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Abstract. The engineering of heterogenous distributed systems is a
complex task. Traditional software engineering methods fail to ac-
count for new demands of flexibility and adaptability in the con-
struction of software systems. On the other hand, concepts of Vir-
tual Organizations and Electronic Institutions cater for the need of
open, heterogenous software environments, where agents may dy-
namically organize themselves into organizational structures, deter-
mined by roles, norms and contracts. Our work aims to facilitate the
engineering of heterogenous and distributed systems by providing
only a specification of the desired overall system behavior, expressed
as a set of norms, and rely on capabilities and properties of indi-
vidual agents that allow them to dynamically form the desired com-
plete software system. In particular, we present a framework, called
Requirement-driven Contracting (RdC), for automatically deriving
executable norms from requirements and associated relevant infor-
mation. RdC facilitates the governance of MAS by ensuring that all
requirements, along with runtime changes of requirements are ap-
propriately and automatically reflected in the norms regulating the
behavior of MAS.

1 INTRODUCTION

Specifying requirements is in general a difficult and critical task –
even more so for heterogenous systems, in which software devel-
oped, maintained, and operated by, and distributed across various
organizations should cooperate in order to achieve joint goals. The
perceived quality of the future system is determined by the fit be-
tween its behavior and the requirements. Moreover, such systems
are expected to continually operate and adapt to changes in highly
volatile environments. Changes lead to situations in which require-
ments (i) may not all be known before/during development, (ii) be-
come obsolete over the course of development, and (iii) vary at run-
time. Currently, established requirements and software engineering
processes are built with homogenous, closed systems in mind. Clas-
sical requirements and software engineering processes start from the
goals of the system, then identify and specify operations whose ex-
ecution satisfies the goals, and finally design and implement com-
ponents (agents) capable of executing the said operations. If require-
ments or environment conditions change, redesign and redeployment
occur – this usually takes long and is costly, often leading system
owners to miss opportunities for which they introduced the systems
in the first place.
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Addressing these problems requires a methodological shift from
the assembly of passive components towards systems that are based
on active autonomous entities. Research into multi-agent systems
(MASs) supports such a methodological shift, as it investigates the
creation of systems involving dynamic, heterogenous, distributed and
autonomous agents.

Virtual Organizations (VOs) and Electronic Institutions facilitate
the dynamic formation of agent-based systems by introducing an or-
ganizational structure into an agent community and prescribing cer-
tain “rules of engagement” or norms, to regulate the actions and in-
teractions of these agents. Agents may take on roles in such an orga-
nizational structure by signing contracts and thereby committing to
observe established behavioural standards, i.e., norms.

Norms, that is, obligations, permissions, and prohibitions are use-
ful abstractions for expressing rights and duties, and thereby regu-
lating the behavior of heterogenous agents that act on behalf and in
interest of their owners. Norms are critical for VOs, for they specify
the organizational structure: agents adopt roles within the VO, and
thereby the norms ascribed to the roles. By enabling agents to pro-
cess norm specifications, a separation of concerns occurs: agents are
not only described at an individual level, in terms of their capabili-
ties, but a separate specification is also introduced to describe, at a
social level, the compulsory, allowed, or forbidden behaviors. Norm-
governed VOs, therefore, are an attractive approach to the engineer-
ing of heterogenous systems in changing environments, as executable
normative specifications dynamically direct and tune the behavior of
heterogenous agents.

It is only if norms are appropriately defined that agents can fulfil
the purpose of the VO. As the VO’s purpose is defined by the re-
quirements of VO stakeholders (i.e., owners, users, etc.), norms are
appropriate only if they regulate the VO so that these requirements
are satisfied to the most desirable (and feasible) extent. Given, e.g.,
a requirement for a Banking application engineered on VO princi-
ples, that a Letter of Credit cannot be issued if there is no deposit,
norms must ensure that this is the case at runtime. Approaches to
the engineering of norm-governed MAS [11, 6, 10] focus on writing
norms, either using limited requirements conceptualizations or leav-
ing out requirements-level notions. Stakeholders, however, use richer
notions than norms to communicate requirements. Their statements
instead speak of VO goals in terms of functionality to provide and
quality to achieve, how to provide/achieve these, and what to comply
to (e.g., Sarbanes-Oxley Act). Stakeholders have preferences over
alternative functionalities and quality levels, and priorities over pref-
erences that cannot be jointly satisfied to the highest extent.

