
Spatio-Temporal View Interpolation

Sundar Vedula, Simon Baker, and Takeo Kanade
CMU-RI-TR-01-35

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

September 2001

(C) 2001 All rights reserved.

Abstract

We propose an algorithm for creating novel views of a non-rigidly varying dynamic event
by combining images captured from different positions, at different times. The algorithm
operates by combining images captured across space and time to compute voxel models of
the scene shape at each time instant, and dense 3D scene flow between the voxel models (the
non-rigid motion of every point in the scene). To interpolate in time the voxel models are
“flowed” using the appropriate scene flow and a smooth surface fit to the result. The novel
image is then computed by ray-casting to the surface at the intermediate time, following the
scene flow to the neighboring time instants, projecting into the input images at those times,
and finally blending the results. We use the algorithm to create re-timed slow-motion fly-by
movies of real-world events.

Keywords: Image Based Rendering, View Synthesis, Scene Flow, 3D Modeling

Contents

1 Introduction 1

2 Inputs to the Algorithm 1
2.1 Explicit 3D Models Vs. Correspondences 1
2.2 3D Voxel Models and 3D Scene Flow . 3

3 Spatio-Temporal View Interpolation 4
3.1 High-Level Overview of the Algorithm. 4
3.2 Flowing the Voxel Models . 5
3.3 Ray-Casting Across Space and Time . 5
3.4 Ray-Casting to a Smooth Surface . 7

4 Ideal Properties of the Scene Flow 9
4.1 Duplicate Voxels . 10
4.2 Results With and Without Duplicate Voxels 11

5 Re-Timed Fly-By Movies 12

6 Discussion 13

List of Figures

1 Spatio-Temporal View Interpolation Example 2
2 Inputs: Images, Voxel models, Flow. 3
3 Shape interpolated between two time instants 4
4 Ray-casting algorithm 6
5 Fitting a smooth surface to a voxel grid. 7
6 Approximating a smooth surface through voxel centers 8
7 Rendering with and without surface fitting 9
8 Effect of duplicate voxels . 10
9 Collection of frames from dancer movie 12
10 Inputs for dumbell sequence. 13
11 Rendered frames for dumbell sequence . 14

1 Introduction

We describe an algorithm for interpolating images of a non-rigidly varying dynamic
event across space and time. While there has been a large amount of research on image-
based interpolation of static scenes across space (see, for example,[Chen and Williams,
1993, Seitz and Dyer, 1996, Gortleret al., 1996, Levoy and Hanrahan, 1996, Satoet al.,
1997, Narayananet al., 1998]), there has been almost no research on re-rendering a dynamic
event across time. What work there has been has assumed a very restricted motion model.
Either the event consists of rigidly moving objects[Manning and Dyer, 1999] or point
features moving along straight lines with constant velocity[Wexler and Shashua, 2000].
Our algorithm is applicable to completely non-rigid events and uses no scene or object
specific models.

Figure 1 presents an illustrative example of this task which we callSpatio-Temporal
View Interpolation.The figure contains 4 images captured by 2 cameras at 2 different time
instants. The images on the left are captured by cameraC1, those on the right by camera
C2. The bottom 2 images are captured at the first time instant and the top 2 at the second.
Spatio-temporal view interpolation consists of combining these 4 views into a novel image
of the event at an arbitrary viewpoint and time. Although we have described spatio-temporal
view interpolation in terms of 2 images taken at 2 time instants, our algorithm applies to
an arbitrary number of images taken from an arbitrary collection of cameras spread over an
extended period of time.

Our algorithm is based on the explicit recovery of 3D scene properties. We use the 3D
voxel coloringalgorithm[Seitz and Dyer, 1999] to recover a voxel model of the scene at
each time instant, and a 3Dscene flowalgorithm[Vedulaet al., 1999] to recover the non-
rigid motion of the scene between consecutive time instants. The voxel models and scene
flow then form part of the input to our algorithm.

