentation how the number of



CHAPTER 4. ACE-PJB-COMM

particles used in the particle filter affects the performance of a team executing the ACE-

PJB-COMM algorithm. We conclude by discussing some of the issues raised during our

work on the ACE-PJB-COMM algorithm that we feel merit further investigation.

4.1. Joint Beliefs

Just as policies for single-agent MDPs are written as mappings from states to actions,

policies for single-agent POMDPs are represented as mapping from beliefs to actions. An

agent executing a POMDP policy can compute the current belief, a probability distribution

over possible world states, as described in Section 2.3.1, and choose the action that maxi-

mizes expected reward at that belief. Because the transition and observation functions of

a Dec-POMDP depend on the joint action, and a complete model of belief would depend

on the joint observation, a member of a team modeled by a Dec-POMDP cannot compute

the belief distribution independently. Without knowing the actions taken and observations

received by its teammates, a single agent is unable to calculate belief, and therefore, can-

not execute a policy based on belief. However, as we show in 4.3, agents can compute a

distribution of possible joint beliefs, which can enable them to execute a centralized policy.

Let us suppose that agents do know the actions that their teammates take at every

timestep. Each agent could, therefore, determine the joint action taken by team, since the

joint action is simply the tuple of individual actions taken by each agent. If every agent

communicated its local observation to all of its teammates at every timestep, the agents

could likewise determine the joint observation received collectively by the team. The agents

would now have sufficient information to calculate the distribution of possible world states

at each timestep of their execution. We call this probability distribution, computed over

joint actions and joint observations, the joint belief of the team. A single-agent POMDP

solver could then compute a policy that maps joint beliefs to joint actions, by treating joint

actions and joint observations as atomic. We call this policy, which treats the team as if it

were controlled by a centralized controller, a joint policy.

4.2. Multi-agent Tiger Domain

We illustrate our approach in this chapter through a running example in the multi-

agent tiger domain (Nair et al., 2003), an extension of the classic tiger problem that has

been used in POMDP research (Kaelbling et al., 1998). A complete description of the multi-

agent tiger domain can be found in Appendix A.1.

The world of the tiger problem consists of two states, SL and SR. These states corre-

spond to two doors, one on the left and one on the right. Behind one door is a tiger, and

behind the other is a treasure.
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• SL is the state in which the tiger is behind the left door.

• SR is the state in which the tiger is behind the right door.

The world is initialized randomly, with the tiger equally likely to be behind either door (i.e.

p(SL) = p(SR) = 0.5). Figure 4.1 shows an illustration of the tiger domain with two agents.

Figure 4.1. The state space of the multi-agent tiger domain consists of two doors.
Behind one door is a tiger, and behind the other is a treasure. The agents’ goal is to
open the door with the treasure behind it.

The goal of the agents in the tiger problem is to open the door with the treasure behind

it. To this end, there are three actions that can be performed:

• OPENL opens the left door,

• OPENR opens the right door,

• LISTEN is information-gathering action that does not open a door but provides a

noisy observation about the position of the tiger.

In the multi-agent tiger problem, there are α agents acting in the world, each of which

can independently perform any of the three actions. For simplicity, we describe here the

case in which α = 2. The world resets whenever a door is opened, with the tiger placed

behind a random door, potentially allowing the problem to have an infinite time horizon.

If all agents perform LISTEN, the state is unchanged. A joint action is denoted as a tuple

of individual actions. For example, the joint action 〈OPENR,OPENL〉 indicates that agent

1 performed OPENR and agent 2 performed OPENL.

Rewards for the tiger problem are structured such that agents should avoid open-

ing the door with the tiger. The maximum possible reward occurs when both agents

open the door with the treasure. For example, if the state is SL and the agents perform

〈OPENR,OPENR〉, they receive the maximum possible reward of +20. An explicit coor-

dination problem is built into the domain by making it preferable for the agents to both

open the wrong door together (reward = -50) rather than for each agent to open a differ-

ent door (reward = -100). There is a small cost of -2 if the agents perform the joint action
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〈LISTEN, LISTEN〉. In the examples below, we assume that there is a marginal cost of ε for

each instance of communication. We will discuss other models of communication cost in

Chapter 5.

To increase their chances of opening the correct door, the agents must increase their

certainty about the position of the tiger. At each timestep, each agent receives an inde-

pendent observation. The possible observations are HEARLEFT (or HL), indicating that

the tiger has been heard behind the left door, and HEARRIGHT (HR), indicating that the

tiger has been heard behind the right door. If either agent opens a door, the observations

received in that timestep have no informative value. If both agents perform LISTEN, the

observations are independent (meaning agents may hear different observations in the same

timestep) and noisy, correctly identifying the position of the tiger with 0.7 probability.1

Figure 4.2 shows the alpha-vectors of the joint policy for this problem, generated using

Cassandra’s POMDP solver (Cassandra, 2005) with a discount factor of γ = 0.9. Note

that although there are nine possible joint actions, all actions other than 〈OPENL,OPENL〉,

〈OPENR,OPENR〉, and 〈LISTEN, LISTEN〉 are strictly dominated and do not appear in the

policy.
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Figure 4.2. Alpha-vectors for an infinite-horizon joint policy for the two-agent tiger
domain.

1This particular observation model, a slight modification of the model presented by Nair et al., makes it so
that the optimal policy for a centralized team would be to hear two consistent observations (e.g. a joint observa-
tion of 〈HR, HR〉) before opening a door.
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In fact, we can demonstrate that all of the dominated joint actions, 〈OPENL,OPENR〉,

〈OPENL, LISTEN〉, 〈OPENR,OPENL〉, 〈OPENR, LISTEN〉, 〈LISTEN,OPENL〉, and 〈LISTEN,

OPENR〉, constitute coordination errors as defined in Chapter 1. Concretely, these actions

are not fixed points with respect to the policy and that, if an agent, after deciding on an

individual action, were to be told that the resulting joint action belonged to this set of

dominated actions, the agent would prefer to change its individual action in response. For

example, consider a situation in which both agents LISTEN twice, and one agent observes

two instances of HEARLEFT. This agent, believing that the tiger is behind the left door with

probability 0.845, will wish to perform the individual action OPENR. However, if it were

to discover that its teammate will choose to LISTEN, the agent would decide to change its

own action to LISTEN. Even given the agent’s belief in the high likelihood of the tiger being

behind the left door, the infinite-horizon discounted expected reward of 〈LISTEN, LISTEN〉,

20.13, is higher than the expected reward of 〈OPENR, LISTEN〉, 8.33. More dramatically, if

the agent discovers that its teammate will open the left door, it will change its own action

to OPENL. The expected reward of opening the wrong door while acting in coordination,

-22.70, is still greater than the reward of a coordination error, 〈OPENR,OPENL〉, which is

-83.62.2 In the next section, we present an algorithm that guarantees that agents will avoid

these coordination errors while trying to maximize expected reward.

4.3. Decentralized Execution of Joint Policies

Execution of a joint policy is straightforward if every team member knows the joint

action and joint observation of the team at each timestep. Each agent uses the joint action

and joint observation to compute the joint belief according to the Bayes update rule de-

scribed in Section 2.3.1. This belief maps to a joint action in the joint policy. Each agent

then executes its own component of the joint action. However, if two conditions are true,

it is sufficient for each team member to know the joint observation:

1. If the team starts with a single, known joint belief b0.

2. If the joint policy, π, known by all agents, is deterministic, meaning that each

belief maps to exactly one joint action.

Given b0 and the deterministic policy π, each agent can evaluate π(b0) to determine which

action a0 ∈ A is the best joint action for the team to execute. If after executing a0, the

2Expected rewards are computed for each action by one-step lookahead. The immediate expected reward
for an action a in a belief b is

P
s∈S R(s, a) × b(s). The expected future reward is computed by calculating the

possible next beliefs for each possible joint observation ω, bω . The total expected future reward is
P

ω∈Ω V(bω)×
Pr(ω|a, b), where Pr(ω|a, b) is the likelihood of observing ω after taking action a in belief b, and V(bω) can be
computed directly from the policy. The overall expected reward is the sum of the immediate reward and the
discounted future reward.
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agents then inform each other of the local observations that they receive, each agent can

use a0 and the known joint observation w0 to compute the next joint belief b1, and then the

next optimal joint action a1 = π(b1). The agents will thereby maintain a synchronized joint

belief, and avoid potential coordination errors.

This demonstrates that communication at every timestep enables a decentralized team

of agents to execute a joint policy. In such a case, where there are no limitations on com-

munication, it seems inaccurate to refer to the team as ”decentralized”. The challenge is to

enable a decentralized team to execute a centralized policy, while Avoiding Coordination

Errors (ACE), when there are restrictions on agent communication. We first show how

a decentralized team of agents can execute a centralized policy without communicating

at all, and then, in Section 4.4, introduce an algorithm by which agents can reason about

when communication can be used to improve team performance.

As explained above, in our work we make the assumption that agents begin execution

with a single, known joint belief. In the two-agent tiger domain, this belief is a uniform

distribution over the two possible positions of the tiger (i.e. b(SR) = 0.5). Given this belief

and the pre-computed joint policy, each agent can determine that the best joint action is

〈LISTEN, LISTEN〉, and can be certain that its teammates will choose the same joint action.

However, after executing its own component of the joint action, each agent observes a

local observation. If the team was, in fact, centralized, as assumed when the joint policy

was calculated, each agent would be notified of its teammates local observations and could

update the joint belief accordingly, allowing the team to continue executing the joint policy.

Because the teams with which we are concerned are decentralized, individual agents

cannot calculate a single joint belief. Instead, each agent could attempt to estimate the

joint belief based on its own local observation and then act accordingly. This introduces

two problems. First, if agents are allowed to act independently based on their local ob-

servations, they may suffer from coordination errors. For example, in the tiger domain, if

one agent observes HEARRIGHT, it may note that it is likely that its teammate also heard

the tiger behind the right door, and therefore choose OPENL. However, its teammate may

have actually observed HEARLEFT, and the teammates will therefore open different doors.

Second, because each agent does not know what its teammates have observed, if those

teammates are allowed to choose their actions based on their observations, agents will not

be able to determine the joint action executed by the team at each timestep. As the transi-

tion and observation functions (T and O) are conditioned on the joint action of the team,

agents that do not know the joint action will not be able to make correct inferences about
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belief. Instead, as agents incorrectly estimate the actions chosen by their teammates, the

joint beliefs calculated by each agent will increasingly diverge from each other.

To prevent coordination errors and enable agents to make accurate estimates of joint

belief, we make the following assumption in our work. We assume that, at each timestep,

every agent knows the individual actions chosen by all of its teammates, and therefore

knows the joint action. We enforce the validity of this assumption by requiring agents to

act only on the basis of information that is known collectively to all teammates. Agents

must, therefore, disregard their local observations unless those observations have been

publicized to all teammates via communication. The assumption that agents act based

on shared information and thereby synchronize their choice of joint action holds through

this and the following chapters. In Chapter 6, we discuss conditions under which this

assumption can be relaxed.

4.3.1. Modeling Possible Joint Beliefs

To execute a joint policy while maintaining a synchronized joint action selection and

thereby avoiding coordination errors, agents must reason about the shared information col-

lectively known by all teammates. We have already stipulated that agents share a known

initial joint belief, b0, and a deterministic joint policy π. Given this information, they can

compute a synchronized joint action, a0. The question, then, is how the team should pro-

ceed after executing this joint action. One possibility is that agents could model the average

joint belief, b̄t, at each timestep, and execute the joint action associated with that belief. The

average joint belief is computed by considering the possibility of the team observing each

possible joint observation. For each possible joint observation ωt, the agents compute the

joint belief btωt that would result if the team did, in fact, observe ωt:

btωt(s′) =
O(s′, at, ωt)

∑
s∈S T (s, at, s′)b̄t−1(s)

Pr(ωt|at, b̄t−1)
(4.1)

The weighted average of these beliefs takes into account the likelihood of the team observ-

ing a particular joint observation ωt:

b̄t =
∑
ωt∈Ω

Pr(ωt|at−1, b̄t−1)× btωt (4.2)

The average joint belief is a statistic that the agents can compute identically, without

considering local information that is not shared among teammates, and therefore choos-

ing an action based on the average joint belief will enable agents to execute a joint policy

without coordination errors. However, it is easy to construct domains in which acting on

the basis of the average joint belief would lead to poor team behavior. Consider the policy

shown in Figure 4.3.
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V <A, A> <A, A>

<B, B>

0.25 0.5 0.75 1.0

P(S1)

Figure 4.3. Alpha-vectors for a domain in which reasoning about average joint be-
lief leads to poor team behavior.

In this example domain, the optimal joint policy for the agents when the belief is

between P(S1) = 0.0 and P(S1) = 0.25 is 〈A, A〉. The same is true for when the belief is

between P(S1) = 0.75 and P(S1) = 1.0. Between P(S1) = 0.25 and P(S1) = 0.75, the best joint

action is 〈B, B〉. Suppose that the agents start with a synchronized joint belief at P(S1) = 0.5,

and after the first timestep, their possible joint observations could lead them to be either at

P(S1) = 0.1 or P(S1) = 0.9. At both of those beliefs, the optimal joint action choice would be

〈A, A〉. However, if the agents maintain only the average joint belief, P(S1) = 0.5, they would

instead choose 〈B, B〉. In general, the possible joint beliefs may be multi-modal, making the

average belief a particularly bad estimate.

We argue that better results are achieved when the agents model the distribution of

possible joint beliefs. We introduce an algorithm called Avoiding Coordination Errors by

reasoning about Possible Joint Beliefs (ACE-PJB). For clarity, one can think of the distri-

bution of possible joint beliefs as being represented by a tree, with each path through the

tree representing a possible sequence of joint observations, or a joint observation history. We

define Lt, the set of leaves of the tree at depth t, to be the set of possible joint beliefs of the

team at time t. Each Lti is a tuple consisting of 〈bt, pt,−→ω t〉, where−→ω t is the joint observation

history that would lead to Lti, bt is the joint belief given that observation history, and pt is

the probability of the team observing that history. The initial distribution of possible joint

beliefs, L0, is composed of a single leaf at belief b0, the starting belief of the team, with prob-

ability 1 and an empty observation history. For the tiger domain, this initial distribution

L0 would be the leaf:
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p = 1.0
(0.5, 0.5)

Table 4.1 presents the algorithm for expanding a single leaf in a tree of possible joint

beliefs, given the joint action executed by the team. It takes as input Lti, a single leaf in the

distribution of possible joint beliefs at time t, and a joint action a. GROWTREE begins by

initializing the resulting distribution, Lt+1, to the empty set.

GROWTREE(Lti, a)

1. Lt+1 ← ∅
2. bt ← b(Lti)
3. for each ω ∈ Ω
4. bt+1 ← ∅
5. pt+1 ← p(Lti)× Pr(ω|a, bt)
6. if pt+1 > 0
7. for each s′ ∈ S
8. bt+1(s′)← O(s′, a, ω)

∑
s∈ST (s, a, s′)bt(s)

Pr(ω|a, bt)
9. −→ω t+1 ← −→ω (Lti) ◦ 〈ω〉

10. Lt+1 ← Lt+1 ∪ [bt+1, pt+1,−→ω t+1]
11. return Lt+1

Table 4.1. Algorithm to grow the children of one leaf in a tree of possible beliefs

GROWTREE grows a child leaf for every possible joint observation ω. Lines 4-9 show

the construction of a single child leaf. Pr(ω|a, bt) is the probability of observing ω while

in belief state bt and having taken action a. It is used to calculate pt+1, the likelihood of

a complete observation history, beginning with the history stored in Lti and concluding

with ω, as composed in Line 9. bt+1, the belief that would result from observing ω, starting

in belief bt and taking action a, is calculated using a standard Bayesian update in lines 7

and 8 (Kaelbling et al., 1998). The child leaf, which is appended to the new distribution,

Lt+1, is composed of this new belief, bt+1, the probability of reaching that belief (which is

equivalent to the probability of receiving this particular observation in the parent leaf times

the probability of reaching the parent leaf) and the corresponding observation history.

Suppose, for example, that the team chooses to execute the action 〈LISTEN, LISTEN〉.

The agents must consider the likelihood of all four possible joint observations: 〈HL,HL〉,

〈HL,HR〉, 〈HR,HL〉, and 〈HR,HR〉. Therefore, they grow L1 to contain four leaves:
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(0.845, 0.155)

p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29 p = 0.21 p = 0.21 p = 0.29

(0.5, 0.5)

(0.5, 0.5) (0.5, 0.5)(0.155, 0.845)

Note that L1 is independent of the actual observations of any of the agents. Nonethe-

less, the likelihood of each of the leaves is not the same. Because the observations are

informative and depend on the true state, the two agents are more likely to hear the same

observation than different ones. In the two-agent tiger domain, the tree of possible joint

beliefs is symmetric. The likelihood of the agents observing 〈HEARLEFT,HEARLEFT〉 is

equal to the likelihood of the agents observing 〈HEARRIGHT,HEARRIGHT〉.

4.3.2. Q-POMDP: Independent Selection of Joint Actions

The distribution of possible joint beliefs depends only on the initial joint belief of the

team, the joint policy, and the sequence of joint actions that the team chooses to execute.

Because the agents do not consider their local observation histories when computing the

distribution of possible joint beliefs, each agent will independently compute a distribution

identical to those computed by all of its teammates. Agents can therefore choose actions

by reasoning over this distribution and, so long as the mechanism for choosing actions

is deterministic, be assured that all agents will select the same joint action, thus avoiding

coordination errors. The question, then, is how to effectively reason over the distribution

of possible joint beliefs to select a joint action.

When there is a single leaf in the distribution of possible joint beliefs, it is clear that

the best choice for the team is to execute the optimal joint action for that leaf’s belief, as

evaluated in the joint policy, at ← π(b(Lti)). In the tiger domain, the optimal joint action

at the belief b0(SR) = 0.5 is 〈LISTEN, LISTEN〉. When there are many possible joint beliefs,

action-selection can be accomplished by the application of any arbitrary function that de-

terministically mapsLt to a single joint action. Some simple heuristics include choosing the

single most likely belief in Lt and executing the action associated with it in the joint policy,

or a voting scheme in which possible joint beliefs vote for actions, with votes weighted by

the likelihood of the belief (Simmons and Koenig, 1995). A particularly risk-averse team

may wish to choose the joint action that maximizes worst-case reward over the possible

joint beliefs.
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In our work, we wish to maximize expected reward over the distribution of possible

joint beliefs. To this end, we introduce the Q-POMDP heuristic. Q-POMDP is inspired by

the Q-MDP heuristic (described in Section 2.3.1), a greedy algorithm that can be used to

select actions for single-agent POMDPs (Littman et al., 1995). Just as Q-MDP finds approx-

imate solutions for POMDPs by solving the underlying fully-observable MDPs, Q-POMDP

approximates Dec-POMDPs using the underlying centralized POMDPs. The goal of the Q-

POMDP heuristic is to find the joint action that maximizes expected reward over the distri-

bution of possible joint beliefs. As input, Q-POMDP takes a centralized policy π, generated

for the underlying centralized problem by a single-agent POMDP solver, and a value func-

tion Vπ that, for a belief b, gives the expected reward of acting according to π at the current

timestep and henceforth acting optimally.

Because, for a particular domain, there may be actions that are strictly dominated, Vπ

is not guaranteed to give a value for every action in every belief; it gives expected reward

only for actions that are part of the policy generated by the POMDP solver. However,

as Q-POMDP seeks to maximize expected reward over multiple possible belief states, the

best action may not be part of π. To address this, Q-POMDP reasons over the one-step

lookahead function Q that defines expected reward for taking an action a in the current

timestep, at belief bt, and acting according to π in all future timesteps (bt+1
a,ω is the belief that

results from taking action a from belief bt and observing ω):

Q(bt, a) =
∑
s∈S
R(s, a)bt(s) + γ

∑
ω∈Ω

Pr(ω|a, bt)Vπ(bt+1
a,ω ) (4.3)

The Q-POMDP heuristic chooses a single joint action that maximizes the expected

value of Q over all the possible joint beliefs in Lt:

Q-POMDP(Lt) = arg max
a∈A

∑
Lt

i∈Lt

p(Lti)×Q(b(Lti), a) (4.4)

For each possible joint action, Q-POMDP evaluates the expected reward of that action in

each possible joint belief in Lt, weighted by the likelihood of that possible belief. The

notation Q-POMDPa is used to refer to the expected value of one particular joint action a:

Q-POMDPa(Lt) =
∑
Lt

i∈Lt

p(Lti)×Q(b(Lti), a) (4.5)

Consider the distribution of possible joint beliefs, L1, after one timestep of the multi-

agent tiger domain:
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(0.845, 0.155)

p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29 p = 0.21 p = 0.21 p = 0.29

(0.5, 0.5)

(0.5, 0.5) (0.5, 0.5)(0.155, 0.845)

Table 4.2 shows the Q-POMDPa values calculated for all 9 possible joint actions in the

tiger domain, over the L1 distribution. The action that maximizes expected reward over

the possible joint beliefs is 〈LISTEN, LISTEN〉. Intuitively, it should be clear why this is the

case. L1 represents all possible joint observation histories, and does not consider the local

observation that has actually been received by the agent computing Q-POMDP. Therefore,

there is no evidence, one way or the other, that would lead the team believe that the tiger

is behind one particular door. Given this lack of information, the best course of action is to

continue to LISTEN.

Action Q-POMDP Value
〈OPENL,OPENL〉 10.081
〈OPENL,OPENR〉 -74.919
〈OPENL, LISTEN〉 -20.919
〈OPENR,OPENL〉 -74.919
〈OPENR,OPENR〉 10.081
〈OPENR, LISTEN〉 -20.919
〈LISTEN,OPENL〉 -20.919
〈LISTEN,OPENR〉 -20.919
〈LISTEN, LISTEN〉 29.200

Table 4.2. Q-POMDPa(L1) values for all a ∈ A in the two-agent tiger domain.

Q-POMDP, like Q-MDP, is a greedy heuristic. Q-MDP asks the question, ”What would

be the best action in this belief if, after this timestep, the world were to become fully observ-

able?” Q-POMDP asks a similar question: ”What would be the best action in this timestep,

given the current distribution of possible joint beliefs, if the teammate agents were to com-

municate their full observation histories in the next timestep and all future timesteps?”

Therefore, just as Q-MDP finds no value in information-gathering actions that, while re-

ducing an agent’s uncertainty about the state of the world, do not contribute to an im-

mediate increase in reward, Q-POMDP does not consider the true distributed nature of

a Dec-POMDP and will not value actions that improve mutual knowledge among team-

mates.
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Because it deterministically selects a single action that maximizes expected reward

over Lt, Q-POMDP is a suitable heuristic that enables a distributed team of agents to exe-

cute a centralized policy while avoiding coordination errors. The full ACE-PJB algorithm,

shown in Table 4.3, combines GROWTREE and Q-POMDP to enable a team of agents to exe-

cute a centralized policy, without communication and while avoiding coordination errors.

