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Abstract— This paper describes six functional extensions to
the OneSAF Testbed Baseline (OTB) modeling and simulation
environment: (1) the addition of modules to access OTB’s terrain
database, (2) a supervised, on-line “batch-mode” interface to
OTB for running experiments, (3) the addition of virtual rea lity
(VR) agent proxies for integration with a low-cost, off-the-shelf
VR engine, (4) a two-way OTB-agent bridge for the real-time
query and control of OTB entities, (5) an unsupervised, off-line
“batch-mode” interface for automatically loading, generating,
reconfiguring, and executing experiments, and (6) the addition of
new sensor model entities. These extensions enable the integration
with OTB of C2 and multi-level information fusion algorithm s
that would not normally integrate with its event-based modeling
and simulation engine. This paper describes the system architec-
ture of the testbed and some of the research applications that
demonstrate its use.

Index Terms— C4ISR testbed, OneSAF, agent, RETSINA

I. I NTRODUCTION

In order to research and design the automation of real
world intelligence gathering, analysis and fusion systems, it
is necessary to have a test system that models uncertainty
of information, behavior, and environment. It is very difficult
and expensive, however, in terms of time, cost and labor, to
acquire such uncertainty models, let alone to develop a model
and simulation system for them, and there is always the risk
that the models that researchers create are biased towards
their own algorithms and approaches. To address the need
for such models, we have adopted the use of theOneSAF
Testbed Baseline (OTB)v1.0 [1] as a modeling and simulation
environment. Many other military simulators exist, such as
the Objective OneSAF System (OOS) and other SAFs, which
emphasize different entity behaviors in diverse environments,
yet, based on what we know of the design of such systems, we
believe that many of the same extension techniques described
in this paper can be applied to those systems, as well.

OTB models common military vehicles, aircraft, sensors and
munitions, and simulates: (a) unpredictabilities of action, (b)
conditions that serve as force multipliers, such as improved
hit and survivability rates if tanks fire in an echelon form or
from behind tree lines, and (c) information uncertainty from
the sensors that it models. It was written to be extensible in
three ways: (1) by compiling new entities, entity behaviors,
and functionalities into its code base of nearly one millionlines

of C code and over 500 software libraries [2], (2) by adding
other simulators that can communicate with it via multicast-
basedDistributed Interactive Simulation (DIS) Protocol Data
Units (PDUs)[3], and (3) through interoperability with HLA
(high-level architecture)–compliant systems. This has some
drawbacks, however, particularly in the use of OTB as a test-
bed for new algorithms forCommand, Control, Communica-
tions, Computers, Intelligence, Surveillance, Reconnaissance
(C4ISR)applications, such as: the automated performance of
multi-level Information Fusion (described in Section II),the
automated development and analysis of Courses of Action
(COAs), the automation of the Intelligence Preparation of the
Battlefield (IPB) [4] process, and the automated development
of the Modified, Combined Obstacle Overlay (MCOO) [5]
artifact. Namely, the integration of external software entities,
either directly or through HLA, requires that they be mod-
ified to be invoked through OTB’s data- and event-driven
software architecture, and many C4ISR algorithms do not
lend themselves easily to such conversions. Communication
by DIS PDUs does not effect interoperability with such
algorithms, either, since DIS PDUs are bit-encoded words that
represent a hierarchy of OTB system control, communication,
and entity state information. A Command and Control (C2)
algorithm for the automatic role assessment and assignmentof
two autonomous entities, for example, requires the exchange
of messages following a different protocol or knowledge
representation scheme that cannot map to PDUs. There are
additional problems derived from the fact that DIS packets are
transmitted via multicast, which is a stateless protocol that is
prone to high rates of packet loss and suppression by network
routers. Not only would distributed C4ISR algorithms need
to be modified to handle such transmission unreliability, but
they would also need to communicate significantly more state
information in order to be effective. Such requirements would
actually be counter to the proposed environments in which
such algorithms would be used.

The algorithms that we use for gathering, analyzing, and
fusing the information derived from OTB are written and
maintained in a non-OTB, native format. That is, the designsof
algorithms, data structures, and communication protocolsare
made with consideration of the problems that they address,
not the implementation of the specific testing environment
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Fig. 1. Agent-Based C4ISR Architecture

in which they are evaluated. This has been accomplished by
building an architecture that extends functional and logical
components of the OTB system in six ways.