To generate a novel image at an intermediate viewpoint and time, the 3D voxel models at
the neighboring times are first “flowed” to estimate an interpolated scene shape at that time.
After a smooth surface has been fit to the flowed voxel model, the novel image is generated
by ray casting. Rays are projected into the scene and intersected with the interpolated scene
shape. The points at which these rays intersect the surface are used to find the corresponding
points at the neighboring times by following the scene flow forwards and backwards. The
known geometry of the scene at those times is then used to project the corresponding points
into the input images. The input images are sampled at the appropriate locations and the
results blended to generate the novel image at the intermediate space and time.

2 Inputs to the Algorithm

2.1 Explicit 3D Models Vs. Correspondences

To generate novel views of the event we need to know how the pixels in the input im-
ages are geometrically related to each other. In the various approaches to imaged-based

1

Space

T
im

e

Novel
Image I*

Camera C1

t=
t*

t=
2

t=
1

Camera C+ Camera C2

+

Figure 1:Spatio-temporal view interpolation consists of taking a collection of images of an event
captured with multiple cameras at different times and re-rendering the event at an arbitrary viewpoint
and time. In this illustrative figure, the 2 images on the left are captured with the same camera at 2
different times, and the 2 images on the right with a different camera at the same 2 time instants. The
novel image and time are shown as halfway between the cameras and time instants but are arbitrary
in our algorithm.

interpolation of static scenes across space, there are 2 common ways in which this infor-
mation is provided. First, there are algorithms that useimplicit geometric information in
the form of feature correspondences[Chen and Williams, 1993, Seitz and Dyer, 1996].
Second, there are approaches which useexplicit 3D models of the scene[Satoet al., 1997,
Narayananet al., 1998]. (Note that these references are meant to be representative rather
than comprehensive.)

We decided to base our algorithm on explicit 3D models of the scene. The primary
reason for this decision is that we would like our algorithms to be fully automatic. The
correspondences that are used in implicit rendering algorithms are generally specified by
hand. While hand-marking (sparse) correspondences might be possible in a pair of images,
it becomes an enormous task when images of a dynamic sequence are captured over time,
and from a multitude of viewing directions.

The relationship between pixelsacross timecan be described by how the points on the
surface of the scene move across time. Assuming that the scene can move in an arbitrarily

2

t=1

t=2

Voxel Models

Camera C1

Input Images 3D Scene Flow

Camera C2 Camera C3 Camera Cn S1 and S2 F1

Figure 2:The input to the spatio-temporal view interpolation algorithm is a set of calibrated images
at 2 or more consecutive time instants. From these input images, 3D voxel models are computed at
each time instant using the voxel coloring algorithm[Seitz and Dyer, 1999]. We then compute the
dense non-rigid 3D motion of points between the models using a scene flow algorithm[Vedulaet
al., 1999].

non-rigid way, the 3D motion of points is thescene flow[Vedulaet al., 1999]. We use the
combination of scene shape (represented as 3D voxel models) and 3D scene flow to relate
the pixels in the input images.

2.2 3D Voxel Models and 3D Scene Flow

Denote the time-varying sceneSt wheret = 1; : : : ; T is a set of time instants. Suppose
that the scene is imaged byN fully calibrated cameras with synchronized shutters. The
input to the algorithm is the set of imagesIti captured by camerasCi, wherei = 1; : : : ; N

andt = 1; : : : ; T . (See Figure 2 for an example set of input images.) We compute a 3D
voxel model of the scene from these images:

St = fXt
i j i = 1; : : : ; V tg (1)

for t = 1; : : : ; N and whereXt
i = (xt

i; y
t
i ; z

t
i) is one of theV t surface voxels at timet.

We compute the set of surface voxelsSt at each time instantt independently using avoxel
coloring algorithm[Seitz and Dyer, 1999]. Figure 2 illustrates the voxel models computed
for t = 1 andt = 2.