However, like any heuristic that does not take into account the local observations that are

actually received by the agents, ACE-PJB is overly conservative and does not allow agents

to react to new information that they gain about the state of the world over the course of

execution. For example, we showed that, in the tiger domain, the agents will evaluate L1

and choose to LISTEN. In fact, if the agents continue to use ACE-PJB to make action choices,

they will choose the joint action, 〈LISTEN, LISTEN〉 in every timestep and never choose to

open a door.3 The challenge, therefore, is to enable agents to utilize the local information

that they observe without sacrificing team coordination.

ACE-PJB(Lt)

1. a← Q-POMDP(Lt)
2. execute ai
3. Lt+1 ← ∅
4. for each L ∈ Lt
5. Lt+1 ← Lt+1 ∪ GROWTREE(L, a)
6. return Lt+1

Table 4.3. Algorithm to execute a centralized policy while Avoiding Coordination
Errors by reasoning about the distribution of Possible Joint Beliefs.

4.4. ACE-PJB-COMM: Using Communication to Introduce Local Information

In this section, we discuss how communication can be used to integrate an agent’s

local observations into the shared information held collectively by the team so that it can

be used by the teammate agents to make coordinated action decisions. Communication

provides a means by which the local observations known only by the agent that received

them can be shared with that agent’s teammates. We discussed above the requirement

that agents make action decisions based only on information that is known by all members

of the team. Given this requirement, we utilize a broadcast communication protocol, in

3That the agents will never open a door can be explained as follows: The two-agent tiger domain has sym-
metric observations, meaning that agents are equally likely to observe HEARLEFT when the tiger is behind the left
door as they are to observe HEARRIGHT when the tiger is behind the right door. The agents start out with a uni-
form belief over the position of the tiger, P(SL) = 0.5. The action that they choose in that belief, 〈LISTEN, LISTEN〉,
does not change this belief. Because of the symmetry of the observations, GROWTREE also does not change the
overall belief, which is that the tiger is equally likely to be behind the right and left doors.
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which, when agents choose to send messages, those messages are delivered to all of their

teammates. To effectively use communication to enhance decentralized execution, two

questions must be addressed:

• What should prompt agents to communicate, or how should agents determine

when communication will be useful?

• How can communicated information be integrated into the distribution of possi-

ble joint beliefs so that it can be used for decision-making?

The ACE-PJB-COMM algorithm provides agents with a heuristic for determining when

communication will be beneficial to team performance, and gives a mechanism by which

communicated information is integrated into the agents’ model of possible joint beliefs.

ACE-PJB-COMM specifies that an agent should communicate only when it sees that com-

munication has the potential to change the joint action selected by Q-POMDP, and when

the change in joint action is estimated to increase the expected reward by more than the

cost of communication. Table 4.4 provides the details of the ACE-PJB-COMM algorithm.

ACE-PJB-COMM(Lt,−→ω t
j)

1. aNC ← Q-POMDP(Lt)
2. L′ ← prune leaves inconsistent with −→ω t

j from Lt
3. aC ← Q-POMDP(L′)
4. vC ← Q-POMDPaC

(L′)
5. vNC ← Q-POMDPaNC

(L′)
6. if vC − vNC > communication cost
7. communicate −→ω t

j to the other agents
8. return ACE-PJB-COMM(L′, ∅)
9. else

10. if communication −→ω t
k was received from another agent k

11. Lt ← prune leaves inconsistent with −→ω t
k from Lt

12. return ACE-PJB-COMM(Lt,−→ω t
j)

13. else
14. take action aNC
15. receive observation ωt+1

j

16. −→ω t+1
j ← −→ω t

j ◦ 〈ω
t+1
j 〉

17. Lt+1 ← ∅
18. for each Lti ∈ Lt
19. Lt+1 ← Lt+1 ∪ GROWTREE(Lti, aNC)
20. return [Lt+1,−→ω t+1

j ]

Table 4.4. One timestep of the ACE-PJB-COMM algorithm for an agent j

The inputs to ACE-PJB-COMM are Lt, the distribution of possible joint beliefs at time

t, and −→ω t
j , all of the observations that agent j has not yet communicated. When decid-

ing whether to communicate, an agent computes aNC (line 1), the joint action selected by
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Q-POMDP based on Lt, the current distribution of possible joint beliefs. For example, as

detailed above, aNC = 〈LISTEN, LISTEN〉 for the following L1 distribution in the tiger do-

main:

(0.845, 0.155)

p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29 p = 0.21 p = 0.21 p = 0.29

(0.5, 0.5)

(0.5, 0.5) (0.5, 0.5)(0.155, 0.845)

In line 2 of the algorithm, the agent then prunes its distribution of possible joint beliefs,

removing from Lt all possible beliefs that are inconsistent with its own local observation

history. The resulting distribution, L′, is the distribution of possible joint beliefs that would

be held by the team if this agent were to choose to communicate. Suppose, in the tiger

domain, that agent 1 observed HEARLEFT in the first timestep. Agent 1 would compute

the pruned distribution, L′, by removing all branches from L1 that are not consistent with

that observation and re-normalizing the likelihoods of the leaves:

(0.155, 0.845)

p = 1.0

HL HL

HL H
R

<LISTEN, LISTEN>

p = 0.58 p = 0.42

(0.5, 0.5)

(0.5, 0.5)

The action selected by Q-POMDP over the pruned distribution L′, aC in line 3 of the

algorithm above, is the action that would be chosen by the team if the agent were to com-

municate its observation history to its teammates. If the actions differ, this indicates that

communication will cause an increase in expected team reward. Lines 4-6 show how the

amount of this increase can be computed as the difference between vC , the Q-POMDP value

of aC , and vNC , the value of aNC computed over L′ (e.g., Q-POMDPaNC
(L′)).4 If this in-

crease in expected reward is greater than the cost of communication, the ACE-PJB-COMM

heuristic instructs the agent to broadcast its observation history to all of its teammates and

4Even though aNC is the joint action that would be selected if the agents do not communicate, its expected
value, vNC is computed over the pruned distribution L′. Regardless of whether it ultimately chooses to commu-
nicate, the agent doing the computation has received its own observation history and thereby gained additional
knowledge about the true state of the world. To make accurate estimates about the relative values of possible
joint actions, the agent must take this knowledge into account.
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delete its own observation history(lines 7-8), since there will never be value in communi-

cating those observations again.

The Q-POMDP action for the L′ distribution shown above is 〈LISTEN, LISTEN〉, the

same as the Q-POMDP action over the unpruned distribution, L1. Therefore, agent 1

would choose not to communicate in that timestep. Through symmetry, it is easy to see that

agent 1 would not have chosen to communicate if it had observed HEARRIGHT instead of

HEARLEFT, and that agent 2 will also choose not to communicate in this timestep. There-

fore, the agents execute the joint action 〈LISTEN, LISTEN〉 and use GROWTREE to compute

L2, which has 16 leaves (lines 14-20):

(0.845,

HL H
R HR HL

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL HR HR

p = 0.21 p = 0.29

HL HL

H
L 

H
R HR HL

HR HR

H
L

 H
L

HL H
R HR HRHR HL
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If, at this point, agent 1 were to observe HEARRIGHT, it would once again choose not

to communicate. Let us, then, consider the case in which agent 1 observes HEARLEFT. Its

observation history would now consist of hearing HEARLEFT twice in a row, and it would

generate a pruned distribution L′ as follows:

p = 0.14

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL

HL HL

H
L 

H
R

H
L

 H
L

HL H
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p = 1.0
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(0.155, 0.845) (0.5, 0.5)

(0.033, (0.155,
 0.967) 0.845) 0.845)

(0.155,
0.5)

(0.5,

HL H
R

p = 0.58 p = 0.42

p = 0.42 p = 0.22 p = 0.22

Now, Q-POMDP over this pruned distribution finds that the best joint action for the

team is 〈OPENR,OPENR〉; there is sufficient evidence to believe that the tiger is behind

the left door. Q-POMDP〈OPENR,OPENR〉(L′) = 34.219, whereas Q-POMDP〈LISTEN,LISTEN〉(L′)

= 32.758. As the difference in expected reward between these two joint actions is greater
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than ε, the communication cost in the tiger domain, agent 1 would choose to communicate

its observation history to agent 2 (Table 4.4, lines 7-8) .

Once it has communicated, agent 1’s observation history is considered part of the

shared team information, and can be used by the agents when choosing the next joint ac-

tion. In the meantime, agent 2 had been simultaneously evaluating the ACE-PJB-COMM

heuristic, and several things could happen, depending on the observation history of agent

2. One possibility is that agent 2 could have also observed two instances of HEARLEFT.

In this case, agent 2’s reasoning would be identical to the reasoning detailed for agent 1

above, and agent 2 would also broadcast its observation history. Agents that receive com-

munication from their teammates prune their distributions of possible joint beliefs to be

consistent with the communicated observation history (Table 4.4, lines 10-11). When both

agents prune their distributions of possible joint beliefs to include the communicated ob-

servations, the resulting distribution would contain a single belief, the belief corresponding

to the team observing two instances of 〈HEARLEFT,HEARLEFT〉:

p = 1.0

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL

HL HL

p = 1.0
(0.5, 0.5)

(0.155, 0.845)

(0.033,
 0.967)

p = 1.0

Because receiving new information may prompt an agent to decide to communicate

its own observation history, there may be multiple instances of communication in each

timestep.5 Therefore, agents must wait a fixed period of time to allow the system to qui-

esce before acting. This is indicated in the algorithm above by recursive calls to ACE-

PJB-COMM (lines 8, 12). As agents communicate all of their new local observations at

each instance of communication, each agent will communicate at most once per timestep.

Therefore, ACE-PJB-COMM is guaranteed to converge to a single joint action.

Finally, when no further communication will take place, the agents execute aNC , the

Q-POMDP action chosen over the distribution of possible joint beliefs that is consistent

5Consider a variant of the tiger domain in which the prior probability of SL is 0.9. In that case, the default
action is OPENL and an agent observing HEARLEFT in the first timestep would choose not to communicate.
However, if one of its teammates were to communicate an observation of HEARRIGHT, changing the joint action
to OPENR or LISTEN, the first agent could discover that it is in the team’s interest for it to contradict its teammate
and report its HEARLEFT observation.
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with all communication acts that have taken place. In the case of the current example, the

agents would proceed to open the right door. Each agent receives a new individual ob-

servation and grows its observation history and distribution of possible joint beliefs (lines

14-20).

On the other hand, if agent 2 heard one instance of HEARLEFT and one instance of

HEARRIGHT, it would not communicate, and the team would open the right door based on

the communicated observation history of agent 1. If, however, agent 2 heard two instances

of HEARRIGHT, it would communicate its observation history, and the team would resolve

to continue to LISTEN, based on the pruned observation history below, in which an equal

number of HEARLEFT and HEARRIGHT observations have been observed by the team:

p = 1.0

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL H
R

p = 1.0
(0.5, 0.5)

(0.5, 0.5)

0.5)
(0.5,

HL H
R

p = 1.0

4.5. Results

We performed experiments to compare the performance of the ACE-PJB-COMM al-

gorithm to a team executing with full communication and teams making communication

decisions stochastically in three domains: the two-agent tiger domain, a tiger domain with

three agents, and the multi-access broadcast channel (MABC) domain described by Hansen

et al. (Hansen et al., 2004). For the stochastic team, we allowed each agent on the team

to communicate at a frequency of communication slightly higher than the frequency of

communication determined by the ACE-PJB-COMM algorithm. The agents then used Q-

POMDP to select their joint action.

4.5.1. Two-agent Tiger Domain

We compared the average discounted reward accumulated by a team of two agents

operating in the tiger domain using the ACE-PJB-COMM algorithm to choose actions and

make communication decisions to the reward accumulated by a team executing a central-

ized policy by communicating at every timestep and a team that makes communication
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decisions randomly, at approximately the same frequency of communication as ACE-PJB-

COMM. We ran 20,000 trials for each algorithm. In each trial, the world state was initial-

ized randomly, and the agents executed for 6 timesteps. Table 4.5 summarizes the results

of these trials. µReward is the mean discounted reward accumulated over 6 timesteps of ex-

ecution and µMessages is the mean number of messages sent by the team over the course of

each trial. When each agent on a team communicates at every timestep, each message con-

sists of exactly one observation. However, the ACE-PJB-COMM algorithm directs agents

to send their entire previously uncommunicated observation histories to their teammates

when they choose to communicate, so a single message may contain several observations.

µObservations is the mean number of observations communicated by both teammates per

trial. σ is the standard deviation for each value.

µReward µMessages µObservations
(σ) (σ) (σ)

Full Communication 7.14 10.0 10.0
(27.88) (0.0) (0.0)

ACE-PJB-COMM 5.31 1.77 5.13
(19.79) (0.79) (2.38)

Random -2.18 2.31 5.12
(14.41) (1.51) (3.06)

Table 4.5. Summary of results for 20,000 6-timestep trials of the two-agent tiger
domain. µReward is the mean discounted reward accumulated over 6 timesteps.
µMessages is the mean number of distinct communication instances per trial, and
µObservations is the mean number of observations communicated by both agents
per trial.

As expected, a team choosing actions using ACE-PJB-COMM accumulates less reward

than a centralized team that communicates at every timestep. This difference in perfor-

mance can be attributed to ACE-PJB-COMM’s conservatism. Whereas a team with full

communication could potentially open a door after only one observation (e.g., if the joint

observation is HLHL), an agent executing according to DECCOMM must hear two con-

sistent observations before it communicates to its teammate. This costs the team an addi-

tional 〈LISTEN, LISTEN〉 action, with reward -2. Note that ACE-PJB-COMM execution has

a significantly lower variance than executing with full communication. A team with full

communication may choose to open a door after only one timestep. Because a team using

ACE-PJB-COMM must LISTEN at least twice before opening a door, it is more conservative

and therefore less likely to open an incorrect door.

ACE-PJB-COMM’s performance is achieved with a significant savings in communi-

cation. Whereas a centralized team must communicate a total of 10 observations over the
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course of 6 timesteps of execution, ACE-PJB-COMM instructs the agents to communicate

slightly more than half as many. Generally, only one agent must communicate in order to

direct the team to open a door.6 Additional instances of communication are needed only

when the other agent’s observations contradict the information communicated by its team-

mate (e.g., if one agent observes two instances of HEARLEFT while the other agent observes

two instances of HEARRIGHT). Overall, a team using ACE-PJB-COMM communicates less

than 20% of the number of messages communicated by a team with full communication.

On average, each message contains 2.9 observations.

On average, agents using ACE-PJB-COMM communicated in 17.7% of the timesteps

in which they had non-empty observation histories. To demonstrate that communication

was used effectively, we compared the performance of a team using ACE-PJB-COMM to a

team making random communication decisions. In each timestep, agents chose to commu-

nicate with probability 0.2. Although this team communicated slightly more messages than

the team that used ACE-PJB-COMM, the messages were significantly less informative, as

indicated by the low reward, -2.18, achieved by the random team.

4.5.2. Three-agent Tiger Domain

To show that our work is applicable in domains of more than two agents, we per-

formed experiments in a three-agent tiger domain. This domain has the same reward

structure as the two-agent tiger domain. The overall goal is for all three agents to simul-

taneously open the door opposite the tiger, and the worst coordination error takes place

when at least one agent opens each door. We adjusted the observation model so that, like

in the two-agent case, a simultaneous observation of, for example, HEARLEFT by all of

the agents is sufficient to direct the team to open the right door, whereas two agents ob-

serving HEARLEFT while the third agent observed HEARRIGHT would be insufficient. The

likelihood of an agent correctly observing the position of the tiger is 0.65. Table 4.6 sum-

marizes the results of 20,000 trials, each 6 timesteps in length, of three agents operating by

using the ACE-PJB-COMM algorithm to choose their actions, as a centralized team with

full communication, or as a team making communication decisions randomly.

Overall, the total reward in the three-agent tiger domain is lower than reward in the

two-agent tiger domain. Both centralized teams and teams choosing actions with ACE-

PJB-COMM take longer to become sufficiently certain about the location of the tiger to

6In our experiments, we found that, of the timesteps in which at least one agent chose to communicate, its
teammate also communicated 27% of the time.
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µReward µMessages µObservations
(σ) (σ) (σ)

Full Communication -3.00 15 15
(22.66) (0.0) (0.0)

ACE-PJB-COMM -4.93 1.78 5.01
(13.76) (1.72) (4.46)

Random -7.07 2.83 6.69
(12.23) (1.83) (4.05)

Table 4.6. Summary of results for 20,000 6-timestep trials of the three-agent tiger
domain. µReward is the mean discounted reward accumulated over 6 timesteps.
µMessages is the mean number of distinct communication instances per trial, and
µObservations is the mean number of observations communicated by both agents
per trial.

open a door. However, as in the two-agent tiger domain, the difference in reward be-

tween a centralized team and a decentralized team executing ACE-PJB-COMM is small,

corresponding to an additional timestep needed by ACE-PJB-COMM to choose to commu-

nicate and open a door. ACE-PJB-COMM again requires substantially less communication

than centralized execution, in this case approximately one third the number of observa-

tions and 11.87% of the number of messages. In this domain, ACE-PJB-COMM makes

significantly more effective communication decisions than a team choosing to communi-

cate at random. The team communicating with probability 0.15 at each timestep achieved

an average discounted reward of only -7.07, much less than the reward achieved by the

team using ACE-PJB-COMM, in which agents communicate approximately 11.9% of the

time.

4.5.3. Multi-access Broadcast Channel Domain

The multi-access broadcast channel domain (MABC) (Ooi and Wornell, 1996) has be-

come a common Dec-POMDP benchmark domain (Hansen et al., 2004; Seuken and Zilber-

stein, 2007). This problem, which consists of 4 states, 4 joint actions, and 4 joint observa-

tions, involves two agents attempting to send messages across the same channel. Agents

receive a reward of +1 for every message successfully sent. A collision occurs if both agents

attempt to broadcast simultaneously. The agents noisily observe collisions. Complete de-

tails of the MABC domain can be found in Appendix A.2.

Although it may be nonsensical to consider the presence of out-of-band communica-

tion in this domain, we nevertheless wished to demonstrate the performance of ACE-PJB-

COMM on this common benchmark problem. Table 4.7 summarize the results of 20,000

trials, each 10 timesteps long. There is no significant difference between the discounted
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reward accumulated by a team that communicates every timestep and a team executing

ACE-PJB-COMM, which broadcasts only 52.3% the number of observations and 42.3% the

number of messages.

Looking at reward, ACE-PJB-COMM in the MABC domain does not seem to suffer

from the same conservatism as in the Tiger domain. Whereas, with full communication, a

team executing in the tiger domain may choose to open a door after the first observation,

in the MABC domain, agents only observe collisions after attempting to send a message.

Because there are no false positive observations in the MABC domain, only false negatives,

an agent observing a collision becomes certain about the state of the world and chooses to

communicate immediately.

µReward µMessages µObservations
(σ) (σ) (σ)

Full Communication 5.23 18.0 18.0
(0.71) (0.0) (0.0)

ACE-PJB-COMM 5.23 7.62 9.46
(0.71) (1.30) (1.79)

Random 5.26 7.74 15.35
(0.75) (2.47) (2.76)

Table 4.7. Summary of results for 20,000 10-timestep trials of the multi-access
broadcast channel (MABC) domain. µReward is the mean discounted reward ac-
cumulated over 10 timesteps. µMessages is the mean number of distinct commu-
nication instances per trial, and µObservations is the mean number of observations
communicated by both agents per trial.

4.6. Particle Filter Representation

The distribution of possible joint beliefs, represented in the previous sections as a tree,

grows rapidly over time. In fact, this growth is exponential in |Ω|, the number of possi-

ble joint observations. When agents communicate frequently, the number of beliefs in the

distribution may remain fairly constant, as each instance of communication reduces the

distribution of possible joint beliefs to contain only those consistent with the communi-

cated observation histories. However, there may be cases in which agents choose not to

communicate for many timesteps.

In the tiger domain, consider the case in which each agent receives alternating obser-

vations of HEARLEFT and HEARRIGHT. No agent would ever become sure enough of the

position of the tiger to make communication worthwhile. The number of possible joint

beliefs in Lt would rapidly grow beyond what is feasible to store in memory. To address

cases in which agents may not communicate for long periods of time, we utilize a fixed-size

method for modeling the distribution of possible joint beliefs using a particle filter.
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In our particle filter representation, each particle Lti in the distribution Lt stores a sin-

gle possible joint observation history, −→ω t. Each particle also stores b, the joint belief that

would result from taking the actions that the team has chosen and observing the stored

joint observation history. The likelihood of a particular belief is indicated by the frequency

of occurrence of the particle representing that belief in the particle filter. Each agent stores

a particle filter Lt, which represents the joint possible beliefs of the team. At each timestep,

the beliefs represented in the particle filter are propagated forward according to the algo-

rithm presented in (Thrun, 2000).

Table 4.8 gives the details of propagating Lt after taking the joint action a. Its inputs

are the current distribution of possible joint beliefs, Lt, and the current joint action, a. Lines

3-12 show the procedure for updating a single particle in the particle filter. First, a single

possible joint belief Lti is chosen at random from Lt.7 bt is the belief represented by that

particle. In lines 5-6, the belief is partially updated, given the joint action taken at time

t. Then, in lines 8-12, a new particle is generated for each possible joint observation ω.

First, p, the probability of observing ω given the partially updated belief, is calculated. ω

is appended to the observation history of the original particle. Lines 10 and 11 show the

remainder of the belief Bayes update, in which b′ is updated to include the observation

of ω. Overall, N ×|Ω| new particles are generated. From these, N particles are sampled

according to their relative likelihoods, p.

The ACE-PJB-COMM algorithm is executed as described in Section 4.4. However, a

complication arises when it comes time to prune the particle filters, either to make commu-

nication decisions or as a result of observations received through communication. Unlike

the tree described earlier that represents the distribution of possible joint beliefs exactly,

a particle filter only approximates the distribution. Simply removing those particles not

consistent with the communicated observation history and resampling (to keep the total

number of particles constant) may result in a significant loss of information. Over time,

the number of possible joint observation histories grows exponentially, and many low-

probability histories will, because of sampling, not appear in the particle filter. In the worst

case, there may not be any particles in the particle filter with the exact individual observa-

tion history that is motivating pruning.

We provide a means by which agents can recreate observation histories that have

been lost due to sampling. Even if the exact observation history driving pruning has been

sampled out of the particle filter, it is still possible to identify similar observation histo-

ries that would lead to similar beliefs. Looking at the tiger domain example above, it is

7To ensure coordination, the agents must have synchronized random number generators.
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PROPAGATEBELIEFS(Lt, a)

1. Lt+1 ← ∅
2. do N times:
3. draw random Lti from Lt
4. bt ← b(Lti)
5. for each s′ ∈ S:
6. b′(s′)←

∑
s∈S T (s, a, s′)bt(s)

7. for each ω ∈ Ω:
8. p←

∑
s∈S O(s, a, ω)b′(s)

9. −→ω t+1 ← −→ω t ◦ 〈ω〉
10. for each s′ ∈ S:
11. b′(s′)← O(s′, a, ω)

∑
s∈S b

t(s)
12. Lt+1 ← Lt+1 ∪ [−→ω t+1, b′, p]
13. normalize Lt+1 so that

∑
Lt+1

i ∈Lt+1 p(Lt+1
i ) = 1

14. Lt+1 ← sample N particles from Lt+1 according to p
15. return Lt+1

Table 4.8. Algorithm to propagate forward the beliefs in a particle filter represen-
tation.

easy to see that there is a correlation between the observation histories of the different

agents (e.g. if one agent observes 〈HL,HL〉, it is unlikely that the other agent will have

observed 〈HR,HR〉). To capture this correlation when pruning, we define a similarity

metric between two observation histories (see Table 4.9). When an observation history
−→ω t
i is communicated by agent i, the new distribution of possible joint beliefs, Ljoint, is

computed by comparing the observation history in each particle corresponding to agent i

(−→ω t = −→ω t
i(L)∀L∈Ljoint ) to the communicated observation history,−→ω t

i. The comparison asks

the question, “Suppose an agent has observed −→ω t
i after starting in belief b0 and knowing

that the team has taken the joint action history −→a t. What is the likelihood that an identi-

cal agent would have observed the observation history −→ω t?” The value returned by this

comparison is used as a weight for the particle. The particles are then resampled according

to the calculated weights, and the agent i observation history for each particle is replaced

with −→ω t
i. In calculating similarity, we assume that each agent has stored a history of joint

actions taken by the team through time t− 1, −→a .