Fig. 1 illustrates our extensions to OTB, implemented in the
RETSINA [6] multi-agent system, which is briefly described in
Section II, below. RETSINA was chosen for its lightweight li-
braries that can be deployed on multiple platforms and quickly
adapted to other legacy systems. The first extension (lower
left corner) is the use of the OTB CTDB (compact terrain
database) for purposes other than OTB’s internal modeling
and simulation. Information flow, indicated by the solid black
line, “Logical Connection”, is unidirectional from the CTDB
to the components that use CTDB terrain data. The entities of
Fig. 1 that receive CTDB data do not necessarily communicate
directly with each other. The module labeledTerrain Analysis
identifies work that is described in Section III. The module
labeled,Other TA Systems(Other Terrain Analysis Systems)
refers to other uses of CTDBs, such as for agent-based route
planning, or for its inclusion in a virtual reality simulation
system [7].

The second extension to OTB is indicated by the boxes of
Fig. 1 that are labeled,Line-Oriented OTB Command Batch
Interface, and Line-Oriented Commands, respectively. They
are explained in Section IV, below.

The third extension to OTB is the addition of theSAF Broker
andSAF Manageragents, which are described in Section V.
As can be seen from Fig. 1, the SAF Broker agents listen
to DIS PDUs, and then transmit them to a SAF Manager
agent, which collects and organizes the information that they
contain about any one entity for any other agent or system
that subscribes to its information updates.

The RETSINA-OTB Bridge, described in Section VI, was
a significant fourth extension to the OTB simulation environ-
ment. It enables the direct creation, addressability, and tasking
of any SAF entity. It also allows for the custom specification
of OTB tasks, and for entities’ partially-executed tasks tobe
interrupted or modified.

The fifth component of the agent- and OTB-based C4ISR
testbed is the addition of a TCP-basedBatch Control Agent

that can configure and execute experiments in OTB that are
expressed in aHigh-Level Behavior Specification. Thus, it is
possible to specify the creation of SAF entities, their task
execution orders, and to specify the termination conditions of
their task (e.g. “fight for X minutes,” or “fight until either side
sustains more than 80% losses,” etc.). We have used the Batch
Control Agent to run hundreds of unsupervised batch experi-
ment iterations in which random tank configurations (e.g. vee,
echelon right, wedge, etc.) were evaluated to determine their
effects as force multipliers.

The sixth and final component shown in Fig. 1, theX-
Sim Manager Agentsand theX-Sim Agents, illustrates how
completely novel sensor types can be added to OTB, mounted
on SAF entities, and integrated in a C2 application. The
sensors are described in Section VII.

A recurring motif of this paper is that many of the inte-
grations and extensions to OTB are with agent-based systems.
The reasons for this are discussed in Section II along with
some of the background of this work. We conclude in Section
VIII.

II. M OTIVATIONS AND BACKGROUND

Our particular motivation for having a C4ISR testbed is to
have an environment in which algorithms for multiple levelsof
information fusion can be developed and tested. Information
fusion is described in terms of functional levels by the Data
and Information Fusion Group within the Deputy Director of
Research and Engineering’s Information Systems Technology
Panel at the U.S. Department of Defense [8]. The lowest levels,
0 and 1, are concerned with the identification of individual
entities (e.g. US M1A1 tank, Krasnovian T-80 tank, etc.)
from the fusion of often low-confidence data from multiple
types of sensors. Level 2 fusion attempts to aggregate the
individual entities into larger organizational structures such
as force echelons in order to perform reasoning at the third
level of information fusion, on the expected behavior, intent,
or threat that those organizational structures may pose. Level
4 fusion is concerned with the information acquisition process
that was used throughout the lower levels, and on performing
meta-level reasoning about how that process may be adjusted
to be more accurate or use resources more efficiently in the
gathering of that intelligence.

