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Abstract

We present a novel application of the Expectation-
Maximization algorithm to the global analysis of articu-
lated motion. The approach utilizes a kinematic model to
constrain the motion estimates, producing a segmentation
of the flow field into parts with different articulated motions.
Experiments with synthetic and real images are described.

1. Introduction
Motion is an important cue for the detection and recogni-
tion of humans and their actions in video. Few objects in the
world move the way people do. An algorithm capable of de-
tecting the presence of human motion in a sequence of im-
ages would complement existing detection schemes based
on faces [17] and color and form cues [5], and make robust
person-detection possible. Such a system would have appli-
cations in user-interfaces [13], surveillance, and video in-
dexing. Previous work on human motion detection and clas-
sification has relied on special properties of fronto-parallel
walking motion [9] or on the reliable estimation of global
translation prior to articulated motion analysis [10]. In con-
trast, our goal is to exploit the known kinematics of the body
to detect moving figures under all viewing conditions and in
the absence of any additional segmentation information.
Our approach is based on the Expectation-Maximization
(EM) algorithm, which provides a means for simultane-
ously segmenting measurements into a set of models and es-
timating the model parameters. Recently, the EM algorithm
has been successfully used for segmenting optical flow into
independent rigid body motion models. We extend this re-
sult to the case of articulated motion analysis for human fig-
ures, and show its connection to related work on articulated
object tracking. The output of our algorithm is a segmen-
tation of the motion field into parts corresponding to differ-
ent amounts of articulated motion, along with an estimation
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of the overall motion of each part. This representation is
“tuned” to the structure inherent in human motion, and we
expect it to be a useful representation for motion-based de-
tection and classification.

2. Motion Analysis and EM

The first application of Expectation-Maximization (EM)
to motion analysis, in [6], addressed the segmentation of
an optical flow field into independent rigid motions. The
flow field was assumed to consist of multiple regions cor-
responding to independently moving surfaces in the scene.
The flow in each region was described by a parametric
model, such as affine flow. This flow model approximates
with a small number of parameters the overall flow of a
rigidly-moving surface of arbitrary shape [1, 15]. Paramet-
ric flow estimates can be computed more reliably than lo-
cal flow, which is often noisy and under-constrained. This
in turn enables a higher quality motion-based segmentation
than purely local flow can support. The difficulty is that nei-
ther the correct segmentation nor the motion estimates are
known prior to analysis.

The EM algorithm makes it possible to overcome the
interdependency between segmentation and motion estima-
tion. It is based on a general statistical framework for es-
timating model parameters from incomplete, or missing,
data [4]. In the case of motion analysis the missing data
is the segmentation which assigns each image measurement
(pixel) to a motion model. Given this segmentation infor-
mation, the motion model parameters can be estimated us-
ing standard least squares techniques [8].

It is convenient to assume that the family of motion
models takes the form of a Gaussian mixture density [11].
This means that each image measurement is drawn inde-
pendently from a Gaussian distribution whose mean is a
function of the motion model parameters [6, 19]. We let
R, (P, z,y) denote the measurement deviation, or resid-
ual, at pixel (z, y) with respect to model m whose motion
is described by parameters P. The total likelihood for a



measurement at (z, y) can be written:
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The variance 2 controls the softness of the partition, while
the mixture probabilities g (z,y) describe the likelihood
of assigning a measurement at (z, y) to model m. The EM
algorithm for motion estimation using mixture models con-
sists of two steps:

Expectation Step (E-Step): The mixture parameters are
updated using the current estimate of the motion pa-
rameters and the image measurements. This step com-
putes the conditional likelithood of each pixel originat-
ing from each motion model, as measured by the resid-
ual error associated with that assignment. It can be
written as
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where p,, represents the prior probability of assigning
a measurement to model m.

Maximization Step (M-Step): The motion parameters are
estimated given the soft assignment of pixels to mo-
tion models provided by the mixture parameters. The
maximum-likelihood estimator for each flow model
selects the parameters that minimize the residual error
weighted by the segmentation. It can be written as

P = argmin E dm (IC, y)Rzn(P7 Z, y)a (2)
P
(z,v)

where P is the vector of parameters for model m. Note
that in this minimization R, (P, z,y) is treated as a
function of P, while g, (z,y) (which implicitly de-
pends on P) is held constant. Also note that because
each model is independent of the others, their parame-
ters can be optimized separately.