Overall, team performance increases with the number of particles used to model the

distribution of possible joint beliefs, asymptotically approaching the reward achieved by a

team that models the distribution exactly, using a tree representation. Figure 4.4 shows the

mean discounted reward (with 95% confidence intervals) for 20000 trials of the two-agent
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SIMILARITY(−→ω t
i,
−→ω t,−→a t)

1. sim← 1.0
2. b← b0

3. for t′ = 1 . . . t
4. b′ ← b
5. for each s′ ∈ S
6. b(s′)← O(s′,at′ ,ωt′

i )
P

s∈S T (s,at′ ,s′)b′(s)

Pr(ωt′
i |at′ ,b′)

7. sim← sim×
∑
s∈SO(s, at

′
, ωt

′
)b(s)

8. return sim

Table 4.9. The heuristic used to determine the similarity between two observation
histories.

tiger problem, using different numbers of particles to model the distribution of possible

joint beliefs. Each trial is 6 timesteps long.
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Figure 4.4. Mean discounted reward (with 95% confidence intervals) accumulated
over 6 timesteps of the two-agent tiger domain. Teams model the distribution
of possible joint beliefs using particle filters ranging from 500 to 10000 particles.
The line labeled ”Exact” shows the mean reward (with 95% confidence intervals)
achieved by a team modeling possible joint beliefs exactly.

A team that models the distribution of possible joint beliefs using a particle filter with

an insufficient number of particles performs worse than a team that models possible joint

63



CHAPTER 4. ACE-PJB-COMM

beliefs exactly because the Q-POMDP values computed by the agents do not accurately

reflect the expected outcomes of the actions that the agents consider. Consider the his-

togram in Figure 4.5, which compares a team modeling the distribution of possible joint

beliefs as a tree to a team that uses a particle filter with 500 particles. This histogram shows

the frequency of occurrence of different discounted rewards over 20000 trials of the tiger

problem.
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Figure 4.5. Histogram of discounted rewards accumulated by a team of agents ex-
ecuting for 6 timesteps in the two-agent tiger domain. The rewards shown in red
stripes were received by a team that models the distribution of possible joint beliefs
exactly, as a tree, and the rewards in blue checks were received by a team modeling
possible joint beliefs using a 500-particle particle filter.

It is easy to see that the performance of the two teams is significantly different. For

instance, the most common discounted reward accumulated by a team over 6 timesteps,

both for a team using an exact representation of possible joint beliefs and for a team using

a particle filter, is 21.4396. This corresponds to the team listening twice, opening the correct

door, listening twice more, and then opening the correct door again, and is the best possible

reward that can be achieved by a team executing ACE-PJB-COMM correctly. The particle

filter team is unable to open the correct door as frequently, and therefore performs worse

than the team modeling the possible joint beliefs exactly.
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Additionally, if an agent is modeling the distribution of possible joint beliefs exactly,

it will never decide to communicate after hearing only one possible observation. The like-

lihood that its teammate heard a contradicting observation is too high to change the Q-

POMDP action. However, if there are insufficient particles to accurately represent the dis-

tribution of possible joint beliefs, an unlucky episode of resampling can slightly bias the

particles toward beliefs at the extremes of the distribution. This additional, and unwar-

ranted, weight on beliefs such as the agents both hearing the tiger behind the same door

can lead, in rare instances, to the team opening a door after the agents hear only one ob-

servation each. Although this can lead to higher rewards (e.g., 22.88302 if the team listens

twice, opens a door, and then listens only once before opening the correct door, or 19.6576

if the team listens 3 times, opens a door, listens once and then opens another door), it can

also cause the team to mistakenly open the wrong door more often than a team that models

the distribution of possible joint beliefs correctly.

Contrast the histograms in Figure 4.5 with those in Figure 4.6, which compare the

discounted rewards accumulated by a team using a tree to model belief to a team using

a 5000-particle filter. Clearly, the performance of a team using 5000 particles to model the

distribution of possible joint beliefs is much more similar to the performance of a team

using a tree than a team that uses only 500 particles.

Although using more particles better approximates the true distribution of possible

joint beliefs and thereby leads to better team performance, it also requires more computa-

tion and slows down execution. Therefore, in each domain, one must determine experi-

mentally the trade-off between reward and execution time and choose the size of the par-

ticle filter accordingly. The graph in Figure 4.4 suggests that 5000 particles may be a good

size for a particle filter modeling the two-agent tiger domain, as performance approaches

the margin of error for an exact model, and overall reward increases slowly with additional

particles.

4.7. Discussion

In the previous section, we introduced a particle filter representation that models the

distribution of possible joint beliefs of a team of agents in constant space. However, we

also showed that the performance of a team using this representation depends heavily on

the number of particles used. In our representation, each particle is a joint observation

history. Over time, as the number of possible observation histories grows, a particle filter

with few particles will capture a less accurate representation of the distribution of possible

joint beliefs and lead to increasingly poor team behavior. It is worth noting that different
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Figure 4.6. Histogram of discounted rewards accumulated by a team of agents ex-
ecuting for 6 timesteps in the two-agent tiger domain. The rewards shown in red
stripes were received by a team that models the distribution of possible joint beliefs
exactly, as a tree, and the rewards in blue checks were received by a team modeling
possible joint beliefs using a 5000-particle particle filter.

joint observation histories may lead to identical joint beliefs. For example, in the two-agent

tiger domain, the joint observations 〈HL,HR〉 and 〈HR,HL〉 both result in the joint belief

P(SL) = 0.5. In the most extreme case, when the agents choose to open a door, the problem

resets, returning the team to the initial belief distribution. At this point, the team can be

said to have a synchronized belief state (Nair et al., 2004). The observation history leading to

this state is irrelevant to the team’s future decisions and can be discarded.

In our particle filter model, we chose to make each particle refer to an observation

history rather than a belief. If, instead, we chose to model beliefs and ignore the possibility

that a single belief could be the result of several different observation histories, it would be

much more difficult to prune the particle filter when considering the impact of communi-

cation. When deciding whether to keep a particle, we need to know if it is consistent with

the communicated observation history. Therefore, in this work, we were unable to take ad-

vantage of the potentially more compact representation of possible joint beliefs provided

by modeling beliefs rather than observation histories. The problem of more compactly

modeling the distribution of possible joint beliefs therefore remains open.
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Another avenue for further research is the problem of communication leading to a

biased estimate of belief. When using the ACE-PJB-COMM algorithm to make commu-

nication decisions, each agent chooses to communicate only when it anticipates that com-

munication of its own local observation history will change the joint action of the team.

Agents will not choose to communicate observations that confirm their current belief about

the world, as these observations will not change the joint action. Instead, agents that ob-

serve unexpected, meaning unlikely, events will choose to communicate. Their teammates,

who observed contradicting observations, will respond only if, individually, they believe

that they have sufficient evidence to change the joint action again. Therefore, one agent’s

observation and communication of an unlikely event may bias the team’s overall belief

about the world state. In this chapter, we presented several domains in which agents

using ACE-PJB-COMM easily outperformed teams that made communication decisions

randomly. However, it is possible to construct domains in which this is not the case. Iden-

tifying such domains, and exploring methods to avoid introducing bias into the team’s

belief via communication remains an open and important problem for future research.

4.8. Summary

Two main ideas were addressed in this chapter. First, we showed how a decentralized

team can execute a centralized policy, without communication and avoiding coordination

errors, by modeling and reasoning over the possible joint beliefs of the team. We pre-

sented an algorithm for calculating the distribution of possible joint beliefs, and introduced

a heuristic, Q-POMDP, by which a team of agents can select the joint action that maximizes

expected reward over this distribution. We demonstrated that a team that chooses actions

based on the distribution of possible joint beliefs is guaranteed to avoid mis-coordination.

Secondly, we showed how communication can be used to improve decentralized exe-

cution of a centralized joint policy. The ACE-PJB-COMM algorithm described in this chap-

ter answers the question of when a team of agents should communicate. We illustrated

the ACE-PJB-COMM algorithm through an extended example in the two-agent tiger do-

main. We demonstrated the performance of the ACE-PJB-COMM heuristic experimentally

in several benchmark domains, comparing it to the performance of teams with free com-

munication. We then showed how a particle filter can be used, in conjunction with ACE-

PJB-COMM, to model the distribution of possible joint beliefs of a team using constant

space.
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CHAPTER 5

SELECTIVE ACE-PJB-COMM: Choosing Which Observations
to Communicate

T
HE ACE-PJB-COMM algorithm presented in the previous chapter answers the

question of when agents should communicate. It does so by directing agents

to share their observations with their teammates whenever they find that in-

tegrating their local knowledge into the team’s distribution of possible joint

beliefs will lead to an increase in expected reward greater than the cost of communication.

One limitation of ACE-PJB-COMM is that it does not address the question of what to com-

municate. Built into the ACE-PJB-COMM algorithm is the assumption that, when an agent

does choose to communicate, it broadcasts all of its observations that have not previously

been communicated. This assumption reduces the execution-time computational burden

on the agents, as the agents do not need to reason about how their choice of message will

affect the team. However, this requirement may often cause the agents to communicate

redundant observations.

Consider the two-agent tiger domain discussed in the previous chapter. One property

of the domain is that the world resets each time a door is opened, and the tiger is re-located

at random behind either of the doors. Observations that were received by the team before

they took the OPEN action, therefore, provide no information about the current position

of the tiger. Communicating them can add nothing to the team’s estimate of the world

state. Additionally, O, the tiger problem’s observation function, is symmetric with respect

to the position of the tiger, meaning, for example, that the probability of correctly observ-

ing HEARLEFT when the state is SL is equal to the probability of observing HEARRIGHT

when the state is SR. Thus the observations in a history in which an agent first observed

HEARLEFT and then HEARRIGHT cancel each other out, resulting in no net change from

the initial belief of b(SR) = 0.5. If the agent were to decide to communicate in a subsequent

timestep, there would be no advantage in its broadcasting these first two observations.
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Making effective use of communication resources requires agents to reason about

what to communicate, as well as when. In Section 5.1, we introduce a new domain, the

Colorado/Wyoming domain, that is useful for examining the question of what to communi-

cate in the presence of limited communication. Section 5.2 of this chapter discusses several

paradigms under which limitations on communication can be considered. Section 5.3 then

describes an algorithm, SELECTIVE ACE-PJB-COMM, by which decisions about what to

communicate can be made under the various communication paradigms. This algorithm

makes use of a heuristic, BUILDMESSAGE, that iteratively selects the most valuable obser-

vations from an observation history. BUILDMESSAGE and SELECTIVE ACE-PJB-COMM are

illustrated via an example in the Colorado/Wyoming domain. Section 5.4 presents experi-

mental results demonstrating the performance of SELECTIVE ACE-PJB-COMM in both the

Colorado/Wyoming and two-agent tiger domains.

5.1. Colorado/Wyoming Domain

The multi-agent tiger domain, described in the previous chapter, is useful for eval-

uating communication strategies, in that it encodes a challenging coordination problem

in which communication can assist agents in acting jointly to improve expected team re-

ward, it is missing other characteristics that are necessary to illustrate the full range of

communication decisions. In particular, the tiger domain has only two possible individual

observations. While the tiger domain clearly provides an example of a domain in which ob-

servations become redundant over time, as described above, it is less useful for evaluating

the question of which observations are the most informative. HEARLEFT and HEARRIGHT

are symmetric with respect to the underlying world state; they encode the same amount of

information. Therefore, we introduce a new domain, which we call the Colorado/Wyoming

problem, which has multiple different observations that provide varying qualities of infor-

mation. Additionally, the Colorado/Wyoming domain consists of many states. As we will

show in Section 5.3.2, the agents’ decisions about what to communicate depend on their

state.

In the Colorado/Wyoming domain, two agents start at random locations in one of two

possible 5x5 grid worlds, representing the states of Colorado and Wyoming, and must meet

in a predetermined location. If they are in Colorado, the agents’ goal is to meet in Denver,

at grid position (2,4). If the agents are in Wyoming, they must rendezvous in Cheyenne,

located at grid position (5,5) (see Figure 5.1). The agents have 6 individual actions, for a

total of 36 possible joint actions: Each agent can move NORTH, SOUTH, EAST, or WEST,

with each move succeeding deterministically and incurring a cost of -1. An agent can also
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STOP, with cost 0, or send up a SIGNAL. At each timestep, the agents are aware of both

their own position and the position of their teammate. Like the multi-agent tiger domain,

the Colorado/Wyoming problem contains an explicit coordination problem. If both agents

are at the correct goal location when they simultaneously send up a SIGNAL, they receive

a joint reward of +20. If they send up simultaneous SIGNALs from an incorrect location,

they receive a reward of -50. However, if only one agent SIGNALs, or if the agents signal in

different locations, the team incurs a penalty of -100.

(a) (b)

Figure 5.1. Figure (a) is one possible configuration of the two agents in Colorado,
with the goal, Denver, at (2,4). Figure (b) is one possible configuration of the two
agents in Wyoming, with Cheyenne located at (5,5).

In order to progress toward the correct goal location, the agents must observe their

environment. Both Colorado and Wyoming contain some flat and some mountainous re-

gions. However, as Colorado is more mountainous than Wyoming, the probability that an

agent will observe a MOUNTAIN in Colorado is higher than the probability of observing it

in Wyoming (e.g., P(ω = MOUNTAIN | COLORADO) = 0.5 vs P(ω = MOUNTAIN |WYOMING)

= 0.3). Likewise, the observation PLAIN is more probable in Wyoming. Additionally, Col-

orado and Wyoming each contain a distinctive tourist attraction. It is somewhat likely

that an agent will see a sign for PIKESPEAK in Colorado or a sign indicating the way to

OLDFAITHFUL in Wyoming, but very unlikely that these landmarks would be observed

in the opposite state (i.e. P(ω = PIKESPEAK | COLORADO) = 0.15, P(ω = OLDFAITHFUL

| COLORADO) = 0.05). Because an agent is much more likely to observe PIKESPEAK in

Colorado than in Wyoming, but only somewhat more likely to see a MOUNTAIN, it is

clear that a PIKESPEAK observation would be more informative, and therefore more valu-

able when communicated to a teammate. Unlike the tiger domain, all actions in the Col-

orado/Wyoming domain lead to informative observations. The observation probabilities

are independent of the positions of the agents in the grid world. However, the expected

values of the agents’ actions change as the agents approach the goal. A complete descrip-

tion of the Colorado/Wyoming domain can be found in Appendix A.3.
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5.2. Communication Paradigms

Under certain assumptions about the cost and availability of communication, the ques-

tions of when and what to communicate are equivalent. However, under other, perhaps

more realistic, assumptions, agents need to reason explicitly about what to communicate.

In this section, we present three possible communication paradigms, each of which rep-

resents a set of assumptions about communication restrictions. In the remainder of the

chapter, we will show how our algorithm, SELECTIVE ACE-PJB-COMM, can be applied to

all three paradigms.

5.2.1. Fixed Cost per Communication Instance

The assumption made by ACE-PJB-COMM, and the most common assumption made

by algorithms that deal with communication in the context of Dec-MDPs and Dec-POMDPs,

is that limitations on communication can be modeled by placing a known, fixed cost on

each instance of communication (e.g. (Nair et al., 2004; Xuan et al., 2001; Goldman and Zil-

berstein, 2003)). Because the cost associated with communication does not change with the

size of the message communicated, algorithms operating under this assumption find no

benefit in directing agents to communicate fewer observations, thus justifying approaches

such as ACE-PJB-COMM and COMM-JESP, in which agents broadcast all previously un-

communicated observations at each instance of communication (Nair et al., 2004). The

communication decision is purely a decision about when communication may be benefi-

cial. The question of what to communicate may be entirely disregarded.

5.2.2. Fixed Cost per Observation

A slightly more complex model for communication limitations is one in which the cost

of communication scales with the amount of information to be communicated. We model

this by assuming a fixed cost per observation transmitted. Under this assumption, agents

primarily reason about when to communicate, but must also consider the question of what

to communicate by attempting to minimize the number of observations communicated.

For example, in the tiger domain, once an agent has determined that communicating its

entire observation history to its teammate will prompt the team to open a door, it can

proceed to compute the minimum subset of that observation history that will still lead the

team to open a door, removing, for instance, any observations that were received before

the last time a door was opened.
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5.2.3. Limited Bandwidth

Often, communication among agents has a strict limit on available bandwidth. For

example, in robot soccer, an attempt to communicate the complete and frequent sensory

data would easily overload the available communication resources (Roth et al., 2003). In

planetary exploration domains, communication bandwidth may be limited by the need of

agents to share a small number of satellites or communication relays in order to stay in

contact with their teammates (Bhasin et al., 2001). Other domains with bandwidth lim-

itations include distributed surveillance, in which the observations themselves are very

large (Rosencrantz et al., 2003). In general, it is possible to quantify the amount of band-

width available for communication between teammates. For simplicity, we characterize

bandwidth limitations by allowing each agent to communicate at most k observations no

more frequently than every n timesteps. The challenge, then, is to determine what k obser-

vations to communicate so as to make the best use of the available bandwidth.

5.2.4. Other Communication Paradigms

It is not our intention to detail all possible communication paradigms. We have de-

scribed a few, relatively simple, communication restrictions and explained how they shape

the question of what to communicate. One could also consider more complex commu-

nication paradigms, such as a domain in which, in addition to a fixed cost per message,

there is an additional cost per observation, motivating both fewer instances of communi-

cation and smaller messages. Alternately, one could imagine a communication paradigm

in which there is both a cost per message and a bandwidth limitation. In this chapter, we

describe how SELECTIVE ACE-PJB-COMM can be adapted to any of the three communi-

cation paradigms described above. We therefore claim that SELECTIVE ACE-PJB-COMM

could be used in any communication paradigm consisting of some combination of these

three basic paradigms.

5.3. SELECTIVE ACE-PJB-COMM

The ACE-PJB-COMM algorithm (Chapter 4) answers the question of when to commu-

nicate, making run-time communication decisions in the context of decentralized execution

of a centralized policy by evaluating whether communicating an agent’s local observation

history would change the joint action selected by its teammates. This section presents SE-

LECTIVE ACE-PJB-COMM, an extension of ACE-PJB-COMM that enables agents to reason

about what to communicate, and thereby make efficient use of limited communication

resources. SELECTIVE ACE-PJB-COMM can be applied under all three communication
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paradigms discussed above. It operates by first verifying that communication has the po-

tential to change the joint action and then choosing the k best observations for an agent to

communicate, no more frequently than every n timesteps. Choosing when to communi-

cate and choosing the minimum subset of observations to communicate can be treated as

special cases of choosing k observations at least n timesteps apart:

• If n = 0, meaning agents are potentially permitted to communicate every time-

step, potentially multiple times per timestep, and k = ∞, allowing agents to

communicate as many observations as are present in their observation histories,

then SELECTIVE DEC-COMM will, like ACE-PJB-COMM, answer the question of

when to communicate.

• If communication cost is modeled by assuming a fixed cost per observation com-

municated, and therefore the goal is to minimize the number of observations that

it is necessary to communicate in order to change the joint action, SELECTIVE

ACE-PJB-COMM should be invoked with n = 0, as communication could poten-

tially be beneficial at any timestep. Then, the size-k subset of best observations

could be computed, beginning with k = 1 and increasing k until the subset is

sufficiently large that, if it were communicated, it would change the Q-POMDP

action and increase the expected reward by at least ε.

Therefore, all further discussions of the details of the SELECTIVE ACE-PJB-COMM algo-

rithm address the problem of choosing k observations to communicate no more frequently

than every n timesteps, for arbitrary k and n.

The overall structure of the SELECTIVE ACE-PJB-COMM algorithm, shown in Ta-

ble 5.1, is nearly identical to the ACE-PJB-COMM algorithm. The SELECTIVE ACE-PJB-

COMM algorithm first determines if the agent is permitted to communicate, based on

whether more than n timesteps have elapsed since the last time it communicated. If so,

the agent uses a helper function, BUILDMESSAGE, to construct a subset of its observation

history of size less than or equal to k. Like ACE-PJB-COMM, BUILDMESSAGE first de-

termines if the agent should communicate at all. It does so by comparing the Q-POMDP

action that would be selected with no communication to the action that would be selected

if the agent were to communicate its entire observation history. If so, BUILDMESSAGE con-

structs a message in accordance with the domain’s communication restrictions. If the mes-

sage constructed by BUILDMESSAGE contains at least one observation, it is communicated

to the agent’s teammates.

DEC-COMM-SELECTIVE’s arguments are Lt, the distribution of possible joint beliefs

at time t, ωtj , the observations that agent j has not yet communicated, and T , the number
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DEC-COMM-SELECTIVE(Lt,−→ω t
j , ε, k, T , n)

1. if T ≥ n
2. −→ω C ← BUILDMESSAGE(Lt,−→ω t

j , ε, k)
3. if |−→ω C | > 0
4. communicate −→ω C to teammates
5. Lt ← prune leafs inconsistent with −→ω C from Lt
6. −→ω t

j ←
−→ω t
j −
−→ω C

7. T ← 0
8. if message −→ω t

i was received from teammate i
9. Lt ← prune leafs inconsistent with −→ω t

i from Lt
10. return DEC-COMM-SELECTIVE(Lt,−→ω t

j , ε, k, T , n)
11. a← arg maxaQ-POMDP(a, Lt)
12. take action a
13. receive observation ωt+1

j

14. −→ω t+1
j ← −→ω t

j ◦ 〈ω
t+1
j 〉

15. Lt+1 ← ∅
16. for each Lti ∈ Lt
17. Lt+1 ← Lt+1 ∪ GROWTREE(Lti, a)
18. return [Lt+1,−→ω t+1

j , T + 1]

Table 5.1. One time step of the DEC-COMM-SELECTIVE algorithm for an agent j

of timesteps that have elapsed since the last instance of communication. ε, the amount

by which expected reward must increase as a result of communication for the agent to

decide to communicate, k, the number of observations that can be communicated, and

n, the number of timesteps that must pass between instances of communication, are the

parameters of execution. The algorithm first determines that the agent j is allowed to

communicate in the current timestep, by verifying that T is greater than or equal to n. If

so, the agent constructs a message −→ω C by calling BUILDMESSAGE. BUILDMESSAGE may

return an empty message if −→ω t
j is empty, meaning that agent j has already communicated

its entire observation history, or if communicating all of the observations in −→ω t
j would be

insufficient to change the expected reward by at least ε.

