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Abstract

In this paper, we discuss the problem of how human skill can
be represented as a parametric model using a hidden Markov
model (HMM), and how an HMM-based skill model can be
used to learn human skill. HMM is feasible to characterize
two stochastic processes — measurable action and immeasurable
mental siates — which are involved in the skill learning. Based
on “the most likely performance” criterion, the best action se-
gquence can be selected from all previously measured action data
by modeling the skill as an HMM. This selection process can
be updated in real-time by feeding new action data and mod-
ifying HMM parameters. We address the implementation of
the proposed method in a teleoperation-controlled space robot.
The experimental results demonsirate the feasibility of the pro-
posed method in learning human skill and teleoperation control.
The learning is significant in eliminating sluggish motion and
correcting the motion command which the operator mistakenly
generates.

1 Introduction

Skill learning is important both to the theory of machine
intelligence and to developing an intelligent robotic system in
practice. The problem is challenging because of the lack of a
suitable mathematical model to describe human skill. Consider
the skill as a mapping: mapping stimuli onto responses. A hu-
man associates responses with stimuli, associates actions with
scenarios, labels with patterns, effects with causes. Once a hu-
man finds a mapping, intuitively he gains a skill. Therefore,
if we consider the stimuli as input and responses as output,
the skill can be viewed as a control system. This control sys-
tem, however, is nonlinear, time-variant, and non-deterministic.
Moreover, a human learns his skill through an incrementally im-
proving process. It is difficult to exactly and quantitatively de-
scribe how the information is processed and the control action is
selected during such a process. Furthermore, a human possesses
a variety of sensory organs such as eyes and ears, but a robot
has limited sensors. The environment and sensing are subject
to noises and uncertainty for a robot. These facts cause an addi-
tional difficulty and make it impossible to deal with the problem
by general mathematical models or traditional AT methods.

In this paper, we propose to use hidden Markov model
(HMM) in skill learning. The rationale can be appreciated
from the discussion of the following three issues. First, since
a human performance is inherently stochastic, for a repeatable
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task, if an operator does it many times or many operators do
the same task, and each of actions which represent the skill
can be measured, then these measurements are definitely dif-
ferent. However, these measurements represent the same skill
at the same task. Therefore, skill learning discussed in this pa-
per refers to the problem of uncovering the characteristics from
recording data which represents the nature of the skill. Second,
to model human skill we need a definition of how good the model
is. Currently there is not a systematic definition of the criterion
to measure the skill model. We propose the most likely crite-
rion as a measure of the performance. The most likely criterion
is appropriate in the sense of maximizing the expected aver-
age performance and rejecting the action noise. The concept of
the most likely performance makes it possible to use stochastic
methods to cope with uncertainties in both human performance
and environment. Third, modeling human skill and transferring
the skill to robots are two issues, and have been treated sepa-
rately. However, there is certainly a relationship between these
two issues. Therefore, it is desirable to consider these two prob-
lems as a whole and approach it with the same framework.

HMM is a doubly stochastic model which is appropriate for
the two stochastic processes that skill learning must deal with,
i.e., the mental state (or intention) which is hidden, and the
resultant action which can be measured. HMM is a parametric
model and jts parameters can be optimized by efficient algo-
rithms for the accurate estimation. Thus, it can be updated
incrementally, which is desirable for learning. Moreover, HMM
treats its observation on a symbolic level. This makes the fusion
of different sensory signals possible regardless of their physical
meanings. This fusion is appropriate considering the fact that a
human has different sensing perceptions, such as vision, contact
feeling, motion feeling, etc. HMM can represent all the training
data in a statistic sense by its parameters. This allows us to
obtain the skill model that characterizes the most likely human
performance from the measurable human actions.

In this paper, we propose HMM approach to skill learning,
and solve the modeling and transferring skill problem with the
same framework. For a given task, human performance which
represents human skill and intention is encoded by a multi-
dimensional hidden Markov model. Given the model structure
based on the knowledge of the task, the model parameters can
be optimally estimated from training data. The trained model
represents the most likely human performance and can be used
for selecting robot controlinput. We discuss the implementation
of the proposed method to skill learning in teleoperation of a
redundant space robot, Self-Mobile Space Manipulator. The
method is valuable for intelligent reliable teleoperation.



