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Abstract— We present an approach for robust detection,
prediction, and avoidance of dynamic obstacles in urban en-
vironments. After detecting a dynamic obstacle, our approach
exploits structure in the environment where possible to generate
a set of likely hypotheses for the future behavior of the obstacle
and efficiently incorporates these hypotheses into the planning
process to produce safe actions. The techniques presented
are very general and can be used with a wide range of
sensors and planning algorithms. We present results from an
implementation on an autonomous passenger vehicle that has
traveled thousands of miles in populated urban environments
and won first place in the DARPA Urban Challenge.

I. INTRODUCTION

Driving in urban environments requires interacting with
other vehicles. Whether following behind a slow-moving
vehicle, coordinating to take turns with vehicles at intersec-
tions, or maneuvering around other vehicles to reach parking
spots, it is near impossible to take any voyage in a car without
being affected by another vehicle in some manner. As driver
assistance systems and autonomous vehicles become more
sophisticated, reasoning about such vehicle interactions will
become increasingly important. To do so, three capabil-
ities are required. First, other vehicles must be reliably
detected, through on-board or off-board sensors or vehicle-
to-vehicle communication. Secondly, the future behavior or
movement of these vehicles must be imparted or inferred.
And finally, this information must be used to provide safe,
intelligent courses of action for the driver assistance system
or autonomous vehicle. Although much research has been
performed in these areas, particularly for robotic systems,
current approaches fail to satisfy the requirements of general
urban driving.

For dynamic obstacle detection, the configuration of sen-
sors is dependent on the application [1]. Traditional con-
figurations for commercial driver assistance systems couple
a single sensor to a tracking model which is in turn tied
to a particular application (for instance Adaptive Cruise
Control [2]). However, driving in an urban environment with
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Fig. 1. Our autonomous vehicle “Boss” during vehicle interaction testing
in Pittsburgh, Pennsylvania.

arbitrary road shapes and open areas requires a more general
framework for modeling and tracking vehicles.

Further, no single sensor exists that fulfills the require-
ments for reliable dynamic obstacle detection in urban envi-
ronments. Strong empirical evidence of this comes from the
Urban Challenge Final Event where all of the autonomous
vehicles relied on multiple sensors in their perception sys-
tems [3]. Unfortunately, using multiple heterogenous sensors
increases the complexity of the sensor fusion task, since each
sensor has different characteristics that need to be considered
to combine their results effectively (see, for example, [4]).

For dynamic obstacle prediction, the simplest approach is
to assume that the obstacles remain in their current positions
forever and treat them as static. Existing approaches that do
treat them as moving often require perfect information about
their trajectories [5], [6] or assume they will continue along
their current heading and velocity [7], [8], [9]. However, in
practice none of these scenarios are realistic: it is unlikely we
will have accurate information from another vehicle as to its
future trajectory, nor in general will it just continue along its
current heading (or stop and sit still). Recently, researchers
have extended these approaches to incorporate a notion of
uncertainty in the future behavior of other vehicles through
probabilistic trajectory models, but these too are heavily
biased towards the vehicles continuing their exact current
behavior [10]. Sometimes, such models are the best we can
do as we have no additional information to draw upon, but
in structured environments such as roads and intersections
we can exploit this structure to generate much more realistic
predictions for the future movement of other vehicles.

Research into generating safe actions amongst moving ve-
hicles has traditionally focused on very simple environments
and simple vehicle models [11], [12], [13], or very short-
term (often instantaneous) actions [8], [9]. However, effective
driving in urban environments can require complex actions



(a) Road Structure (b) Static Obstacle Map (c) Dynamic Obstacle List

Fig. 2. Different Outputs from Perception

Fig. 3. Perception Architecture.

and non-trivial vehicle models. Further, the number of other
vehicles that must be modeled to ensure an action is safe
and reasonable can be very large and so efficient methods of
reasoning about this interaction are required.

In this paper, we describe an approach for reliable de-
tection, prediction, and avoidance of dynamic obstacles in
both on-road and unstructured areas of urban environments.
The resulting approach is robust to real-world sensor noise,
exploits structure in the environment for realistic prediction
of vehicle behavior, and ensures that selected actions are
feasible. Further, the approach is general enough to use with
a wide range of sensors, vehicle models, and path planners.
We also describe an example implementation of the approach
on “Boss”, Carnegie Mellon University’s autonomous vehicle
entry into the DARPA Urban Challenge, where it has been
employed for over 3000 kilometers of autonomous urban
driving and contributed to a first place finish in the com-
petition.