If the message returned by BUILDMESSAGE, −→ω C , is not empty, as in lines 4-7 above,

agent j communicates −→ω C to all of its teammates. It prunes Lt to be consistent with the

communicated information, and removes the observations in−→ω C from−→ω t
j so that they will

not be considered for future communication. T , the number of timesteps since the previous

instance of communication, is reset to 0.

The remainder of DEC-COMM-SELECTIVE, Lines 8-18, function identically to ACE-

PJB-COMM. Agent j listens for observations communicated by its teammates (which may,
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in turn, prompt agent j to communicate if it has not done so already), updates its distribu-

tion of possible joint beliefs and selects an action according to Q-POMDP. After taking this

action a, agent j receives an individual observation that it appends to its local observation

history, and grows its distribution of possible joint beliefs to take into account all of the

possible joint observations that the team could have observed.

5.3.1. BUILDMESSAGE: A Hill-climbing Heuristic

There still remains the problem of, given an observation history of length t, finding the

subset of at most k of those observations that would be the most useful if communicated.

An obvious possibility is to exhaustively search over all possible subsets of size less than

or equal to k for the subset with the highest value of information. However, given that an

observation history of length t hasO(tk) possible subsets of size k, it is clear that exhaustive

search quickly becomes impractical.

Neither would it be effective to sort the individual observations in an observation his-

tory by informativeness (measured, for instance, by the amount by which they decrease the

entropy of the possible joint beliefs or by the value of information of the individual observa-

tion) and take the k greatest. Consider, in the Colorado/Wyoming problem, an observation

history such as 〈MOUNTAIN,OLDFAITHFUL, PIKESPEAK,MOUNTAIN〉. An agent trying to

choose the k = 2 best observations might reason that PIKESPEAK and OLDFAITHFUL are,

individually, the most informative observations and communicate that pair. However, it

is clear that in combination, the two observations would cancel each other out and, rather

than being the best size-k subset, would not help in improving the joint action if commu-

nicated.

Instead, to facilitate the selection of the subset of observations with a high value of in-

formation, we introduce one possible BUILDMESSAGE heuristic, shown below in Table 5.2.

The intuition behind the BUILDMESSAGE heuristic is as follows: The agent that is current

making a decision about whether and what to communicate first computes aC , the joint

action that the team would perform if that agent were able to broadcast its entire obser-

vation history. From this agent’s perspective, aC is the best possible action that the team

could take, given all of the available information. If aC is the same as aNC , the action that

would be chosen without any communication, or if the difference in expected rewards be-

tween those two actions is less than ε (as calculated in lines 1-5 of Table 5.2), then nothing

this agent communicates could be expected to improve team performance in the current

timestep. If communicating the entire observation history is insufficient to change the joint
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action, it is clear that communicating only a subset of this history would also be insuffi-

cient. In that case, the agent would choose not to communicate at all. SELECTIVE ACE-

PJB-COMM suffers from the same conservatism as ACE-PJB-COMM. Because agents do

not choose to communicate until they determine that their local observations are sufficient

to change the team action, they may wait longer to act on the basis of their local knowledge

than a team with full communication. In a domain with bandwidth limitations, the effects

of this conservatism may be even more pronounced. Agents may discover that their lo-

cal knowledge is sufficient to change the joint action but may lack sufficient bandwidth to

communicate those observations. They will have to communicate some observations and

wait until their next communication opportunity to complete the transfer of local informa-

tion. It will, therefore, take them even longer to successfully change the joint action.

BUILDMESSAGE(Lt,−→ω t
j , ε, k)

1. aNC ← Q-POMDP(Lt)
2. L′ ← prune leaves inconsistent with −→ω t

j from Lt
3. aC ← Q-POMDP(L′)
4. if Q-POMDPaC

(L′) - Q-POMDPaNC
(L′) ≤ ε

5. return ∅
6. else
7. −→ω C ← ∅
8. while (|−→ω C | ≤ k) ∧ (aNC 6= aC)
9. vMAX ← −∞

10. for each ω ∈ −→ω t
j

11. L′ ← prune leaves inconsistent with ω from Lt
12. v← Q-POMDPaC

(L′)− Q-POMDPaNC
(L′)

13. if v > vMAX

14. vMAX ← v
15. ωMAX ← ω
16. −→ω C ← −→ω C ◦ 〈ωMAX〉
17. Lt ← prune leaves inconsistent with ωMAX from Lt
18. −→ω t

j ←
−→ω t
j − ωMAX

19. aNC ← Q-POMDP(Lt)
20. return −→ω C

Table 5.2. The BUILDMESSAGE heuristic greedily selects the observations that lead
to the greatest difference in expected reward between aC , the action that would
be executed if the agent communicated its entire observation history, and aNC , the
action that would be chosen without communication.

If, however, communication could potentially improve the team’s performance by

changing the joint action selection, then it seems logical to select those observations that

do the most to persuade the team to select action aC . In essence, BUILDMESSAGE is a

77



CHAPTER 5. SELECTIVE ACE-PJB-COMM

hill-climbing heuristic that greedily selects those observations that, when integrated into

the distribution of possible joint beliefs, result in the highest expected reward as evaluated

over the joint action aC . Additionally, to maximize the chances of changing the joint action,

observations are also selected based on how poorly they effect the expected reward over

the joint action aNC . Lines 9-19 of Table 5.2 detail how a single observation is chosen and

added to ωC , the message to be communicated. This process is repeated, with observa-

tions added to ωC until either the maximum number of observations, k, has been selected

(|−→ω C | = k), or until Lt has been sufficiently changed such that Q-POMDP(Lt) is now aC .

For each observation ω in −→ω t
j , BUILDMESSAGE operates by pruning the complete distri-

bution of possible joint beliefs to be consistent with that single observation (lines 10-11),

and computing the expected value of aC minus the expected value of aNC in this pruned

distribution (line 12).1 BUILDMESSAGE compares these observations to find the one that

maximizes the change in expected reward between actions aC and aNC (lines 13-16). This

observation can be considered the one that ”pushes” the distribution of possible joint be-

liefs the furthest towards choosing aC and away from aNC . The algorithm then prunes Lt

to reflect the selection of ωMAX , removes this observation from −→ω t
j , computes a new aNC

and repeats (lines 17-19).

5.3.2. SELECTIVE ACE-PJB-COMM Example

We illustrate how BUILDMESSAGE, in combination with SELECTIVE ACE-PJB-COMM,

enables an agent to choose a subset of its observation history to communicate. Consider

the observation history in which agent 1 has observed 〈MOUNTAIN, OLDFAITHFUL, PIKES-

PEAK, MOUNTAIN〉. Suppose that, at the time that the final observation was received, the

agents were located in the following configuration, with both agent 1 and agent 2 located

at grid position (3,3) (possible goal locations are indicated by question marks):

?

?

For the sake of clarity, we represent the distribution of possible joint beliefs as a his-

togram, considering only the portion of the belief that refers to the question of whether

1Note that, unlike in ACE-PJB-COMM, the Q-POMDP values of aC and aNC are computed over a partially,
rather than completely, pruned distribution. The value computed in line 12 is therefore not a true expected value,
but rather an attempt to estimate the impact on action selection of communicating a particular set of observations.
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the robots are in Colorado or Wyoming and assuming that the locations of the two robots

on the grid are known. The histogram below represents L4, the distribution of possible

joint beliefs at time t = 4, before any communication has taken place. For example, the

bars on the extreme left of the histogram correspond to possible joint observation histories

in which both agents heard repeated observations of OLDFAITHFUL, making it extremely

unlikely that the robots are in Colorado, whereas bars on the extreme right correspond to

repeated joint observations of PIKESPEAK:
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Given this distribution of possible joint beliefs, there is no reason for the agents to

believe more strongly either that they are in Colorado or Wyoming. Therefore, because

the agents are in a central location between the two possible goal positions, the best joint

action for both agents is to STOP, which costs 0 and does not move them away from either

potential goal. However, if agent 1 were to communicate its entire observed history, the

following distribution of possible joint beliefs would result:
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At this point, sufficient evidence exists for the agents to believe that they are in Col-

orado. aC , the best joint action given communication of all of agent 1’s observations, is
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〈NORTH,NORTH〉, which moves both agents towards Denver, the Colorado goal located at

(2,4). Suppose, however, that instead of being able to communicate its entire observation

history, agent 1 has sufficient bandwidth available to communicate only two observations.

To find the best two observations, the agent first finds the single observation that has the

highest value of information with respect to aC . It does this by pruning L4 four times, each

time to be consistent with one of the four observations in−→ω 3
1, agent 1’s observation history

before taking an action at timestep 4, yielding the following four distributions of possible

joint belief:
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OldFaithful, t = 1
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PikesPeak, t = 2
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Mountain, t = 3
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Table 5.3 shows the Q-POMDP values for aC , 〈NORTH,NORTH〉, and aNC , 〈STOP,

STOP〉, over the four distributions. As expected, communicating PIKESPEAK (observed at

timestep 2) would most increase the difference in expected reward between the two actions,

and therefore BUILDMESSAGE would choose it first to add to −→ω C , the message to be com-

municated and prune L4 to be consistent with an observation of PIKESPEAK at timestep 2.

Next, the agent prunes the updated L4 to be consistent with each of the three remaining
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〈ω, t〉 Q-POMDP〈NORTH, Q-POMDP〈STOP, Q-POMDPaC
−

NORTH〉 STOP〉 Q-POMDPaNC

〈MOUNTAIN, 0〉 9.07 11.25 -2.18
〈OLDFAITHFUL, 1〉 6.10 11.25 -5.15
〈PIKESPEAK, 2〉 10.07 11.25 -1.18
〈MOUNTAIN, 3〉 9.07 11.25 -2.18

Table 5.3. Q-POMDPaC
(L′) and Q-POMDPaNC

(L′) values for allL′ generated by
pruning L4 to take into account each of the four possible individual observations.

observations:
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OldFaithful, t = 1
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Mountain, t = 3
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Computing the difference between Q-POMDPaC
and Q-POMDPaNC

over the three

distributions, BUILDMESSAGE finds that the MOUNTAIN observations best complement

the PIKESPEAK observation that has already been chosen and adds one of them to −→ω C ,

completing the set of two observations that agent 1 is allowed to communicate.

A slightly different execution of BUILDMESSAGE can be demonstrated by considering

the case in which agent 1 observes 〈MOUNTAIN, PLAIN, PIKESPEAK〉. In this case, agent

1 will find that communication has the potential to change the joint action after only 3
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observations, as opposed to the 4 timesteps that passed in the previous case before com-

munication was found to be potentially beneficial. The pruned distribution that would

result if agent 1 were to communicate its whole observation history is:
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As before, aC is 〈NORTH,NORTH〉 and, as in the previous example, the first observa-

tion chosen by the BUILDMESSAGE heuristic is PIKESPEAK. However, at this point, when

BUILDMESSAGE computes a new Q-POMDP action over an L3 distribution (shown be-

low) that has been pruned to be consistent with the chosen observation, it finds that the

best joint action is 〈NORTH,NORTH〉, the same action as would be chosen if agent 1 were

to communicate its entire observation history.
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Even though agent 1 is allowed to communicate as many as two observations, it ter-

minates after choosing only one observation, as that observation is sufficient to change the

joint action to the Q-POMDP action that would be chosen if it communicated its entire

observation history. The BUILDMESSAGE heuristic automatically minimizes the number

of observations communicated, thus making it applicable to the communication paradigm
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in which a fixed cost is incurred per observation communicated, avoiding the need to try

different values of k. It can simply be invoked with k = t.

5.3.3. Limitations of a Greedy Approach

It must be noted that BUILDMESSAGE is a greedy heuristic, and as such, is sub-optimal.

In particular, because BUILDMESSAGE attempts to hill-climb towards aC , the joint action

that would be selected if the communicating agent were able to broadcast its entire obser-

vation history, it may miss opportunities to use communication to move the team towards

the selection of an intermediate action. Consider a domain with three possible joint ac-

tions, x, y, and z, in which agent 1 is deciding whether and what to communicate. Let x

be aNC , the action that, given the current distribution of possible joint beliefs, would be se-

lected if no communication takes place. Let z be aC , the action that would result if agent 1

communicated its entire observation history. Now suppose that agent 1 is only allowed to

communicate k observations, and that there is no subset of size k that will change the joint

action to aC . Suppose also that there is some size-k subset of observations −→ω ∗ that, if com-

municated, would change the joint action to y, where the expected reward of y is greater

than that of x but less than the expected reward of action z. An exhaustive search over

subsets of observation histories would successfully find −→ω ∗, whereas BUILDMESSAGE, by

attempting to choose observations that push the team towards choosing aC (i.e. joint action

z), may choose a subset −→ω C that leaves the joint action at x. In this way, BUILDMESSAGE

may sacrifice optimality to avoid doing an exhaustive search over the space of possible

subsets of the observation history.

5.4. Results

We tested the effectiveness of the SELECTIVE ACE-PJB-COMM algorithm in the Col-

orado/Wyoming and Two-agent Tiger domains.

5.4.1. Colorado/Wyoming Domain

We performed several sets of experiments in the Colorado/Wyoming domain. For

each experiment, we ran 3000 trials, with each trial consisting of allowing the agents to

execute for at least 15 timesteps, or until at least one agent performed a SIGNAL action.

First, we used the BUILDMESSAGE heuristic and SELECTIVE ACE-PJB-COMM to minimize

the number of observations communicated. To do this, we invoked SELECTIVE ACE-PJB-

COMM with k = ∞ and n = 0, meaning that agents are permitted to communicate at
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every timestep, possibly multiple times per timestep, and when they choose to communi-

cate, they may broadcast as many observations as are needed to change the joint action to

aC . However, since BUILDMESSAGE terminates as soon as enough observations have been

appended to the message to change the joint action, SELECTIVE ACE-PJB-COMM avoids

communicating unnecessary observations. The results are summarized in Table 5.4.

µReward µMessages µObservations
(σ) (σ) (σ)

ACE-PJB-COMM -3.80 3.75 12.0
(4.05) (2.36) (6.29)

SELECTIVE ACE-PJB-COMM -4.01 4.50 6.44
(4.09) (2.65) (3.67)

Table 5.4. Summary of results for 3,000 15-timestep trials of the Col-
orado/Wyoming domain, comparing a team that uses ACE-PJB-COMM to make
communication decisions to a team that uses SELECTIVE ACE-PJB-COMM to min-
imize the number of observations communicated. µReward is the mean discounted
reward accumulated over 15 timesteps. µMessages is the mean number of distinct
communication instances per trial, and µObservations is the mean number of obser-
vations communicated by both agents per trial.

The team using SELECTIVE ACE-PJB-COMM to make communication decisions ach-

ieves almost the same overall discounted reward as the team that uses ACE-PJB-COMM

(the difference in means is not statistically significant), while communicating 45.11% fewer

observations, indicating that ACE-PJB-COMM is clearly communicating redundant infor-

mation, while SELECTIVE ACE-PJB-COMM is able to be more efficient. It is interesting

to note, however, that using SELECTIVE ACE-PJB-COMM leads a team to communicate

slightly more messages, and that this difference is statistically significant (p < 0.0001). The

cause of this difference seems to be because, in the case where SELECTIVE ACE-PJB-COMM

is used to minimize the number of observations communicated, each agent communicates

only enough observations to change the joint action, leaving room for its teammates to de-

cide to communicate in response and change the action back. In some cases, this may lead

to further instances of communication, in which the original communicating agent then

broadcasts those observations it had previously held back, changing the joint action again.

This result indicates that one should use caution when considering a communication policy

that minimizes the message size, in domains where the cost of communication corresponds

to the number of messages communicated, rather than the size of the messages.

Next, we wished to demonstrate that the BUILDMESSAGE heuristic effectively selects

which observations to communicate when there is a strict bandwidth limitation of no more

than k observations, at least n timesteps apart. We did this by comparing a team that
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uses BUILDMESSAGE to select which observations to communicate to a team that selects

observations randomly. The team selecting observations randomly was still restricted to

communicate only in cases where communicating the entire observation history would

change the joint action. The agent communicating then picked observations at random un-

til it either built a message of size k or until the message it had assembled was sufficient

to change the joint action. Note, unlike in ACE-PJB-COMM, in which agents may commu-

nicate more than once per timestep, in this case, even if an agent chooses to communicate

fewer than k observations in a given timestep, it must still wait at least n timesteps until it

can communicate again. The rewards for the BUILDMESSAGE team are shown in Table 5.5

and the rewards for a team that selects observations randomly are in Table 5.6. Clearly,

BUILDMESSAGE and SELECTIVE ACE-PJB-COMM select which observations to communi-

cate more effectively, as indicated by the higher mean reward achieved by a team using

BUILDMESSAGE.

N / K 1 2 3 4 5
1 -4.53

(3.52)
2 -4.82 -4.42

(3.10) (3.81)
3 -5.15 -4.54 -4.44

(2.70) (3.43) (3.44)
4 -5.34 -4.79 -4.66 -4.67

(2.55) (3.08) (3.30) (3.64)
5 -5.59 -5.07 -4.92 -4.92 -4.90

(2.50) (2.91) (3.06) (3.16) (3.04)

Table 5.5. Summary of mean discounted rewards for 3,000 15-timestep trials of
the Colorado/Wyoming domain, comparing different values of n (rows) and k
(columns) for a team using the BUILDMESSAGE heuristic to choose what to com-
municate.

It is important to note that BUILDMESSAGE with k = 1 and n = 1 is not equivalent

to ACE-PJB-COMM. Although the team is permitted to communicate in every timestep,

it may communicate only once per timestep. Recall that SELECTIVE ACE-PJB-COMM

chooses to communicate only if it sees that communicating all observations would be

sufficient to change the joint action. Consider a situation in which an agent discovers

at timestep 2 that communicating both of its observations (for instance, if the agent ob-

served MOUNTAIN twice) would change the joint action. If there were no bandwidth limit,

the agent could communicate both observations and impact the joint action immediately.

However, in this case, because k = 1, the agent may communicate only one observation at
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N / K 1 2 3 4 5
1 -6.05

(6.88)
2 -7.60 -5.72

(6.45) (7.13)
3 -8.60 -6.30 -4.96

(5.91) (6.68) (6.98)
4 -9.16 -6.87 -5.75 -5.17

(5.79) (6.32) (6.70) (7.16)
5 -9.25 -7.79 -6.60 -5.89 -5.35

(5.20) (6.11) (6.16) (6.52) (6.58)

Table 5.6. Summary of mean discounted rewards for 3,000 15-timestep trials of
the Colorado/Wyoming domain, comparing different values of n (rows) and k
(columns) for a team choosing what to communicate randomly.

this timestep and must wait until the next timestep to communicate an additional observa-

tion.

In addition to accumulating a greater discounted reward, the team using BUILDMES-

SAGE to select observations communicated, on average 2.46 fewer observations than the

team that built messages randomly. The reason for this is straightforward; because both

teams chose observations until they either reached their bandwidth limit or until they were

able to change the joint action, the team that selected observations intelligently was able

to communicate smaller messages that still succeeded in changing the joint action. Ad-

ditionally, the team using BUILDMESSAGE required an average of 0.76 fewer instances of

communication because the agents were able to set the team on the correct path of actions

by communicating the most relevant observations.

5.4.2. Two-agent Tiger Domain

We performed the same experiments in the two-agent tiger domain. For each experi-

ment, we ran 20,000 trials, with each trial consisting of allowing the agents to execute for

6 timesteps.2 The results shown in Table 5.7 demonstrate that, in the tiger domain as well,

a team choosing observations using BUILDMESSAGE achieves the same reward as a team

that only reasons about when to communicate, while sending 28.7% fewer observations.

Even though the two individual observations in the two-agent tiger domain have the

same informative value with respect to the true state, when bandwidth is limited, it is still

2We ran many more trials in the tiger domain than in the Colorado/Wyoming domain because the variance
in the reward of the tiger domain is much higher. On average, the agents in the tiger domain choose to open a
door much more frequently than the agents in the Colorado/Wyoming domain choose to signal. In large part,
this is because of the number of timesteps that it takes the agents in the Colorado/Wyoming domain to reach
a goal location. Since the agents in the Colorado/Wyoming domain have more timesteps in which to receive
observations, they make fewer mistakes than agents in the tiger domain.
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µReward µMessages µObservations
(σ) (σ) (σ)

ACE-PJB-COMM 5.30 1.77 5.13
(19.79) (0.79) (2.38)

SELECTIVE ACE-PJB-COMM 5.31 1.81 3.66
(19.74) (0.92) (1.67)

Table 5.7. Summary of results for 20,000 6-timestep trials of the two-agent tiger do-
main, comparing a team that uses ACE-PJB-COMM to make communication de-
cisions to a team that uses SELECTIVE ACE-PJB-COMM to minimize the number
of observations communicated. µReward is the mean discounted reward accumu-
lated over 6 timesteps. µMessages is the mean number of distinct communication
instances per trial, and µObservations is the mean number of observations commu-
nicated by both agents per trial.

important to select consistent observations that lead the team to open the correct door.

Table 5.8 summarizes the mean discounted rewards (with standard deviations) accumu-

lated by a team communicating k observations at most n timesteps apart, chosen accord-

ing to the BUILDMESSAGE heuristic, while Table 5.9 shows mean discounted rewards for

a team that chooses what to communicate randomly. As in the Colorado/Wyoming do-

main, BUILDMESSAGE is consistently more successful at deciding what to communicate.

While there is no significant difference between the number of messages communicated by

the team communicating randomly and the team using BUILDMESSAGE, the team using

BUILDMESSAGE communicated, on average, 0.37 fewer observations than the team mak-

ing random communication decisions.

N / K 1 2 3 4 5
1 4.47

(20.52)
2 4.42 4.84

(20.45) (20.20)
3 0.061 0.72 0.71

(9.48) (11.33) (11.30)
4 -0.72 0.18 -0.26 -0.20

(7.76) (9.02) (8.69) (8.65)
5 -1.76 -0.52 -0.48 -0.48 -0.51

(7.15) (8.35) (8.29) (8.37) (8.42)

Table 5.8. Summary of mean discounted rewards for 20,000 6-timestep trials of the
two-agent tiger domain, comparing different values of n (rows) and k (columns)
for a team using the BUILDMESSAGE heuristic to choose what to communicate.
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N / K 1 2 3 4 5
1 1.87

(18.37)
2 2.01 3.84

(17.76) (19.25)
3 -1.68 -0.39 0.38

(9.34) (11.39) (11.24)
4 -4.34 -1.67 -0.61 -0.20

(7.39) (8.39) (8.25) (8.59)
5 -5.29 -2.48 -0.91 -0.45 -0.43

(6.38) (7.65) (7.71) (8.34) (8.36)

Table 5.9. Summary of mean discounted rewards for 20,000 6-timestep trials of the
two-agent tiger domain, comparing different values of n (rows) and k (columns)
for a team choosing what to communicate randomly.

5.5. Summary

In this chapter, we began to address the question of what agents should communicate.