The scene flow of a voxel describes how it moves from timet to time t+ 1. If the 3D
voxelXt

i = (xt
i; y

t
i ; z

t
i) at timet moves to:

Xt
i + F t

i = (xt
i + f t

i ; y
t
i + gti ; z

t
i + ht

i) (2)

at timet + 1 its scene flow at timet is thenF t
i = (f t

i ; g
t
i ; h

t
i). We compute the scene flow

F t
i for every voxel in the modelSt at each timet using the algorithm[Vedulaet al., 1999].

Figure 2 contains the result of computing the scene flow fromt = 1 to t = 2. The inputs to

3

t =1.00 t =1.25 t =1.50 t =1.75 t =2.00

Figure 3: The scene shape between neighboring time instants can be interpolated by flowing the
voxels at timet forwards. Note how the arm of the dancer flows smoothly fromt = 1 to t = 2.

our spatio-temporal view interpolation algorithm consist of the imagesIti , the camerasCi,
the 3D voxel modelsSt, and the 3D scene flowsF t

i . (Although we do not use them in this
paper, note that algorithms have been proposed to compute voxel models and scene flow
simultaneously[Vedulaet al., 2000].)

3 Spatio-Temporal View Interpolation

3.1 High-Level Overview of the Algorithm

Suppose we want to generate a novel imageI�+ from virtual cameraC+ at time t�,
wheret � t� � t + 1. The first step is to “flow” the voxel modelsSt andSt+1 using the
scene flow to estimate an interpolated voxel modelS�. The second step consists of fitting a
smooth surface to the flowed voxel modelS�. The third step consists of ray-casting across
space and time. For each pixel(u; v) in I�+ a ray is cast into the scene and intersected
with the interpolated scene shape (the smooth surface). The scene flow is then followed
forwards and backwards in time to the neighboring time instants. The corresponding points
at those times are projected into the input images, the images sampled at the appropriate
locations, and the results blended to give the novel image pixelI�+(u; v). Spatio-temporal
view interpolation can therefore be summarized as:

1. Flow the voxel models to estimateS�.

2. Fit a smooth surface toS�.

3. Ray-cast across space and time.

We now describe these 3 steps in detail starting with Step 1. Since Step 3. is the most
important step and can be explained more easily without the complications of surface fitting,
we describe it before explaining how intersecting with a surface rather than a set of voxels
modifies the algorithm.

4

3.2 Flowing the Voxel Models

The scene shape is described by the voxelsSt at timet and the voxelsSt+1 at timet+1.
The motion of the scene is defined by the scene flowF t

i for each voxelXt
i in St. We now

describe how to interpolate the shapesSt andSt+1 using the scene flow. By comparison,
previous work on shape interpolation[Turk and O’Brien, 1999, Alexaet al., 2000] is based
solely on the shapes themselves rather than on a flow field connecting them. We assume
that the voxels move at constant speed in straight lines and so flow the voxels with the
appropriate multiple of the scene flow. Ift� is an intermediate time (t � t� � t + 1), we
interpolate the shape of the scene at timet� as:

S� = fXt
i + (t� � t)� F t

i j i = 1; : : : ; V tg (3)

i.e. we flow the voxels forwards from timet. Figure 3 contains an illustration of voxels
being flowed in this way.

Equation (3) definesS� in an asymmetric way; the voxel model at timet+1 is not even
used. Symmetry and other desirable properties of the scene flow are discussed in Section 4
after we have presented the ray-casting algorithm.

3.3 Ray-Casting Across Space and Time

Once we have interpolated the scene shape we can ray-cast across space and time to
generate the novel imageI�+. As illustrated in Figure 4, we shoot a ray out into the scene
for each pixel(u; v) in I�+ at timet� using the known geometry of cameraC+. We find the
intersection of this ray with the flowed voxel model. Suppose for now that the first voxel
intersected isXt�

i = Xt
i + (t� � t) � F t

i . (Note that we will describe a refinement of this
step in Section 3.4.)

