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Abstract 
-Intent inferencing is the ability to predict an 
opposing force's (OPFOR) high level goals. This is 
accomplished by the interpretation of the OPFOR’s 
disposition, movements, and actions within the 
context of known OPFOR doctrine and knowledge 
of the environment. For example, given likely 
OPFOR force size, composition, disposition, 
observations of recent activity, obstacles in the 
terrain, cultural features such as bridges, roads, 
and key terrain, intent inferencing will be able to 
predict the opposing force's high level goal and 
likely behavior for achieving it. This paper 
describes an algorithm for intent inferencing on an 
enemy force with track data, recent movements by 
OPFOR forces across terrain, terrain from a GIS 
database, and OPFOR doctrine as input. This 
algorithm uses artificial potential fields to discover 
field parameters of paths that best relate sensed 
track data from the movements of individual enemy 
aggregates to hypothesized goals. Hypothesized 
goals for individual aggregates are then combined 
with enemy doctrine to discover the intent of several 
aggregates acting in concert. 
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1 Introduction 
 

In the military domain, adversarial intent 
inference is traditionally achieved by the manual 
fusion of heterogeneous sources of information. 
These sources include textual reports, maps, and 
low level sensor fusion products like force 
aggregates. Moreover, it is the people that are fusers 

providing additional background knowledge in the 
process. Because of the increasing availability of 
cheap sensors and the maturation of network 
technology, analysts have timely access to terabytes 
of high fidelity information about battlefield state. 
This has created cognitive overload. As a result, it is 
becoming increasingly difficult to fuse this low 
level information and extract useful inferences 
about enemy intent from it quickly enough to 
positively influence the decisions of military 
commanders. 
The battlefield is a noisy, uncertain, and despite 
increasingly available networked sensors, still only 
partially observable environment. Many of the 
proposed approaches to adversarial intent inference 
which rely on recognition of tactical maneuvers e.g. 
[1] use Bayesian techniques that encode team 
maneuvers by statistics on low level information 
like the velocities and trajectories of individual team 
members while they are executing a particular 
strategy. When faced with a novel situation these 
statistics are used to calculate the posterior 
probability that the team is executing a certain 
maneuver. Such statistical techniques have proven 
effective at recognizing team strategies in sports [1]. 
However, it is unlikely that such techniques would 
be effective in the uncertain, dynamic, partially 
observable, and noisy environment of a battlefield. 
In team sports there are a small number of players 
and the movements of all of them are visible at all 
times. There are also a few clearly defined 
objectives and the terrain is usually featureless. In 
contrast military operations are conducted in a 
variety of terrains with a myriad of objectives both 
concrete and abstract each of which could have 
many sub goals necessary to achieve them. 
Furthermore, in the military domain hundreds of 



individuals and vehicles may participate in 
cooperative action to achieve high-level goals. In 
this environment statistical techniques are likely to 
be victim to the curse of dimensionality. Hidden 
Markov Models (HMMs) have been successfully 
employed for multi-agent plan recognition [2]. 
However, thus far HMMs have only been proven 
effective for inference in domains with relatively 
small feature spaces. Systems that rely on symbolic 

reasoning e.g. [3,4,5] have had success in 
developing models of adversarial plans. However, 
[3] uses a rule-base to reason about enemy intent 
and rule-bases are error prone and time consuming 
to both construct and maintain. Furthermore 3, 4, 
and 5 all rely heavily on user input to provide 
symbols and annotate them.  
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Figure 1 Illustration of Intent Inference Data Flow
 

Our main contribution is to provide a model of 
tactical maneuvers based on the analogous physical 
system of the potential field associated with a grid 
of electrical resistors. Using this model we can 
automatically extract and annotate high-level 
symbols directly by fusing low-level map and 
heterogeneous sensor data. This model is 
computationally tractable for systems of thousands 
of variables and is governed by well studied 
principles of physics. Furthermore, the model is 
analytically appealing and generalizable. Concepts 
of resistance and flow are inherent to any domain 
that requires adversarial reasoning in the context of 
moving agents, particularly the military domain. 
Because of this domain specific concepts can be 
mapped easily to our model by simply associating 
domain specific concepts with the physical 
quantities of resistance and current in our model. 
The data flow of our intent inference model is 

illustrated by Figure 1. Military operations are 
inherently structured. It would be impossible to 
coordinate large numbers of troops and equipment 
without training personnel in set strategies for 
achieving operational goals. These strategies are 
usually recorded as abstract descriptions and 
diagrams of specific strategies for various types of 
operations. An example of an operation is an 
offensive maneuver to capture key terrain. 
Documents that contain such information are 
referred to as doctrine. We propose to exploit this 
inherent structure by using doctrinal descriptions of 
tactical operations as templates. We are developing 
algorithms to fuse situation assessment products 
with dynamic battlefield sensor data to match 
against these templates. Furthermore, if we can 
recognize a particular tactic in an early phase then 
we can use the doctrinal template to predict future 
phases of enemy action. Figure 2 shows a typical  