We therefore encounter two challenges if we are to further fa-
cilitate VO engineering: (a) provide a rich set of concepts for
representing requirements, and (b) automatically derive appropri-



ate norms from the requirements. We present a framework, called
Requirements-driven Contracting (RdC) that responds to both of
these challenges, by integrating rich requirements-level concepts,
a corresponding specification language, and algorithms for auto-
matically deriving norms from requirements-level information. RdC
thereby ensures that all requirements, along with runtime changes
thereof are appropriately and automatically reflected in the norms
regulating a VO. The RdC proceeds in three steps: (1) The VO en-
gineer elicits the stakeholders’ natural language statements about the
purpose of the system. According to the speech act in which each
statement is given, the VO engineer identifies requirements, domain
assumptions, preferences, and priorities (Sect.2). (2) Using a set of
templates and formal language constructs, the VO engineer writes the
environment specification (ES) to transform requirements into sys-
tem goals (Figure 2), domain assumptions into domain constraints,
and define preferences over goals and priorities over conflicting pref-
erences (Sect.3). (3) The VO engineer inputs the ES into RdC al-
gorithms (Figures 3 and 5) to obtain an executable specificatons of
norms that subsequently regulate the VO (Sect.4).

We consider these steps of the RdC process in detail in Sect.2–4.
Sect.5 overviews related work; Sect.6 outlines conclusions, limita-
tions, and directions for future work.

2 UNDERSTANDING REQUIREMENTS

Consider the transaction in which a Letter of Credit (LoC) is issued
by a banker agent for use by a customer agent to finance the acqui-
sition of goods from a supplier agent. The customer makes a deposit
with the bank, then receives an LoC. The banker informs the supplier
that an LoC has been issued to the customer, so that the customer
can provide the LoC to the supplier, who can subsequently transfer
the goods to the customer. To obtain the funds, the supplier sends the
LoC to the bank. To engineer the VO for this setting, the engineer first
elicits stakeholders’ statements in natural language about the process,
determines whether each of the statements is a requirement or oth-
erwise, subsequently produces a specification that is translated into
contracts comprising norms. In doing so, the engineer moves across
three levels of abstraction covered by RdC: the requirements, the ES,
and the contracts level. Figure 1 shows key useful RdC notions (only
those discussed herein) at each of these levels.

At Level 1, statements about the high-level requirements, which
the VO must satisfy, are elicited. A functional requirement, such
as “Issue an LoC”, will communicate what is desired or intended,
whereas a domain assumption will indicate what is already the case
[12], and is therefore an assertive or a declaration. A nonfunctional
requirement, such as “Quickly issue an LoC” places additional con-
straints on a functional requirement by communicating an attitude
thereon (through an expressive). Nonfunctional requirements typi-
cally involve gradable adjectives, such as quick, convenient, secure,
or useful, efficient, accurate, and so on. Expressives therefore com-
municate preferences in an indirect manner: asking for “quick” im-
plies that faster is preferred to slower. The same applies, e.g., for
security, efficiency, maintainability, usability, and so on. We make
the preference order explicit and thus order both nonfunctional and
functional requirements. Introducing preferences entails the need for
priorities, as often all preferences cannot be satisfied by the MAS.
When aiming to satisfy one preferred requirement affects negatively
the ability to satisfy some other requirement, we say that the involved
preferences are conflicting. In such a case, a priority is defined to in-
dicate which of the two preferences it is more important to satisfy.