We need to find a color for the novel pixelI�+(u; v). We cannot project the voxelXt�

i

directly into an image because there are no images at timet�. We can find the corresponding
voxelsXt

i at timet andXt+1
j = Xt

i + F t
i at timet+ 1, however. We take these voxels and

project them into the images at timet andt + 1 respectively (using the known geometry
of the camerasCi) to get multiple estimates of the color ofI�+(u; v). This projection must
respect the visibility of the voxelsXt

i at timet andXt+1
j at timet + 1 with respect to the

cameras at the respective times.
Once the multiple estimates ofI�+(u; v) have been obtained, they areblended. We just

have to decide how to weight the samples in the blend. Ideally we would like the weighting
function to satisfy the property that if the novel cameraC+ is one of the input camerasCi

and the time is one of the time instantst� = t, the algorithm should generate the input
imageIti , exactly.We refer to this requirement as thesame-view-same-imageprinciple.

There are 2 components in the weighting function, space and time. The temporal aspect
is the simpler case. We just have to ensure that whent� = t the weight of the pixels at time
t is 1 and the weight at timet + 1 is 0. We weight the pixels at timet by (t + 1) � t� and
those at timet+ 1 so that the total weight is 1; i.e. we weight the later timet� � t.

5

Time t Time t+1Time t*

Camera C2 Camera C2Camera C1 Camera C1

Camera C+

Novel Image
Pixel I*(u,v)

3c. Project
3c. Project

3b. Flow
Backwards

3b. Flow
Forwards

3d. Blend 3d. Blend

Previous Shape St Next Shape St+1Interpolated Shape S*

Xt
i Xt*

i
Xt+1

j

3a. Cast Ray
& Intersect S*

+

Figure 4: Ray-casting across space and time. 3a. A ray is shot out into the scene at timet = t�

and intersected with the flowed voxel model. (In Section 3.4 we generalize this to an intersection
with a smooth surface fit to the flowed voxels.) 3b. The scene flow is then followed forwards and
backwards in time to the neighboring time instants. 3c. The voxels at these time instants are then
projected into the images and the images sub-sampled at the appropriate locations. 3d. The resulting
samples are finally blended to giveI�+(u; v).

The spatial component is slightly more complex because there may be an arbitrary
number of cameras. The major requirement to satisfy the principle, however, is that when
C+ = Ci the weight of the other cameras is zero. This can be achieved for timet as follows.
Let �i(u; v) be the angle between the rays fromC+ andCi to the flowed voxelXt�

i at time
t�. The weight of pixel(u; v) for cameraCi is then:

1=(1 � cos �i(u; v))

Vis(t;u;v)P

j=1
1=(1 � cos �j(u; v))

(4)

whereVis(t; u; v) is the set of cameras for which the voxelXt
i is visible at timet. This

function ensures that the weight of the other cameras tends to zero asC+ approaches one
of the input cameras. It is also normalized correctly so that the total weight of all of the
visible cameras is 1.0. An equivalent definition is used for the weights at timet+ 1.

6

In summary (see also Figure 4), ray-casting across space and time consists of the fol-
lowing four steps:

3a. Intersect the(u; v) ray withSt� to get voxelXt�

i .

3b. Follow the flows to voxelsXt
i andXt+1

j .

3c. ProjectXt
i & Xt+1

j into the images at timest & t+ 1.

3d. Blend the estimates as a weighted average.

For simplicity, the description of Steps 3a. and 3b. above is in terms of voxels. We now
describe the details of these steps when we fit a smooth surface through these voxels, and
ray-cast onto it.

3.4 Ray-Casting to a Smooth Surface

Image I*
Pixel (u,v) in

Xt*
i

Dt*
i

Flowed Voxels

Figure 5: Ray-casting to a smooth surface. We intersect each cast ray with a smooth surface
interpolated through the voxel centers (rather than requiring the intersection point to be one of the
voxel centers, or boundaries.) Once the ray is intersected with the surface, the perturbation to the
point of intersectionDt�

i
can be transferred to the previous and subsequent time steps.