2 Problem Formulation

HMM is a doubly stochastic process with an underlying
stochastic process which is not observable, but which can be
observed through another set of stochastic processes which pro-
duce the e of observati HMM has been successfully
applied to speech recognition [1, 2, 3]. Recently it has been stud-
ied in force analysis and mobile robot path planning simulations
[4, 5}. We formulate skill learning problem using HMM in this
section. For the more detailed reference on theory, computa-
tion, and application of HMM, the readers are recommended to
refer to [2]. In this paper we consider only a discrete HMM.

The skill we consider here is human strategy which can be
measured by his actions (e.g., movement, force) to achieve a
given task. In teleoperation human operator gives commands by
a hand controller, and the robot end-effector executes the task.
The desired trajectory of the end-effector given by an operator
through a hand controller reflects the operator’s skill to perform
the task. For a given task, if we consider operator commands as
the input and end-effector trajectory as the output, this system
is in open loop, i.e., the skill to be learned here is open loop
trajectory skill. A trajectory is a finite sequence of actions. The
goal of the open loop trajectory skill learning is to model the
most likely performance from the all recorded data and select
one trajectory closest to the most likely performance. Here,
we consider the trajectory in teleoperation as the observable
stochastic process and the knowledge or strategy behind it as
the underlying stochastic process.

Consider a system which can be described at any time as
being in one of a set of N distinct states 5;,S52,...,SN, and
the states are unobservable. The actual state at time ¢ measured
from observation is denoted by g¢. When the system is in state
ge = Si, M distinct output symbols 0;,02,...,0 can be
observed.

A discrete output probability distribution, B = {bi(k)}, is
associated with each state, where

bi(k) = P[Ox at t|q: = Si,

1<i<N,1<k<M. (1)

At time ¢ + 1, the system goes to state q¢41 = S; with
transition probability aji, where

aji = Plge41 = Sjlge = Si}, 1 <4, 5 < N. (2)
The state transition coefficients have the following properties:
aji 2 0, ©)
N
E aji=1. (4)

i=1

We now discuss the unit representation problem. we would
like to use a umit that is as detailed as possible. The detailed
unit, however, needs more data and computation to estimate
the parameters. To compromise these two concerns, we can
choose the unit according to the application requirement. Un-
like speech recognition, we don't have natural units such as
words and phonemes. Task, subtask, and other artificial units
are candidates of the unit for skill learning. If a poor unit
is selected, the HMM has an ability to absorb the suboptimal
characteristics within the model parameters. If we use task as a
unit and corresponding subtasks as states. Human intention or
strategy for a given task can be represented by transition pos-
sibilities and output possibilities, and using the same model we
can learn human intention or strategy. Alternatively, we could
use more detailed unit such as subtask and combine the sub-
task models into task model when needed. Since we consider
the trajectory as observable symbols, and subtasks as states in
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Figure 1: 5-state left-right HMM

this approach, the underlying state sequence associated with the
model has the property that, as time increases, the state index
increases (or stays the same), i.e., the states proceed from left
to right. Suppose the task has m subtasks (or transitions), we
can use a n (n > m) state left-right HMM or Bakis model to
describe the task as shown in Figure 1.

The transition matrix in this case is

[ 611 612 a3 0 ‘oo 0
0 a2 0623 a24 0
0 ‘n . M . . * -'
A= 0
Gpn—2.n=-2 Gp-2n-1 Gn-2,n
. . ‘. 0 Gpn—1,n-1 Gn-—1,n
Y cee e eee Gnn |
5)

Clearly this model has fewer parameters than that of ergodic or
full connected HMMs. Furthermore, the initial state probabili-
ties have the property

«={3 ®

And the state transition coefficients of state n are specified as

i#1

i=1

ann =1,

ani=0, i< n. (7)
In order to train HMM, we need to record the all trajectories
that we want the robot to learn and convert the trajectories
into finite symbols. If we convert the continuous trajectory into
p symbols by the certain signal processing techniques, B is a
n X p matrix. HMM is trained by preprocessed data to find the
optimal parameters in A and B to best present the all training
data. The trained HMM represents the most most likely human
performance. We then can evaluate the all trajectories and find
one with the highest possibility to match the trained model.