We classify any requirement also as either compulsory or optional,
and either conditional or free. The MAS must satisfy compulsory re-
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Figure 1. Part of RdC notions.

quirements, while it will (hopefully, though not necessarily) satisfy
optional requirements. A requirement is conditional if it needs to
be satisfied only when some particular conditions hold; otherwise,
it is free. A domain assumption is either free or conditional, in the
same sense as a requirement can be conditional or free. All men-
tioned taxonomic dimensions are relevant as they affect how the re-
quirements and assumptions transform into norms (e.g., compulsory
requirements give obligations and sactions).

3 ENVIRONMENT SPECIFICATION

Given requirements, domain assumptions, preferences and priori-
ties, we proceed to manually write the corresponding ES. The ES
is divided into four parts. Functional ES specifies functional goals
that need to be achieved (including preferences thereon), plans that
should be followed, and domain constraints that must not be vio-
lated if the MAS is to satisfy functional requirements and domain
assumptions. Achieving some functional goals requires that roles co-
operate: we define dependencies between roles when the agent oc-
cupying a role can achieve a functional goal only if the agent oc-
cupying another role provides assistance. Nonfunctional ES define
measures on the VO for monitoring purposes; nonfunctional goals
define preferences over the values of these measures – if these values
are observed at runtime, nonfunctional requirements and preferences
thereon are satisfied. Priorities ES indicates priorities between con-
flicting preferences. Finally, Terminological ES specifies the domain
ontology relevant for the VO, so as to better delimit the meaning in-
tended for terms used throughout the ES, and subsequently carried
over to norms. The ES is written as a collection of templates, one
for each functional and nonfunctional goal (Figure 2), plan, domain
constraint, priority, and dependency. Preferences are defined through
the Preferences slot in templates (see, Figure 2; i.e., a preference
order over functional goals appears in the Preferences slot of each
of the goals in that preference order). Below, we discuss only func-
tional goals and preferences thereon. The entire RdC framework is
presented in the longer report [3].



3.1 Functional Goals

The compulsory and conditional functional requirement “Record a
deposit in electronic and paper form if the deposit is received and
approved” leads to the template in Figure 2. A unique identifier is
given to the goal in UID for cross-referencing in ES and any graphi-
cal representation thereof. Type states whether the goal is functional
or nonfunctional, compulsory (if the corresponding requirement is
compulsory) or optional (if the requirement is optional), and condi-
tional or free. Preferences gives the preference order in which the
given goal appears. Element on the left hand side of >> is preferred
to the one on the right. As usual, the >> relation is modeled as a
strict partial order. A goal can be refined, that is, we can identify
a set of goals (possibly easier to achieve) whose joint achievement
is equivalent to achieving the refined goal. Supergoals lists those
goals in whose refinement the given goal participates.

UID: Record deposit in el. & paper form
Type: Goal (Functional/Compulsory/Conditional)
Preferences: (Record deposit in electronic form only >> Record deposit

in el. & paper form)
Supergoals: none
BelongsTo: Role (Banker)
Source: Record a deposit in electronic and paper form if the deposit is

received and approved.
Source type: Requirement (Functional/Compulsory/Conditional)
Parameters: d: Deposit
Satisfy: eL : elLog, pL : paLog logs(eL, pL, d) ←

isPaperLog(pL, d), isElectronicLog(eL, d)
Conditions: received(d), approved(d)
Concepts: Deposit = (and Amount (> 0) (exists has-purpose Credit)

(all in-currency aset(USD,EUR)));
paLog = (and Log (all has-purpose TransactionRecord)
(all recorded-on Database));
elLog = (and Log (all has-purpose TransactionRecord)
(all recorded-on Paper))

Figure 2. Instantiated Template for a Funct. Goal.