The ray-casting algorithm described above casts rays from the novel image onto the
model at the novel timet�, finds the corresponding voxels at timet and timet+1, and then
projects those points into the images to find a color. However, the reality is that voxels are

7

u2

Pixel Index (u)

V
ox

e
lC

o-
or

di
na

te
(xt)

u3 u4

Figure 6: The voxel coordinate changes in an abrupt manner for each pixel in the novel image.
Convolution with a simple Gaussian kernel centered on each pixel changes its corresponding 3-D
coordinate to approximate a smoothly fit surface.

just point samples of an underlying smooth surface. If we just use voxel centers, we are
bound to see cubic voxel artifacts in the final image, unless the voxels are extremely small.

The situation is illustrated in Figure 5. When a ray is cast from the pixel in the novel
image, it intersects one of the voxels. The algorithm, as described above, simply takes
this point of intersection to the be center of the voxelXt�

i . If, instead, we fit a smooth
surface to the voxel centers and intersect the cast ray with that surface, we get a slightly
perturbed pointXt�

i +Dt�
i . Assuming that the scene flow is constant within each voxel, the

corresponding point at timet is Xt
i + Dt�

i . Similarly, the corresponding point att + 1 is
Xt+1

j +Dt�
i = Xt

i +F t
i +Dt�

i . If we simply use the centers of the voxels as the intersection
points rather than the modified points, a collection of rays shot from neighboring pixels
will all end up projecting to the same points in the images, resulting in obvious box-like
artifacts.

Fitting a surface through a set of voxel centers in 3-D is complicated. However, the main
contribution of a fit surface in our case would be that it prevents the discrete jump while
moving from one voxel to a neighbor. What is really important is that the interpolation
between the coordinates of the voxels be smooth. Hence, we propose the following simple
algorithm to approximate the true surface fit. For simplicity, we explain in terms of timet�

and timet, the same arguments hold for timet+ 1.
For each pixelui in the novel image that intersects the voxelXt� , the coordinates of

the corresponding voxel at timet, Xt = (xt; yt; zt) (which then get projected into the
input images) are stored. We therefore have a 2-D array of(x; y; z) values. Figure 6 shows
the typical variation of thex component ofXt with ui. Because of the discrete nature of

8

(a) Colored Voxel Model (b) Ray-Casting With Cubic Voxels (c) Ray-Casting With Surface Fit

Figure 7:The importance of fitting a smooth surface. (a) The voxel model rendered as a collection
of voxels, where the color of each voxel is the average of the pixels that it projects to. (b) The result
of ray-casting without surface fitting. showing that the voxel model is a coarse approximation.
(c) The result of intersecting the cast ray with a surface fit through the voxel centers.

the voxels, this changes abruptly at the voxel centers, whereas, we really want it to vary
smoothly like the dotted line. Therefore, we apply a simple Gaussian operator centered at
each pixel (shown foru2, u3, andu4) to the functionxt(u) to get a new value ofx

0t

for each
pixel ui (and similarly foryt(u) andzt(u)), that approximates the true fit surface. These
perturbed valuesX

0t

= (x
0t

; y
0t

; z
0t

) for each pixel in the novel image are projected into the
input images as described earlier.[Bloomenthal and Shoemake, 1991] suggest the use of
convolution as a way to generate smooth potential surfaces from point skeletons, although
their intent is more to generate a useful representation for solid modeling operations.

Figure 7 illustrates the importance of this surface fitting step. Figure 7(a) shows the
voxel model rendered as a collection of voxels. The voxels are colored with the average of
the colors of the pixels that they project to. Figure 7(b) shows the result of ray-casting by
just using the voxel centers directly. Figure 7(c) shows the result after intersecting the cast
ray with the smooth surface. As can be seen, without the surface fitting step the rendered
images contain substantial voxel artifacts.