 
Figure 2 Thrust manuever 

doctrinal template for an offensive maneuver called 
a thrust. In our system the doctrinal descriptions of 
preferred enemy strategies are encoded in a 
database as shown in Figure 1. The description of 
the representation of these strategies is found in 
section 2.0. Section 2.1 describes how evidence 
received from heterogeneous sensors is matched to 
the most likely enemy doctrinal strategy in the 
database. Section 2.2 describes the electrical circuit 
model. Section 2.3 explains how the model can be 
used to generate hypotheses about the intent of a 
maneuvering enemy military unit. Section 2.4 
describes algorithms for extracting qualitative 
spatial relationships between battlefield entities.  
 
1.1 Explanation of Key Terrain 
 

Terrain provides an important context for the 
analysis of intent in a military scenario. Terrain 
analysts fuse low-level terrain information like 
elevation and vegetation type, data on weapon 
systems range and effectiveness, weather, and 
enemy doctrine to identify high level terrain 
features like engagement areas (EAs) and Key 
Terrain. An engagement area is a position in the 
terrain where a military force will mass weapons 
fire on an enemy. Typically engagement areas are 
located in an area of the terrain with little 
concealment along a likely OPFOR avenue of 
approach. Key terrain is any area the seizure of 
which gives a marked advantage to a combatant in a 
military engagement. These high-level terrain 
features are critical in the analysis of enemy 
Courses of Action (COAs). A course of action is a 
detailed plan for the accomplishment of a military 
mission, including the arrangement and deployment 
of forces both spatially and temporally. Courses of 
action are described with reference to high-level 
terrain features because these areas are typically 
where much of the action in a military engagement 

tactical maneuvers. Any model of tactical 
maneuver that uses hypothesized goals as features 
must include high-level terrain features as possible 
goals. 
 

takes place. Key terrain is also often the goal of 

.2 Basic Scenario 

he following is the basic scenario that we use in 

1
 
T
our investigation of modeling tactical maneuvers. 
There is a battalion-sized echelon of blue forces in 

a defensive posture on a particular terrain. Blue 
forces are represented by a set of platoons 
(B1,B2,…,Bn). The terrain itself is represented as a 
grid (x,y) with an associated set of Key terrain 
features (K1,K2,…,Kn). A battalion of red forces is 
on an offensive maneuver against the blue forces. 
The red battalion is represented by the set of 
platoons (R1,R2,...,Rn). A set of templates 
(T1,T2,...,Tn) reflect doctrinal OPFOR strategies. 
Each member of the set R can act independently or 
in a group. The challenge is, given track data for 
Ri’s, to match the current scenario with one of the 
templates Ti or to identify the scenario as a yet 
unseen template and to update this assessment as 
the scenario unfolds  
 
2.0 Strategy Representation 
 

A doctrinal OPFOR strategy can be decomposed 
into a set of goals and the sub-goals necessary to 
achieve them including the temporal relationships 
between those sub-goals. Sub-goals can in turn be 
described in terms of the actions necessary to 
achieve them as well as the important objects (key 
terrain, enemy units) involved. We represent 
OPFOR doctrinal strategies as directed graphs 
where nodes represent high-level goals (e.g. Defeat, 
Occupy, Observe), actions required to achieve goals 
(e.g. Move to observation point, Assemble), and 
objects (e.g. Key terrain, OPFOR units) that are 
involved. Graph edges represent the relationship 
between a goal and its associated sub-goals, as well 
as the relationship between actions the actor and the 
object of the action. By goal we mean a goal in 
space or a member of the opposing team. Although 
the notion of a goal is much richer than this, quite 
often high-level goals in team strategy can be 
described in terms of spatial goals and opposing 
team members. For example, the sub-goal assigned 
to a RED platoon in a military engagement might be 
to occupy a tactically strong position along an 
escape route in the rear of a BLUE force platoon. 
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Figure 3 Graph representation of a doctrinal strategy