An example of a military process that exercises all four
levels of information fusion is the Intelligence Preparation
of the Battlefield (IPB) [4], an intelligence gathering process
that begins with terrain analysis as its foundation. One of
the procedures for performing terrain analysis is a create-
and-revise process which results in theModified, Combined
Obstacle Overlay (MCOO)[5]: annotations of terrain, known
obstacle and force deployments, and the identification of likely
avenues of approach, engagment areas, and named areas of
interest.Avenues of approach (AA)are paths of relative least
resistance that a military force can take to reach an objective.
Military planners will usually identify a primary AA and
alternative, secondary AAs, when planning their missions.
Engagement areas (EAs)are usually open areas of terrain



where two opposing military forces are likely to meet and
fight. Named areas of interest (NAIs)are tactically significant
entities such as, for example, key terrain, bridges, or buildings,
the control of which would offer superior or decisive advantage
in a battle. Generating the MCOO is often a level 3 fusion
process, as it is based on general knowledge of opposing
force (OPFOR) capabilities and tactics, and on specific —
though typically incomplete — knowledge of OPFOR forces
in a commander’s sector. Once the MCOO artifacts have
been generated, military staff officers then generate worst-
case, most probable, and rarely, best-case scenarios, as time
permits, calledCourses of Action (COAs), that they then war
game, or simulate, to imagine how the COAs might evolve.
Through this human, mental simulation exercise, military staff
can determine the consistency of the information that they
gather. If information that can be critical to a scenario is
missing, the staff may request that a commander task assets
to attempt to acquire the missing information — a level 4
process.

The modeling and automation of these types of information-
fusion processes, in particular those of a goal-directed and
dynamic nature, lend themselves to solutions based on a robust
multi-agent system (MAS) such as RETSINA [6]. In MAS
research there are investigations of many properties and au-
tonomous behaviors of agents, but system-level interoperabil-
ity and autonomy are the behaviors of direct relevance to the
system described in this paper.System-level interoperabilityis
the ability to integrate multiple software systems that were
not designed to interact with each other without the need
for a human to provide the “runtime integration”. Systems
that are incapable of such automatic interoperability and that
require a human to provide the runtime integration are often
called, “stove-piped systems”.System-level autonomyis when
an agent demonstrates behaviors of seeking and attempting
to semantically interoperate with other autonomous agentsso
as to achieve its goals in light of changing environmental
conditions, such as the loss or introduction of an information
source, a change of subtasks, or to take advantage of new
services by integrating them and their outputs into a new,
meaningful sequence.Semantic interoperationrefers to the
ability of agents to collaboratively perform a task (e.g. solve
a problem, or produce a service) based on the exchange of
meaningful information, and not based on the choreographed
timing of their collective program executions.

Another reason for using MAS technology in the context
of this work is that multi-agent systems presume a common
abstract architecture of functional services that can be imple-
mented in heterogeneous ways. This facilitates the integration
of a myriad of disparate software systems and components.
These abstract architectures also guide decisions about how
components within the architecture will interface with each
other. Article [6] provides a complete explanation of these
architectures, other features, and justifications for developing
applications as multi-agent systems.

III. E XTENSIONS FORTERRAIN ANALYSIS

The first extension to OTB was to develop tools for ac-
cessing data stored in the compact terrain database (CTDB).
Terrain information adds significant context for reasoningat
information fusion levels 2, 3 and 4. CTDB terrain data repre-
sents: elevation, slopes, vegetation, soil type, surface drainage,
soil characteristics due to weather conditions, bodies of water,
and natural trenches. The algorithms to access CTDB data
typically involve some form of sampling of the terrain data,
relative prioritization of which terrain feature of a sampled cell
will be the dominant feature of the sample terrain “pixel”, and
re-estimates of the continuity of the terrain represented by the
sampled pixels. CTDB data consists of a rasterized height map
that is based on a sampling of everyN meters of terrain from
a reference map, a triangular irregular network, or polygon
mesh, adds significant elevation points at a finer resolution
than the rasterized sampling, and linear features for roads, rail
roads, rivers, tree lines, and forested areas. Accessing such
terrain data involves not only reading the GIS data in raster
format, but also accessing the linear feature vector data that is
interpreted by the OTB modeling and simulation engine. Since
CTDB terrain can be rendered at arbitrary resolutions, we first
extract the target map area at the desired resolution using a
combination of our own and OTB libraries, and then perform
the sampling on that extracted map. If a sampled terrain cell
contains multiple features, such as a river, road, and bridge,
heuristic algorithms determine the final sample terrain label.
For example, if a river is crossed by a road with a bridge,
then the terrain type of “bridge”, or “road” will be used to
represent the sample pixel. If there are two roads and a river
in the sample cell, but no bridge to connect the roads, then the
dominant terrain feature will be the river. The final processof
the terrain sampling is to unite sampled linear terrain pixels,
such as roads or rivers, into continuous terrain features sothat
they may be considered by terrain reasoning modules for the
“conduit” or “barrier” properties that they may have.