4 Ideal Properties of the Scene Flow

In Section 3.2 we described how to flow the voxel model forward to estimate the inter-
polated voxel modelS�. In particular, Equation (3) definesS� in an asymmetric way; the
voxel modelSt+1 at timet+ 1 is not even used. A related question is whether the interpo-
lated shape is continuous ast� ! t+ 1; i.e. in this limit, doesS� tend toSt+1? Ideally we
want this property to hold, but how do we enforce it?

One suggestion might be that the scene flow should mapone-to-onefrom St to St+1.
Then, the interpolated scene shape will definitely be continuous. The problem with this
requirement, however, is that it implies that the voxel models must contain the same number

9

of voxels at timest andt + 1. It is therefore too restrictive to be useful. For example, it
outlaws motions that cause the shape to expand or contract. The properties that we really
need are:

Inclusion: Every voxel at timet flows to a voxel at timet+ 1: i.e.8t; i Xt
i + F t

i 2 St+1.

Onto: Every voxel att+1 has a voxel att that flows to it:8t; i; 9j s:t: Xt
j +F t

j = Xt+1
i .

These properties immediately imply that the voxel model at timet flowed forward to time
t+ 1 is exactlythe voxel model at timet+ 1:

fXt
i + F t

i j i = 1; : : : ; V tg = St+1: (5)

This means that the scene shape will be continuous att + 1 as we flow the voxel model
forwards using Equation (3).

4.1 Duplicate Voxels

(a) Without Duplicate Voxels

(b) With Duplicate Voxels

Figure 8:A rendered view at an intermediate time, with and without duplicate voxels. Without the
duplicate voxels, the model at the first time does not flowonto the model at the second time. Holes
appear where the missing voxels should be. The artifacts disappear when the duplicate voxels are
added.

Is it possible to enforce these 2 conditions without the scene flow being one-to-one?
It may seem impossible because the second condition seems to imply that the number of
voxels cannot get larger ast increases. It is possible to satisfy both properties, however, if
we introduce what we callduplicate voxels. Duplicate voxels are additional voxels at time
t which flow to different points in the model att + 1; i.e. we allow 2 voxelsXt

i andXt
j

10

(i 6= j) where(xt
i; y

t
i ; z

t
i) = (xt

j ; y
t
j ; z

t
j) but yetF t

i 6= F t
j . We can then still think of a voxel

model as just a set of voxels and satisfy the 2 desirable properties above. There may just be
a number of duplicate voxels with different scene flows.

Duplicate voxels also make the formulation more symmetric. If the 2 propertiesinclu-
sion andonto hold, the flow can be inverted in the following way. For each voxel at the
second time instant there are a number of voxels at the first time instant that flow to it. For
each such voxel we can add a duplicate voxel at the second time instant with the inverse
of the flow. Since there is always at least one such voxel (onto) and every voxel flows to
some voxel at the second time (inclusion), when the flow is inverted in this way the two
properties hold for the inverse flow as well.

So, given forwards scene flow whereinclusion andonto hold, we can invert it using
duplicate voxels to get a backwards scene flow for which the properties hold also. Moreover,
the result of flowing the voxel model forwards from timet to t� with the forwards flow field
is the same as flowing the voxel model at timet + 1 backwards with the inverse flow.
We can then formulate shape interpolation symmetrically as flowing either forwards and
backwards. Whichever way the flow is performed, the result will be the same.

The scene flow algorithm[Vedulaet al., 1999] unfortunately does not guarantee either
of the 2 properties. (Developing such an algorithm is outside the scope of this paper and is
left for future research.) Therefore, we take the scene flow and modify it as little as possible
to to ensure that the 2 properties hold. First, for each voxelXt

i we find the closest voxel
in St+1 to Xt

i + F t
i and change the flowF t

i so thatXt
i flows there. Second, we take each

voxelXt+1
i at timet+ 1 that does not have a voxel flowing to it and add a duplicate voxel

at timet that flows to it by averaging the flows in neighboring voxels att+ 1.