3 Learning Skill through HMM
3.1 Multi-dimensional HMM

Generally, it is desirable to employ a multi-dimensional
HMM, in which there are more than one observable symbols at
each time t, for the skill learning. First, robot motion, or force,
is generally multi-dimensional, and thus the skill learning us-
ing motion or force measurements should be multi-dimensional.
Second, for the purpose of fusion, the skill learning must deal



with different sensory signals such as position, force, and vi-
sion. A multi-dimensional HMM provides a feasible approach
to model these signals with different physical meanings.

For the learning trajectory, the learning procedure of a multi-
dimensional HMM can be done in either Cartesian space or
in joint space. If it is done in joint space , i.e., recording
joint data and training the model in joint space, the mapping
from Cartesian space to joint space is automatically avoided.
Therefore, learning in joint space is extremely desirable for a
kinematically redundant robot, so as to avoid the requirement
of a task model and the expensive computation through opti-
mization procedures. To deal with multi-dimensional data, the
original HMM algorithms must be modified. For an R dimen-
sional HMM, in state ¢; = S;, M x R distinct output symbols
01,02,...,0 can be observed, where R is the number of the
joints and Oy = [Ok(1), Ok(2), ..., Ox(R)]. Since the trajec-
tories in each DOF are independent, the output probability can
be computed as the product of the output probability of each
dimension. To obtain an HMM, we need to compute P(O|A)
by an efficient algorithm known as the forward-backward algo-
rithm [2]. For a multi-dimensional HMM, the forward-backward
algorithm becomes:

Forward algorithm

Define the forward variable o () as

ae(i) = P(0102-+-04, St = il})
This probability can be inductively computed as follows:

®

1. Initialization:

oy (i) = mbi(01) 1<i<N. )
2. Induction:
N R
a1 = | D aedai;| [T bi0esa ),
i=1 1=1
1<t<T-1, 1<j<N, (10)
where R is the number of DOF.
3. Termination:
N
P(OR) =)~ ar(i) (1)

i=1

In a similar way, a backward variable 8;(i) can be defined

as:
Bi(8) = P(Ot410¢42--- O[S =i, }) (12)
This backward variable can be computed as follows:
Backward algorithm
1. Initialization:
Br(i)=1, 1<i<N. (13)
2. Induction:
N R
aG) = [E ai;Be41(3) | [] 4i(0eta (),
j=1 =1

t=T-1,T-2,---,1, 1<i<N. (14)

The computation complexity of B(i) is approximately same
as that of a¢(i). Either the Forward or Backward algorithm can
be used to compute P(O])).
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3.2 Learning

Using multi-dimensional HMM, the objective of learning is
to adjust the model parameters (4, B, ) to maximize the prob-
ability of the observation sequence. Our purpose is to obtain
the parameters of the model from observations. If the model pa-
rameters are known, we can compute the probabilities of an ob-
servation produced by given model parameters and then update
model parameters based on the current probabilities. These two
algorithms can be combined for solving the learning problem as
discussed below.

An iterative algorithm is used to update the model parame-
ters. Consider any model A with non-zero parameters. We first
define the posterior probability of transitions ;;, from state ¢
to state j, given the model and the observation sequence,

P(Sg = i, Sg+1 = JIO,A)

(i, j) =
R
a:(-’)a.','Hbj(Otﬂ (D)Be41(5)
1=
1 P(O)

(15)

Similarly, the posterior probability of being in state 1 at time
t, 7¢(¢), given the observation sequence and model, is defined as
P(S: =|0,))
as(3)B:(5)

N
zﬂr(")
k=1

7 (4)
(16)

T-1

Z 4¢(¢) can be interpreted as the expected (over time) number
t=1

of times that state S; is visited, or, the expected number of
transitions made from state S; if time slot ¢t = 7T is excluded
from the summation. Similarly, the summation of (i, 7) from
t=1tot=T—1 can be interpreted as the expected number
of transitions from state S; to state S;.

Using the above formulas and the concept to count event
occurrences, a new model A = (A, B,7) can then be created
to iteratively improve the old model A = (A,B, 7). A set of
reasonable reestimation formulas for m, A, and B is listed below:

T=" 17)
T-1
> wGd)
aj; = -E'f—l—, (18)
PIPBLICH)
t=1 3
Z 7(5)
i t€0(s)=v(")
k) = — , (19)
E‘vt(i)
¢
i=1,2,...R,
i=12,...N,
k=1,2,...M.

where ui'.) is the observation symbol.