We identified situations in which algorithms like ACE-PJB-COMM, which instruct agents

to broadcast their entire observation history whenever they make the choice to communi-

cate, are wasteful of limited communication resources by communicating non-informative

observations. We then identified three paradigms for modeling the cost of communication:

1. Fixed cost per instance of communication

2. Fixed cost per observation communicated

3. Limited bandwidth

The SELECTIVE ACE-PJB-COMM algorithm, introduced in this chapter, extends ACE-

PJB-COMM to answer the question of what to communicate within any of these three

paradigms. To enable the selection of the most valuable subsets of observations in an obser-

vation history, we introduced BUILDMESSAGE, a greedy heuristic that computes the action

an agent would prefer if it could communicate all of its observations, and then chooses

those observations most compatible with that action. We illustrated SELECTIVE ACE-PJB-

COMM and BUILDMESSAGE with an example in the Colorado/Wyoming domain, which

has multiple observations of varying information qualities, and demonstrated the perfor-

mance of our algorithm experimentally in the Colorado/Wyoming and Two-agent Tiger

domains.
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CHAPTER 6

Communicating State Features

I
N the previous chapter, we began exploring the question of what a team of agents

should communicate. We looked at how an agent can select the most valuable ob-

servations from its observation history. However, we claim that there are many

domains in which the question of what to communicate is best answered by exam-

ining the individual state features. Consider, for example, the AIBO soccer team discussed

in the introduction to this thesis. The robots in that domain capture camera images of their

environment, color-segment them, and extract an observation consisting of 9 features: the

robot’s own location, the position of the ball, and the positions of the 7 other robots on the

field. In any given observation, many of these elements may be uninformative, as the ob-

jects that they refer to are currently outside the robot’s field of view. Also, while there are

certainly scenarios in which it is helpful for a robot to know the position of its teammates or

opponents, in most cases, the most important piece of information for the robot to know is

the location of the ball. The approach presented in this chapter uses a factored representation

of state to enable agents to communicate useful state features to their teammates.

There is an additional issue to be considered. The ACE-PJB-COMM and SELECTIVE

ACE-PJB-COMM algorithms guarantee that agents will avoid coordination errors while us-

ing communication to execute a centralized policy. However, they do so by making a

limiting restriction on team behavior - they require the agents to synchronize their choice

of joint action. The algorithms ensure that the team’s action choice is synchronized by

allowing agents to choose their actions based only on information that is known to all

teammates. We do not permit agents to choose actions based on their local observations

unless they first communicate those observations to all of their teammates. In this chapter,

we relax this restriction by using factored policies to identify portions of the state space

in which agents can act independently of their teammates, while still guaranteeing that the

team will avoid coordination errors.
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We consider collectively observable domains, modeled by Decentralized Markov deci-

sion problems (Dec-MDPs). Like in Dec-POMDP domains, the agents modeled by a Dec-

MDP cannot determine the world state by themselves. However, unlike in a Dec-POMDP,

the union of the team’s observations does uniquely identify the current world state at ev-

ery timestep. Therefore, the underlying centralized problem for a Dec-MDP that could

be constructed if the team had free communication is an MDP. Because Dec-MDPs with

limited communication are, like Dec-POMDPs, NEXP-complete, our overall approach in

this chapter is the same as in previous chapters. We first solve the underlying centralized

MDP and then show how a decentralized team can execute that policy by reasoning about

communication at execution-time.

In previous chapters, we addressed communication in teams modeled by Dec-POM-

DPs. In those domains, agents receive noisy observations and use those observations to

form belief estimates, probability distributions over the possible states. Merging the beliefs

of different agents is an open problem (see Section 7.2.1). We therefore restrict Dec-POMDP

agents to communicating their observations, as the observations of one teammate can be

integrated straightforwardly into the belief of another. In Dec-MDP domains, agents ob-

serve portions of the state directly and without noise. Therefore, in this chapter, we use the

phrase state feature to refer interchangeably to a component of the state and to an agent’s

observation of that component.

In Section 6.1, we introduce a Meeting-Under-Uncertainty domain that we use as a

running example throughout this chapter. Section 6.2 discuss how factored representations

of state can be used to discover instances of context-specific independence between teammate

agents. Section 6.3 introduces the idea of decision tree-structured MDP policies. Section 6.4

shows how a team of agents can execute individual tree-structured policies, and how these

policies can be used to instruct the agents both when and what they should communi-

cate. The algorithm described in Section 6.5 transforms tree-structured joint policies into

individual policies that are guaranteed to prevent coordination errors, while attempting

to maximize the number of timesteps in which agents can act independently. Section 6.6

presents empirical results that demonstrate, in two domains, the communication savings

that can be achieved by using individual factored policies to control a team of agents.

6.1. Meeting-Under-Uncertainty Domain

In this chapter, we introduce a version of the common Meeting-Under-Uncertainty

domain (Xuan et al., 2001; Goldman and Zilberstein, 2003; Bernstein et al., 2005) in which
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agents may act independently during most of their execution, but face a potential coordi-

nation error upon reaching a goal state. In our domain, n agents must meet at a prede-

termined location in a grid world, and when all are at the goal location, simultaneously

send up a SIGNAL. The other individual actions available to the agents are: NORTH,

SOUTH, EAST, WEST, and STOP, with movement actions succeeding with 0.9 probability.

The agents receive a reward of +20 for signaling together, and receive penalties for either

mis-coordinating their SIGNAL actions (-100) or signaling from the wrong location (-50).

The team incurs a cost of -1 for each timestep that it takes them to reach the goal location

and SIGNAL. Each agent observes its own location (e.g., X0 and Y0 for agent 0, and X1 and

Y1 for agent 1 in a two-agent domain) but does not know the positions of its teammates.

The problem ends when at least one agent SIGNALs. Clearly, this is a domain with many

instances of potential independence between agents. While the agents are moving towards

the goal location, they can act independently. The agents need to communicate only once

they have reached the goal. Figure 6.1 shows one possible 3-by-3 grid world, which we

use as the example domain throughout this chapter. Appendix A.4 presents the complete

details of this domain.

*
Figure 6.1. Agents in a 3-by-3 grid world. The goal is at (2,3).

6.2. Factored Representations and Context-Specific Independence

Factoring is an approach that has been applied successfully to the problem of speeding

up policy computation for large Markov decision problems (Boutilier et al., 2000; Guestrin

and Gordon, 2002). Unlike standard MDP representations that enumerate all possible

states, factored MDPs take advantage of conditional independences among state variables

to allow more compact problem representations, and in some cases, more compact poli-

cies. We are interested in Dec-MDP domains in which the state space, S, is comprised of n

state features, or variables:

• X = 〈x1 . . . xn〉, the set of state features
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Each state si is an assignment of values to every feature in X . The features may be binary,

multi-valued, or both. In the general case, the set of joint observations Ω of a Dec-MDP is

defined such that each joint observation corresponds to a single world state, and there is

at least one such joint observation per state. We are interested in domains in which Ω can

be defined in terms of state features. In these domains, each agent observes, without noise,

some subset of the features, such that:

• X = ∪i∈αXi, where Xi is the set of state features observed by agent i

We sometimes refer to Xi as the set of local features belonging to agent i. These feature sets

may be overlapping. The domain’s collective observability is guaranteed by the require-

ment that each variable must be observed by at least one agent. Agents may also observe

some noisy observations, drawn from the set ΩNOISY, such that the complete set of joint

observations is:

• Ω = X × ΩNOISY

In practice, however, we are interested only in the deterministically observable portion of

Ω, the state features in X , since they are sufficient to uniquely identify the current state.

As in previous chapters, each agent i has a set Ai of possible individual actions. Be-

cause our model is factorable, the relationship between state features and joint actions can

be represented as a Dynamic Decision Network (DDN) (Dean and Kanazawa, 1989). For

each joint action, there is a Bayes network that specifies the relationship between state vari-

ables at time t and time t + 1. A state feature at time t + 1 is dependent on the values of

its parent features in time t, indicated in the network diagram by arcs from parent to child

nodes. The feature is conditionally independent of all other, non-parent, features. Associ-

ated with each variable is a conditional probability table (CPT) describing the probability

of that variable achieving a particular value assignment given the different possible values

of its parents. A variable x1 is said to exhibit context-specific independence if, for one possible

value of a parent variable x2, x1 has conditional independence of another parent variable

x3, but is not independent of x3 for other values of x2. When a domain contains many in-

stances of context-specific independence, the conditional probability tables for its variables

can be represented more compactly as trees (Boutilier et al., 1996).

Consider the network shown in Figure 6.2. This network specifies the Bayes net corre-

sponding to the joint action 〈NORTH,NORTH〉 in a two-agent Meeting-Under-Uncertainty

domain. In addition to the state variables X0, Y0, X1, and Y1 described in Section 6.1, this

domain has three state variables, END0, END1, and ABS.1 ABS indicates that at least one

1We needed to define these additional variables, END0, END1, and ABS, so that the reward function could
be defined independently of the joint action. An action-independent reward function was necessary because
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Figure 6.2. Dynamic Decision Network for the joint action 〈NORTH,NORTH〉 in the
two-agent, 3-by-3 Meeting-Under-Uncertainty domain. The conditional probabil-
ity tree for the variable ABS is shown.

agent performed a SIGNAL action at some past timestep, transitioning the problem to an

absorbing state. The variables {ENDi}i∈α indicate that an agent i performed SIGNAL in

the immediately previous timestep. The example shows the conditional probability tree

for ABS. In this example, ABSt+1 depends on ENDt1 when ENDt0 = 0 and ABSt = 0, but is

independent of ENDt1 when either ENDt0 or ABSt equals 1. One could, therefore, say that

ABS has context-specific independence from END0 and END1.

We claim that many multi-agent domains exhibit a large amount of context-specific

independence, allowing them to be represented compactly using factored representations.

Context-specific independence can also be used to identify portions of the space in which

agents can choose actions independently of the actions and observations of their team-

mates. In the following sections, we discuss how factored representations of state can be

we used Structured Policy Iteration (see Section 6.3.1.1) to generate a policy for the Meeting-Under-Uncertainty
domain.
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used to construct factored policies. We show how a joint factored policy for the underly-

ing MDP of a Dec-MDP can be transformed into individual factored policies for each of

the teammate agents, and how communication can be used to facilitate the decentralized

execution of factored policies.

6.3. Tree-Structured Policies

To exploit context-specific independence and enable agents to reason about which

state features should be communicated, we must construct individual factored policies for

each agent in a multi-agent team. In particular, the types of policies that we require are

decision tree-structured policies, which branch over state variable values and resolve into

actions at the leaves. We consider two types of tree-structured policies:

• joint factored policies, that have joint actions at the leaf nodes, and

• individual factored policies, that have individual actions at the leaf nodes.

Figure 6.3 shows part of a joint factored policy for the Meeting-Under-Uncertainty domain.

The complete tree-structured policy is too large to display.

2

1 2 3 1 2 3 1 2 3

Y1

〈EAST,〈EAST,
SOUTH〉

〈EAST,
SOUTH〉

〈EAST, 〈EAST,
SOUTH〉

〈EAST,
SOUTH〉

〈EAST,
SOUTH〉

〈EAST,
SOUTH〉

〈EAST,
STOP〉

Y1

X1

Y1

1 3

X0 = 1,Y0 = 1

EAST〉 WEST〉

Figure 6.3. A portion of a joint factored policy for the two-agent, 3-by-3 Meeting-
Under-Uncertainty domain. This is the subtree in which X0 = 1 and Y0 = 1.

Figure 6.4 shows one possible individual factored policy for agent 0. Note that an

individual factored policy for a particular agent may contain state variables at its decision

nodes that the agent does not directly observe. For example, in the policy below, agent 0

may need to know the values of X1 and Y1 that store the position of its teammate, agent

1. However, agent 0 does not observe these variables. In Section 6.4, we discuss how

communication can be used to enable agents to execute policies that reference variables

observed by their teammates.
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Figure 6.4. A possible individual factored policy for agent 0 in the two-agent, 3-by-
3 Meeting-Under-Uncertainty domain.

6.3.1. Constructing Joint Factored Policies

In this section, we discuss two methods for constructing tree-structured joint factored

policies: Structured Policy Iteration, and decision tree learning. Both methods generate

policies for single-agent MDPs. To use either algorithm to generate a joint policy for a Dec-

MDPs, we suppose that the state is made fully observable through free communication and

treat the joint actions as single atomic actions.

6.3.1.1. Structured Policy Iteration . Structured Policy Iteration (SPI) is an algo-

rithm that, given tree-structured conditional probability tables and for a factored MDP,

computes an optimal decision-tree structured policy for that problem (Boutilier et al., 2000).

SPI also requires a tree-structured reward function that, at every timestep, is independent

of the chosen action. SPI relies on three helper functions defined over decision trees, SIM-

PLIFY, APPEND, and MERGE:

• SIMPLIFY removes redundant nodes or subtrees from a decision tree.

• APPEND combines two decision trees. APPEND(T1, l, T2) appends the complete

tree T2 to a tree T1 at its leaf l. The leaves of T2 are combined with the leaf l

either by adding the value stored at l to the values of T2’s leaves, or by select-

ing the maximum value, depending on the context in which APPEND is used.

APPEND(T1, T2) appends T2 to every leaf of T1.
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• MERGE combines a set of decision trees by recursively APPENDing the next tree

in the set to the result of the previous MERGE operation:

MERGE({Tn, . . . , , T1}) = APPEND(Tn,MERGE({Tn−1, . . . , T1})) (6.1)

Structured Policy Iteration uses dynamic programming to estimate the value of and

incrementally improve decision tree-structured policies. SPI is guaranteed to converge to

an optimal policy. The speed of convergence depends on the amount of context-specific

independence in a given domain.

6.3.1.2. Decision Tree Learning . Alternately, a tree-structured policy can be learned

from a standard, unfactored MDP policy that maps every state to an action. A tree-struc-

tured policy can be learned by treating the state-action pairs as the input to a classification

problem. Each state is a set of value assignments to a set of features, and the actions are

class labels. A decision tree learning algorithm can then be applied to the data set (Quin-

lan, 1993). One benefit of using decision tree learning to construct a tree-structured policy

is that the centralized MDP policy that forms the input need not be optimal. In multi-

agent domains where the centralized MDP is very large, generating an optimal policy may

be infeasible. If a sub-optimal centralized policy is provided, a decision tree learner can

transform it into a tree-structured policy with identical expected reward.

6.3.2. Preserving Ties

Consider the case, in the two-agent 3-by-3 Meeting-Under-Uncertainty domain, in

which both agents start in the upper left corner of the grid world (X0 = 1,Y0 = 1,X1 =

1,Y1 = 2). The joint policy shown in Figure 6.3 indicates that, in this state, the best joint

action is 〈EAST, SOUTH〉. However, there are three other, equally valuable, joint actions that

could have been used in the policy: 〈EAST, EAST〉, 〈SOUTH, EAST〉, and 〈SOUTH, SOUTH〉.

We introduce the concept of a tie to describe situations such as this. We consider there to

be a TIE among two or more actions at a particular state (or set of states) if the differences

between the expected values of the actions are within some bound ε:

TIE(ai, aj , sk)← |Qai(sk)−Qaj (sk)| < ε (6.2)

Detecting and preserving ties between joint actions in a policy can assist in the discovery of

context-specific independence among agents. Figure 6.5 shows the same subtree of the joint

policy for the Meeting-Under-Uncertainty domain shown in Figure 6.3, in whichX0 and Y0

equal 1, expanded to preserve all ties among joint actions. Observe that, when X1 = 1, the

joint actions 〈SOUTH, EAST〉 and 〈EAST, EAST〉 are optimal for all values of Y1. Because the

expected values of 〈SOUTH, EAST〉 and 〈EAST, EAST〉 are independent of Y1 when X0, Y0,
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and X1 equal 1, Y1 can potentially be removed from the policy at that subtree. Removing

Y1 at that point in the policy increases the amount of context-specific independence for

agent 0. In Section 6.5, we explore further how ties can be used to discover context-specific

independence between agents.
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Figure 6.5. A portion of a joint factored policy that preserves all ties among joint
actions, for the two-agent, 3-by-3 Meeting-Under-Uncertainty domain. This is the
subtree in which X0 = 1 and Y0 = 1.

Henceforth, we allow the leaves of policy trees to contain sets of actions. Extending

SPI to generate policy trees that preserve ties among joint actions is straightforward. In

their original forms, APPEND and MERGE pick one action at random when they encoun-

ters a tie. They can just as easily concatenate multiple actions into a leaf node, if the actions

are ε-similar. To preserve ties among joint actions when learning a decision tree from an

MDP policy, one must have available aQ-value table that gives expected rewards for every

state-action pair. Instead of learning a decision tree with single joint actions at the leaves,

it is possible, for each state, to group all of the actions with ε-similar expected rewards,

and learn a decision tree over the sets with the maximum expected reward for each state.

Increasing ε reduces the expected reward of a joint policy, and therefore the derived indi-

vidual policies, but can increase the amount of context-specific independence.

6.4. Executing Tree-Structured Policies

In this section, we explain how agents can execute factored policies. We begin by

showing how agents can execute a joint factored policy in the presence of free communica-

tion. Then, we discuss how communication usage can be reduced by providing each agent
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with an individual factored policy. As in previous chapters, we guarantee that agents will

Avoid Coordination Errors (ACE) during execution.

6.4.1. Centralized Execution

To ensure that agents will Avoid Coordination Errors during execution of a Joint

Factored Policy (ACE-JFP), we provide all of the agents with an identical joint policy. If

any leaves in the joint policy contain more than one joint action, we solve the problem of

equilibrium selection by choosing one action according to some canonical action ordering.

The overall procedure for executing a tree-structured policy, shown in Table 6.1, is straight-

forward. At the beginning of each timestep, each agent broadcasts the values of the state

features that it observes to all of its teammates. The agents then traverse the policy tree,

choosing branches according to the value assignments of the state variables that they en-

counter, until they reach an action at a leaf node.

ACE-JFP(policy, featuresOWN , featuresALL)

1. if featuresALL = ∅
2. broadcast featuresOWN to all teammates
3. featuresALL ← featuresOWN∪ features received from teammates
4. if policy is a leaf
5. return policy.action
6. x← featuresALL[policy.variable]
7. return ACE-JFP(policy.childx, featuresOWN , featuresALL)

Table 6.1. The algorithm to recursively execute a joint factored policy. At the be-
ginning of each timestep, every agent broadcasts its local features, featuresOWN ,
to all of its teammates.

As it is shown in Table 6.1, each agent executing ACE-JFP communicates one message

per timestep. That message contains the values of all of the state features that the agent

observes. Therefore, the total number of messages per timestep is α, the number of agents.

As more than one agent may observe each state feature, the upper bound on the number

of features communicated per timestep is α · |X |. Some communication savings may be

achieved by dividing up the redundantly-observed variables among the agents, such that

each variable is communicated exactly once per timestep. In that case, the number of fea-

tures communicated is |X |. The agents may still be communicating unnecessarily. In the

Meeting-Under-Uncertainty domain, each agent observes 4 state features: ABS, ENDi,, Xi,

and Yi. If communication of ABS was assigned to agent 0, the total number of features

communicated per timestep would be 1 + 3 · α. However, the joint policy does not contain
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the variables ABS or {ENDi}i∈α; it depends only on the X and Y positions of the agents. If,

instead, the agents communicated only those state features appearing in the policy, in this

domain, they would communicate 2 · α features per timestep.

Finally, a tradeoff can be made between the number of messages and the number of

features communicated. In some domains, it may be preferable to communicate many

small messages, rather than a few unnecessarily large ones. Table 6.2 shows the ACE-JFP-

SEQUENTIAL algorithm, in which agents communicate the value of a state variable only

upon reaching it in the policy. By dividing up communication of redundantly-observed

variables among the agents, the upper bound on the number of features and messages

communicated per timestep can be reduced to the depth of the policy tree. The actual num-

ber of features communicated varies over the course of execution, as different portions of

the policy tree may be deeper than others.

ACE-JFP-SEQUENTIAL(policy, featuresOWN )

1. if policy is a leaf
2. return policy.action
3. if policy.variable ∈ featuresOWN

4. communicate featuresOWN [policy.variable] to all teammates
5. x← featuresOWN [policy.variable]
6. else
7. x← receive communication from teammates
8. return ACE-JFP-SEQUENTIAL(policy.childx, featuresOWN )

Table 6.2. The algorithm to recursively execute a joint factored policy, communicat-
ing state features in the order that they appear the in policy.

6.4.2. Decentralized Execution

ACE-JFP-Sequential shows how executing a factored policy, even a joint factored pol-

icy, can lead to communication savings over communicating all state features at every

timestep. However, teams can achieve even greater savings by equipping each agent with

an individual factored policy. In Section 6.5, we show how to transform a joint factored policy

into individual factored policies for each agent, without introducing coordination errors.

Here, we present an algorithm for Avoiding Coordination Errors during execution of an

Individual Factored Policy (ACE-IFP). As in ACE-JFP, agents traverse their policy trees,

choosing branches according to the values of the state features that they encounter. Re-

call, however, that an agent’s individual policy may contain decision nodes that reference

state variables that the agent does not itself directly observe. Agents executing individual
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factored policies must reason about when and what to communicate. Execution steps in

which an agent traverses its individual policy tree and reaches an action, having evaluated

only nodes concerned with that agent’s local variables, indicate portions of the state space

in which that agent has context-specific independence from its teammates. On the other hand,

when an agent encounters a variable that it does not directly observe, this identifies an

instance in which the agent depends on the knowledge of one of its teammates, indicating

the need for communication.

The type of communication used in this section differs from that used in ACE-JFP

and the two previous chapters. In general, multi-agent communication policies can be

categorized as belonging to one of three paradigms:

• tell, in which each agent reasons about its local knowledge and decides whether

to send information to its teammates

• query, in which agents ask their teammates for information when they believe it

is needed

• and sync, short for synchronize, in which if at least one agent initiates communica-

tion, all of the teammates broadcast their full observation histories.

Previous work on communication in Dec-MDPs and Dec-POMDPs has utilized the tell par-

adigm, as discussed in Chapters 4 and 5 (Roth et al., 2005, 2006), or the sync paradigm (Nair

et al., 2004; Goldman and Zilberstein, 2003). In this chapter, we consider a different option,

query communication. Instead of trying to predict whether its information will be useful to

its teammates, each agent asks its teammates for information as needed.

In order to query, agents must reason about when communication is necessary, as well

as what information they require. The decision-tree structured policies we have created

provide answers to both of these questions. Table 6.3 shows how communication enables

the distributed execution of a factored policy and how, simultaneously, the factored policy

directs the agent’s decisions about when and what to communicate. ACE-IFP takes as

input an individual tree-structured policy for an agent i, and features, a list of the current

values that agent i has observed for those state variables visible to itself. It assumes that

each agent possesses a list of which state features are observed by which of its teammates.