4.2 Results With and Without Duplicate Voxels

The importance of the duplicate voxels is illustrated in Figure 8. This figure contains 2
rendered views at an intermediate time, one with duplicate voxels and one without. Without
the duplicate voxels the model at the first time instant does not flowonto the model at the
second time. When the shape is flowed forwards holes appear in the voxel model (left) and
in the rendered view (right). With the duplicate voxels the voxel model at the first time does
flow onto the model at the second time and the artifacts disappear.

The need for duplicate voxels to enforce the continuity of the scene shape is illus-
trated in the movie version of Figure 8 “duplicatevoxels.mpg” available from the first
author’s websitehttp://www.cs.cmu.edu/˜srv/stvi/results.html . This
movie consists of a sequence of frames generated using our algorithm to interpolate across
time only. (Results interpolating across space are included later.) The movie contains a
side-by-side comparison with and without duplicate voxels. Without the duplicate voxels
(right) the movie is jerky because the interpolated shape is discontinuous. With the dupli-
cate voxels (left) the movie is very smooth.

The best way to observe this effect is the play the movie several times. The first time
concentrate on the left hand side, with the duplicate voxels. The second time concentrate on

11

t=1.0 t=5.0 t=9.0 t=9.4 t=9.8 t=10.2

t=10.6

t=11.0t=11.4t=11.8t=12.2t=13.0t=14.0

Figure 9:A collection of frames from a slow-motion fly-by movie of the “dance sequence.” This
movie was created using our interpolation algorithm. Some of the inputs are included in Figure 2.
The novel camera moves along a path that first takes it towards the scene, then rotates it around the
scene, and the takes it away from the dancer. The new sequence is also re-timed to be 10 times
slower than the original camera speed. In the movie “danceflyby.mpg”, we include a side by side
comparison with the closest input image in terms of both space and time. This comparison makes
the inputs appear like a collection of snap-shots compared to the slow-motion movie.

the right hand side. Finally, play the movie one last time and study both sides at the same
time for comparison.

5 Re-Timed Fly-By Movies

We have described a spatio-temporal view interpolation algorithm that can be used to
create novel views of a non-rigidly varying dynamic event from arbitrary viewpoints and at
any time during the event. We have used this algorithm to generate re-timed slow-motion
fly-by movies of real events. The camera can be moved on an arbitrary path through the
scene and the event slowed down to any speed.

The input images, computed shapes and scene flows, and fly-by movies created using
the spatio-temporal view interpolation algorithm are available online from the first authors
website:http://www.cs.cmu.edu/˜srv/stvi/results.html .

The first movie, “danceflyby.mpg” is a fly-by movie of the “dancer sequence” that we
have been using throughout this paper. Some of the inputs are included in Figure 2 as well
as two voxel models and one of the scene flows.

In the sequence a dancer turns, uncrossing her legs, and raising her arm. The input to the
algorithm consists of 15 frames from each of 17 cameras. The path of the camera is initially

12

Voxel Model at t=1

t=1

t=2

Camera C1 Camera C2

Example Input Images 3D Scene Flow at t=1

Figure 10: Some of the input images, and an example voxel model and scene flow used for the
“dumbell” sequence.

towards the scene, then rotates around the dancer and then moves away. Watch the floor to
get a good idea of the camera motion. We interpolate 9 times between each neighboring
pair of frames. In the movie “danceflyby.mpg” we show both the slow-motion fly-by and,
beside it, the closest input frame in terms of both space and time. Notice how the inputs
look like a collection of snap-shots, whereas the fly-by is a smooth re-creation of the event.
Figure 9 shows a few sample frames from this movie.

