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Abstract

In this paper we discuss the dynamic coupling of a space
robot system with a free-floating base which could be a space-
craft, space station, or satellite. We formulate the dynamic
coupling factor of robot end-effector motion with respect to base
motion, and vice verse. Based on the coupling factor, we define
a measure to characterize the degree of the dynamic coupling.
The measure can be considered as a performance inder in plan-
ning robot motion, or in evaluating robot trajectory for min-
imizing base motion, or in optimizing the robot configuration
design and selecting the robot base location. We give an ezx-
ample to illustrate the computational procedure and simulation
resulis of the defined measure. We further develop a force cou-
pling factor and the corresponding measure, by which we clarify
that minimizing the base force transmission is not equivalent,
but opposing, to minimizing the base motion coupling.

1 Introduction

Robotic technology offers various potential benefits for fu-
ture space exploration [7]. The control of space robots, however,
is a challenge, especially when the robot mass and moment of
inertia are not negligible in comparison to the base (spacecraft,
space station, or satellite). Without considering the dynamic
interaction of the space robot and the base, motion of space
robots can alter the base trajectory. On the other hand, the
robot end-effector may miss the desired target due to the base
motion. This dynamic coupling causes an additional attitude
control required and thus fuel consumption when the thrust jets
are used for the base attitude control while the robot is working.
If no attitude control is applied on the base, the robot motion
must be carefully planned so as to minimize the base reaction.

Longman, Lindberg and Zadd [4] discussed the base reac-
tion force and moment computation and compensation in the
attitude control of the base. The discussion, however, is for the
space robot system with an attitude controlled base only, i.e.,
the system is free in translation but not in rotation. Chung,
Desa and deSilva [1] proposed a trajectory planning method to
minimize the base reaction force of the robot manipulator by us-
ing a kinematic redundant robot. This work, however, is limited
to a system where the base is fixed, and may not be reasonable
when the mass and moment of inertia of the remotely-controlled
robot and an additional facility, as well as the payloads may be
as large as 1/3 of the spacecraft itself. Dubowsky and Torres [2]
introduced a concept called disturbance mapping, which relates
the robot joint motion to the base attitude disturbance. They
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then applied this concept to robot motion planning in minimiz-
ing the base attitude disturbance. This work is significant in
understanding the relationship between the robot joint motion
and the resultant base rotation, and is useful in minimizing fuel
consumption for base attitude control. However, the robot task
in space is normally specified in Cartesian space (i.e., Cartesian
inertia space, or simply inertia space) of the end-effector. One
would like to know how the robot end-effector motion produces
movement, including translation and rotation, at the base.

On the other hand, the dynamic coupling may not be a dis-
advantage. Using the nonholonomic path planning method to
control robot motion, the desired attitude of the base can be
maintained as proposed by Fernandes, Gurvits and Li [3] and
Nakamura and Mukherjee [5], and the approach will be best
applied to a system with a strong dynamic coupling. There-
fore, it is more important to fully understand the coupling of
the system, rather than to minimize the coupling effect at the
beginning. To this end, & measure to characterize this dynamic
coupling, i.e., mutual dependency of robot motion and base mo-
tion, is still needed.

In this paper, we first develop a concept of the dynamic
coupling factor that represents the coupling between the robot
end-effector motion in inertia space and base motion in the
same space. Eigenvalue analysis of the coupling factor results in
the direction and relative magnitude of the maximum base (or
end-effector) motion produced by end-effector (or base) motion.
Based on the coupling factor concept, we define a measure to
describe the degree of the dynamic coupling. The measure is a
function of the robot configuration, the geometric and inertia
parameters of the robot and spacecraft, and the robot base lo-
cation with respect to the spacecraft. Thus the measure can be
considered as an optimum criterion in planning robot motion
and designing robot structure. Later, we give an example to
illustrate the computational procedure and simulation results.

In the same manner, we define the force coupling concept
that is the inverse of the motion coupling, that is, in the di-
rection of maximum force transmission, the minimum motion is
transmitted. Revealing this relationship is interesting, because
some research has been directed to minimizing the base force,
while other research has focused on minimizing the base mo-
tion disturbance, but now we see these two efforts are actually
contradictory.