BelongsTo identifies the role or dependency to which the goal is
associated. We then relate the goal to the requirement which it
specifies: Source identifies the requirement at RdC Level 1 and
SourceType indicates the classification of that requirement. Sat-
isfy indicates the logical conditions that must be brought about
in order to satisfy the goal’s Source requirement. Logical condi-
tions are written as Horn clauses. A general form of Horn clause is
a0 ∨ (¬a1) ∨ . . . ∨ (¬an), where each ai, i = 1, . . . , n is an atom.
We adopt here the standard notation: a0 ← a1, . . . , an; whereby a0

is true if a1, . . . , an are true. Since the problem of testing a set of
Horn clauses for satisfiability is known to have linear time solution
algorithms, the ES supports rather efficient inferences compared to
RE specification formalisms, which rely on variants of linear tempo-
ral first-order logic. For conditional goals, we write down in Con-
ditions the logical conditions that must hold for the agents to know
that the goal is to be achieved. Concepts lists the definitions of con-
cepts whose instances are referred to in the template. We use the ITL
(Information Terminological Lang. [7]) to define the domain ontol-
ogy; therein, conceptual knowledge about a given domain is defined
by a set of concepts and roles these concepts play in relationships, in
which they take part. Each term intended to define a concept C is a
conjunction of logical constraints, which are necessary for any object
to be an instance of C.

4 NORMATIVE SPECIFICATION

We show in this section that the ES can be directly mapped to and ex-
pressed with normative concepts investigated in VO and Electronic
Institutions research [5, 8]. Norms support the development of flexi-
ble as well as open VOs. Agents may join and leave VOs by adopt-

ing the normative standards of a VO via automated negotiation and
signing of contracts. The normative specification defines contracts,
whereby each contract is a set of norms. Norms explicitly specify
behavioral directives for agents. Obligations, permissions and prohi-
bitions of agents make requirements explicit at the normative level.
Normative specifications, therefore, ensure that agents act only in
ways that satisfy requirements and preferences, and are in accord
with domain assumptions and priorities.

We use an available normative model [4], which is based on the
notation outlined in [6]. We show how the ES relates to various gov-
ernance measures, including norms, contracts, and roles and how
they are derived from the ES. The building blocks of this notation
are first-order terms, that is, constants, variables and functions (ap-
plied to terms). According to the chosen model, agents form social or
organizational structures by taking on specific roles. These roles are
determined by a set of norms, that is: the obligations the agent has to
fulfill in the course of its actions and interactions with other agents,
its prohibitions and permissions. The role concept allows us to ab-
stract from individual agents and formulate patterns of behaviour that
agents may adopt and conform to, with contracts defining these roles
and the organizational structure of a VO. The set of norms Ω, de-
termining the normative state of a complete VO, is described in the
following way:

Definition 1. A global normative state Ω is a finite and possibly
empty set of norms.

Ω describes the current overall normative state. Norms that are
contained in this set are relevant to the agent – for example, an obli-
gation contained in Ω must be fulfilled. When it is fulfilled, it has
to be removed. Such a maintenance of the normative state has to be
accommodated in order to capture the fact that requirements from
the ES may be relevant to the overall system under specific circum-
stances only. A practical approach to the maintenance of a normative
state is outlined in [2]. As a simplification, we add so-called activa-
tion and expiration conditions to norm specifications in order to cap-
ture circumstances when norms will be added to or removed from
Ω.

In addition, the normative model we use introduces constraints.
With that, the actual influence of norms on the agent achieving spe-
cific states of affairs can be restricted. These constraints are defined
as follows:

Definition 2. A constraint γ is any construct of the form τ � τ ′,
where �∈ {=, �=,>,≥, <,≤}.

With that, we put forward following definition of norms:

Definition 3. A norm ω is a tuple 〈ν, td, A,E〉, where

• ν is any construct of the form Oτ1:τ2ϕ∧
∧n

i=0 γi (an obligation),
Pτ1:τ2ϕ∧

∧n
i=0 γi (a permission) or Fτ1:τ2ϕ∧

∧n
i=0 γi (a prohi-

bition), where
• τ1, τ2 are terms, with τ1 specifying a set of agents and τ2 specify-

ing a set of roles;
• ϕ is an atomic first-order formula, expressing the achievement of

a state of affairs;
• γi, 0 ≤ i ≤ n, are constraints restricting the domains of variables

occurring in ϕ;
• td is a time stamp recording the time of declaration of the norm;
• A =