Convergence results for the EM algorithm {4] guarantee
that iteration of alternating E- and M-steps will cause the
overall likelihood of the measured data given the parame-
ters to increase. EM is therefore a gradient-based algorithm,
and is subject to the usual pitfalls, such as convergence to
local rather than global maxima. In practice, however, the
EM algorithm exhibits good performance on a wide vari-
ety of problems from speech recognition to medical image
segmentation. In addition, it is straightforward to incorpo-
rate robust statistical techniques [6] and a spatial coherence
constraint [19] into the basic EM framework.

In order to extend the EM framework for rigid motion
segmentation to the articulated case we must specify a mo-
tion model which defines the effect of the model parame-
ters on the image measurements, and a segmentation model
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which describes the mapping between image and model.
While the rigid motion algorithm could in principle be ap-
plied directly to figure analysis, we will show that incor-
porating the kinematic constraints into the motion model
makes it possible to dramatically reduce the number of pa-
rameters and at the same time improve the value of the re-
sulting segmentation.

3. An EM Algorithm for Articulated Motion

We model the human figure as an articulated object
which is composed of rigid links connected by joints. Given
a point on one of the links, the kinematic model can be used
to compute the motion of that point in the image. If the link
appearance is modeled by a texture-mapped plane, a simple
motion model can be derived which expresses pixel motion
in terms of joint angles [12]. The corresponding segmenta-
tion model assigns pixels to the link in the kinematic chain
where their motion originates. We will demonstrate that this
model, which was originally developed for object tracking,
can be incorporated directly into the framework of Equa-
tions 1 and 2.

3.1. Articulated Motion Models

We can model the motion of pixels between two images
by a deformation function, F(P,z,y), which maps pixel
coordinates in the first image into the second as a function of
the motion parameter vector P. The motion parameters can
be estimated by minimizing the residual intensity difference
between corresponding pixels, which can be written as
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where the summation takes place over the segmented pix-
els for the motion model. In the previous EM formulation,
the mixture model might consist of a set of affine deforma-
tions, each with six motion parameters (see [15] for details).
Alternative residual measures based on fitting optical flow
data are also possible, but our method has the advantage of
applying motion constraints directly to the pixel data.

Each link in the kinematic model has a separate defor-
mation function which describes the effect of its motion on
the image. An arm model, for example, might consist of an
upper and lower link. The motion parameters for the defor-
mation are the degrees of freedom of the link’s kinematic
chain, which are described using the Denavit-Hartenberg
notation commonly employed in robotics [18]. Each link
in the chain is attached either to the base or to another link.
A link m has a local coordinate frame which is specified by



a rigid transformation, Ty, relative to its connecting link in
the chain. The three-dimensional position of each link can
be obtained by composing the transforms along the kine-
matic chain between it and the base.

We assume that each link’s appearance over a small num-
ber of images can be modeled by a texture-mapped plane
attached to the link coordinate frame. This plane defines a
two dimensional intrinsic coordinate system embedded in
the link’s local coordinate system. The plane rotates about
the link’s axis of symmetry, and is oriented towards the
camera. Given a point in the link plane for link m with in-
trinsic coordinates (u, v), its location in the image is given
by a position function. This function has two components:
the kinematic model which positions the link plane in three
dimensions, and the camera model which projects the link
plane into the image. The position function for link m can
be written as

» (4)
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where the transformation 7}, includes the mapping from the
link plane to the link coordinate frame and C is a camera
projection model.

This model, first presented in [12], assumes that pixels
that are visible in one frame will remain visible throughout

the sequence. It is violated by motions which take pixels

across the occlusion boundary of the link, as in the case of
side-to-side head rotation. The assumption is reasonable for
short image sequences of the hand or body.