2 Dynamic Coupling Factor

A space robot attached to a spacecraft on the orbit is con-
sidered to be a free-flying system in the non-gravitational envi-
ronment. The system is modeled as a set of n 4 1 rigid bodies



Figure 1: A model of a space robot system with a
free-flying base.

connected by n joints, which are numbered from 1 to n, and
the joint position vector is 4 = (¢1,92,- - ,q,.)T. Each body
is numbered from 0 to n, and the base can be named as B in
particular. The mass and inertia of ith body are denoted by m;
and I, respectively.

We define two coordinate frames, the inertia frame E 7 on
the orbit, and the base frame Z attached to the base body
with its origin at the centroid of the base. As shown in Figure
1, let R; and r; be the position vectors pointing toward the
:Entmid of ith body with referenceto ), and ) ; respectively;

en

R,=r;+Rjp (1)
where R g is the position vector pointing toward the centroid
of the base with reference to I

Let V; and §2; be linear and angular velocities of ith body
with respect to Zl; let v; and w; be that with respect to ZB'
Then we have

Q
where Vg and §1p
centroid of the base

vi+Vp+Qgxr;

wi+0p (2)
are linear and angular velocities of the
with respect to E ;» and operator " X"

represents the outer product of R® vector. The velocities in the
base frame V; and w; can be represented by

[V ] =34 ®
where J;(q) is the Jacobian of the ith body,
- Jri(q)
ao= [ @
vi = Ju(@)q (5)
wi = Ja@)q ()

In what follows, we derive the relationship between motion
rate in the inertia frame and that in the base frame. The linear
and angular momenta M; and M, are defined as

M, = Zmivs (7)
=0
M, = ZI?Q.-+m;R.»xV. (8)

=0
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where I is the inertia tensor in ©5. The centroid of the entire
system can be determined by

me = Zm.‘ 9)
=0
re = Em-‘l‘i/mc (10)
i=1
Jo = Y miduifme (11)
i=1
Considering Equations (9,10,11), Equations (7,8) yield
[Ml]z[HVV HVQ][VB]
M. H7, Haq Np
Hy, 1 O,
+[Hn:]q+[RBXM1] a2
Each block submatrix is determined by
Hyyv =m.Us € R3x3 (13)
Hyg = -m.[rcx] e w33 (14)
HVq = chc € R:h(n (15)
Hgo =) [P + mD(r)]+15 eR3  (16)
=1
Hq, = E[I.BJA.' +mi[ryx)J i) eR*™  (17)

=1

where U3 is a 3 x 3 identity matrix, and O3 is a 3 x 3 zero
matrix. The matrix functions [rx] and D(r) for a vectorr =
[rz, 7y, rz]T are defined by

0 —-rz Ty
[kx]=§ r: 0 -r: (18)
-ry Tz 0
ri4r? —rary —rers
D(r) = [ex]Tlrx)= | —rzry 2412 —ryr, (19)
—raTz —TyTz rg +r3

For the system with no attitude controlled base, and no gravita-
tional force and external forces, the linear and angular momenta
of the system are conserved. We first assume that the system is
stationary in the initial state, i.e., the total linear and angular
momenta are zero. In this case, from Equation (12), the rela-
tionship between the joint velocity and the velocity in the base
frame is
I

-1
if the matrix [ g;q ] exists. (The issues when this matrix
q

Hy,
Hoq,

I'IVV

o Hyq ]
va

o [ 02 ]

Q5 (20)

i |

does not exist, are discussed later on). The end-effector velocity
in the base frame is related to the joint velocity by

[2z]-13:]a

(21)



while the end-effector velocity in the inertia frame can be de-
termined by

Vg v+ Vp+Qpxre

Qg weg+Qp (22)
Combining these two equations, we can relate the end-effector
velocity in the inertia frame to the base velocity in the same

frame by
[X:;]:S[XE] (23)
where S— [ Us -~[rgx] ]_
O, U,
I Hy, 17 [ Hyv Hyq 0
and its irnvex's:;I :Bllt;[)nl?sﬂq ] H7, Hgaq ] 24
[%]-r(¥] e

where P is the inverse of S.

The matrices S and P characterize how robot motion alters
base motion, or vice versa, i.e., it represents the dynamic inter-
action between the robot and the base, Therefore, we call the
matrix P the dynamic coupling factor of end-effector motion
with respect to base motion, or end-to-base coupling for short,
and call the matrix S the dynamic coupling factor of base mo-
tion with respect to end-effector motion, or simply dase-to-end
coupling.

The end-to-base coupling is important for avoiding a large
disturbance movement of the base due to end-effector motion,
while the base-to-end coupling is meaningful in investigating
how robot end-effector motion is affected due to the base motion
deviation, or attitude control errors.