Equations (17) to (19) are the extension of Baum-Welchrees-
timation algorithm [6]. It has been proven that either the initial
model A defines a critical point of the likelihood function, where
new estimates equal old ones, or will more likely produce the
given observation sequence, i.e., model X is more likely than
model )\ in the sense that P(O[)) > P(O|)).

If we repeat the above reestimation and use Xto replace }, it
is ensured that P(O|)) can be improved until a limiting point is
reached. The Baum-Welch algorithm gives the maximum like-
lihood estimate of HMM and can be used to obtain the model
which describes the most likely human performance for a given
task.

Having determined the model representing the most likely
human performance, we now look for the time sequence which
best matches the trained model, i.e., find the time sequence
with the highest P(O|)). The Forward-Backward algorithm is
employed to obtain the probability P(O])). By scoring all time
sequences, we find the time sequence which best matches the
trained HMM.

4 Skill Learning in Telerobotics

4.1 Programming System

In order to demonstrate the concept of HMM approach to
skill learning based on the most likely criterion, we developed
s programming system. The system can be used for skill learn-
ing in different tasks and in different domains, as long as the
measurement can be described in HMM. The system can serve
as a testbed to model and transfer human skill, and to verify
the concept, computation, and efficiency of the learning meth-
ods. The system is composed of the following components: The
Data Preprocessing Module converts the raw data from reading
or Simulation Module into the symbols for training and recog-
nition of HMMs. The main body of this module is the Short
Time Fourier transfarmation (STFT) and the Vector Quantiza-
tion (VQ). STFT is used to extract important features from the
observable measurements with time localization and store those
features in vectors. VQ techmique is used to map a real vector
onto a discrete symbol. The HMM Module integrates the soft-
ware of HMM such as model construction, the algorithms for
training and recognition of HMM, etc. The Simulation Module
allows one to specify parameters and conditions for simulation
study of HMM-based skill kearming. The Output Module pro-
vides simulation and experiment results.

4.2 Teleoperation Task Description

To evaluate the validity and effectiveness of the proposed
scheme, we apply the previous learning scheme to the teleop-
eration control of the Self-Mobile Space Manipulator (SM?), a
spacerobot developed at the Robotics Institute of Carnegie Mel-
lon University [8, 9] (Figure 2). SM? is a 7 DOF, 1/3-scale, lab-
oratory version of a robot which was primarily designed to walk
on the trusswork and other exterior surfaces of Space Station
Freedom, and to perform manipulation tasks which are required
for inspection, maintenance, and construction tasks. Combining
the mobility and manipulation functions in one body, SM2, as
a mobile manipulator, is capable of routine tasks such as inspec-
tion, parts transportation, object lighting, and simple assembly
procedures. The system provides assistance to astronauts and
greatly reduces the need for astronaut extra-vehicular activity
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Figure 2: SM? configuration

Figure 3: Photograph of SM? approaching an ORU
mockup

(EVA). The skill learning is one of the most crucial issues for
space robots.

The task we investigated in this paper is exchanging an Or-
bit Replaceable Unit (ORU) where an operator gives a control
command by a hand controller and the space robot receives the
command to move on the truss, find the destination, and re-
place ORU. The jaws of SM? are compatible with the handle
of the ORU mockup that we built, and the gripper contains a
motorized hex driver between its jaws to drive the hold-down
screw of the ORU mockup (see Figure 3). Gripper position (jaw
opening) is measured with a potentiometer. Actuator current
is measured to provide a rough indication of gripping force.