Equation 4 can be used to construct a deformation func-
tion for the motion of pixels from link m due to a change in
the joint angles. This is done by composing transforms to
and from the intrinsic (link plane) coordinates:

Fn(P,z,y) = fn(a+ Aq, £ (a,2,9), ()

where Aq describes the motion of the links, and P is the set
of parameters {q, Aq}. Here, we first map the pixel coor-
dinates (z, ¥} in image 1 back to the intrinsic coordinates of
the link, and then map them forward into the coordinates for
image 2. The mapping for image 2 incorporates the change
in the state parameters between the two images.

Note that the articulated model says nothing about the
shapes of the links. As each link moves, its associated link
plane moves with it; thus each link can describe a motion
anywhere in the image (for any point on the plane). Seg-
mentation amounts to cutting these planes into the right
shapes to match the actual image motion.

The experiments described in this paper use a planar
kinematic model with two links, which simplifies the f,, (-)
functions considerably. However, the motion analysis and
segmentation algorithms we describe will apply to the gen-
eral three-dimensional case with a perspective camera.
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3.2. Motion Estimation and Segmentation

Given motion models in the form of Equation 5, motion
estimation proceeds by minimizing the sum of the squared
pixel residuals from Equation 3. The motion parameters are
the change in state between images, Aq, along with any
unknown initial state values in q. We use the Levenberg-
Marquardt procedure to iteratively adjust the vector of mo-
tion parameters, P, until the first image has been registered
with the second. Letting R denote the vector of residual
intensity differences, we can write the update step as:

AP = —(JTJ 4 p1)"*JTR,

where J is the Jacobian (derivative) matrix of R with re-
spect to P and p[ is a regularizer term which stabilizes the
update.

The residual vector R. can be calculated directly from the
image intensities and the deformation functions supplied by
the articulated model. The Jacobian J, which is the deriva-
tive of R with respect to the parameters, is equally straight-
forward to compute. Each row of J results from differenti-
ating one element of R. as follows:

PnBo28) _ O (1(B(P,2,9)  Li(z,9)

P ~oP
_ 812(-13,:(/) aFm(Pyzvy)
d(z,y) Fo(P,z,y) opP (z,y)

Note that this formula has two parts: one is the gradient of
the second image, while the other is the derivative of the
deformation function defined by the kinematics. The defor-
mation function and its derivatives can be generated auto-
matically from the DH parameters of the kinematic model.

The residual functions used in motion estimation,
R (P, z,y), are also used in segmentation. Given the mo-
tion of the links, we can compute the residual at each pixel
under each of the motion models, and assign the pixel to
the link whose motion model produces the smallest resid-
ual error. This approach assumes that each pixel in I3 has
a corresponding pixel in [;, an assumption which is vio-
lated by occlusions. In the present work, we assume that
the occluded regions are small and will not effect the results
significantly.

3.3. Applying EM

The previous sections have shown that the segmentation
is easily computed given the motion parameters, and that
motion measurement is straightforward given a correct seg-
mentation. The EM algorithm provides a way to combine
these two steps. Some modifications to the computations
above are needed to convert them to the probabilistic frame-
work used by EM.



Whereas previously the segmentation assigned each
pixel to one particular link of the model, in a probabilis-
tic framework, the segmentation now determines the like-
lihood of each pixel belonging to a link m. Segmentation
happens in the E-step, and consists of a modified version of
Equation 1:

pme—(Gw*an (P))(:c,y)/o2
- Zpie‘(Gw*R?(P))(x,y)/o’

gm("c, y)

where x denotes image convolution, and G, denotes a
Gaussian smoothing kernel of width w. The difference
between this equation and Equation 1 is this convolution,
which smooths the segmentation maps; other techniques
have been explored in [19]. The py, terms denote prior
probabilities for each link m. These can be set in proportion
to the expected sizes of each of the links in the images.