 
A high level description for the goal of this platoon 
might be, to prevent the retreat of the BLUE force 
platoon. However we contend that for the purpose 
of recognizing this strategy that the spatial goal 
itself, in this case the tactically strong position, put 
in the context of is topographical relation to other 
important entities in the scenario, that is, in the rear 
of the BLUE force platoon and within weapons 
range of the RED force platoon is sufficient for 
encoding this strategy and recognizing it in the 
future. Finally, edges also represent spatial 
relationships between objects. The spatial 
relationship between is exceptional and is 
represented as a node because it relates three objects 
and as such cannot be represented as a graph edge. 
Figure 3 shows an example of the graph 
representing the doctrinal strategy described by 
Figure 8.  
 
2.1 Strategy Recognition 
 

When presented with a novel battlefield scenario, 
our system builds a Situation Graph from the 
evidence of enemy activity and disposition obtained 
from sensors. The Situation Graph has the same 
format as the Strategy Graph described in Section 
2.0. Sections 2.3 and 2.4 describe how 
heterogeneous sensor data is fused with terrain data  

and mapped to Situation Graph nodes. Sub-graph 
isomorphism using a technique from [6] is used to 
find the Strategy Graph in the database with the best 
match to the current Situation Graph. The Strategy 
Graph with the best match is simply the one with 
the most nodes and edges in common with the 
Situation Graph. The Strategy Graph with the best 
match is identified as the most likely enemy 
strategy being executed in the current scenario. 
Matched nodes in the Situation Graph which 
correspond to Key Terrain are then the best places 
to task sensors in order to refine the situation 
assessment. 
 
2.2 Artificial Potential Fields 
 
We use an Artificial Potential Field as our model of 
a tactical maneuver. Artificial potential fields have 
been used successfully in robotics [7] for path 
planning to simultaneously identify a goal for the 
robot as well as to encode local reactive behaviors. 
We use the potential field associated with a grid of 
electrical resistors configured as in Figure 4 to 
associate low-level data on enemy units with high-
level goals and reactive behavior. Each cell as 
shown in Figure 4(a) is associated with a grid cell in 
the battlefield as shown in Figure 4(b). 



 
Figure 4 Grid of resistors used to model tactical 
manuevers 
Each grid cell has eight associated resistors 
centrally tied and attached to the eight neighboring 
cells. These resistances are analogous to the 
difficulty, in tactical terms, for a unit moving 
between a grid cell and its eight neighbors. The 
following factors contribute to the tactical resistance 
of a battlefield grid position: 
 

• Canalization 
• Presence of adversary units and weapon 

systems  
• Weather 
• Terrain trafficability 
• Distance to goal 
• Concealment and Cover 
• Cultural features 
• Visibility of adversary units 

 
For a given grid cell, we associate with each of 

these n factors a resistance Ri. The net resistance of 
the eight resistors for a grid cell is then given by 
Equation 1, for details on how the aforementioned 
features are mapped into resistances see [8] 
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The weights wi then represent the importance of 
each of these influences on the resulting resistance 
for a grid cell. The last item is a factor that reduces 
the resistance of a grid cell and its coefficient in 
equation 1 is always negative. This is meant to 
capture the intuition that a unit on a reconnaissance 
mission is more likely to pass through grid cells 
with visibility on adversary units and hence such 
cells have a lower resistance for such a unit. 

We associate a spatial goal G(xg,yg) with respect 
to a maneuvering unit R(xt,yt), where (xrt,yrt) is the 
position of unit R at time t, by connecting the 
terminals of a time dependent voltage souce Vg(ta,tb) 
between grid cells (xg,yg) and (xrt,yrt). The voltage 
source is time dependent in that it turns on at time ta 

and turns off at time tb. The voltage of the voltage 
source remains constant in the range (ta<t<tb).  
 

 
Figure 5 Current flow vectors for a grid cell 
 
For a given grid cell, the resulting current flow in 
each of its eight resistors is represented by a vector 
as shown in Figure 5. The direction of the vector is 
determined by the direction of current flow in the 
resistor. The magnitude of the vector is determined 
by the magnitude of the current through the resistor. 
For each grid cell a resultant vector is calculated by 
summing these eight vectors and a field as shown in 
Figure 7 results. Following the field vectors leads to 
the Goal G(x,y). We have used this model 
successfully to determine avenues of approach and 
engagement areas in a piece of terrain [8]. Avenues 
of approach to a goal are determined by following 
the steepest field gradient to the goal. Engagement 
areas are located by finding the points along the 
aforementioned avenues that have maximum current 
flow. Figure 2 shows a comparison between a 
tactical annotation of a map done by an SME and 
one conducted by our terrain reasoning system. This 
system also identifies the Key Terrain Features that 
are input to our intent inference system as shown in 
Figure 1. Empirical evidence based on experiments 
tells us that this model captures some of the 
intuition of military tactical maneuvers [8]. 