An ORU exchange task requires the robot to be capable of
gross motion, precise manipulation and load transporting. This
is a typical example of teleoperated robot control. Since this
is done by teleoperation, the robot performance is greatly de-
pendent on the operator’s skill and knowledge for a given task.
Sometimes the motion is efficient and smooth, whereas at other
times, the motion is slow and awkward (sluggish). This is why
we want to model the operator's skill, or performance, so that
the robot can learn the skill. Based on the skill model the robot
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Figure 4: Four typical position trajectories of ORU
exchanging in seven joints

is capable of providing smooth motion by correcting the action
or the control coonmand an operator mistakenly gives. The pur-
pose of this research is to represent this type of knowledge by
modeling the robot action measurement as an HMM, so as to al-
low the robot to learn human skill, to select the given commands
from a lnnman operator, and to provide an optimal control in-
put for execution. In the experiment, the robot end-effector
movement is mainly in Z axis. The task can be viewed as a
combination of the following subtasks: moving down; grasping
and unscrewing ORU; moving up. We taught the robot by giv-
ing the command to the robot end-effector. We recorded the
data at 40 samples per second. A total of 100 operations were
done by an operator and the corresponding trajectories of the
position and velocity in both joint space and Cartesian space
were collected. Four typical position trajectories of the task in
7 joints are shown in Figure 4 and the corresponding position
trajectories in Cartesian space (Z axis) are shown in Figure 5.
Since the mapping between Cartesian space and joint space is
not unique, although the shapes of trajectories in Cartesian
space are similar to one another, the shapes of trajectories in
joint space are very different. Figure 6 shows a velocity trajec-
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Figure 5: The corresponding four position trajectories
of ORU exchanging in the Cartesian space (Z axis)
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Figure 6: A velocity trajectory of ORU exchanging in
the Cartesian space (Z axis)

tory which can be used to learn human skill in velocity domain.

We carried out three learning experiments in this study: (1)
position trajectory learning in Cartesian space, (2) position tra-
jectory learning in joint space, (3) velocity trajectory learning
in Cartesian space. For the same experiments, the proposed
approach is applied to learn operator skill from three different
angles. Learning trajectory in Cartesian space is the most in-
tuitive, considering the human control hand by viewing hand
position with respect to destination in Cartesian space. Learn-
ing trajectory in joint space is also interesting. This study shows
that the learning can be done in joint space. Moreover, it is more
desirable to learn trajectory in joint space for a kinematically
redundant robot to avoid the one-to-many mapping. Learning
velocity trajectory demonstrates that, in some cases, it may be
more con t or more ingful to model the skill in ve-
locity domain. The velocity trajectory learning might be very
useful for a variety of autonomous systems, such as learning
driving skill for an vehicle with no driver.

We used a five state left-right HMM or Bakis model to model
the task as shown in Figure 1. Let n = 5 we can obtain the form
of transition matrix A, the initial state probabilities, and the
state transition coeflicients of state 5 from equations (5) to (7).
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Figure 7: The forward scores for No. 60 and No. 95
trajectories (--- score for No. 60, — score for No.
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5 Experiments

5.1 Learning Position Trajectory in

Cartesian Space

Because the motion of the part gripper for the action is
mainly attributed by the motion in Z axis direction, HMM
for the skill learning in Cartesian space was reduced to one-
dimensional HMM, i.e., only one symbol is observable at each
time t. This is a special case of multi-dimensional HMM. If we
let R = 1 in equations (15)-(19), we can obtain the learning
algorithms for ome-dimensional HMM.

We employed FFT and VQ techniques for pre-processing the
trajectories. The Hamming window was first used with a width
of 400 ms (16 points) in every 200 ms. FFT analysis was then
performed for every window. Finally, a set of 16-dimensional
vectors was obtained from the amplitude of FFT coefficients.
We trained the VQ codebook by those vectors and the VQ
codebook was produced by LBG [7] algorithm. The 256 vec-
tors in the codebook were the symbols in the output probabil-
ity distribution functions in our discrete HMM. An input vector
corresponded to the set of 16 32-bit floating point FFT coeffi-
cient amplitudes, and was mapped onto an 8-bit index which
represented one of 256 prototype vectors. :

The observability matrix B is a 256 X 5 matrix with each
column representing the observation probability distribution for
one state. To initialize the model parameters, we first let output
probabilities equal to 5_,!)3, where 256 is the VQ level. The tran-
sition probabilities were initialized by the uniformly distributed
random number. With these initial parameters, the Forward-
Backward algorithm was run recursively on the training data.
The Baum-Welch algorithm was used iteratively to reestimate
the parameters based on the forward and backward variables.
After each iteration, the output probability distributions are
smoothed using a floor between 0.0001 and 0.00001, and renor-
malized to meet stochastic constraints. Fifteen iterations were
run for the training processes. The Forward algorithm was used
to score each trajectory. Figure 7 shows the scores of the No.
60 and the No. 95 trajectories for each iteration. The score in-
crease indicates that the model parameters are improved. The
parameters converge after about 6 iterations. The final result
of P(O|\) versus each trajectory is given in Figure 8 where we
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Figure 8: The forward scores for all position trajecto-
ries in Cartesian space

can find that the No. 95 trajectory is the best and the No. 60
is the worst.