The concept of the dynamic coupling factor is closely related
to the generalized Jacobian matrix [6]. Using the same nota-
tion mentioned in our earlier paper [8], it is easy to obtain the
following relationship

S=NK (26)
and
P=K-'N-! (@7)
where H - H
—_ - Vg vV va
K=-[we] [w wal o

and N is the generalized Jacobian matrix. This relationship
implies that, when a manipulator is in a singular configuration,
i.e., Jacobian matrix is degraded, the coupling factor matrix is
also degraded.

When the initial velocity of the system is not zero, the con-
cept of the coupling factor is still valid to relate the two sets of
motion, but there will be an additional term in (23) and (25)
representing the constant momenta. It must also be noted that
when the number of robot joints is less than the DOF of the
base velocity that we are considering, Equation (20) does not
exist, i.e., the independent number of the equations given by
(12) is greater than the number of joints. However, in this case,
not all equations given by (22) are independent, and the number
of independent equations will be equal to the number of joints
in general. By eliminating the dependent equations in (22), and
combining the result with (20), the required equations become
available for solving the problem. When the number of joints
is greater than the DOF of the base velocity, i.e., the robot is
kinematically redundant, an unique expression of joint velocity
can not be determined by the base velocity and Equation (20)
does not exist.
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Figure 2: Geometric interpretation of the dynamic
coupling measure.

3 Maeasure of Dynamic Coupling

If we denote the end-effector velocity in the inertia frame by

X 5 and the base velocity in the same frame by X g, the ratio
of the velocity magnitude is determined by

IXsll  <PXg,PXp> < XLPTP)Xz>
Xzl <Xg, Xg> <Xg. Xg>

This relationship describes how much base motion is produced
by a given end-effector motion. If the end-effector motion is
velocity, this relationship results in an eigenvalue problem of

the matrix PTP. That is, if the end-effector velocity IIX ell is
unit, the base velocity is bounded within an ellipsoid expanded
by the eigenvectors of the matrix PTP, and the volume of the

ellipsoid is determined by 1/det(PTP) = 0107...0m, where o;
is the ith eigenvalue of the matrix PTP.
Therefore, it is rational to define

w = det(A) = det(PTP)

as the measure of the dynamic coupling factor of the space robot
system. The measure physically characterizes the degree of cou-
pling of end-effector motion with respect to base motion. In the
same way, we define

u = det(B) = det(STS) (31)

We call w the measure of end-to-base coupling, and u the mea-
sure of base-to-end coupling. The well-known geometric inter-
pretation of the eigenvalue problem can be shown in Figure 2
to illustrate the physical meaning of the measure defined. In
the direction of the eigenvector corresponding to the maximum
eigenvalue of the matrix A (or B), the maximum motion at the
base (or end-effector) will be generated by an unit end-effector
motion (or unit base motion).

The concept of the coupling measure is of significance in var-
ious practical problems. First, since the measure is a function
of robot configuration, it can be considered as a performance
index in planning robot motion for a given task, or in evalu-
ating the generated trajectory for minimizing the base motion
disturbance. Second, since the measure is determined by robot

(29)

(30)



unit circle

Figure 3: The directions in which the end-effector
movement produces maximally the same amount of
movement at the base.

geometric and inertia parameters, it can be used as an opti-
mum criterion in designing the robot structure, and the relative
mass/inertia distribution. Third, the measure is a function of
robot base location with respect to the body of a spacecraft or
space station. By giving a set of tasks, the concept proposed
here allows us to select the best location for a robot to be in-
stalled or latched.

As discussed, the magnification ratio of end-eflector motion
to base motion is bounded by

(32)

In controlling a space robot, the resultant base motion from
robot motion is usually undesirable. If we consider the move-
ment under the following condition as stable movement, i.e., the
end-effector movement produces maximally the same amount of
the movement at the base,

1Xell |
Xzl

then the direction of end-effector movement must be selected.
Figure 3 shows two dimensional case where the shadow cone
represents the allowable direction of the stable movement. The
constraint is applicable for planning robot motion in generat-
ing a desired base motion. The angle 8 in Figure 3 can be
determined by

(33)

B =tan™?! (34)

-2 2
amazamjn

Sometimes it is convenient to decompose linear motion and
angular motion. To this end, we partition the coupling factors
into four submatrices for linear motion and angular motion,
respectively.