II. DYNAMIC OBSTACLE DETECTION

Boss’ perception system provides four principle pieces of
information: a vectorized road structure, a static obstacle
map, an instantaneous obstacle map and a dynamic obstacle
list. Because the dynamic obstacle list is influenced by,
and itself influences, the other perceptual outputs we briefly
describe all these components.

The road structure is a representation of the lanes and

intersections in the environment (in our case, in a vector
format – see Fig. 2(a)). This information can be obtained
from prior data (such as aerial imagery) and processed in
an offline manner or obtained through onboard perception.
In our system, we fused both sources to provide an accurate
description of the road in the vicinity of the vehicle.

Our static obstacle map representation is a two-
dimensional grid (see Fig. 2(b)). Once a dynamic obstacle list
is generated, care is taken to remove the dynamic obstacles
from this map so that they are not duplicated.

The instantaneous map is very similar to the static obstacle
map, but contains all obstacles, static and dynamic. No
distinction is made between the two classes and this map
is used for target validation in the sensor fusion system for
dynamic obstacle detection.

The dynamic obstacle list provides information about all
obstacles around the vehicle that are potentially moving.
Our dynamic obstacle detection approach represents each
dynamic obstacle by an estimation of its shape and its current
dynamic properties (see Fig. 5). While our architecture
can incorporate an arbitrary number of models, for this
application, the shape of each obstacle is one of two models:
a box model and a point model (see also [14]).

(a) Box Model (b) Point Model

Fig. 5. Different Dynamic Obstacle Shape Models.

The box model represents the shape of a vehicle while the
point model contains no shape information. The point model



Fig. 4. Detecting dynamic obstacles traveling on roads.

is used when sensor data does not support the box model
or when a box representation does not match the features
extracted from raw sensor data.

For the box model the velocity and acceleration vectors
are always parallel to the longer edge. The orientation is
described by an angle φ and an angular rate φ̇. The state
propagation equations couple the x and y coordinates via
the angle φ and angular rate φ̇ through a simple bicycle
model (see e.g. [15]). The point model is described by
two coordinates in the 2D plane and the corresponding
velocities and accelerations. For the point model, a constant
acceleration model with a gaussian noise component based
on the current direction of travel is used for state propagation
(see e.g. [16]).

The use of these fixed shape models significantly reduces
the complexity of the fusion algorithm (see [14]). In contrast
to algorithms using an adaptive or flexible shape model
these models do not necessarily represent the actual shape
of the tracked object. However, aligning the model with the
closest point to our vehicle in general gives a worst case
estimation of the position of the tracked vehicle relative to
Boss. Empirically, extensive testing showed this approach to
be sufficient for on road driving and driving in open parking
lots.

To reliably detect dynamic obstacles we use a multi-
sensor approach combining radar and laser data from dif-
ferent sensors and sensor technologies. For every sensor a
type dependent sensor module is used (see e.g. [17]). Each
sensor extracts a set of features and associated them to the
current set of dynamic obstacle hypotheses. For example,
laser scanner data is processed to extract “L” shaped corner
features that could correspond to vehicles.

Each feature is first validated by a sensor specific algo-
rithm. As an example, for features from a radar sensor, the
velocity measured by Doppler shift can be used. Next, the
features are checked against the instantaneous obstacle map
and the road shape to reject false positives (e.g. artifacts
caused by ground detections).

Remaining features are then fused into a set of box and

point dynamic obstacles. Each sensor module proposes an
interpretation of the extracted feature for the best tracking
model and a voting algorithm selects the best model for
object tracking. Fig. 4 provides an example of the approach
in action during an Urban Challenge qualification run. Here,
the first image shows the corner features extracted from
a planar laser sensor and the second image shows these
features being evaluated against the instantaneous obstacle
map (map shown in red) and the road. The third image shows
the resulting box and point object hypothesis that best explain
the sensor data.

Fig. 6. Different Dynamic Obstacle Velocity Models.

To differentiate between objects that have always been
static and may remain static (e.g. parked cars), vehicles that
have been moving but are currently stopped (e.g. cars at
an intersection), and vehicles that are currently moving, all
object hypothesis are further classified into a) Moving and
Not Moving and b) Observed Moving and Not Observed
Moving (see Fig. 6). The Moving flag is set if the object
currently has a velocity that is significantly different than
zero. The Observed Moving flag is set when the object has
been observed to be moving for a significant amount of time
and is cleared when the object has not been detected moving
for a prolonged period of time. These durations vary based
on the certainty with which the object has been classified as
moving.