∧n
j=0 ψ

′
j , 0 ≤ j ≤ n, is the activation condition comprising

a conjunction of first-order predicates
• E =

∧n
k=0 ψ

′′
k , 0 ≤ k ≤ n, is the expiration condition compris-

ing a conjunction of first-order predicates



In this formulation of norms, term τ1 identifies the agent(s) to
whom the norm is applicable. Term τ2 is the role (or set of roles)
of these agents. For example, Oτ1:τ2ϕ ∧

∧n
i=0 γi thus represents an

obligation on agent τ1 taking up role τ2 to bring about ϕ, subject to
constraints γi, 0 ≤ i ≤ n. The obligation activates (is added to Ω)
when

∧n
j=0 ψ

′
j holds, whereas the obligation deactivates (is removed

from Ω) when
∧n

k=0 ψ
′′
k holds (the same holds for permissions and

prohibitions). The γi’s express constraints on those variables occur-
ring in ϕ.
As pointed out earlier, the ES contains compulsory and optional
goals. In both cases, an agent must be motivated to act. In addition
to represent mandatory goals as obligations, means have to be put in
place to enforce the fulfilment of obligations. A traditional means of
enforcing law-abiding behavour in a social context is the specifica-
tion of sanctions, i.e., actions typically performed by an authorised
third party in case of norm violation. The purpose of sanctions is to
either keep individuals from violating their duties or to compensate
for an agent’s behaviour. It is important to understand that sanctions
are obligations for such an authorised party to act. As a consequence,
the introduction of norms and contracts also requires the introduc-
tion of specific organizational structures where the role of such an
authorised third party is established. Agents adopting such a role are
permitted and obliged to pursue the activities defined by sanctions.
In order to specify sanctions in a contract (or, in context of this pa-
per, to generate them from the ES), obligations have to be specified
for this specific authority role. Sanctions are then activated once a
state of affairs indicating a violation of obligations holds. We define
sanctions as follows:

Definition 4. The concept of a sanction amounts to an obligation
Oτ1:authϕ ∧

∧n
i=0 γi, assigned to a specific Authority role auth, ex-

pressing an obligation for an agent in this role to achieve the state of
affairs expressed by term ϕ.

We ensure within RdC algorithms that sanctions are defined to re-
act to violations of obligations, themselves derived from compulsory
goals. In order to capture optional goals (corresponding to optional
functional or nonfunctional requirements) with norms, we need the
concept of incentive. Intuitively, an incentive motivates the agent to
act in a certain way by indicating a reward for taking the desired ac-
tions. In our work, an incentive means that an agent will be motivated
and not sanctioned if it is not successful. In other words, instead of re-
warding, we do not sanction. Optional functional goals will therefore
amount to obligations, for which sanctions are not defined, whereas
compulsory functional goals will give rise to obligations with corre-
sponding sanctions.

4.1 RdC Algorithms

As the purpose of contracts is to ensure that agents in a VO be-
have according to stakeholders’ requirements and obey domain as-
sumptions, we derive the normative specification, that is, contracts
as sets of norms, using algorithms. The full framework contains al-
gorithms for converting all ES-level information into norms. Below,
we present two of them for transforming functional goals while ac-
counting for preferences and dependencies. First, we have a simple
definition for the contract concept:

Definition 5. A contract C is of the form

〈〈r1, {ωr1
1 , . . . , ωr1

m }〉, . . . , 〈rq, {ωrq

1 , . . . , ω
rq
p }〉〉

where each r is a role identifier, and each ω a norm.

For simplicity, we observe some notational conventions. Let FG be
a functional goal, and FG.UID be the value of the UID slot in the
template for FG (e.g., Figure 2). We refer to values in other template
slots in the same obvious way (e.g., FG.Satisfy for the value of the
Satisfy slot in the template for FG). Following earlier discussions,
we assume that the value of the Satisfy and Uphold attributes is of
the form a0 ← a1, . . . , an whereby n ≥ 1 and a0 can be empty.
Also let the value of Conditions slot wherever it appears in ES be
of the form b0 ← b1, . . . , bm whereby m ≥ 1 and b0 can be empty.
Recall that any ai, 0 ≤ i ≤ n and any bj , 0 ≤ j ≤ m is an atomic
first-order formula. Also, we write (·) for content of no interest in
the particular discussion or algorithm – e.g., if we write the norm
〈(·), (·),∧n

j=0 ψ
′
j , (·)〉, we are interested only in

∧n
j=0 ψ

′
j while the

content of the other elements can be any allowed by the norm defini-
tion.