For the purposes of information fusion applications, the
ability to automatically read and process CTDB data is essen-
tial to providing context for information fusion level 2 force
aggregation and level 3 threat inferencing, and for determining
where to task assets to look for OPFOR forces (level 4).
Fig. 2 shows the results of a subject matter expert (SME)
performing the MCOO process on OTB CTDB terrain maps.
Fig. 3 illustrates an application of our extensions to OTB for
terrain analysis on the same maps: the automatic generation
of the MCOO. In both sets of maps (16km X 10km), the
analysis is for a friendly force to depart from an assembly area
(labeledAA ) in the eastern portion of the map and to take the
objective (labeledOBJ) in the western portion of the map,
with the assumption that the opposing force (OPFOR) will try
to halt the movement and lay down obstacles to try to shape
the friendly’s movements. Both friendly and OPFOR forces
are presumed to be battalion-sized for these experiments,
although the automatic terrain analysis is capable of reasoning
at platoon, company and brigade levels, as well. The automatic



(a) No known obstacles or OPFOR battle positions.(b) Known obstacles, supposed OPFOR positions.(c) Known obstacle and OPFOR battle positions.

Fig. 2. An SME’s terrain analysis. Key: double arrow — primary avenue of approach, single arrow — secondary avenue of approach, large boxes —
engagement areas, small boxes — named areas of interest, “AA” — friendly assembly area. The SME did not draw the avenues ofapproach for Fig. 2(c)
because they were the same as in Fig. 2(b).

(a) No known obstacles or OPFOR battle positions.(b) Known obstacles, unknown OPFOR positions.(c) Known obstacle and OPFOR battle positions.

Fig. 3. Output of automatic terrain analysis. Key: bright line — primary avenue of approach, outlined areas — engagementareas, “AA” — friendly assembly
area, “OBJ” — objective for friendly force.

terrain analysis algorithms worked directly with data fromthe
CTDB, creating each overlay in approximately nine minutes
on a dual-2.4GHz Intel P4 processor with 2.0 GB RAM. The
particular three-map overlay shown in Fig. 2 was produced
in a little more than 60 minutes with the SME following
speak aloud protocols, where he explained his reasoning as
he created his MCOO, an activity that parallels the actual
collaborative MCOO development process.

Not shown in Fig. 3 are the named areas of interest (NAIs)
that the algorithms can calculate. NAIs are typically chosen to
be in locations that command the best line of sight view of the
engagement areas, and that are also within range of OPFOR
direct and/or indirect fires. Considering that the automatic
terrain analysis will assign a higher priority to NAIs adjacent
to engagement areas along the primary avenue of approach, we
can effectively achieve a degree of level 4 fusion through the
reprioritization of NAIs as intelligence data enters the system.
Such intelligence data can be HUMINT (human intelligence)
from scouts or observers, or the fused output of multiple
sensors.

IV. L INE-ORIENTED OTB COMMAND BATCH INTERFACE

The “unextended” version of OneSAF has two interfaces
that can be used to place, query, and control entities. One

interface is theCommand Editor, a GUI that allows a user to
place SAF entities on its rendering of a CTDB map. The other
interface is a text-based command-line parser. This interface
allows a user to create, place, and query entities in OTB
through textual commands. This latter interface, also referred
to as the OTB debug interface, is highly interactive, processing
one human-entered command line at a time. While faster than
navigating the GUI (for an expert user), it quickly becomes
evident how tedious this interface is for effecting any complex
and non-trivial operations in OTB.

We modified the library that manages the processing of
commands through this interface to also read and write files
that contain such commands. Such files are logically indicated
in the box labeled, “Line-Oriented Commands,” in Fig. 1. The
extension is designed to poll a directory for the existence
of a file containing line-oriented commands. If the process
detects such a file, it renames the file so that it will not be
detected again, opens it for reading, and begins to execute the
commands that it contains, one line at a time. The executions
are blocking, meaning that no command line or batch file will
execute before its predecessor has completed. If one of the
commands is to query the status of an entity, then the LOOCBI
(line-oriented OTB command batch interface) will write the
status information to a file.