Motion analysis, which happens in the M-step, consists
of finding a set of parameters to minimize an error func-
tion. Previously, the error function was simply the sum of
squared residuals. Now it must take into account the ac-
count the likelihood of a pixel belonging to a link. This is
expressed in a modified version of Equation 2:

P= arglr)ninz > gm(=,Y)RL (P, 2,y)

m (z,y)

In Equation 2, each pixel contributed to the total energy
function once, via the R,, function associated with the link
m that the pixel belonged to. Now, each pixel will con-
tribute several times, once for each of the links of the model.
This is because the models are no longer independent—they
share parameters and must be optimized simultaneously.
Finally, we describe the overall algorithm. We first ini-
tialize the segmentation estimates to give each pixel the
same probability of belonging to any of the models. The
parameters P are initialized to zero. Then the M-step is
applied, to update the parameter values P. Recall that com-
puting the parameters is actually an iterative process; we
one perform one iteration per M-step. Then the E-step is
applied to update the segmentation, and E- and M-steps are
alternated from then on until the motion estimates converge.

4. Experimental Results

We first present the articulated model used in our experi-
ments, followed by applications of the articulated EM algo-
rithm to a synthetic and a real test sequence.

4.1. Specific Articulated Model

For our initial experiments, we used a simple two dimen-
sional model of a person’s arm, shown in Figure 1a. In this
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model, the torso can translate in any direction, the upper
arm rotates about the shoulder, and:the lower arm rotates
about the elbow. The attachment points of the two links are
specified. For the upper arm, this requires the (20, yo) pa-
rameters, while for the lower arm, the length I and joint
angle 8, of the upper arm are needed.

The motions of the links in this model are straightfor-
ward to compute. Below are the equations for the defor-
mation functions Fy,(-), which give the new position of a
pixel in the image, after the motions described by param-
eters P = {Azg, Ayo, 0y, A1, A2}, The motions will
also depend on the other model parameters, g, vy, L which
are assumed to be fixed and known. Rot(a, ¢, x) denotes a
rotation by angle « of point x about a center of rotation c.

Fbackground (P) X) =X

Ftorso(P: X) = Fbackground (P; x+ xO)
Fupper(Py X) = FtOX‘SO(Pv ROt(A61 » X0, X))

Fiower (P, %) = Fupper (P, Rot(Afz, x0 + L (c‘f’s 01) %))
. sin 0
These equations, and their derivatives with respect to the
parameters Azq, Ayg, 01, Ay, and Ay, are used in the
articulated EM algorithm.
Finally, we must set the prior probabilities associated
with each link of the model:

Pbackground = 1 Pprorse =1 / 2
Pupper = 1/3 Plower = 1/4

This causes a small bias towards explaining the pixels by
links higher in the kinematic model hierarchy.

4.2. Experiments

We performed two experiments using motion sequences
which fit the two link model described above. The first used
synthetic data, to measure the accuracy of the algorithm,
while the second used two frames from a real image se-
quence, to verify the algorithm’s performance on real data.
More details on these results are presented in [14].

The first sequence, depicted in Figures 1b and c, con-
sisted of synthetic data. Each part of the model was tex-
tured with Gaussian white noise. The motion and segmen-
tation maps derived for the torso and upper and lower arm
are shown in Figures 2 and 3. The background motion was
fixed at zero, so it is correct by definition. The torso’s esti-
mated motion was (0.004, 0.015) pixels, which is close to
the correct value of zero. The upper arm rotated an esti-
mated 14.6° clockwise, which is close to-the correct value
of 15.0°. The motion field for the lower arm required the
estimation of two parameters: the angular position of the
upper arm (35.2°) and the amount of rotation of the lower



Figure 1. (a) is the two dimensional articulated model used for all of the experiments in this paper.

(b) and (c) show a two frames in a synthetic motion sequence.

Figure 2. Estimate

flow fields for the first link (a)

-

5

and second link (b) models, with a white dot

indicating the center of rotation of each link. (¢) shows the composite optical flow estimate.

Figure 3. Segmentation maps for the base, first link, and second link.

arm (29.6° counterclockwise), both of which are close to
the correct values of 35.0° and 30.0°, respectively.

The segmentation maps (Figure 3) are coded so that
white means the pixel belongs to that link with probability
one, while black means probability zero. The background
and torso were both assigned to the background part of the
model, because both the background and torso have zero
motion, and the system has a bias towards using the back-
ground model. The upper and lower arms were segmented
well, although the segmentation maps these parts also in-
clude the region that is occluded by the arm’s motion.