5.2 Learning Position Trajectory in Joint
Space

Trajectory learning also can be done in joint space by a
multi-dimensional HMM. To model the skill in joint space for
7 DOF SM?2, a 7 dimensional HMM is employed to encode hu-
man skill. For a multi-dimensional HMM, the transition matrix
A is the same as for a one-dimensional HMM. We pre-processed
the trajectories in each joint in the same way that we did for
the position trajectory learning in Cartesian space. We used a
VQ codebook for each joint and the VQ codebooks were pro-
duced by LBG algorithm. Totally there were seven 256-vector
codebooks generated by 7 x 5000 vectors. These sets of 256
vectors were the symbols in the output probability distribution
functions in our discrete HMM. An input vector corresponded
to the set of 16 32-bit floating point FFT coefficient amplitudes,
and was mapped onto an 8-bit index which represents one of 7
X 256 prototype vectors.

For output probabilities, we have seven 256 X 5 matrices with
each column representing the observation probability distribu-
tions for one state. The output probabilities were initialized
by iz and the transition probabilities were initialized by the
uniform distributed random number. With these initial param-
eters, the extended Baum-Welch algorithm was used iteratively
to reestimate the parameters according to the forward and back-
ward variables. Fifteen iterations were run for the training pro-
cesses. The Forward algorithm was used for scoring each trajec-
tory. The final result of P(O|)\) versus each trajectory is given
in Figure 9 where we find that the No. 77 trajectory is the best
and the No. 4 is the worst.

5.3 Learning Velocity in

Cartesian Space

Trajectory

The purpose of this experiment is to demonstrate that the
HMM has the ability to learn the skills in different domains
and the skills in different domains are not same for the same
task. The velocity trajectory data in Cartesian space was used
to train a 5 state one-dimensional HMM.
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The basic trainimg techmique and procedures are same as
for the previous experiments. A typical velocity trajectory is
shown in Figure 6. After pre-processing the trajectories by the
STFT and VQ techniques, we get a codebook and a series of
symbols. The structure of A matrix is the same as the previ-
ous experiments. The B matrix is a 256 X 5 matrix with each
column representing the observation probability distribution for
one state. We initialized output probabilities by 53—- The tran-
sition probabilities were initialized by the lm.iform?; distributed
random number. Twelve iterations were run for the training
processes. The Forward algorithm was used to score each tra-
jectory. The final result of P(O|)\) versus each trajectory is
given in Figure 10 where we find that the No. 49 trajectory is
the best and the No. 4 is the worst.

6 Conclusion

In this paper we presented a novel method for human skill
learning using HMM. HMM is a powerful parametric model and
is feasible to characterize two stochastic processes — the measur-
able action process and immeasurable mental states — which are
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involved in the skill learning. We formulated the learning prob-
lem as a multi-dimensional HMM and developed a programming
system which serve as a skill learning testbed for a variety of
applications. Based on “the most likely performance” criterion,
we can select the best action sequence out from all previously
measured action data by modeling the skill as HMM. This selec-
tion process can be updated in real-time by feeding new action
data and updating the HMM, and learning through this selec-
tion process.

The method provides a feasible way to abstract human skill
as a parametric model which is easily updated by new mea-
surement. It will be found useful in various other applica-
tions, besides telerobotics, such as human action recognition in
man-machine interface, coordination in anthropomorphic mas-
ter robot control, feedback learning in the system with uncer-
tainty and time-varying, and pilot skill learning for the un-
manned helicopter. By selecting different units for the measured
data and uncovering the hidden process for different problems,
the basic idea is applicable for feedback learning control which
is one of our ongoing research topics in this direction.
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