Fig. 4. Level 2 information fusion: recognizing echelon types and behaviors.

Since files can be created, renamed, or accessed by humans,
agents, or web services, this interface can be used to perform
rapid rudimentary batch mode experiments. While this type
of extension is fairly quick to implement and easy to learn
to use, the drawbacks of this method are that it: (1) requires
meticulous manual preparation and editing of the command
files, (2) requires the meticulous tracking of SAF entity
addition/deletion requests in order for a person or program
to know the OTB identification number of an entity, and (3)
only offers coarse-grain query and control capabilities. That
is, a command file must first finish executing before OTB will
execute another command file.

This extension has been successfully used to test the co-
ordination of three M1 tank platoons by autonomous agents
in a dynamic environment [9]. In more recent experiments,
this interface proved useful in the rapid development and
testing of algorithms for level 2 fusion, as illustrated by Fig. 4,
such as the recognition of tank platoons, companies, and their
behaviors (e.g. bounding overwatch movement) [10].

V. SAF BROKER AND SAF MANAGER AGENTS

SAF Broker agents listen to DIS PDUs that are in the
same multicast group as the OTB that transmits them. A
SAF Broker can listen to as many multiple OTB simulations
as are on a multicast channel, but cannot listen to multiple
multicast channels. Other agents, such as a SAF Manager
agent, can subscribe to SAF Broker services, and request that
the Brokers filter only PDUs that originate from a certain OTB
simulation image, or that pertain to a specific entity. If multiple
simulators produce PDUs about the same SAF entity, a SAF
Manager agent will accumulate such updates, add them to its
internal database, and forward only those updates that have
been requested by a subscribing program or agent.

Applications that use this agent system (ex. [7]) should
follow OTB expectations of performing their owndead reck-
oning, which is an extrapolated estimation of an entity’s
state until the next PDU to update its state is received. As
unsequenced, stateless UDP packets that are sent to ethernet
addresses within the same multicast group, DIS PDUs may
be lost or dropped without consequence. At the typical rate

of 30 DIS PDUs per second, even if tens of PDU packets
never reach their destination, the next packet that does will
contain all of the current state information of the simulation
environment. In a network with a high loss rate due to high
volumes of message traffic and congestion, it is expected that
the entity reading the DIS packets will perform its own dead
reckoning.

Although it was recognized that converting DIS PDU mes-
sages into TCP messages could dramatically increase network
traffic, our use of this system did not cause any perceptible
degradation of the quality of the OTB updates. We believe
that this has been because: (1) clients to the SAF Broker
typically only need to read state information for visualization
effects, and the overhead of parsing TCP messages for such
state information is enough to handle multiple messages per
millisecond, (2) since the TCP messages are generated from
transport-unreliable UDP packets, if the client needs to have
high-fidelity knowledge of entity state, it must implement
dead reckoning, anyway, and (3) because of this, the use
of dead reckoning obviates the need to improve the data
communications model of the SAF Brokers and SAF Manager.

VI. T HE RETSINA-OTB BRIDGE

The purpose of the RETSINA-OTB Bridge is to allow for
the finer-grained access and control of OTB entities and the
simulation system, itself. It was implemented by adding a
reduced (optimized for speed) C version of the RETSINA
Communicator [6] program library to OTB, and building light-
weight message processing routines to translate Communicator
messages to and from OTB events and callback registrations.
This internal library is calledlibretsina. The libretsina module
receives specially-formatted TCP messages, and dependingon
the content, dispatches the content to the appropriate OTB
event handling routine. If the message contains a query, then a
RETSINA callback is registered with the OTB event processor.
If the message contains a command or a task, then the
corresponding OTB function is registered for execution.

The RETSINA-OTB Bridge, proper, resides outside of OTB
so that it can optimize the streaming of messages to and
from libretsina in OTB. Since OTB executes as a single-
threaded process, any backups due to incoming message queue
overflows will cause a degradation of system performance.
As an external process, the Bridge can manage the message
pacing into OTB without adversely affecting its performance.
Messages leaving OTB have less of an impact on the system,
but can still reduce the accuracy of simulation of OTB if
queried too frequently.