P=[ 5l o] )
= s=[ S Sve ] )
Sav  Saa

Pyv stands for the linear velocity coupling factor of end-to-
base, and Py represents the angular velocity coupling factor
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of end-to-base. Pygq is the coupling factor of the end-effector
angular velocity with respect to the base linear velocity, while
Pqy is that of the end-effector linear velocity with respect to
the base angular velocity. The same definition can be given
for the base-to-end coupling, S. The decomposition of transla-
tion from rotation sometimes helps in easily understanding the
coupling factor in the linear motion or angular motion individ-
ually, because the importance of the coupling in linear motion
or angular motion varies with tasks. For example, translational
motion of the spacecraft is significant for rendezvous from one
orbit to another, because in this case substantial force is acting
on a spacecraft due to significant acceleration, and the effect
of robot motion on translation of the spacecraft must be mini-
mized. While for docking process, a good attitude control of a
spacecraft is more important.

Since the matrices Syy and Sqq are always square, and S
and P are mutually inverse, the following algorithm facilitates
the calculation of P from S.

Poa = (Saa - SavSy},Sva)™! (37)
Pyg=-SyvSvaPan (38)
Pov = -PqaSavSy), (39)

Pyv =87, - PvaSavSy), (40)

In the same manner, we also can calculate S from P.

It must be noted that, from Equations (23) and (25), the
elements of the matrices S and P are of different dimensions
due to linear and angular velocities involved. Therefore, the el-
ements of the matrices A and B in Equations (30) and (31) are
also of different dimensions, and this causes the lose of physical
meaning when the measures w and u are used as a performance
index in optimization. One way to obtain dimensionless ele-
ments of the matrix, say P, is to divide or multiply the subma-
trices Py and Py by the total length of the robot L, i.e.,
the new matrix P’

_ [ Plvv Plyg
P'= [ Plgv ‘an (41)
and
P'vy =Pvv, P'va=Pygy/L,
P'av=Pqv-L, Plaa=Pgq

where L = Z:;l v/a? + d?, a; and d; are D-H parameters of
link i. We also can obtain S’ from S in the same way. Then,
based on P’ and S’, we can redefine w and u.

4 An Example

Let us consider an example to better understand the concept
we discussed previously. A model of a three-link, two dimen-
sional space robot is located on the centroid of the base, as
shown in Figure 4. This is not a kinematic redundant manip-
ulator, if the three variables, (z, y, 6) at the end-eflector are
considered. The position vectors of the base, link 1, link 2, and
link 3 in the inertia frame are denoted by Ry, Ry, R; and R,
respectively, and the position vectors of link 1, link 2, link 3 in
the base frame are ry, rz, and rj.

R[] Ree[3)
R-[%] R=[R] @
n=[o =00 ] ()



Figure 4: An example of a free-flying space robot sys-
tem.

z2 lica + l2¢12 ]

= = 44

T2 [ v2 ] [ l13y + l2812 (44)
_[xa ] _ [ her+lzc1z +13c123 ] 45

s = [ y3 ] T | lis + 2812 + 138123 (45)

where c; = cos(q1), s12 = sin(q1 + ¢2), etc.
We further simplify the model by assuming l; = Iz = I3 =1
and m; = my = mj = m thereafter. The Jacobian matrices for

each link are
—lsy

0 0
I = [ ley 0 O ] (46)
_ —1(31 + 312) —Is;2 O
T2 = [ Hea+e2) ez O ] (47)
.= [ ~I(s1 + s12 + s123)  —l(s12 + 3123) —Is23 ]

L= I(c1 + c12 + c123) I(ci2 + s123) ley2a

(48)
and

JAI = [110’0] JAZ = [17110] JA3 = [1|l11] (49)

The centroid of the whole system can be determined by

me =mg + 3m (50)
Fo = —(Ty + T2 + T3) (51)
Me
Jc=mﬂ-(Ju +J 12+ J1s) (52)
Following derivations in Section 2, we have
HVV = mcUg € R2x2 (53)
+v t

Hyo=-mdrod=m [ 27270 | ew

3 3
Ho=Y L+m) (sF+4}) et (55)

=0 =1
Hy,=mJ 1+ J2 + T 1) e (56)
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Figure 5: The base-to-end coupling measure with re-
spect to the robot joint position (in degree): (a) joint
1, (b) joint 2, (c) joint 3.