The procedure for Avoiding Coordination Errors during execution of an Individual

Factored Policy is straightforward. If policy is a leaf, the agent executes the action stored at

that leaf (lines 1-2).2 If there is a variable at policy’s root node, the agent must determine

the current value of that variable. If this variable is observed directly by the agent, its value

2If the leaf contains a set of actions because ties among independent actions remain once the individual
policy has been constructed, the agent uses a helper function, CHOOSEACTION, to choose one of them at random.
They all have equal value and, as we show in Section 6.5, are guaranteed not to cause mis-coordination.
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ACE-IFP(policy, features)

1. if policy is a leaf
2. return CHOOSEACTION(policy.action)
3. if policy.variable ∈ features
4. x← features[policy.variable]
5. else
6. x← QUERY correct teammate about policy.variable
7. return ACE-IFP(policy.childx, features)

Table 6.3. The algorithm to recursively execute an individual factored policy, com-
municating when necessary.

will be contained in features (lines 3-4). However, if the variable is not part of the agent’s

feature set, the agent knows that it must communicate. Note that unlike other approaches,

which rely on broadcast communication, query communication as implemented in this ap-

proach is peer-to-peer. When an agent reaches a variable in its policy tree that it does not

itself observe, it now knows not only exactly when and what to communicate (namely,

”now” and ”the variable currently in question”), but also to whom it must communicate.

After retrieving the value of the variable at hand (line 6), the agent continues traversing its

policy tree by taking the branch associated with that value (line 7).

The amount of communication needed during execution corresponds to the amount

of context-specific independence among the agents in a given domain. Whereas agents

executing in domains in which their actions are frequently independent of the actions and

observations of their teammates will need to communicate only a little, agents in domains

requiring a great deal of tight coordination will find that they must communicate often.

As described above, an agent may communicate several times in a single timestep,

each time asking for the value of a single state feature. By asking for information only

when it is immediately necessary, the agents minimize the total number of state features

communicated over the course of execution. However, there may be domains in which,

rather than reducing the number of bits communicated, it is desirable to reduce the total

number of messages. In that case, once an agent makes the decision to communicate, it

should also attempt to predict what other information it may need to know to make a

decision at that timestep. Table 6.4 shows ACE-IFP-PREDICTIVE, which extends ACE-IFP

to enable an agent to communicate at most once to each of its teammates.
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ACE-IFP-PREDICTIVE(policy, features, teammate features)

1. if policy is a leaf
2. return policy.action
3. if policy.variable ∈ features
4. x← features[policy.variable]
5. else
6. j ← the teammate that observes policy.variable
7. if teammate featuresj = ∅
8. −→v ← find all variables observed by j in policy
9. teammate featuresj ← QUERY agent j about −→v j

10. x← teammate featuresj [policy.variable]
11. return ACE-IFP-PREDICTIVE(policy.childx, features, teammate features)

Table 6.4. The algorithm to recursively execute a factored policy, communicating
when necessary, and minimizing the number of messages communicated by pre-
dicting the state variables that are potentially useful.

ACE-IFP-PREDICTIVE has an additional argument, teammate features, a vector that

starts out empty. During execution, if the agent comes to a variable that it does not ob-

serve (lines 5-9), it finds the teammate j that observes that feature. The agent then fills

teammate featuresj by collecting all of the variables observed by agent j contained in the

subtree of the policy rooted at this decision point (lines 8-9) and QUERYing agent j for their

values. teammate features is then maintained for the rest of this decision step, so that no

further communication is needed between this agent and agent j. In some cases, the agent

will have requested information that it will later discover to be irrelevant. Therefore, when

deciding how to execute a tree-structured policy, once must know whether it is preferable

to communicate extra messages or extra features and choose an algorithm accordingly.

6.5. Transforming Joint Factored Policies Into Individual Factored Policies

By using ACE-IFP to execute individual factored policies, agents can exploit context-

specific independence present in the domain to allow them to choose actions indepen-

dently, communicating only to avoid coordination errors. However, the amount of inde-

pendent execution that is possible for a particular agent depends on the structure of its

individual factored policy. Consider the individual policy shown in in Figure 6.4 for agent

0 in a two-agent 3-by-3 Meeting-Under-Uncertainty domain. Agent 0 is able to execute

that policy independently until it reaches the goal location because its individual policy

is constructed to maximize its context-specific independence from agent 1. In this section,

we present an algorithm, GENERATEINDIVIDUALPOLICY, for transforming a joint factored
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policy into an individual factored policy an agent i. The goal of this transformation is two-

fold. First, it ensures that the team of agents executing the resulting individual policies will

achieve the same level of performance as a team executing a joint policy with full commu-

nication. The individual policies will not only ensure that the agents avoid all coordination

errors not present in the input MDP policy, they will preserve the same expected reward of

the joint policy. Secondly, our algorithm attempts to maximize the portion of each individ-

ual policy tree in which the agent can execute independently of the variables observed by

its teammates.

The first step in the process of transforming a joint factored policy into an individual

factored policy for an agent i is to reorder the variables in the policy so that the variables

local to agent i are at the root of the tree. Intuitively, this increases the likelihood that,

during execution, agent iwill be able to traverse portions of its policy tree without encoun-

tering a variable that it cannot observe directly. Note that changing the variable ordering

may cause the policy tree to become larger. However, as we demonstrate in our experi-

ments (see Section 6.6.2), a correctly variable-ordered individual factored policy may be

much larger than even the joint factored policy, yet still have significantly more context-

specific independence. Choosing the correct ordering of the agent’s variables in the policy

is an open problem, and can potentially have a dramatic impact on the amount of context-

specific independence that is discovered.

In Section 6.3.2, we explained how joint policy trees can be enhanced to preserve ties

among joint actions. We define two additional tree operations applicable to factored poli-

cies in which the leaves store sets of actions:

• INDEPENDENT, which operates over individual leaves of a policy tree and finds,

for an agent i, those actions that it can perform independently of the action choices

of its teammates, and

• INTERSECT, which extends the SIMPLIFY operator to remove redundant subtrees

from a policy tree by intersecting the action sets at the subtrees’ leaves.

The INDEPENDENT and INTERSECT operators are key components of the GENERATEINDI-

VIDUALPOLICY algorithm.

An individual action is considered INDEPENDENT for an agent i in a given leaf of a

joint policy tree if the action is optimal when paired with any of the other actions that its

teammates could potentially choose at that leaf. Consider the leaf shown in Figure 6.6.

It is a leaf from the two-agent, 3-by-3 Meeting-Under-Uncertainty domain, containing the

optimal joint actions when X0, Y0, X1, and Y1 equal 1. Agent 0 has two possible individual
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Figure 6.6. The leaf at 〈X0 = 1,Y0 = 1,X1 = 1,Y1 = 1〉 from a joint policy for the
two-agent, 3-by-3 Meeting-Under-Uncertainty domain.

actions: EAST and SOUTH. Both actions are optimal when paired with either of the individ-

ual actions that agent 1 could potentially choose at that leaf. Therefore, EAST and SOUTH

are said to be INDEPENDENT actions for agent 0 at this leaf of the joint policy tree.

Table 6.5 details the procedure for finding the INDEPENDENT actions for an agent i in a

given policy tree leaf. INDEPENDENT takes−→a , the set of optimal joint actions at a particular

leaf of a joint policy tree, and an agent i, and builds
−→
ind, agent i’s INDEPENDENT actions at

that leaf. For every joint action a in −→a , INDEPENDENT checks if ai, agent i’s component of

that action, can be paired with any of the combined actions that i’s teammates may choose.

{−→a }−i, defined in line 2, is the set of agent i’s teammates’ joint actions. The comparison at

line 4 asks whether, for every combined action a−i in the leaf, the joint action constructed by

pairing ai with a−i exists in the set of optimal actions at this leaf. If a joint action exists for

every combined action that could be taken by agent i’s teammates, then ai is independent

and can be added to
−→
ind (lines 5-6).

INDEPENDENT(−→a , i)

1.
−→
ind← ∅

2. {−→a }−i ← the possible combined actions of i’s teammates
3. for each a ∈ −→a
4. if 〈aia−i〉 ∈ −→a , ∀a−i ∈ {−→a }−i

5.
−→
ind

∪← ai

6. return
−→
ind

Table 6.5. The INDEPENDENT operation finds the individual actions that agent i
can perform independently of its teammates’ action choices in a given policy tree
leaf.

Figure 6.7 shows additional examples of INDEPENDENT. In Figure 6.7 (a), agent 2 may

potentially choose action x or action y. Because agent 1’s individual action a is optimal

when paired with either x or y, a is INDEPENDENT for agent 1 in this leaf. Likewise, the
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Figure 6.7. Examples of individual actions discovered by the INDEPENDENT oper-
ation.

individual action x is INDEPENDENT for agent 2 in this leaf, because it is optimal when

paired with either a or b, the two possible individual actions that agent 1 could choose. By

contrast, Figure 6.7 (b) shows a policy tree leaf in which, although there are several joint ac-

tions with equivalent expected values, there are no INDEPENDENT actions for either agent.

In domains with more than two agents, such as in Figure 6.7 (c), an action is INDEPENDENT

if it can be paired with each possible combined action that could be chosen its teammates.

Therefore, action a is INDEPENDENT for agent 1, since it can be paired with 〈j, x〉 and 〈k, y〉,

the possible combined actions of agents 2 and 3. However, agents 2 and 3 do not have any

independent actions.

Like SIMPLIFY (Boutilier et al., 2000), INTERSECT is an operation that removes redun-

dant leaves and subtrees from a policy tree. However, unlike SIMPLIFY, INTERSECT op-

erates over policy trees with sets of actions at the leaves. In principle, INTERSECT can be

applied to both joint and individual factored policies. In practice, we use it only on indi-

vidual policy trees. Consider the policy tree shown in Figure 6.8 (a). It is an individual

policy for an agent 1 that observes the feature X 1
1 and can take the individual actions {A,

B, C}. Its teammate, agent 2, observes the state features X 1
2 , X 2

2 , and X 3
2 . SIMPLIFY cannot

reduce this policy tree, as it has no nodes with identical children.

(a)

B

A

C

CA

A

C

D

X 2
2

X 1
1

X 1
2
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X 2
2B

X 1
1

B

CA A
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D
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D
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2X 2

2

X 1
1
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Figure 6.8. Examples of tree redundancies removed by INTERSECT.
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However, additional nodes can be removed from the tree because many of the leaves

contain redundant actions, all with equal expected values. In particular, the node labeled

X 3
2 in Figure 6.8 (a) can be removed from the policy tree because its children, all leaves,

have a non-empty action set intersection. The actions A and C are optimal for agent 1,

independent of the value of X 3
2 . Finding this intersection increases the amount of context-

specific independence in the tree, removing a variable that agent 1 does not observe. The

resulting policy tree is shown in Figure 6.8 (b). INTERSECT can reduce the policy tree even

further. Consider the subtree of the policy in Figure 6.8 (b) whose root is labeledX 1
2 . Again,

the actions A and C are present in all ofX 1
2 ’s children. However, X 1

2 cannot be replaced by a

leaf containing the action set {A, C}. The choice of action A versus C, while independent of

the value of X 1
2 , still depends on the value of X 2

2 . Therefore, INTERSECT replaces X 1
2 with

the subtree rooted at X 2
2 , as shown in Figure 6.8 (c). Note that, while INTERSECT leads to

a smaller policy tree and can potentially remove an agent’s dependencies on features ob-

served by its teammates, it also reduces the number of action choices available to the agent

at each leaf in its policy. However, as the actions are all equally optimal and independent

of teammate actions, this reduction in flexibility will not harm performance.

Table 6.6 details the INTERSECT operation. INTERSECT calls a helper operation, UNION,

that recursively builds the action set comprised of all of the actions at the leaves of a policy

subtree. INTERSECT takes as input policy, the root node of a policy tree, either joint or in-

dividual, and returns a reduced policy tree of the same type. If the input tree is itself a leaf

node, no further simplification can be done (lines 1-2). If the policy is not a leaf, then IN-

TERSECT is called recursively on all of policy’s children. INTERSECT can potentially reduce

a policy tree if either all of its children are leaves or if exactly one child is not a leaf node.

AL, defined in line 5 and constructed in lines 9-10, stores the action set composed by the

intersection of the action sets at each of policy’s children that is a leaf node. If there is one

child of policy that is not a leaf,ANL (line 6) stores the UNION of all of the action sets at the

leaves of that child subtree (line 13), while childNL stores a pointer to that subtree (lines 7

and 14). However, if policy has more than one non-leaf child, discovered at Lines 15-16 by

reaching a non-leaf child of policy when ANL 6= ∅, then INTERSECT cannot further reduce

policy, and it is returned as is.

If all of the children of policy are leaves and the action sets of those leaves have a

non-empty intersection (lines 17-19), then the root node of policy is redundant and can be

replaced by a new leaf containing the intersection. If exactly one child of policy is not a

leaf, childNL, and all of the actions at the leaves of childNL are present in the intersection

of policy’s leaf-children (lines 20-21), then childNL can replace policy’s root node. If none
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INTERSECT(policy)

1. if policy is a leaf
2. return policy
3. for each child ∈ policy
4. INTERSECT(child)
5. AL ← ∅
6. ANL ← ∅
7. childNL ← ∅
8. for each child ∈ policy
9. if child is a leaf

10. AL ← AL
⋂
child.actions

11. else
12. if ANL = ∅
13. ANL ← UNION(child)
14. childNL ← child
15. else
16. return policy
17. if AL 6= ∅
18. if ANL = ∅
19. return AL
20. if ANL ⊂ AL
21. return childNL
22. return policy

Table 6.6. The INTERSECT operation that simplifies a policy tree by intersecting sub-
trees that contain intersecting sets of actions.

of these conditions are true, then the root node is not redundant and is preserved in the

policy tree.

The full process of transforming a factored joint policy into a factored individual pol-

icy for an agent i can be found in Table 6.7. It should be noted that GENERATEINDIVID-

UALPOLICY is a heuristic and is not guaranteed to produce individual policies with the

maximum possible amount of context-specific independence between agents. It does, how-

ever, guarantee that agents will avoid coordination errors and achieve the same expected

reward as agents executing a joint factored policy.

The inputs to GENERATEINDIVIDUALPOLICY are a joint policy and an agent identifier

i. First, the joint policy is re-written to move the state variables that agent i observes to

the upper-most nodes of the tree (line 1). This reordered tree is processed to discover the

INDEPENDENT actions for agent i at each leaf (lines 3-4). Leaves containing INDEPENDENT

actions are replaced by those actions. However, if a given leaf has no INDEPENDENT ac-

tions, steps must be taken to carefully convert the joint actions at that leaf into a single
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GENERATEINDIVIDUALPOLICY(policy, i)

1. Move agent i’s state variables to the root.
2. for each leaf ∈ policy
3. if INDEPENDENT(leaf ) 6= ∅
4. leaf ← INDEPENDENT(leaf )
5. else
6. Break ties among joint actions using canonical action ordering.
7. leaf.action← leaf.actioni

8. return INTERSECT(policy)

Table 6.7. The algorithm that transforms a tree-structured joint policy into a fac-
tored individual policy for agent i.

individual action. First, if any ties remain, meaning that the leaf contains more than one

possible joint action, those ties are broken according to a predetermined canonical action

ordering (line 6). This is necessary to avoid equilibrium-selection mis-coordinations such

as the one shown in Figure 6.9, in which the individual components of the different agents’

optimal joint actions do not always recombine to form an optimal joint action. The selected

joint action is converted into an individual action by extracting agent i’s component (line

7). Finally, the tree is INTERSECTed, in an attempt to remove as many variables as possible

from the policy tree (line 8). The more compact the tree, the more likely it will be that agent

i will be able to execute the policy that it contains without encountering a need to know

the values of its teammates’ variables. By finding INDEPENDENT actions for each agent

at every leaf, and breaking ties according to a canonical action ordering where such IN-

DEPENDENT actions do not exist, we ensure that agents executing the resulting individual

factored policies will avoid coordination errors.

6.6. Results

We demonstrate the effectiveness of our approach in two domains, a Meeting-Under-

Uncertainty problem (Xuan et al., 2001; Goldman and Zilberstein, 2003; Bernstein et al.,

2005) and a simplified version of the multi-agent taxi domain (Ghavamzadeh and Ma-

hadevan, 2004), comparing the amount of communication needed to execute individual

tree-structured policies to the amount used by a centralized team.

6.6.1. Meeting-Under-Uncertainty Domain

We first applied our algorithm to two agents operating in grid worlds of various sizes.

Tree-structured joint policies for the problems were generated using a version of Structured
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Figure 6.9. An example of mis-coordination that can occur if ties are not broken
using a canonical action ordering. X1 is a state feature local to agent 1, that can
execute individual actions {A, B, C}, and X2 is local to agent 2, that has individual
actions {X, Y, Z}. (a) An individual policy is generated for each agent, with its local
variable at the root. (b) The policies are converted into policies over individual
actions, without an intermediate tie-breaking step. (c) The resulting simplified
policies indicate that agent 1 should always perform action A and agent 2 should
always perform X, making the joint action 〈A, X〉. This is an uncoordinated action
whenever X1 = 0.

Policy Iteration, modified to preserve ties among joint actions (Boutilier et al., 2000). Fig-

ure 6.4 shows a factored individual policy for agent 1 operating in the 3-by-3 grid world

shown in Figure 6.1, with the goal at location (2,3). A visual inspection of the policy shows

that, as expected, for most of the state space, agent 1 can act independently. Agent 1 finds

that it needs to communicate only when it reaches the goal location. At this point, it must

ask agent 2 for its position, to determine if both agents are at the goal and can SIGNAL.

We compared our execution methods, ACE-IFP and ACE-IFP-PREDICTIVE, to a team

executing a joint factored policy with full communication, both ACE-JFP and ACE-JFP-

SEQUENTIAL, running 10,000 trials of each method. In each trial, we started the agents in

a random location and allowed them to execute until the end of the problem, when the

agents performed a SIGNAL action. The results for a 3-by-3 grid world are summarized in

Table 6.8.

Both factored algorithms achieve the same average discounted reward as a team com-

municating at every timestep, but require communication of significantly fewer messages

and variables. ACE-IFP, which enables agents to execute individual factored policies

by asking for information as they see that it is needed, communicates 43.8% fewer state
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Mean Mean Mean
Discounted Messages Variables

Reward Sent Sent
(σ2) (σ2) (σ2)

13.23 6.96 13.92
ACE-JFP (1.01) (1.02) (1.02)

13.23 11.21 11.21
ACE-JFP-SEQUENTIAL (1.01) (3.34) (3.34)

13.24 6.30 6.30
ACE-IFP (2.47) (1.86) (1.86)

13.23 3.25 6.50
ACE-IFP-PREDICTIVE (2.45) (1.01) (1.01)

Table 6.8. Relative performances and communication usages for teams executing
in the 3-by-3 Meeting-Under-Uncertainty domain.

variables than ACE-JPF-SEQUENTIAL. If the object is to minimize the number of mes-

sages, ACE-IFP-PREDICTIVE communicates slightly more than half the number of mes-

sages needed by ACE-IFP, with only a few extra state variables communicated, and 53.5%

fewer messages than ACE-JFP, in which each agent communicates in every timestep.

These results confirm our intuition that the Meeting-Under-Uncertainty domain admits a

great deal of context-specific independence between agents. This independence increases

as the problem size grows. Figure 6.10 shows the amount of communication used by a team

executing a factored policy (without attempting to predict what variables will be needed),

as a percentage of the number of state variables communicated by a team with full commu-

nication for grid worlds of increasing size, from 3-by-3 (82 states) up to 7-by-7 (2402 states).

As the problem size increases, in this domain, the number of states in which agents can

act without coordinating increases, leading to even greater communication savings over a

team that uses full communication to execute a centralized policy.

One major challenge posed by multi-agent problems is the exponential growth in

the number of states and joint actions as the number of agents increases. However, as

the agents may be independent of their teammates for large portions of the state in some

multi-agent domains, the single-agent factored policies needed to control the agents may

be very compact. Table 6.9 shows that the number of leaves in each agent’s factored indi-

vidual policy grows linearly as the number of agents increases from two to five in a 3-by-3

Meeting-Under-Uncertainty domain.
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Figure 6.10. Communication usage as a function of problem size in n-by-n Meeting-
Under-Uncertainty domains. The y-axis shows the ratio of variables communi-
cated by a team using ACE-IFP to the variables communicated by a team using
ACE-JFP-SEQUENTIAL.

Policy
Joint Tree

States Actions Leaves
2 AGENTS 82 36 9
3 AGENTS 730 216 13
4 AGENTS 6562 1296 17
5 AGENTS 59050 7776 21

Table 6.9. Policy-tree size grows linearly with the number of agents in a 3-by-3
Meeting-Under-Uncertainty domain, even as the number of states and joint actions
grow exponentially.

6.6.2. Multi-agent Taxi Problem

We wished to verify the effectiveness of our approach in a more dynamic, non-goal-

oriented domain. The multi-agent taxi problem has previously been used as a test domain

in the multi-agent reinforcement learning literature (Ghavamzadeh and Mahadevan, 2004).

The domain consists of two, or more, taxi agents moving in a grid world, picking up and

delivering passengers to four taxi stands. As defined originally, with the taxis moving in a

5-by-5 grid world, the underlying Markov decision process for the two-agent taxi domain

has 640,000 states and 49 joint actions, making it too large to solve with Structured Policy

Iteration. Additionally, we were unable to generate an exact Q-value table, which would

contain over 31 million entries, for this problem. Therefore, we define a simplified version
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of the multi-agent taxi domain, in which the taxi agents move directly between the four

taxi stands, as shown in Figure 6.11.

3

10

2

Figure 6.11. Relative positions of the four taxi stands in the simplified multi-agent
taxi domain.

Each taxi i has three local variables, POSi, its current position at one of the four taxi

stands, HASPi, a boolean variable indicating whether the taxi currently has a passenger,

and GOALi, the destination of that passenger. In addition, there is a boolean variable for

each taxi stand, indicating whether a passenger is waiting there. To make the problem col-

lectively observable, we allow Taxi 0 to observe the passenger variables for taxi stands 0

and 1, and Taxi 1 to observe whether there is a passenger at taxi stands 2 and 3. Overall,

this simplified domain has 16,384 states. The taxis may move CLOCKWISE or COUNTER-

CLOCKWISE, and can PICKUP and DELIVER passengers. A new passenger may appear at

a taxi stand with probability 0.25 in any timestep. Agents accumulate a reward of +20

for delivering a passenger to its desired goal location and a penalty of -100 for delivering a

passenger to an incorrect taxi stand. There is a cost of -1 for each each agent in any timestep

that it does not deliver a passenger. Therefore, the team as a whole accumulates the highest

expected reward when the agents coordinate their movements to pick up the passengers

closest to their current locations. In the event that both taxis attempt to pick up a passenger

from the same taxi stand simultaneously, Taxi 0 succeeds in acquiring the passenger.

We generated a joint policy for the simplified two-agent taxi domain by solving the

underlying MDP, using the ZMDP solver (Smith, 2007) to generate a Q-value table, and

learning a decision tree over the pairs of states and sets of optimal actions. We then trans-

formed this tree-structured joint policy, which has 3044 leaves, into individual factored
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policies for each agent. Taxi 0’s policy has 922 leaves, and Taxi 1’s policy has 4154 leaves.3

The complete policies are too large to display here. What is important to note is that, al-

though the agents must inquire about their teammates’ state variables while moving to

PICKUP new passengers, each taxi may execute independently once it has picked up a pas-

senger and is moving to DELIVER it. Figure 6.12 shows a portion of Taxi 0’s individual

policy for which HASP0 is true, meaning that Taxi 0 has a passenger. A complete descrip-

tion of the simplified two-agent taxi domain can be found in Appendix A.5.
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Figure 6.12. A portion of Taxi 0’s individual policy. This is the subtree for which
HASP0 is true, meaning that Taxi 0 has a passenger and is moving to deliver the
passenger to its desired goal location.