The second experiment used two frames from a sequence
in which the first author moved his arm in a clockwise di-
rection in the image. As can be seen from the images in
Figure 4, the upper arm rotated less than the lower arm.
The results of applying the articulated EM algorithm to this
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data are depicted in Figures 5 and 6. As with the previous
example, the torso and background were both stationary, so
they are assigned to the background part of the model. The
upper arm was segmented fairly well, although some pixels
from below the elbow and the occluded region were also as-
signed to this model. The lower arm was segmented quite
accurately. The motion estimates seem reasonably accurate,
although ground truth measurements are not available. The
easiest parameter to evaluate is #;, whose accuracy can be
seen by the predicted location of the elbow.

5. Previous Work

The present work is motivated by the desire to find a mo-
tion representation which is “tuned” to the properties of ar-
ticulated objects, and which can be extracted from a wide



Figure 4.

A pair of adjacent frames from a real motion sequence.

Figure 5. Estimated optical flow fields for the upper arm (a), and lower arm (b) models, with a white
dot indicating the center of rotation of each link. (c) shows the composite optical flow estimate.

Figure 6. Segmentation maps for the torso, upper arm, and lower arm.

range of image sequences. Such a representation could pro-
vide a basis for the classification and recognition of human
motion. We will describe a representative set of previous
work on human motion analysis; please refer to [14] for a
more comprehensive discussion.

Several authors have addressed the segmentation of
repetitive human motion from video. In [10], time-
frequency analysis on translation-stabilized imagery is used
to detect repetitive patterns due to gait and arm swinging.
Periodicity and a known ground plane orientation are ex-
ploited in [9] to obtain an initial segmentation of fronto-
parallel walking motion, which is then refined by fitting
spatiotemporal surface models. In [16], a simple articu-
lated model is applied to previously segmented motion data,
while in [7] a deformable articulated model is segmented
from carefully staged figure motion. A nice property of
these approaches is that they can exploit many frames of
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video in making a decision. However, their dependency on
specific types of motion or viewing directions is an obstacle
to general video analysis.

Previous work on gesture recognition employed tempo-
ral Markov chain models to segment and detect image fea-
ture motion that is consistent with a vocabulary of human
action [3, 20]. Related work in [2] introduces the concept
of motion-history images for specific actions. These efforts
make use of domain-specific, high-level models in an at-
tempt to bypass the need for accurate low-level image anal-
ysis. However, they may be difficult to apply in a broad
domain such as video indexing, where the number of possi-
ble actions is quite large.

Our algorithm for articulated motion segmentation
builds heavily on previous work on segmenting multiple
rigid motions using EM. Following [6], a number of au-
thors have applied mixture models to motion analysis. For



example, [19] presents a general framework for EM-based
motion analysis that includes spatial coherence. We extend
these approaches by demonstrating how to incorporate kine-
matic constraints into the EM analysis.

6. Conclusions and Future Work

We have presented an EM algorithm which uses an ar-
ticulated kinematic model to segment and estimate human
motion. Use of kinematic constraints makes it possible
to describe complex human motions with a much smaller
number of parameters than local flow or rigid motion mod-
els would require. This should improve the accuracy and
noise robustness of the result. Furthermore, the set of mo-
tion models provide a parts decomposition of the motion
field. Experimental results with synthetic data have shown
that the algorithm is accurate, and results on real images
demonstrate the algorithm’s robustness.

There are a number of extensions to our algorithm that
could improve its accuracy and robustness. A current limi-
tation is the use of only two frames from a motion sequence,
which may result in ambiguities in assigning pixels to mo-
tion models. It would be interesting to extend the approach
to multiple frames, potentially improving the accuracy. An-
other difficulty is that occluded pixels can adversely affect
the motion estimation. This problem will become more se-
vere when many frames are used. It would be interesting to
add the segmentation of occluded pixels to the model. Fi-
nally, we are interested in extending the complexity of our
current kinematic model to encompass more of the degrees
of freedom in human motion. This would make it possible
to apply the results of articulated motion analysis to detect-
ing human motion and recognizing actions.
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