4.1.1 Contracts from Functional Goals

In this section, we present the RdC algorithm, shown in Figure 3,
for deriving a contract from a functional goal. We illustrate the out-
put of the algorithm by converting the functional goal in Figure 2
into the contract shown in Figure 4. The algorithm proceeds as fol-
lows. Given the ES, we first select a functional goal that has not
yet been subjected to the algorithm in Figure 3. We consider only
primitive goals in the goal hierarchy. We generate as many obliga-
tions as needed to cover the Horn clause in the goal template’s Sat-
isfy slot, whereby each obligation deactivates as soon as it is real-
ized (i.e.,

∧r′′
k′′=0 ψ

′′
k′′ = ai). If the functional goal is conditional,

the activation condition for each obligation corresponds to the con-
dition for that functional goal (lines 3–8 in Figure 3). If the goal
is also compulsory, we create sanctions, that is obligations for the
authority role. Sanctions activate if the corresponding obligations
are not realized (9–11). If the goal is optional, we create no sanc-
tions (12–14). We then create a new contract (15–17), in which
the roles vary if the functional goal belongs to a role or a depen-
dency. The algorithm returns for each goal a set of norms accord-
ing to the type of the functional goal. Obligations and sanctions are
generated if the goal is compulsory, while no sanctions are created
if the goal is optional. Contracts are created and norms are dis-
tributed between the role being supervised and the authority (i.e.,
supervisor) role. The supervisor role (Authority) receives responsi-
bility for sanctions, while the supervised role receives obligations.
The algorithm terminates, as each of the for each loops goes through
finite sets and considers one element at a time. We have the con-
tract 〈〈Banker, {ω1, ω2}〉, 〈BankerAuth, {ωsanct

1 , ωsanct
2 }〉〉 on

the functional goal “Record deposit in electronic & paper form” with
norms and sanctions shown in Figure 4.
TheBankAuth is the role that acts as the authority for the Banker
role. The functional goal gives us two obligations for the Banker
role and the corresponding sanctions enforced by the BankAuth
role. Oa:BankAuthφ

′ and Oa:BankAuthφ
′′ are defined by the VO en-

gineer; these obligation determine how the sanction is applied in case
of violation.

4.1.2 Preferences over Contracts on Functional Goals

In this section, we present the RdC algorithm for adjusting norms
according to preferences, shown in Figure 5. Preferences establish
an order over requirements, and therefore over goals in the ES. The
preference order defined over functional goals corresponds to a pref-
erence order over contracts. We do not, however, carry over the very



Contract from Functional Goal
Input:One functional goal FG such that: (i) FG has not been transformed previously using this algorithm; (ii) there are no functional

goals in ES for which FG is the supergoal.
Output:One contract C including norms for ensuring that logical conditions of FG must or can be brought about.
begin
1 For each ai, 1 ≤ i ≤ n in FG.Satisfy do
2 Create obligation ωi = 〈Oa:rφ ∧ ∧r

k=1 γk, td,
∧r′

k′=0 ψ
′
k′ ,

∧r′′
k′′=0 ψ

′′
k′′〉 where φ = ai and

∧r′′
k′′=0 ψ

′′
k′′ = ai and td is

recorded automatically.
3 If FG.Type is Conditional then
4 For each bj , 1 ≤ j ≤ m do r′ = m and ψ′

k′ = bj
5 End If.
6 If FG.Type is Free then
7 every bj is empty and every ψ′

k′ remains unchanged.
8 End If.
9 If FG.Type is Compulsory then
10 Create sanction ωsanct

i = 〈Oa:authφ ∧
∧r

k=1 γk, td,
∧r′

k′=0 ψ
′
k′ ,

∧r′′
k′′=0 ψ

′′
k′′〉 where

∧r′
k′=0 ψ

′
k′ = ¬ai and

∧r′′
k′′=0 ψ

′
k′′ = ai, and the VO engineer is asked to provide Oa:authφ ∧

∧r
k=1 γj .