The consideration of the Moving and Observed Moving
obstacle characteristics removes the need for traditional clas-



(a) Predicting future on-road behavior (b) Predicting future on-road and parking lot behavior

Fig. 7. Predicting the future behavior of other vehicles on roads and in parking lots.

sification and recognition of vehicles (see e.g. [18]). Further,
it allows the planning system the opportunity to treat each
of these obstacle classes differently. We also use these flags
to decide which of the detected obstacles should be removed
from the static obstacle map. Specifically, if an obstacle does
not have the Observed Moving flag set, we leave it in the
static obstacle map and do not treat it as a dynamic obstacle
during planning.

III. DYNAMIC OBSTACLE PREDICTION

If an obstacle has been detected as moving, it is important
to predict its future motion so that actions can be selected
that are safe through time. In general, this prediction problem
is extremely difficult, as we do not have control over these
other objects so knowing exactly where they intend to go
and how they intend to get there is impossible. However,
when these dynamic obstacles are vehicles operating in
urban environments, it is much easier to infer their likely
behavior through exploiting the structure inherent in such
environments.

The basic idea is quite simple: vehicles traveling on roads
typically follow common rules of the road. For instance,
a vehicle driving along a road is most likely to continue
driving along the road, and a vehicle at an intersection is
likely to choose to travel down one of the roads available
at the intersection. This simple idea allows us to generate
hypotheses for where a particular vehicle will travel in the
future, based on its current behavior and the structure of the
environment.

To implement this idea, we first take the detected dynamic
obstacle and its position, heading, and velocity. The box
model provides an explicit heading estimate, while the point
model provides an implicit heading based on the object’s
velocity. We then take a model of the road structure in the
vicinity of the dynamic obstacle and determine which road
lane(s) it is currently traveling in. We use the position and
heading of the dynamic obstacle to calculate what its current

offset is from that lane (i.e. whether it is currently traveling
down the center of the lane or is biased to one side). We
then hypothesize that the dynamic obstacle will continue to
travel down the lane and will likely maintain the same offset
that it currently has. However, if the dynamic obstacle is
not heading directly down the lane we predict that it will
change its heading over time to align itself with the lane.
For instance, if a vehicle is entering onto a road it is likely
it will align itself with the road.

To provide accurate predictions leading up to intersections
and stop-lines, we reason about the future speed of the
dynamic obstacle as well as its course. A dynamic obstacle
that is approaching a stop-line is predicted to slow down and
stop at the stop-line.

If a dynamic obstacle is at or approaching an intersection,
we generate multiple hypotheses of where it could go. To
do this, we calculate all the possible lanes that it could
leave the intersection from and generate hypotheses for
each of them using the above approach. Admittedly, this
provides a conservative prediction of the future behavior of
the vehicle (obviously, it could only actually travel down
one of these lanes), but because intersections are typically
prone to confusion and accidents, we feel that exhibiting
extra caution in these areas is prudent. Fig. 7(a) shows the
predicted behavior of the vehicles detected in Fig. 4.

Generating predictions for dynamic obstacles traveling on
roads is only part of the solution, however, since urban
driving also involves navigating through parking lots and
open, unstructured areas. In such scenarios, the structure
of lanes and intersections doesn’t exist and thus cannot be
exploited. Our approach in these areas is to extrapolate the
current behavior of the dynamic obstacles, similar to existing
approaches mentioned earlier.

However, rather than just using the position and velocity
of the dynamic obstacles to perform this extrapolation,
the box model allows us to also incorporate the heading
and curvature of the obstacle to provide a more accurate



Fig. 8. Following a road lane and avoiding an oncoming vehicle. Our vehicle generates a set of local trajectories down the travel lane and evaluates
each to select the best that is collision-free. The steps in the dynamic obstacle collision checking algorithm are shown performed for one of the candidate
trajectories (with the surrounding environment removed for clarity). First the worst-case bounding boxes are created for the candidate trajectory and
the dynamic obstacle trajectory. Next, since these intersect, the simple pessimistic circles are computed along the trajectories and collision-checked in
chronological order. As soon as these intersect at any time frame, the accurate vehicle polygons are collision-checked. In this case, these polygons intersect
so the candidate trajectory can be ruled out of contention. This hierarchical approach is equivalent to performing a full check involving the vehicle polygons
(shown in the second to last image). The final image shows a different candidate trajectory that does not intersect with the dynamic obstacle and is selected
for execution.

short term prediction. For the point model, which is mainly
used for dynamic obstacles that are further away from our
vehicle, the estimated heading is incorporated but curvature
is ignored. Although this prediction model is not as accurate
as the on-road model, typically the speeds employed in these
unstructured areas are much lower than those on roads, so
reacting to updated predictions is much easier and thus the
risks of collision are reduced. Fig. 7(b) shows this prediction
for a vehicle detected in a parking lot (as well as others
detected on the adjacent roads).