This context-specific independence enables the agents to execute their factored poli-

cies with substantially less communication than a team executing the joint factored policy

with free communication. Table 6.10 summarizes the amount of communication, mea-

sured both in number of messages and in number of state variables communicated, used

by teams executing individual factored policies with and without prediction, and a team

using communication to execute a centralized joint factored policy. These results were gen-

erated over 10,000 trials for each method, where each trial was 20 timesteps long.

Mean Mean Mean
Discounted Messages Variables

Reward Sent Sent
(σ2) (σ2) (σ2)

67.46 40.0 200.0
ACE-JFP (11.53) (0.0) (0.0)

67.46 147.22 147.22
ACE-JFP-SEQUENTIAL (11.53) (6.12) (6.12)

67.46 79.32 79.32
ACE-IFP (11.53) (11.27) (11.27)

67.46 23.29 109.29
ACE-IFP-PREDICTIVE (11.53) (2.31) (11.84)

Table 6.10. Relative performances and communication usages for teams executing
in the simplified two-agent taxi domain.

3The difference in policy-size due to Taxi 0 ”winning” the passenger in the event that both taxis attempt to
PICKUP from the same location simultaneous. Taxi 1’s policy is larger than the joint policy because of the variable
ordering used to maximize its context-specific independence.
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A team of agents can execute ACE-IFP by communicating 46.12% fewer state vari-

ables than a team executing a joint factored policy with free communication, using ACE-

JFP-SEQUENTIAL. If the goal is to reduce the number of messages communicated, rather

than the number of state variables, ACE-IFP-PREDICTIVE can enable a team to commu-

nicate 70.54% fewer messages than a team using the simple ACE-IFP algorithm, but at a

price of communicating 27.42% more (unnecessary) state variables. ACE-IFP-PREDICTIVE

executes 41.78% fewer messages than ACE-JFP.

6.7. Summary

This chapter introduced a method by which factored representations, specifically de-

cision tree-structured policies, can be used to identify and exploit context-specific indepen-

dence among teammates. We defined the INDEPENDENT and INTERSECT operations over

policy trees, and provided an algorithm that uses these operators to transform a centralized

tree-structured joint policy into individual policies for each agent. These individual poli-

cies prevent mis-coordination and attempt to maximize context-specific independence. We

then showed how communication can be used to enable a decentralized team to execute

tree-structured individual policies. Each agent’s policy identifies contexts in which that

agent can choose actions independently of its teammates’ observations and action choices.

In contexts where an agent does depend on its teammates, the agent’s policy instructs it

to query its teammates for the information that it needs to choose an action. In this way,

individual factored policies enable agents to answer the questions of when and what to

communicate. We demonstrated the effectiveness of this approach in two domains, the

n-by-n Meeting-Under-Uncertainty domain, and the simplified multi-agent taxi domain.

In both cases, we showed that agents executing individual factored policies benefit from

significant communication savings over teams executing centralized policies.

It is important to point out that work discussed in this chapter does not address poten-

tial costs of communication. Whenever agents discover that communication is necessary,

they communicate. The agents have no way of reasoning about the marginal benefit of

communication, so that they may trade it off against the cost. Further work is required

to integrate reasoning over the cost of communication into this approach. One possibil-

ity is that factored policies could be used to identify situations in which communication

is definitely not needed, and another approach could be used to reason about whether to

communicate in those cases where communication may have some benefit. For now, this

work is primarily useful for characterizing multi-agent domains by the amount of context-

specific independence present. Domains in which agents require very little communication
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to execute individual factored policies are domains in which the agents have a great deal

of independence from one another. When agents must communicate frequently to execute

their individual policies, it indicates that they are in a domain with many potential coor-

dination problems and may benefit most from a centralized controller or an algorithm like

ACE-PJB-COMM in which agents synchronize their choice of joint action.
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CHAPTER 7

Conclusions and Future Work

This thesis investigated and contributed support to the claim that:

Reasoning about communication decisions at execution-time provides a

more tractable means for coordinating teams of agents under partial ob-

servability than including all communication decisions in a comprehen-

sive policy that is computed off-line, and can be done without sacrificing

too much in terms of team performance.

In this chapter, we enumerate contributions made in this thesis in support of this hypothe-

sis. We close by proposing several directions for future research.

7.1. Contributions

The contributions made by this thesis achieve two overarching goals:

1. We enable a team of agents to Avoid Coordination Errors (ACE) by providing al-

gorithms that allow a team of decentralized agents to execute a centralized policy.

2. We provide algorithms that, at execution-time, answer the questions of when and

what a team of cooperative agents should communicate.

There are four main contributions in this thesis:

Reasoning about possible joint beliefs. In Chapter 4, we explore the problem of how

a team of decentralized agents can Avoid Coordination Errors by executing a centralized

policy. We contribute the ACE-PJB algorithm which enables agents to choose actions by

reasoning over a distribution of Possible Joint Beliefs (Section 4.3). By ensuring that all agents

maintain the same distribution of possible beliefs, and requiring that agents choose actions

based only on this distribution, we guarantee that the team will avoid mis-coordination.
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The ACE-PJB algorithm is composed of two subroutines: GROWTREE (Section 4.3.1), which

calculates the distribution of possible joint beliefs, and Q-POMDP (Section 4.3.2), a heuris-

tic for selecting a joint action based on this distribution. Because the number of possible

joint beliefs grows exponentially in time, we show how a particle filter can be used to rep-

resent the distribution of possible joint beliefs using a constant amount of memory (Sec-

tion 4.6).

Deciding when to communicate. The ACE-PJB algorithm provides a means by which

a team of decentralized agents can execute a centralized policy without communicating

while avoiding coordination errors. However, because the agents are not allowed to choose

actions based on their local observations, the overall reward achieved by such a team will

generally be low. We therefore show how communication can be used by agents to inte-

grate their local information into the joint belief of the team. We present the ACE-PJB-

COMM algorithm that answers the question of when an agent should communicate its

observation history to its teammates (Section 4.4). ACE-PJB-COMM is a myopic algorithm

that instructs agents to communicate when they determine that communicating their ob-

servation histories will change the joint action selected by the team as a whole in the current

timestep, leading to a gain in expected reward of more than the cost of communication. Our

experiments show that ACE-PJB-COMM enables agents to communicate significantly less

than a team executing a centralized policy with free communication, reducing the number

of observations communicated by between 47.7% and 66.6% in the domains tested. These

communication savings are balanced in some domains by a small decrease in expected re-

ward, corresponding to approximately one extra LISTEN action before the agents open a

door in the Tiger domains. In the MABC domain, there is no difference in expected reward

between a team executing ACE-PJB-COMM and a team with free communication.

Deciding what to communicate. When an agent chooses to communicate, the basic ACE-

PJB-COMM algorithm requires it to broadcast all of the observations that it has received

since the last time it communicated. This requirement rests on an assumption that commu-

nication has a fixed cost per message. In Chapter 5, we identify two additional paradigms

of communication restrictions, domains in which there is a fixed cost per observation and

those in which the bandwidth available is limited (Section 5.2). We introduce an extension

to ACE-PJB-COMM, SELECTIVE ACE-PJB-COMM, that addresses the question of what to

communicate by enabling an agent to select a subset of the most valuable observations

from its observation history (Section 5.3). We provide SELECTIVE ACE-PJB-COMM with
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a heuristic, BUILDMESSAGE (Section 5.3.1), that greedily assembles a message comprised

of observations with high information value, thus avoiding the need to search exhaus-

tively among all possible subsets of the agent’s observation history. In our experiments

SELECTIVE ACE-PJB-COMM is able to achieve significant communication savings over

ACE-PJB-COMM (28.7% reduction in observations communicated in the two-agent tiger

domain, 45.11% reduction in the Colorado/Wyoming domain), with no loss of expected

reward.

Identifying context-specific independence between teammates. In Chapter 6, we ex-

plore the use of factored representations for modeling Dec-MDP teams. We show how

decision tree-structured policies can be used to identify regions of context-specific inde-

pendence between agents in a given domain. We contribute the ACE-IFP algorithm that

enables agents to Avoid Coordination Errors by executing Individual Factored Policies,

using communication to assist the agents when they reach a state where coordination is

needed (Section 6.4). This algorithm achieves many goals. First, it enables agents to act

independently, without communication, in those areas of the state space where no po-

tential mis-coordinations exist. Secondly, executing a tree-structured policy enables an

agent to identify exactly when communication is necessary and what communication is

needed. Because this algorithm relies on query communication, the policy also instructs

agents about which teammate to ask for information.

We show how agents can construct individual factored policies from a tree-structured

joint policy (Section 6.5). We provide heuristics for maximizing the amount of context-

specific independence present in these individual policies, while ensuring that agents do

not introduce coordination errors into their independent execution. Our experiments show

that, in domains with substantial amounts of context-specific independence, the ACE-IFP

algorithm allows a team of agents to significantly reduce the amount of communication

needed to execute without coordination errors. In the 3-by-3 Meeting-Under-Uncertainty

domain, our agents communicate 43.8% fewer state variables than a team with free com-

munication. In the simplified taxi domain, the communication savings is 46.1%. We discuss

how measuring the amount of communication needed by a team in which each agent exe-

cutes an individual factored policy quantifies the amount of inter-dependence among the

agents in a particular domain.
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7.2. Future Directions

Several interesting issues came up during work on this thesis that could not be ad-

dressed, due to the substantial challenges that they pose. We discuss a few below.

7.2.1. Communicating Beliefs

In this thesis, we present algorithms that allow agents to reason about communicat-

ing observations or state features. One could, however, make the argument that agents

should communicate beliefs, as they are the most natural and compact representation of

local information. However, communicating belief introduces additional problems, pri-

marily because beliefs do not have the same independence properties as observations. The

observation that an agent receives at a given timestep is dependent only on the current state

and possibly the actions taken by that agent and its teammates in the previous timestep.

An agent’s belief about the world state, on the other hand, also depends on its belief at the

previous timestep. Suppose an agent were to receive a belief communicated by one of its

teammates. If the agent updated its own belief to integrate this communicated informa-

tion, in and of itself a challenging problem because a single belief may correspond to many

different sequences of observations, it could no longer communicate its belief to its team-

mates in the future. The agent’s own belief would contain information from the message

communicated to it, leading to a double-counting of information.

In our work on communication for the AIBO Robocup team (Roth et al., 2003), we

were concerned about the possibility that robots would reinforce outdated information

by communicating secondhand information to their teammates. To address this problem,

we developed an approach in which each robot separately maintained an individual and

a shared world model. We enforced strict boundaries between these models, to ensure that

the individual model stored only information directly observed by that robot. Robots were

only allowed to communicate information from their individual world models, guarantee-

ing that robots would not re-broadcast information received from their teammates as if it

was new. A similar approach is needed to enable agents to communicate beliefs. Agents

will need to maintain separate belief models to distinguish between beliefs based on only

their local observations, which they may communicate to their teammates, and those based

on both local and communicated information, which they may not. Additionally, agents

will need to separate beliefs that they have already communicated from newly observed

information, so that they do not repeat themselves.
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7.2.2. Understanding Silence

In early work on communication in Dec-MDPs, a heuristic called ”No news is good

news” was proposed (Xuan et al., 2001). This heuristic suggested that agents could agree on

a plan to achieve a particular goal, and that each agent should decide to communicate only

if it detects that it has deviated from the plan. Thus, as long as agents do not receive com-

munication from their teammates, they may assume that everything is going well. More

broadly, we observe that there is useful information in silence. An interesting question is

how to extract and make use of that information. Consider the two-agent Tiger domain

discussed in previous chapters. Using Q-POMDP and ACE-PJB-COMM, agents choose to

communicate when they accumulate a surplus of two consistent observations (e.g., observ-

ing HEARLEFT twice in a row). If, at the second timestep, one agent does not communicate,

its teammate should be able to deduce, therefore, that the agent observed inconsistent ob-

servations and prune its distribution of possible joint beliefs accordingly. Likewise, during

the execution of factored policies discussed in Chapter 6, each agent should, hypotheti-

cally, be able to compute its teammates’ tree structured policies, and by observing the state

variables that its teammates don’t ask for, make predictions about the values of that agent’s

local state features.

The challenge of taking advantage of this information is to avoid brute-force search.

When an agent makes a decision about whether to communicate its own observation his-

tory (or some portion thereof), it compares two possibilities: the action the team would

choose if it does not communicate and the action that would be chosen if the agent commu-

nicated exactly that observation history. When considering why its teammate did not com-

municate, the agent must consider all hypothetical observation histories, asking, ”Would

my teammate have communicated in this case?” Additionally, to ensure that the agents

maintain a synchronized distribution of possible joint beliefs, this hypothetical reasoning

must be recursive. When an agent does not communicate, it must also consider all possible

histories it could have observed and ask, ”Would my teammate believe that I would have

communicated if I had observed this?”

7.2.3. Modeling Partial Possible Joint Beliefs

When watching agents executing individual factored policies in the Meeting-Under-

Uncertainty domain defined in Chapter 6, one observes behavior that seems inefficient.

When an agent reaches the goal location, it asks its teammate for its current position so

that it can know whether to wait at that location or, if its teammate has also reached the
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goal, perform the SIGNAL action. In every subsequent timestep, this agent will continue to

ask its teammate, ”What is yourX position? What is your Y position?” This behavior arises

because, unlike in the approaches detailed in Chapters 4 and 5, agents executing individual

factored policies do not keep any history about the state previously communicated to them

by their teammates. It seems intuitively clear that what is missing is either some mecha-

nism by which the agent can tell its teammate, ”Inform me when a condition C becomes

true,” or a means by which the agent can estimate some component of its teammate’s state

over time.

The problem with the first approach is identifying the necessary condition C. The

Meeting-Under-Uncertainty domain has a clear goal. However, in a domain like the taxi

problem, there are no immediately obvious variables whose values one agent would want

to be appraised of at all times. Therefore, it is difficult to define a principled and gener-

ally applicable approach that would yield the desired behavior. The second possibility, in

which one agent models some portion of the variables observed by its teammates, is no

easier. In fact, one of the major benefits of the factored approach introduced in this thesis

is that agents never need to model the possible beliefs of their teammates. If we wished to

extend our algorithm in this way, there are many problems we would encounter. Agents

using ACE-PJB-COMM are able to model the distribution of possible joint beliefs because

they always know the joint action selected by the team. In our factored approach, one goal

is to allow agents to select actions independently. Without knowing the actions its team-

mates are taking, how can an agent model the evolution of its teammates’ state variables?

Additionally, because communication in this approach is peer-to-peer, how can an agent

take into account the information one of its teammate may be receiving from another?

7.2.4. Combining Factored Representations with Algorithms that Consider Communi-

cation Cost

The ACE-IFP algorithm detailed in Chapter 6 differs from the coordination algorithms

in Chapters 4 and 5 (ACE-PJB-COMM and SELECTIVE ACE-PJB-COMM) in a significant

way. ACE-PJB-COMM and SELECTIVE ACE-PJB-COMM enable agents to make decisions

about when to communicate by trading off the cost of communication with the expected in-

crease in reward that would result. Communication decisions made by ACE-IFP, which en-

ables agents to execute individual factored policies, do not incorporate this kind of tradeoff.

Whenever agents reach a point in their individual policies where their decision depends

on a state variable observed by another agent, they query for that information. It may be

the case, in some domains, that the cost of choosing incorrectly at one particular policy
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branch is small. However, our approach does not distinguish between mis-coordinations

that lead to a large negative reward and those in which the difference between the optimal

joint action and some other action choice is small; we eliminate all possible coordination

errors. Therefore, there is no way to reason about a tradeoff in terms of expected reward.

One might suppose that the solution to this problem is as simple as storing values

for the actions in the leaves of a factored policy. However, when computing expected

value, one must also know the likelihood of all possible outcomes. For the reasons detailed

above, it would be very challenging for agents to attempt to estimate the values of their

teammates’ state variables. Therefore, it is not straightforward for an agent to attempt

to estimate the potential loss of reward that would result from it choosing not to ask for

information.

A potentially interesting approach would be to combine these factored policies with

another algorithm such as ACE-PJB-COMM that reasons about the cost of communication.

Individual factored policies identify those portions of the state space where, for a given

agent, communication is never necessary. ACE-PJB-COMM could then be used to make

communication decisions in the rest of the state space. Again, the challenge arises from

the problem of modeling possible joint beliefs. ACE-PJB-COMM, as currently constructed,

requires each agent to be able to predict the joint action. Additionally, it relies on a complete

model of the distribution of possible joint beliefs. There is no immediately obvious means

to hybridize these two approaches, but it is an interesting area for research.

7.2.5. Extending Factoring to Dec-POMDPs

Unlike ACE-PJB-COMM and SELECTIVE ACE-PJB-COMM, which are applicable to

both Dec-MDPs and Dec-POMDPs, ACE-IFP is only applicable to Dec-MDPs. This re-

striction is because ACE-IFP builds on a large body of previous work on factored MDPs.

There has been some preliminary work aimed at extending factored representations to

POMDPs (Hansen and Feng, 2000), and this work could form a basis for extending factored

approaches to Dec-POMDPs. The dynamic programming algorithm presented by Hansen

and Feng generates policies for POMDPs in which the factored state is represented using

algebraic decision diagrams (ADDs). The approach is applicable to POMDP domains in

which the state variables are observed directly, although potentially noisily. The generated

policies have the form of finite state controllers, in which nodes are actions and transitions

between nodes depend on conjunctions of observed state variables.

It is possible to compute joint factored POMDP policies in which the nodes of the fi-

nite state controllers are joint actions. As in ACE-JFP, communication of observed state
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variables would enable execution of this joint policy. However, reducing communication

by separating these joint factored policies into individual factored policies remains a sig-

nificant challenge. It may be possible, like in the GENERATEINDIVIDUALPOLICIES method

that supports ACE-IFP, to separate each joint policy into a finite state controller over in-

dividual actions for each agent, and combine nodes with identical actions to eliminate the

need to consider variables observed by the agent’s teammates. Without some synchroniza-

tion mechanism, a naive approach to generating individual factored policies seems likely

to lead to a large number of coordination errors.

7.3. Concluding Remarks

This thesis explores the use of communication for the coordination of cooperative

multi-agent teams. We present algorithms that enable agents to avoid coordination er-

rors and reason about when and what to communicate. This thesis supports the claim

that cooperative teams, modeled by Dec-POMDPs and Dec-MDPs, can effectively coordi-

nate their action choices by reasoning about communication at execution time. Pushing

off communication decisions to execution time assists in developing heuristic solutions for

these highly intractable models, while the Dec-POMDP and Dec-MDP models provide a

framework for reasoning about when and what agents should communicate.

The overall approach presented in this thesis is to generate centralized plans for de-

centralized teams, treating the agents as if they will be able to communicate all of their

observations to all of their teammates. Then, at execution time, the agents reason about

when and what to communicate so as to enable decentralized execution of these central-

ized policies. There are several tradeoffs inherent to this approach. One the one hand,

it is computationally easier to generate policies for centralized teams than for decentral-

ized teams. On the other, pushing off communication decisions to execution time requires

agents to do a significant amount of reasoning during execution. However, making com-

munication decisions at execution-time is easier than planning for communication prior

to execution. Instead of reasoning about all possible messages that agents could construct

and choose to communicate, an agent making a communication decision at execution-time

needs to consider only the observation history that it has actually observed.

This thesis presents heuristic algorithms for coordinating agent actions and making

communication decisions. Teams executing our algorithms may behave sub-optimally,

choosing in some cases to communicate more than teams controlled by an optimal pol-

icy, and in some cases choosing to communicate less. Consequently, we do not guarantee

that our algorithms will enable agents to make optimal action choices. We do, however,
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guarantee that agents will make coordinated action choices. In our work, we ensure that

agents will avoid all potential coordination errors, while attempting to make efficient use

of the communication resources available to them.

Currently, it is computationally infeasible to apply the algorithms presented in this

thesis to real-world robot or agent problems. In addition to the computational complexity

of the algorithms themselves, there is a significant computational challenge involved in

solving even the centralized POMDPs and MDPs that serve as input to our algorithms.

We believe, however, that this thesis presents principled first steps towards solving the

problem of reasoning about the effective use of limited communication resources.
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Åström, K. J. (1965). Optimal control of Markov decision processes with incomplete state

estimation. Journal of Mathematical Analysis and Applications.

Becker, R., Lesser, V., and Zilberstein, S. (2005). Analyzing myopic approaches for multi-

agent communication. In Proceedings of the 2005 IEEE/WIC/ACM International Conference

on Intelligent Agent Technology (IAT).

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2003). Transition-independent

decentralized Markov Decision Processes. In Proceedings of the Second International Joint

Conference on Autonomous Agents and Multi-agent Systems (AAMAS).

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2004). Solving transition indepen-

dent decentralized Markov decision processes. Journal of Artificial Intelligence Research.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The complexity of

centralized control of Markov decision processes. Mathematics of Operations Research.

Bernstein, D. S., Hansen, E. A., and Zilberstein, S. (2005). Bounded policy iteration for

decentralized POMDPs. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI).

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity of decentralized

control of Markov Decision Processes. In Proceedings of the 16th Annual Conference on

Uncertainty in Artificial Intelligence (UAI).

Bhasin, K., Hayden, J., Agre, J. R., Clare, L. P., and Yan, T. Y. (2001). Advanced communica-

tion and networking technologies for Mars exploration. In International Communication

Satellite Systems Conference and Exhibit.



BIBLIOGRAPHY

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In

Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI).

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural as-

sumptions and computational leverage. Journal of Artificial Intelligence Research.

Boutilier, C. and Dearden, R. (1996). Approximating value trees in structured dynamic pro-

gramming. In Proceedings of the 14th International Conference on Machine Learning (ICML).

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic programming

with factored representations. Artificial Intelligence.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-specific inde-

pendence in Bayesian networks. In Proceedings of the 12th Annual Conference on Uncer-

tainty in Artificial Intelligence (UAI).

Bratman, M. E. (1987). Intention, Plans and Practical Reason. Harvard University Press.

Cassandra, A. R. (2005). pomdp-solve.

http://www.cassandra.org/pomdp/code/index.shtml.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in partially

observable stochastic domains. In Proceedings of the 12th National Conference on Artificial

Intelligence (AAAI).

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and causation.

Computational Intelligence Journal.

Dias, M. B. and Stentz, A. (2000). A free market architecture for distributed control of a

multirobot system. In Proceedings of the Sixth International Conference on Intelligent Au-

tonomous Systems (IAS).

Dias, M. B., Zlot, R. M., Kalra, N., and Stentz, A. (2006). Market-based multirobot coordi-

nation: A survey and analysis. Proceedings of the IEEE.

Dietterich, T. G. (1998). Hierarchical reinforcement learning with the MAXQ value function

decomposition. Journal of Artificial Intelligence Research.