11 End If.
12 If FG.Type is Optional then
13 no sanctions are defined for FG.
14 End If.
15 Create contract CFG = 〈〈r1, {ωi|1 ≤ i ≤ n}〉, 〈r2, {ωsanct

i |1 ≤ i ≤ n}〉〉 where:
16 If FG.BelongsTo is Role then r1 is the name of that role and r2 is an authority role auth. End If.
17 If FG.BelongsTo is Dependency then r1 is the name of the depender role and r2 is an authority role auth. End If.
end

Figure 3. RdC Algorithm for Deriving a Contract from a Functional Goal.

ω1 =〈Oa:BankerisPaperLog(pL,d), (·), received(d)
∧ approved(d), isPaperLog(pL,d)〉

ω2 =〈Oa:BankerisElectronicLog(pL, d), (·), received(d)∧
approved(d), isElectronicLog(pL, d)〉

ωsanct
1 =〈Oa:BankAuthφ

′, (·),
¬isPaperLog(pL,d), isPaperLog(pL,d)〉

ωsanct
2 =〈Oa:BankAuthφ

′′, (·),
¬isElectronicLog(pL, d), isElectronicLog(pL, d)〉

Figure 4. Norms Obtained from the Functional Goal Given in Figure 2.

notion of preference order onto the normative specification. We in-
stead use an approach that does not involve extending the conceptu-
alizations at the normative level. Overall, we know that a preference
for a functional goal A over B means that honoring the contract on
A is more desirable than honoring the contract on B. In absence of
preference orders to establish relative desirability at the normative
level, we must rely on activation and expiration constraints in norms.
Namely, we can place activation constraints on norms of contract B
so that those norms are activated (i.e., agents go about honoring the
contract on B) only if the contract on A cannot be honored. Conse-
quently, we can constrain the activation of norms in B to cases when
norms in A cannot be honored. There is, however, no absolute crite-
rion for knowing whether a contract cannot be honored. We therefore
leave it to the VO engineer to choose a set of critical obligations in
the contract on A that, once violated, mean that the contract on A
cannot be honored, and that the contract on B is to be activated. In
summary, if we have a preference order A >> B >> C, then if the

contract obtained on A is not honored (i.e., critical obligations in the
contract on A are violated), we activate the contract on B, and if the
contract on B is not honored, we activate the contract on C. To acti-
vate the contract on B, we introduce additional activation constraints
to those already defined within the norms inB: if the additional con-
straints hold, the contract on A is not honored.

The algorithm in Figure 5 considers each preference pair in a pref-
erence order (line 1 in Figure 5). Given a pair of functional goals,
we take the more preferred functional goal FGl, and consider indi-
vidually each of the critical obligations appearing in the contract on
that goal. For each critical obligation (4–6), we have the violation
of the obligation’s φ as an additional activation condition to each of
the norms appearing in the contract on the less preferred goal FGl+1

(5). We also (6) add expiration conditions so that the contract on
the less preferred goal is not activated when the critical obligations
on the more preferred one are honored. By doing so, we ensure that
the contract on the less preferred goal will only be considered if all
critical obligations on the more preferred goal are violated. The al-
gorithm in Figure 5 ensures that the norms on each less preferred
options in the given preference order are activated only when norms
on more preferred options cannot be honored. The algorithm always
terminates as all of the for each loops move through finite sets, and
always process one element at a time.

5 RELATED WORK

Frameworks and methodologies for the engineering of multi-agent
systems [1, 11, 10] start from high-level goals of the system, then
identify operations to achieve these goals, and design components
that will perform the operations. They do not use the autonomy and
adaptability inherent in agents to facilitate the engineering and de-
velopment of MAS.