The movie “dumbellretimed.mpg” shows a re-timed slow-motion movie of a man lift-
ing a pair of dumbells. Figure 10 shows some input images (9 frames from 14 cameras
were used), and also an example voxel model and scene flow. Some of the motion in this
sequence is highly non-rigid, notice the shirt in particular. To better illustrate this motion
in the movie, we leave the novel viewpoint fixed in space. Figure 11 shows some of the
sample frames from this re-timed movie sequence.

6 Discussion

We have described a spatio-temporal view interpolation algorithm for creating novel
images of a non-rigidly varying dynamic event across both space and time. We have demon-
strated how this algorithm can be used to generate very smooth, slow-motion fly-by movies
of the event.

We have also addressed the question of what the desirable properties of a 3-D scene flow
field are.We have shown that by introducing duplicate voxels we can enforce the constraint
that the result of flowing the model forward from timet is exactly the model att+1, but yet
without any constraints on the number of voxels at the two time instants. At present there is
no scene flow algorithm that sets out to compute a flow field with the 2 properties introduced
in Section 4. Developing such an algorithm is a suitable topic for future research.

13

t=2.5
t=3.2

t=1.0

t=3.0
t=2.0

t=3.4

t=3.8 t=3.6

t=1.5

t=4.0t=5.0t=6.0t=8.0

Figure 11:A collection of frames from the re-timed slow motion movie “dumbellretimed.mpg”
of the “dumbell” sequence. Notice the complex non-rigid motion of the shirt and the articulated
motion of the arms.

References

[Alexaet al., 2000] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape
interpolation. InProc. of SIGGRAPH, pages 157–164, 2000.

[Bloomenthal and Shoemake, 1991] Jules Bloomenthal and Ken Shoemake. Convolution
surfaces. InComputer Graphics, Annual Conference Series (Proc. SIGGRAPH), pages
251–256, 1991.

[Chen and Williams, 1993] S.E. Chen and L. Williams. View interpolation for image syn-
thesis. InProc. of SIGGRAPH, pages 279–288, 1993.

[Gortleret al., 1996] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The lumi-
graph. InProc. of SIGGRAPH, pages 43–54, 1996.

[Levoy and Hanrahan, 1996] M. Levoy and M. Hanrahan. Light field rendering. InProc.
of SIGGRAPH, 1996.

[Manning and Dyer, 1999] R.A. Manning and C.R. Dyer. Interpolating view and scene
motion by dynamic view morphing. InProc. of CVPR, pages 388–394, 1999.

[Narayananet al., 1998] P.J Narayanan, P.W. Rander, and T. Kanade. Constructing virtual
worlds using dense stereo. InProc. of ICCV, pages 3–10, 1998.

[Satoet al., 1997] Y. Sato, M. Wheeler, and K. Ikeuchi. Object shape and reflectance mod-
eling from observation. InProc. of SIGGRAPH, pages 379 – 387, 1997.

[Seitz and Dyer, 1996] S.M. Seitz and C.R. Dyer. View morphing. InProc. of SIGGRAPH,
pages 21–30, 1996.

14

[Seitz and Dyer, 1999] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by
voxel coloring.Intl. Journal of Computer Vision, 35(2):151–173, 1999.

[Turk and O’Brien, 1999] G. Turk and J.F. O’Brien. Shape transformation using varia-
tional implicit functions. InProc. of SIGGRAPH, pages 335–342, 1999.

[Vedulaet al., 1999] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-
dimensional scene flow. InProc. of ICCV, volume 2, pages 722–729, 1999.

[Vedulaet al., 2000] S. Vedula, S. Baker, S.M. Seitz, and T. Kanade. Shape and motion
carving in 6D. InProc. of CVPR, volume 2, pages 592–598, 2000.

[Wexler and Shashua, 2000] Y. Wexler and A. Shashua. On the synthesis of dynamic
scenes from reference views. InProc. of CVPR, volume 1, pages 576–581, 2000.

15