Table I illustrates the impact of polling once and five
times per second on OTB. Zero agent updates per second
(cf. Table I) indicates that libretsina has not been registered
with the OTB event processor. These results were produced
by using the native OTB benchmark program to determine
how many entities OTB can simulate in parallel at real time
speed without OTB reporting that it is not able to “keep
up” with internal entity state updates. On a dual-2.4 GHz
processor Intel XEON computer with 2.0 GB of RAM, running



TABLE I

THE IMPACT OF THE AGENT LIBRARIES ONOTB’S PERFORMANCE.

Number of
Platoons

Number of
Entities

Threading OTB
Optimized

Agent Updates
per Second

69 276 single optimized 0

68 272 single optimized 1

66 264 single optimized 5

65 260 single no 0

65 260 single no 1

64 256 multi- no 0

63 252 multi- no 5

61 244 single no 5

60 240 multi- no 5

a multi-threaded RedHat Linux 7.1, kernel 2.4.20, connected
to the 100mbs campus ethernet network, that limit has been
around 272 M1A1 tanks, with the variations due roughly to
the complexity of the terrain and the degree of interaction
among the simulated entities. The reader should note that
OTB was designed as a single-threaded architecture, hence
its abysmal performance when multi-threading was enabled.
Many parameters can be tweaked in an attempt to tune the
performance of an OTB system, and many of these parameters
depend on the nature of the operating environment and what is
being simulated. Since most of our simulation exercises have
been at the platoon and company levels, we have typically run
the simulator with50 − 75 internal, SAF-native entities plus
another30 − 50 external SAF entities, such as the SARSim,
EOSim, GMTISim, etc. (explained in Section VII), associated
with some of the SAF-native entities, all in the same image.

Communications based on the RETSINA-OTB Bridge need
more careful considerations of the implications of transport
reliability, since both the Bridge and the TCP communication
end-point are considered to be transport reliable. While the
rate at which a TCP message can be generated and transmitted
is multiple messages per millisecond via the RETSINA-OTB
Bridge, the number of messages that the client program can
effectively process depends greatly on the type of message
processing that must be performed by the Bridge client ap-
plication. Some applications, such as one that visualizes and
animates point-to-point communications between SAF entities,
are not able to keep pace with the RETSINA-OTB Bridge
updates, and so would block the reception of further Bridge
updates until it could empty its incoming network message
queues. This blocking of the transmissions would cause the
Bridge, in turn, to block the iteration of SAF simulation cycles,
and thus OTB would appear to freeze at times. This problem
was resolved by enabling a RETSINA Communicator option
whereby input messages can be discarded if the client appli-
cation could afford to drop messages and its input message
queues were full. Other areas where performance tuning can
be effected are in adjusting the size of the message queues,
and adjusting the size of the messages. We noticed increases

in performance as: smaller messages were joined into larger
messages, their content was streamlined into a flat structure for
rapid extraction, and dead reckoning was employed by client
applications, if appropriate.

VII. S IMULATED MOUNTED SENSORS

One of our significant contributions to OTB is to add three
simulated mounted sensors,SARSim(synthetic aperture radar
simulator),EOSim(electro-optical simulator), andGMTISim
(ground moving target indicator simulator), to the simulation
environment, thereby increasing the types of surveillanceand
reconnaissance that can be performed, and augmenting the
type of level 1 fusion data that can be used for the development
of our fusion algorithms. High fidelity simulations of such sen-
sor systems exist, but they are either classified or prohibitively
expensive, and ultimately, inaccessible to a research group that
is interested in developing and testing command and control
algorithms that manage the scheduling and tasking of such
simulated platforms as a C-130, F-16, UAV, or WASM (wide-
area search munition), on which the sensors can be mounted.
Considering that multiple sensors may be mounted on the same
platform, or that some platforms may double as a munition as
well as a sensor, the command and control of these platforms
with such wide-ranging and diverse capabilities is a non-trivial
task, and using OTB for the simulation of their real world
dynamics and behaviors would allow us to investigate these
problems. The three sensor models were integrated with OTB
as external modules for better modularity, expediency and
convenience. With a code base of nearly one million lines
of code, and over 500 software libraries [2] in which entity
behavior is determined by inherited behaviors from multiple
classes, it was easier, quicker, safer, and just as effective and
scalable to integrate these sensors as external entities instead
of as internal, compiled entities. Approximate characteristics
of the sensors are described in Section VII-A, while the
integration of the three models with OTB is described in
Section VII-B, below.