Doshi, P. and Gmytrasiewicz, P. (2005). A particle filtering algorithms for Interactive

POMDPs. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI).

Doshi, P., Zeng, Y., and Chen, Q. (2007). Graphical models for online solutions to Interactive

POMDPs. In Proceedings of the Sixth International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS).

Emery-Montemerlo, R. (2005). Game-Theoretic Control for Robot Teams. PhD thesis, Carnegie

Mellon University.

Emery-Montemerlo, R., Gordon, G., Schneider, J., and Thrun, S. (2004). Approximate so-

lutions for partially observable stochastic games with common payoffs. In Proceedings

128



BIBLIOGRAPHY

of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS).

Fujita, M., Veloso, M., Uther, W., Asada, M., Kitanon, H., Hugel, V., Bonnin, P., Bouramoué,
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APPENDIX A

Experimental Domains

This section provides additional details about the domains used in the experiments de-

scribed in this thesis.

A.1. Multi-agent Tiger Domain

The multi-agent tiger domain (Nair et al., 2003) was defined as an extension of the

single-agent tiger domain that has served as a common POMDP benchmark problem (Cas-

sandra et al., 1994). Several modifications of the basic tiger problem have been used as test

domains, for both single-agent and multi-agent algorithms (e.g. tiger-grid (Littman et al.,

1995) and persistent multi-agent tiger (Doshi et al., 2007)). The experiments performed in

this thesis work were done on the basic two- and three-agent tiger problem (Nair et al.,

2003), with some parameters changed in the observation function. In this work, the likeli-

hood of a correct observation (e.g., observing HEARLEFT when the tiger is behind the left

door (s = SL)) is set such that, in a centralized problem, one consistent joint observation,

meaning that the two robots both heard the tiger behind the same door, is sufficient to

prompt the team to open a door. However, in the distributed case, one observation would

not be sufficient to prompt an agent to communicate to its teammate.

• α = 2

• S = {SL, SR}

• Ai = {OPENL,OPENR, LISTEN}

• P =
Action State SL SR
〈OPENL, ∗〉 * 0.5 0.5
〈OPENR, ∗〉 * 0.5 0.5
〈∗,OPENL〉 * 0.5 0.5
〈∗,OPENR〉 * 0.5 0.5

〈LISTEN, LISTEN〉 SL 1.0 0.0
〈LISTEN, LISTEN〉 SR 0.0 1.0
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• Ωi = {HEARLEFT,HEARRIGHT}

• Oi =
Action State HEARLEFT HEARRIGHT

〈OPENL, ∗〉 * 0.5 0.5
〈OPENR, ∗〉 * 0.5 0.5
〈∗,OPENL〉 * 0.5 0.5
〈∗,OPENR〉 * 0.5 0.5

〈LISTEN, LISTEN〉 SL 0.7 0.3
〈LISTEN, LISTEN〉 SR 0.3 0.7

• R =
Action SL SR

〈OPENL,OPENL〉 -50 +20
〈OPENL,OPENR〉 -100 -100
〈OPENL, LISTEN〉 -101 +9
〈OPENR,OPENL〉 -100 -100
〈OPENR,OPENR〉 +20 -50
〈OPENR, LISTEN〉 +9 -101
〈LISTEN,OPENL〉 -101 +9
〈LISTEN,OPENR〉 +9 -101
〈LISTEN, LISTEN〉 -2 -2

The three-agent tiger problem differs from the two-agent problem only in the obser-

vation function.

• α = 3

• Oi =
Action State HEARLEFT HEARRIGHT

〈OPENL, ∗, ∗〉 * 0.5 0.5
〈OPENR, ∗, ∗〉 * 0.5 0.5
〈∗,OPENL, ∗〉 * 0.5 0.5
〈∗,OPENR, ∗〉 * 0.5 0.5
〈∗, ∗,OPENL〉 * 0.5 0.5
〈∗, ∗,OPENR〉 * 0.5 0.5

〈LISTEN, LISTEN, LISTEN〉 SL 0.65 0.35
〈LISTEN, LISTEN, LISTEN〉 SR 0.35 0.65
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A.2. Multi-access Broadcast Channel Domain

The multi-access broadcast channel problem (MABC) (Ooi and Wornell, 1996) was

formulated as a Dec-POMDP domain (Hansen et al., 2004), and has since been used as a

common benchmark domain (Bernstein et al., 2005; Szer and Charpillet, 2006; Seuken and

Zilberstein, 2007). In this domain, two agents are trying to broadcast messages to each

other across a shared channel. Only one message can be broadcast at a time. Each agent

may be in one of two states: EMPTY, meaning that its message buffer is empty, and FULL,

meaning that the agent has a message in its buffer to send. New messages appear in the

agents’ buffers with different probabilities: 0.9 for agent 1, and 0.1 for agent 2.

Agents have two possible actions: SEND and DONTSEND. SENDing a message fails

if both agents’ buffers are FULL and they attempt to SEND simultaneously. Otherwise,

SEND succeeds, earning the team a reward of +1. Agents noisily observe collisions. If both

agents attempt to SEND messages simultaneously, with probability 0.9, they will observe

CONFLICT, indicating a need to coordinate message-SENDing in the next timestep.

• α = 2

• Si = {EMPTY, FULL} → S = {EE,EF, FE, FF}

• Ai = {DONTSEND, SEND}

• P =
Action State EE EF FE FF

* EE 0.09 0.01 0.81 0.09
〈∗,DONTSEND〉 EF 0.0 0.1 0.0 0.9
〈∗, SEND〉 EF 0.09 0.01 0.81 0.09

〈DONTSEND, ∗〉 FE 0.0 0.0 0.9 0.1
〈SEND, ∗〉 FE 0.09 0.01 0.81 0.09

〈DONTSEND,DONTSEND〉 FF 0.0 0.0 0.0 1.0
〈DONTSEND, SEND〉 FF 0.0 0.0 0.9 0.1
〈SEND,DONTSEND〉 FF 0.0 0.1 0.0 0.9
〈SEND, SEND〉 FF 0.0 0.0 0.0 1.0

• Ωi = {NOCONFLICT,CONFLICT}

• Oi =
Action State NOCONFLICT CONFLICT

* EE 1.0 0.0
* EF 1.0 0.0
* FE 1.0 0.0

〈DONTSEND, ∗〉 FF 1.0 0.0
〈∗,DONTSEND〉 FF 1.0 0.0
〈SEND, SEND〉 FF 0.1 0.9

• R =
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Action EE EF FE FF
〈DONTSEND,DONTSEND〉 0 0 0 0
〈DONTSEND, SEND〉 0 +1 0 +1
〈SEND,DONTSEND〉 0 0 +1 +1
〈SEND, SEND〉 0 +1 +1 0
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A.3. Colorado/Wyoming Domain

We introduced the Colorado/Wyoming domain (Roth et al., 2006) to serve both as a

larger test domain than the two-agent tiger problem and also because it has observations of

varying information qualities. The presence of some observations that are more valuable

than others allows us to use the Colorado/Wyoming domain to demonstrate the effective-

ness of the SELECTIVE DEC-COMM algorithm.

The overall state in the Colorado/Wyoming domain can be divided into two com-

ponents, the fully observable or known component, k, which includes the position of the

two agents within the 5-by-5 grid world, and a partially observable component, p, namely

whether the agents are in Colorado or Wyoming. For compactness, the domain is de-

scribed here via a factored representation. For our experiments, however, we used Q-

MDP (Littman et al., 1995) to estimate the POMDP value function needed by Q-POMDP

and SELECTIVE ACE-PJB-COMM. In this domain, agents’ movement actions succeed de-

terministically. If either agent SIGNALs, the problem resets to a new, random state.

• α = 2

• S = {〈p, k〉}

p = {COLORADO,WYOMING}

k = 〈X0,Y0,X1,Y1〉,X0,Y0,X1,Y1 ∈ [1, 5]

• Ai = {NORTH, SOUTH, EAST,WEST, STOP, SIGNAL}

• P =
Action p COLORADO WYOMING

* COLORADO 1.0 0.0
* WYOMING 0.0 1.0

〈SIGNAL, ∗〉 * 0.5 0.5
〈∗, SIGNAL〉 * 0.5 0.5

– Xi:

∗ ai ∈ {NORTH, SOUTH, STOP}, a1−i 6= SIGNAL:

X

P(X = 1) = 1.0

1

P(X = 2) = 1.0

2

P(X = 3) = 1.0

3

P(X = 4) = 1.0

4

P(X = 5) = 1.0

5
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∗ ai = EAST, a1−i 6= SIGNAL :

X

P(X = 2) = 1.0

1

P(X = 3) = 1.0

2

P(X = 4) = 1.0

3

P(X = 5) = 1.0

4

P(X = 5) = 1.0

5

∗ ai = WEST, a1−i 6= SIGNAL :

X

P(X = 1) = 1.0

1

P(X = 1) = 1.0

2

P(X = 2) = 1.0

3

P(X = 3) = 1.0

4

P(X = 4) = 1.0

5

∗ ai = SIGNAL:

P(X = 1) = 0.2
 P(X = 2) = 0.2
 P(X = 3) = 0.2
 P(X = 4) = 0.2
 P(X = 5) = 0.2

– Yi:

∗ ai ∈ {EAST,WEST, STOP}, a1−i 6= SIGNAL:

Y

P(Y = 1) = 1.0

1

P(Y = 2) = 1.0

2

P(Y = 3) = 1.0

3

P(Y = 4) = 1.0

4

P(Y = 5) = 1.0

5

∗ ai = NORTH, a1−i 6= SIGNAL :

Y

P(Y = 1) = 1.0

1

P(Y = 1) = 1.0

2

P(Y = 2) = 1.0

3

P(Y = 3) = 1.0

4

P(Y = 4) = 1.0

5

∗ ai = SOUTH, a1−i 6= SIGNAL :

Y

P(Y = 2) = 1.0

1

P(Y = 3) = 1.0

2

P(Y = 4) = 1.0

3

P(Y = 5) = 1.0

4

P(Y = 5) = 1.0

5
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∗ ai = ∗, a1−i = SIGNAL:

P(Y = 1) = 0.2
 P(Y = 2) = 0.2
 P(Y = 3) = 0.2
 P(Y = 4) = 0.2
 P(Y = 5) = 0.2

• Ωi = {MOUNTAIN, PIKESPEAK, PLAIN,OLDFAITHFUL}

• Oi =

Action p MOUNTAIN PIKESPEAK PLAIN OLDFAITHFUL

〈SIGNAL, ∗〉 * 0.25 0.25 0.25 0.25
〈∗, SIGNAL〉 * 0.25 0.25 0.25 0.25

a0, a1 6= SIGNAL COLORADO 0.5 0.15 0.3 0.05
a0, a1 6= SIGNAL WYOMING 0.3 0.05 0.5 0.15

• R =
Action State Reward

a0, a1 6= SIGNAL * -2
a0, a1 6= STOP

a0, a1 6= SIGNAL * -1
a0 = STOP, a1 6= STOP

a0, a1 6= SIGNAL * -1
a0 6= STOP, a1 = STOP

a0, a1 = STOP * 0
a0 = SIGNAL, a1 6= SIGNAL * -100
a0 6= SIGNAL, a1 = SIGNAL * -100

a0, a1 = SIGNAL p = COLORADO +20
X0,X1 = 4 ∧ Y0,Y1 = 2

a0, a1 = SIGNAL p = COLORADO -50
X0,X1 6= 4 ∨ Y0,Y1 6= 2

a0, a1 = SIGNAL p = WYOMING +20
X0,X1 = 5 ∧ Y0,Y1 = 5

a0, a1 = SIGNAL p = WYOMING -50
X0,X1 6= 5 ∨ Y0,Y1 6= 5
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A.4. Meeting-Under-Uncertainty Domain

A number of different Meeting-Under-Uncertainty problems have served as exper-

imental domains in the Dec-POMDP literature (Xuan et al., 2001; Goldman and Zilber-

stein, 2003; Bernstein et al., 2005). We introduced this variant to serve as a simple exam-

ple of a multi-agent domain with a great deal of context-specific independence between

agents (Roth et al., 2007) . Below, we show the details for a two-agent, 3-by-3 Meeting-

Under-Uncertainty domain, but the structure remains the same for problems with more

agents or in larger grid worlds.

In principle, the state space of this Meeting-Under-Uncertainty domain consists only

of the X and Y positions of the agents and an additional variable, ABS, indicating that at

least one agent performed a SIGNAL action, transitioning the problem to an absorbing state.

However, because we used Structured Policy Iteration to generate a tree-structured MDP

policy for the domain, and SPI requires domains in which the reward function depends

only on the state and not on the state and current action (Boutilier et al., 2000), we augment

the domain with an additional state variable for each agent. This variable, ENDi, indicates

that agent i SIGNALed in the immediately previous timestep. Motion actions in this domain

are non-deterministic. Movement attempts succeed with probability 0.9, but fail, leaving

the agent in its original position, with 0.1 probability.

• α = 2

• S = {〈ABS, END0, END1,X0,X1,Y0,Y1〉}

ABS ∈ [0, 1], ENDi ∈ [0, 1],Xi ∈ [0, 2],Yi ∈ [0, 2]

• Ai = {NORTH, SOUTH, EAST,WEST, STOP, SIGNAL}

• P =

– ABS:
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∗ a = *:

ABS

END0

0

P(ABS) = 1.0

1

END1

0

P(ABS) = 1.0

1

P(ABS) = 0.0

0

P(ABS) = 1.0

1

– ENDi:

∗ ai = SIGNAL:

ABS

P(END) = 1.0

0

P(END) = 0.0

1

∗ ai 6= SIGNAL:

P(END) = 0.0

– Xi:

∗ ai ∈ {NORTH, SOUTH, STOP, SIGNAL}:

X

P(X = 0) = 1.0

0

P(X = 1) = 1.0

1

P(X = 2) = 1.0

2

∗ ai = EAST:

X

P(X = 0) = 0.1
 P(X = 1) = 0.9

0

P(X = 1) = 0.1
 P(X = 2) = 0.9

1

P(X = 2) = 1.0

2
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∗ ai = WEST:

X

P(X = 0) = 1.0

0

P(X = 0) = 0.9
 P(X = 1) = 0.1

1

P(X = 1) = 0.9
 P(X = 2) = 0.1

2

– Yi:

∗ ai ∈ {EAST,WEST, STOP, SIGNAL}:

Y

P(Y = 0) = 1.0

0

P(Y = 1) = 1.0

1

P(Y = 2) = 1.0

2

∗ ai = NORTH:

Y

P(Y = 0) = 1.0

0

P(Y = 0) = 0.9
 P(Y = 1) = 0.1

1

P(Y = 1) = 0.9
 P(Y = 2) = 0.1

2

∗ ai = SOUTH:

Y

P(Y = 0) = 0.1
 P(Y = 1) = 0.9

0

P(Y = 1) = 0.1
 P(Y = 2) = 0.9

1

P(Y = 2) = 1.0

2

• O = each agent i observes {ABS, ENDi,Xi,Yi}
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• R =

ABS

END0

0

0

1

END1

0

END1

1

-1

0

-100

1

-100

0

X0

1

-50

0

Y0

1

-50

2

-50

0

-50

1

X1

2

-50

0

Y1

1

-50

2

-50

0

-50

1

+20

2
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A.5. Simplified Taxi Domain

In this domain, two taxi agents are moving between four base stations. Taxis can

move CLOCKWISE or COUNTERCLOCKWISE, with movements succeeding deterministi-

cally. New passengers appear at each base station with probability 0.25 in each timestep.

The taxis must PICKUP passengers and deliver them to their GOAL base stations. The GOAL

of a passenger is assigned randomly when it is picked up. If both taxis attempt to PICKUP

the same passenger simultaneously, Taxi 1 will succeed. The taxis accumulate a reward of

+20 for successfully delivering a passenger to its desired GOAL. There is a penalty of -100

for delivering a passenger to an incorrect GOAL location. All other movements and actions

have a cost of -1.

• α = 2

• S = {〈POS0, POS1,HASP0,HASP1,GOAL0,GOAL1, BASE0, BASE1, BASE2, BASE3〉}

POSi ∈ [0, 3],HASPi ∈ [0, 1],GOALi ∈ [0, 3], BASEn ∈ [0, 1]

• Ai = {CLOCKWISE,COUNTERCLOCKWISE, PICKUP,DELIVER}

• P =

– POSi:

∗ ai = CLOCKWISE:

POS

P(POS = 1) = 1.0

0

P(POS = 2) = 1.0

1

P(POS = 3) = 1.0

2

P(POS = 0) = 1.0

3

∗ ai = COUNTERCLOCKWISE:

POS

P(POS = 3) = 1.0

0

P(POS = 0) = 1.0

1

P(POS = 1) = 1.0

2

P(POS = 2) = 1.0

3

∗ ai ∈ {PICKUP,DELIVER}:

POS

P(POS = 0) = 1.0

0

P(POS = 1) = 1.0

1

P(POS = 2) = 1.0

2

P(POS = 3) = 1.0

3

– HASP0:
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∗ a0 ∈ {CLOCKWISE,COUNTERCLOCKWISE}:

HASP

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1

∗ a0 = PICKUP:

HASP

POS0

0

P(HASP=1) = 1.0

1

Base0

0

Base1

1

Base2

2

Base3

3

P(HASP=0) = 1.0

0

P(HASP=1) = 1.0

1

P(HASP=0) = 1.0

0

P(HASP=1) = 1.0

1

P(HASP=0) = 1.0

0

P(HASP=1) = 1.0

1

P(HASP=0) = 1.0

0

P(HASP=1) = 1.0

1

∗ a0 = DELIVER:

P(HASP = 0) = 1.0

– HASP1:

∗ a1 ∈ {CLOCKWISE,COUNTERCLOCKWISE}:

HASP

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1
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∗ a0 6= PICKUP, a1 = PICKUP:

HASP

POS1

0

P(HASP = 1) = 1.0

1

Base0

0

Base1

1

Base2

2

Base3

3

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1

P(HASP = 0) = 1.0

0

P(HASP = 1) = 1.0

1
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∗ a0 = PICKUP, a1 = PICKUP:
HASP1

HASP0

0

P(HASP1 = 1) = 1.0

1

POS1

0

POS1

1

Base0

0

Base1

1

Base2

2

Base3

3

Base0

0

Base1

1

Base2

2

Base3

3

P(HASP1 = 0) = 1.0

0

POS0

1

P(HASP1 = 0) = 1.0

0

POS0

1 P(HASP1 = 0) = 1.0

0

POS0

1

P(HASP1 = 0) = 1.0

0

POS0

1

P(HASP1 = 0) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 0) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 0) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 0) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 0) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 1) = 1.0

2

P(HASP1 = 1) = 1.0

3

P(HASP1 = 1) = 1.0

0

P(HASP1 = 0) = 1.0

1

P(HASP1 = 1) = 1.0

2

P(HASP1 = 1) = 1.0

3

P(HASP1 = 1) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 0) = 1.0

2

P(HASP1 = 1) = 1.0

3

P(HASP1 = 1) = 1.0

0

P(HASP1 = 1) = 1.0

1

P(HASP1 = 1) = 1.0

2

P(HASP1 = 0) = 1.0

3

∗ a1 = DELIVER:

P(HASP = 0) = 1.0

– GOALi:

∗ ai ∈ {CLOCKWISE,COUNTERCLOCKWISE,DELIVER}:

GOAL

P(GOAL = 0) = 1.0

0

P(GOAL = 1) = 1.0

1

P(GOAL = 2) = 1.0

2

P(GOAL = 3) = 1.0

3
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∗ ai = PICKUP:

HASP

GOAL

0

GOAL

1

P(GOAL = 0) = 0.25
 P(GOAL = 1) = 0.25
 P(GOAL = 2) = 0.25
 P(GOAL = 3) = 0.25

0

P(GOAL = 0) = 0.25
 P(GOAL = 1) = 0.25
 P(GOAL = 2) = 0.25
 P(GOAL = 3) = 0.25

1

P(GOAL = 0) = 0.25
 P(GOAL = 1) = 0.25
 P(GOAL = 2) = 0.25
 P(GOAL = 3) = 0.25

2

P(GOAL = 0) = 0.25
 P(GOAL = 1) = 0.25
 P(GOAL = 2) = 0.25
 P(GOAL = 3) = 0.25

3

P(GOAL = 0) = 1.0

0

P(GOAL = 1) = 1.0

1

P(GOAL = 2) = 1.0

2

P(GOAL = 3) = 1.0

3

– BASEn:

∗ ai 6= PICKUP ∀i:

BaseN

P(BaseN = 1) = 0.25

0

P(BaseN = 1) = 1.0

1

∗ ai = PICKUP, a1−i 6= PICKUP:

Base0

P(Base0 = 0) = 0.75
 P(Base0 = 1) = 0.25

0

HASP

1

POS

0

P(Base0 = 0) = 0.75
 P(Base0 = 1) = 0.25

1

P(Base0 = 0) = 1.0

0

P(Base0 = 1) = 1.0

1

P(Base0 = 1) = 1.0

2

P(Base0 = 1) = 1.0

3
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∗ a0 = PICKUP, a1 = PICKUP:

Base0

P(Base0 = 0) = 0.75
P(Base0 = 1) = 0.25

0

HASP0

1

POS0

0

HASP1

1

P(Base0 = 0) = 1.0

0

HASP1

1

HASP1

2

HASP1

3

POS1

0

P(Base0 = 0) = 0.75
P(Base0 = 1) = 0.25

1

POS1

0

P(Base0 = 0) = 0.75
P(Base0 = 1) = 0.25

1

POS1

0

P(Base0 = 0) = 0.75
P(Base0 = 1) = 0.25

1

POS1

0 P(Base0 = 0) = 0.75
P(Base0 = 1) = 0.25

1

P(Base0 = 0) = 1.0

0

P(Base0 = 1) = 1.0

1

P(Base0 = 1) = 1.0

2 P(Base0 = 1) = 1.0

3

P(Base0 = 0) = 1.0

0

P(Base0 = 1) = 1.0

1

P(Base0 = 1) = 1.0

2 P(Base0 = 1) = 1.0

3

P(Base0 = 0) = 1.0

0

P(Base0 = 1) = 1.0

1

P(Base0 = 1) = 1.0

2

P(Base0 = 1) = 1.0

3

P(Base0 = 0) = 1.0

0

P(Base0 = 1) = 1.0

1

P(Base0 = 1) = 1.0

2 P(Base0 = 1) = 1.0

3

• O =, each agent i observes {POSi,HASPi,GOALi}. Agent 0 observes BASE0 and

BASE1. Agent 1 observes BASE2 and BASE3.

• Ri =

– ai ∈ {CLOCKWISE,COUNTERCLOCKWISE, PICKUP}:

-1.0
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– ai = DELIVER:

HASP

-1.0

0

POS

1

GOAL

0

GOAL

1

GOAL

2

GOAL

3

20.0

0

-100.0

1

-100.0

2

-100.0

3

-100.0

0

20.0

1

-100.0

2

-100.0

3

-100.0

0

-100.0

1

20.0

2

-100.0

3

-100.0

0

-100.0

1

-100.0

2

20.0

3

• R = R0 +R1
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