IV. DYNAMIC OBSTACLE AVOIDANCE
To safely avoid dynamic obstacles we rely on a motion

planner that generates a set of candidate actions for the
vehicle and selects from this set one that is collision-free
with respect to these obstacles. In our implementation each
of these actions is a dynamically-feasible trajectory that can
be directly executed by the vehicle. The length of these
trajectories varies based on the current speed of our vehicle
and is designed to ensure the vehicle could, if necessary,
come to a stop over the course of the trajectory. These trajec-
tories are generated using a model-based trajectory generator

developed by Howard and Kelly [19] that incorporates a
high-fidelity vehicle model to produce an accurate prediction
of the vehicle’s movement as it executes the trajectory. We
can then use this prediction along with our dynamic obstacle
predictions to determine whether a candidate trajectory for
our vehicle will cause a future collision with any of the
dynamic obstacles.

We perform this collision-checking efficiently using a
hierarchical approach. Given a candidate trajectory for our
vehicle and a predicted trajectory for a dynamic obsta-
cle (extended out in time to match the time duration of
the candidate trajectory), we first construct a conservative
bounding box for each trajectory. These bounding boxes
represent a pessimistic approximation of the area of the
environment the trajectories encounter. We then check to see
if these bounding boxes overlap: if they don’t, then the two
trajectories cannot intersect each other; if they do, then there
is a chance the trajectories intersect and we must continue
to investigate. We then take the two trajectories and step
along them in chronological, synchronized time. At each
time instant ti we construct a pessimistic bounding circle



of the extent of our vehicle and the dynamic obstacle and
check if these circles intersect. If we reach the end of our
trajectory without any such intersections, the two trajectories
cannot intersect each other1. If the circles intersect at some
time tk, then we construct accurate polygonal representations
of our vehicle and the dynamic obstacle at this time tk
and check if these polygons intersect. If so, the trajectories
will collide with each other and this candidate trajectory
is removed from contention. If not, we continue to step
forwards in time performing our pessimistic bounding circle
checks. We continue in this fashion until we reach the end
of the candidate trajectory.

This approach is significantly more efficient than perform-
ing the full polygonal collision-checking for every candidate
trajectory and dynamic obstacle pair, as the bounding rectan-
gle and circle checks are much less computationally expen-
sive than the polygon intersections. However, the accuracy
of the approach is identical to the accuracy of performing
full polygonal collision-checking.

Fig. 8 provides an example of the approach in action
during the Urban Challenge. In this example, the future path
of the dynamic obstacle (in green) is predicted to follow its
lane, and the centerline of our vehicle’s lane (shown in red,
second image in top row) is used to generate a set of can-
didate trajectories that follow the lane while providing local
maneuverability (candidate trajectories are shown in multiple
colors in the top-right image). Each of these trajectories is
then checked against the static and dynamic obstacles in the
environment. The steps in our hierarchical dynamic collision-
checking approach are shown in sequence.

As well as being used to rule out candidate trajectories, the
existence and predicted behavior of dynamic obstacles can
be used to modify the high-level planning of our vehicle. For
instance, in unstructured environments such as parking lots,
although there are not always lanes to provide guidance, it
is common to keep to the right (or left, in commonwealth
countries) of other vehicles. If another vehicle is detected and
predicted to interfere with some of our candidate trajectories,
we can modify the behavior of our vehicle to generate
different candidate trajectories that are offset to the right of
the other vehicle. This approach was used by our autonomous
vehicle in the Urban Challenge to produce safe, considerate
driving amongst other vehicles (both robotic and human-
driven).

V. CONCLUSION

We have described an approach for reliable detection,
prediction, and avoidance of dynamic obstacles in both on-
road and unstructured areas of urban environments. Our
approach is robust to real-world sensor noise, exploits struc-
ture in the environment for realistic prediction of vehicle
behavior, and ensures that selected actions are feasible. We
have implemented it on an autonomous passenger vehicle
and have found it to be very effective over the course of

1We assume the time-step used for stepping along the trajectories is
sufficiently small (in our case we set it to correspond to a distance of 0.2m
along the candidate trajectory)

several thousand kilometers of testing. Future research will
investigate how this approach can be adapted to commercial
driver assistance systems with a human-driven vehicle. In
particular, the approach seems well suited to intersection
assistance systems, where the road structure and features in
the environment can be used to provide prior information
for intelligent prediction. Our testing thus far has shown that
the presented collision avoidance approach can be effectively
used in these and other scenarios as an additional safety layer
below higher-level reasoning algorithms.
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