The following summarized from [7] explains the 
equations that govern current flow through the grid 
of resistors during the aforementioned time range. 
Consider a volume V that encloses a charge Q. For a 
stationary volume with current density D and charge 
density p, Equation 2 holds. 
 

S V

dQ dI D ds p dv
dt dt

= ⋅ = − = − ⋅∫ ∫  (2) 

 
Equation 2 relates the current leaving a region with 
the current density vector through the surface. For 
steady currents charge density does not vary with 
time. Considering this, we get Equation 3 which is a 
statement of Kirchoff’s Current Law (KCL). 
 



  (3) 0
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j
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KCL tells us that the algebraic sum of the current 
entering and leaving a region is zero. Our grid of 
resistors model is a discretized version of a surface. 
As such KCL can be applied to each node of the 
resistor network. This results in a system of linear 
equations that can be solved using LU 
decomposition. We solve this system of equations 
using GNUCAP [9] an open-source circuit 
simulation program that we agentified using the 
RETSINA agent architecture [10]. 
 
2.3 Tactical Hypothesis Generation 
 

The APF concept was proposed by Khatib [11] 
as a way to directly relate high level goals and 
undesired states to low level control in robots. The 
concept has also been used successfully in target 
tracking applications [12,13]. This method 
associates an attractive potential function with goals 
in the environment and a repulsive potential 
function with obstacles. These potential functions 
then define the potential at each point in the 
environment with respect to the goals and obstacles. 
The gradient of the potential function at a point 
gives a force vector. This force vector can then be 
used directly as a control input to the robot. In this 
way, goals as well as policy for the reaction to 
objects in the environment are encoded. 
Furthermore, these equations directly link low-level 
attributes like the position and trajectory of the 
robot at points in space with its spatial goals. It 
seems reasonable that if the APF has been used 
successfully to relate high-level goals to low level 
position and velocity data for agents that the APF 
would be a good starting point for a functional form 
to encode the reverse process. That is to relate low-
level sensor estimates of OPFOR velocity and 
position to possible high-level goals. This is the 
goal of intent inference (third level fusion). 

We use the potential field model described in 
section 2.2 to relate low level position and velocity 
estimates of OPFOR units with high level spatial 
goals. This field is parameterized by 
(w1,w2,…,wn), the coefficients of the resistances 
associated with environmental influences from 
Equation 1, as well as by VG(ta,tb) the voltage 
source associated with goal G. Consider an OPFOR 
unit X. A reasonable a-priori estimate for the 
possible spatial goal of OPFOR unit X is given by 
the set: 
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where K is the set of Key Terrain Features and B is 
the set of all possible blue force aggregates.  
We associate with each Gi from this set the voltage 
VGi(t1,tn). We represent the state of unit X over the 
interval (ta,tb) by the tuple: 
 

State(X)= {VGi(ta,tb),w1,w2,…,wn} 
 
This state tuple represents a hypothesis about the 
environmental influences on the unit R. For 
example, a high voltage Vy associated with a 
prospective goal that is a RED platoon Y and a high 
coefficient of resistance wi associated with areas 
under the influence of blue units suggests that unit 
X is maneuvering to reinforce Y while avoiding 
detection by BLUE units. Conversely, a high 
voltage associated with a blue unit Z suggests that X 
is maneuvering to attack Z. Finally, a high negative 
coefficient associated with areas with a good view 
of BLUE units might suggest that X is on a 
reconnaissance mission. The types of vehicles in 
unit X would also serve to strengthen or weaken 
these hypotheses. When applied to the circuit grid 
model described in section 2.2 these state 
parameters produce a field of vectors as shown in 
Figure 7. For each of these examples we call the 
vector field associated with its respective tuple an 
influence field for the unit X.  