Preferences over Norms from Functional Goals
Input:One preference order (from ES and among functional goals) that has not been transformed previously using this algorithm. Assume

for simplicity that the order involves w goals, and is of the form FG1.UID >> FG2.UID >> FG3.UID >> . . . >> FGw.UID,
and that a “preference pair” from that order is FGl.UID >> FGl+1.UID, for 1 ≤ l ≤ w − 1.

Output:Per preference pair, a norm on each less preferred goal in the preference pair, updated with constraints ensuring that the norms in
the contract activate only if the norm on the more preferred goal cannot be honored.

begin
1 For each preference pair FGl.UID >> FGl+1.UID, 1 ≤ l ≤ w − 1 do
2 Choose a set of critical obligations in the contract on FGl;
3 For each critical obligation ωi = 〈Oa:rφ ∧∧r

k=1 γk, (·), (·), (·)〉 do
4 For each norm 〈(·), (·),∧r′

k′=0 ψ
′
k′ ,

∧r′′
k′′=0 ψ

′′
k′′〉 in the contract on FGl+1 do

5 Replace
∧r′

k′=0 ψ
′
k′ by ψ′

r′+1 ∧
∧r′

k′=0 ψ
′
k′ where ψ′

r′+1 = ¬φ;

6 Replace
∧r′′

k′′=0 ψ
′′
k′′ by ψ′′

r′′+1 ∧
∧r′′

k′′=0 ψ
′′
k′′ where ψ′′

r′′+1 = φ;
end

Figure 5. RdC Algorithm for Deriving Norms from a Preference Order over Functional Goals.

In our approach, the standard MAS engineering process is more
efficient since it needs to describe only the desired overall system
behavior and relies on the capabilities and properties of individual
agents to assemble complete software systems, negotiate their roles
therein, and operate according to the given normative specification.
Our approach therefore relies on the premise that functionality is
available in the form of individual autonomous agents, designed, de-
veloped, and maintained by, and distributed across many organiza-
tions (e.g., Google, Microsoft, etc.). The VO engineer therefore need
not specify and implement individual agents, but instead determine
how to regulate their interactions so that requirements are satisfied to
the most desirable extent.

Our work has been influenced by the Tropos methodology [1],
which features rich requirements models. Tropos does not, however,
integrate preferences, priorities, and norms. Precise specification in
RdC relies on a less expressive though computationally more attrac-
tive formalism. The role of a domain ontology is implicit in Tropos,
while it is explicit in RdC, again due to the focus on VO. Tropos
does not focus on governed MAS, but instead assumes that agents are
implemented according to the requirements. RdC automates some
activities that are manual in Tropos: given already designed agents,
RdC governs their behavior through the conversion of requirements
to norms.

6 CONCLUSIONS

We introduced Requirements-driven Contracting (RdC), which com-
bines research into rich requirements engineering conceptualizations
with research on norm-based specifications of multi-agent systems.
The framework allows the specification of rich requirements models
and the automatic derivation of executable normative specifications
that express the obligations, permissions, and prohibitions regulating
behaviors of agents participating in multi-agent systems.

Future work will address several points. First, automated resolu-
tion of conflicts between norms at our governance level is available
[9], where first-order term unification is employed to find out if and
how norms overlap in their influence. By integrating this work with
RdC, we will be able to address inconsistencies in an automated
manner at the lower, governance level. More work is necessary for
combining inconsistency detection and resolution at both the ES and
governance levels. Second, we rely on supervised interaction to en-
sure supervision of agent behavior; more elaborate role structures
can be obtained by introducing additional role relationships (e.g., if

an agent occupies one role, it cannot occupy some other). Third, ad-
ditional normative concepts, such as that of power and loyalty (i.e.,
matching between individual and MAS goals), must be studied. Cal-
culating loyalty would facilitate the allocation of resources for su-
pervision, so that, e.g., higher initial trust may be assigned to agents
with higher loyalty values.
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