A. Sensor Characteristics and Algorithms

The three sensor simulators have many characteristics in
common, so we will first describe the SARSim so as to
establish a baseline understanding. Real SAR sensors have
the capability of maintaining the same spatial resolution (i.e.
feet, meters, etc.) independent of range, although the farther
a sensor is from a target in some modes of operation, the
more prone they are to error due to atmospheric conditions.
Standoff ranges for publicly documented SAR sensors range
from 10km to 100km, and have resolutions ranging from 1
meter to less than 1 foot. For example, the SAR mounted on
a GlobalHawk UAV flying at 650 km/hr at an altitude of 65000
feet is capable of imaging an area in spotlight mode that is
100km away at a resolution of 1 foot.Integration time, or the
time that it takes the SAR to acquire an image, is roughly a
function of parameters such as: arclength, velocity, subtended
angle, angle from broadside, radar wavelength, and desired
resolution. For a platform flying at 560 km/hr, looking straight
on at its target, imaging in 1 foot resolution spotlight mode
with a 3 cm (10 GHz) radar wavelength, the time to acquire
an image is roughly 7.7 seconds. The SARSim model allows
for the setting of all of these parameters. For the purposes of
our simulations, and given that our terrain maps are typically
around 75km X 75km, we have configured the SARSim to
sense at a range of 25 km, mounted on an F-16D, flying at
around 600 km/hr. Combined with a negligible time for ATR
processing, the total integration time for scanning an areais
usually completed in 10 seconds, or less. The GMTISim has
roughly the same configurable parameters as the SARSim,
so for the purposes of our simulations, we also mount the
GMTISim on an F-16D, flying at around 600 km/hr, and
activating at a standoff range of 25 km to the target. The
standoff range for EO sensors is much shorter, so we configure
our EOSim to sense at 15 km from the target.

The three simulators interoperate with OTB by receiving
ground truth data about the OTB entities and “confusing” it
according to a sensor-specificconfusion matrixmodel. The
sensors begin by subscribing to entity updates that arrive
via DIS packets, and maintain an internal table of all such
entities and their ground truth status. When the sensor is
tasked to scan an area, and the sensor is within sensor range,
it reads the entity ID, its orientation on the ground relative
to the sensor, and then produces a list of possible target
identities with associated levels of confidence according to
its confusion matrix model. The confusion matrix does not
model the real fidelity of the sensor, as that is classified,
but it does provide a series of low-confidence estimates in
which the highest-confidence identification is not necessarily
the correct classification. Thus, it is possible for a simulated
sensor to confuse an M1 tank with a T-80 tank. So as to
produce false positives and false negatives, the sensors have
random functions that either generate entities where they do
not exist or that suppress the reporting of entities where they
do exist.
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Fig. 5. Integration of OTB, X-Sim, and the Agents

B. OTB, X-Sim and Agent Integration

X-Sim is the abstraction used to describe the architecture
that is common to the SARSim, EOSim, and GMTISim
simulators. The following is a brief summary of the steps that
are represented in Fig. 5.

An entity is created within OTB, and has an identification
number assigned to it by OTB. In this example, that number
is “1034”. (1) As soon as an entity is created in OTB, entity
state PDUs are multicast via DIS packets to all programs that
are part of the same multicast group and exercise identifier
as the OTB simulation. The X-Sim creates an entry in its
“World State” table for every entity that is created in OTB.
(2) Entity state information is transmitted to the RETSINA-
OTB Bridge via RETSINA messages, which are based on
the TCP protocol.(3) The RETSINA-OTB Bridge transmits
all entity state information messages to whichever agents are
subscribed to receive its update notifications. In Fig. 5, this
is the X-Sim Manager.(4) A System Control Agent contacts
the X-Sim Manager and issues the command to associate an
X-Sim instance (e.g. “X-Sim-1”) with a particular OTB entity
(e.g. “1034”).(5) The X-Sim Manager spawns a new thread
which creates a new RETSINA Communicator proxy with the
identity of the newly requested X-Sim instance (e.g. “X-Sim-
1”). The X-Sim Manager will route all communications for the
X-Sim entity to that proxy.(6) The X-Sim-1 proxy sends an
“install” command that notifies the X-Sim module that there
should be a new instance of a simulation model, it should be
associated with a specific OTB entity (e.g.“1034”), and thatit
will base its behavior on the simulated behavior of that specific
asset (e.g. entity “1034”).(7) Should the “install” command
be received before the X-Sim has received the DIS packet
announcing the existence of the entity, the X-Sim will reply
to the X-Sim-1 proxy that the entity was not found. The X-