We expect the maneuver of unit X to be most 
consistent with the influence field associated with 
the correct tactical hypothesis about X. That is if the 
tactical maneuver hypothesis that we propose for 
State(X) is correct, then we expect the maneuver of 
X to generally follow the flow of the vectors in the 
associated influence field. Given a time series of 
position and orientation estimates for unit X 
obtained from sensors: 
{(xt1,yt1,Θ tr1),(xt2,yt2,Θ tr2),…,(xtn,ytn,Θ trn)}, 



 

 
Figure 6 Comparison of automated and SME 
tactical annotations 
 
where (x,y) is a grid position estimate and Θ  an 
orientation estimate, we can directly compare these 
estimates to the vectors in exemplar influence fields 
associated with tactical maneuver hypotheses. We 
are experimenting with several machine learning 
algorithms for regressing parameters of exemplar 
influence fields from examples of various tactical 
maneuvers provided by military subject matter 
experts. A vector in exemplar influence field f at 
grid position xf yf can be represented as (xf,yf,Θ f). 
To generate a tactical maneuver hypothesis we 
construct the vectors: 

Ox = (Θ t1, t2,…, Θ tn) Θ
And m vectors (one for each possible goal) of the 
form: 

Ofi =( f1, f2,…, fn) Θ Θ Θ
where the  in Ox are the orientation 
estimates for R on the interval (a,b) and the 

'ti sΘ

'fi sΘ are the orientations of the vectors in the 
influence field generated for prospective goal Gi 
and (xfi,yfi)=(xti,yti). A simple nearest neighbor 
selection criteria with a euclidean distance metric is 
used to pick the Ofi that is closest to Ox. The 
resulting hypothesis is then that the spatial goal of 

unit X is Gi and the tactical maneuver associated 
with exemplar f is identified as the most likely 
tactical maneuver for unit X. 
  

 
Figure 7 Vector Potential/Influence Field 
 
2.4 Spatial Relationships 
 
In many tactical maneuvers the spatial configuration 
of the goals of the component maneuvers are an 
important consideration. For example consider the 
strategy illustrated by Figure 2. The maneuver is 
directed at two adjacent military units. The first is 
defeated and this opens up a hole in the defense 
allowing a subsequent attack at the rear of the 
second unit. Consider another example of a strategy 
where a REDFOR unit A occupies a position near 
an engagement area that lies between a BLUEFOR 
unit X and a reserve BLUEFOR unit Y on the main 
avenue that connects them. This position allows 
REDFOR unit A to simultaneously cut off a route 
of support and escape. A second REDFOR unit B 
engages the main BLUEFOR unit X from the front. 
If BLUEFOR unit X attempts to retreat and 
rendezvous with unit Y then it will be attacked at 
the engagement area. This tactical scenario is 
illustrated in Figure 8. Red units are represented by 
the red ovals. A line extending from the oval 
illustrates the rear of a unit. This line also gives the 
orientation of a unit. The red box shows the location 
of an engagement area and the gray areas represent 
untrafficable terrain. There are several spatial 
relationships that are important in describing the 
aforementioned strategies. These include qualitative 



relationships such as near, adjacent, and between. 

 
Figure 8 Illustration of a doctrinal Strategy 
Like [3] we determine relationships of physical and 
visual proximity using the Voronoi diagram and it’s 
dual the Delauney triangulation. For a set of input 
points in the 2D Euclidean plane, the Voronoi 
diagram associated with those input points is a 
graph whose edges separate the plane into 
polygonal cells in such a way that there is a cell 
corresponding to each input point. Any points that 
fall within a cell associated with a given input point 
are closer to that input point than to any other input 
point. For example if we want to calculate which 
REDFOR units are near a given engagement area, 
then we form the Voronoi diagram of the centroids 
of all engagement areas and any REDFOR units 
falling within the cell associated with a given EA 
are identified as near it. We use our circuit model to 
approximate the concept between. In tactical terms 
when a military unit or a key terrain feature is 
described as being between two points, this usually 
means that it exists on an Avenue of Approach that 
links the two points. To determine if a point is 
between two other points. We connect two points in 
the terrain A and B with the terminals of the circuit, 
if a significant amount of current with respect to the 
surroundings, flows through point C then we say 
that C is between A and B.  
 
Conclusion 
 
Reliable predictions of future enemy actions based 
on the fusion of environmental information (terrain, 
weather, etc.) with sensor data, doctrine and 
historical data (third level fusion) is critical to the 
success of military operations. We are still early in 
the process of refining our models for intent 
inference and designing experiments to test their 
efficacy. However, earlier use of these models in 
our work in military terrain analysis suggests that 
they will prove effective.  
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