3 3 3
Hg, = (Z:Ii,z I.‘,Ia)-i-z(m!li‘m-‘ci)JLi € ®1*® (57)
i=1 =2 =1

Hp=Hq —m.D(r.)= Hqg - mc(rg_, + rzy) ewrtx? (58)
Hy =Hg, — me(-ry,r=)Jc € R1x3 (59)

The manipulator parameters m are considered here: m =
50kg, I = 26kg.m?, and | = 2.5m. The base parameters are:
mo = 100kg and I = 52kg.m?. We assume the initial configura-
tion is gy = 20°, g2 = 20°, and g3 = 20°. For simplicity, we do
not use the dimensionless matrices P/ and S’. Figure 5 shows
the end-to-base coupling measure, w, with respect to the joint
position of the manipulator. When joint 1 moves while other
two joints are stationary, the measure of coupling is a constant.
The rationale behind this is that in this case the manipulator
can be viewed as a single arm rotating around the center of a
disk; the resulting effect to the disk is identical in any angular
motion of the arm. Figure 5(b) and (c) show the variation of
the coupling measure with respect to the positions of joint 2
and joint 3.

Figure 6(a) and (b) shows the base-to-end coupling measure
and end-to-base measure, with respect to the mass/inertia ra-
tio mg/m = Ig/I = p. It is interesting to note that when the
mass/inertia ratio increases, i.e., the base becomes more mas-
sive, the end-to-base coupling reduces exponentially, while the
base-to-end coupling increases almost linearly.

5 Force Coupling

The dynamic coupling factor defined previously represents
basically the coupling of motion, i.e., the interaction between
robot end-effector motion and base motion. Similarly, we also
can derive the coupling factor for force transmission from the
end-effector to the base, or vice versa.

From the Virtual Work concept, we can easily determine the
force relationship

Fg= PTF B (60)
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Figure 6: The end-to-base coupling measure (a) and
the end-to-base coupling measure (b) vary with the
mass and inertia ratio of the robot with respect to the
base.

or
Fp=P-TF; =STF; (61)
It is interesting to compare the above force coupling factor
with the motion coupling factor,

XB = PXE (62)

or . o .

XE = P_le = SXB (63)
This duality implies that, at the direction where end-effector
motion produces the minimal base motion, the force at the end-
effector is transmitted maximally to the base. In other words,
when we minimize the base motion disturbance, by carefully
planning the robot motion, or by designing feasible controller
and robot structure, we may maximize the force transmission
which is also undesirable. Especially, it is noted that some re-
searchers, such as [1], have been focusing on minimizing the
base force, while some others, such as [2], are working on mini-
mizing the base motion disturbance. Now these two approaches
are actually contradictory.

In practice, sometimes the motion coupling is more impor-
tant, while for other cases, the force coupling must be consid-
ered, depending on the tasks required, the payload to be ma-
nipulated, and working conditions of the space vehicles. For
certain tasks, it may be desirable to minimize the motion cou-
pling in certain directions, while minimizing the force coupling
in some other directions.

Based on the concept of force and motion coupling factors,
the dynamic equation of the system can be described in terms
of the base variables. By differentiating the motion coupling
factor,

iE=SXB+SXB (64)
and recalling the dynamic equation represented by the end-
effector variables [8],

Fz=HX; +BX; (65)
we obtain - .
FB=HBXB+BBXB (66)
where .
Hgp=STHS, Bjp=S7(HS+BS) (67)
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Therefore, the system dynamics and the inertia matrix can be
represented in a standard form in terms of the base variables,
i.e., the force and motion at the base. When the base vari-
ables are measurable in some applications, this representation
is useful.

6 Conclusion

We have presented formulation of the dynamic coupling fac-
tors relating robot end-effector motion to base motion, and vice
versa. Based on the concept of the coupling factor, we define
a measure to characterize the degree of the coupling. The use
of the defined measure is of significance in planning robot mo-
tion or evaluating robot trajectory for minimizing base motion,
or optimizing the robot configuration design and selecting the
robot base location. We discuss a case study to show the com-
putational procedure and simulation results. We further devel-
oped a concept of force coupling factor and its corresponding
measure by which the capability of transferring force from the
base to the robot end-effector, or vice versa, is described. The
motion and force coupling measures allow us to understand the
mutual dependency of the robot dynamics and the base, and
will be a valuable tool in the analysis, design, and planning of
a space robot system when the robot mass/inertia effect must
be considered with respect to the base.
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