Sim-1 proxy will continue to resend its “install” request after
a small delay until the X-Sim acknowledges the entity, or until
the “install” command is canceled.

(8) A Cueing Agent sends a message request to the X-Sim
Manager to scan an area. Requests are queued in the order
that they are received and assigned to the proxy of the first
available OTB asset (e.g. proxy “X-Sim-1” for entity “1034”)
without consideration of that asset’s proximity to the target
area. Requests to cancel a scan may be sent to the X-Sim
Manager.(9) At any time, a service requesting agent such
as the Information Fuser Agent, Belief Display Agent, or an
interface agent that displays the X-Sim data, can submit a
monitor query request to receive any and all notifications from
the X-Sim Manager. Those notifications will be generated by
the X-Sim sensor instances that the X-Sim Manager controls.
(10) The assigned X-Sim proxy (e.g. “X-Sim-1”) generates a
new OTB destination and path plan for its asset to travel. This
“order” is submitted to a Controller Agent which manages
the scheduling of multiple requests from other agents in the
simulation system.

(11) In parallel with the asset order, the assigned X-Sim
proxy “orders” the simulation model instance to survey the
area when the asset on which it is mounted is within the
sensor’s range.(12) The Controller Agent sends the next
scheduled task for the asset to the RETSINA-OTB Bridge.
(13) The RETSINA-OTB Bridge checks the received task for
syntactic and semantic correctness and if valid, forwards the
request to OTB. The RETSINA library within OTB interprets
and applies the task to the entity (e.g. “1034”).(14) When an
entity state PDU indicates that the asset on which the sensor
is mounted is within range of the area to scan, the sensor
simulator, “X-Sim”, “turns on” its simulation instance (e.g.
“X-Sim Id: 1”) for the duration required by that modeled
sensor to perform its task.(15) Once the sensor simulator
has completed its imaging, it sends the results back to its X-
Sim Manager proxy. If the asset on which the sensor was
mounted moved out of range before the sensor finished the
task, the sensor returns partial results, if that is what it would
do in reality, otherwise no results are returned. If the asset
on which the sensor is mounted is destroyed, then the X-Sim
Manager will delete its proxy and notify the X-Sim to delete
the simulator instance that was mounted on that asset. The
task that was assigned to the asset and sensor is also lost and
will need to be rescheduled.(16) The X-Sim Manager proxy
sends any and all results from the simulator to all agents that
are subscribed to its notification service.

VIII. C ONCLUSIONS

This paper has demonstrated the need and ability to extend
the OneSAF Testbed Baseline modeling and simulation system
into a C4ISR testbed for the research and development of
algorithms for multiple levels of information fusion, and for
the automatic command and control of military assets. We do
this via a variety of interfaces and extensions to the native
OTB platform, both through the OTB interfaces that were
intended for system expansion, and by making small but very

effective modifications and additions to the system. Some of
these small but effective modifications were the addition of
libraries to enable OTB to communicate with agent-based
systems. This permits the expansion of OTB into a system that
is highly-interoperable with a heterogeneous array of other
C4ISR components and test platforms. While the scope of
this claim is limited by our ignorance of the full range of
military operations, this notion has been bolstered informally
by favorable reviews of the work by military personnel and by
transitions of this technology to the military. Indeed, a branch
of the military has already applied some of the technology
described in this paper to a specific logistics planning problem,
and certain classified research labs have used these extensions
for range tests that integrate versions of our algorithms, control
and behavior of the actual hardware, and multiple simulated
entities. Future work will continue to refine and enhance these
interoperability components as we continue to research and
develop high-level information fusion and C2 algorithms and
test scenarios.
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