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Abstract

We formulate the kinematic equations-of-motion of wheeled mobile robots incorporating con-
ventional, omnidirectional, and ball wheels. While our approach parallels the kinematic modeling
of stationary manipulators, we extend the methodology to accommodate such special characteris-
tics of wheeled mobile robots as multiple closed-link chains, higher-pair contact points between a
wheel and a surface, and unactuated and unsensed wheel degrees-of-freedom. We survey existing
wheeled mobile robots to motivate our development. To communicate the kinematic features of
wheeled mobile robots, we introduce a diagrammatic convention and nomenclature. We apply the
Sheth- Uscker convention to assign coordinate axes and develop a matriz coordinate transformation
algebra to derive the equations-of-motion. A wheel Jacobian matriz is formulated to relate the
motions of each wheel to the motions of the robot. We combine the individual wheel equations to
form the composite robot equation-of-motion. We calculate the sensed forward and actuated inverse _
solutions and interpret the conditions which guarantee their existence. We interpret the properties
of the composite robot equation to characterize the mobility of a wheeled mobile robot according
to the mobility characterization tree. Similarly, we apply actuation and sensing characterization
trees to delineate the robot motions producible by the wheel actuators and discernable by the
wheel sensors, respectively. We apply our kinematic model to design, kinematics-based control,
dead-reckoning and wheel slip detection. To illustrate the development, we formulate and interpret
the kinematic equations-of-motion of six prototype wheeled mobile robots.



1. Introduction

Over the past twenty years, as robotics has become a scientific discipline, research and devel-
opment have concentrated on stationary robotic manipulators[12, 43], primarily because of their
industrial applications. Less effort has been directed to mobile robots. Although legged[58] and
treaded[37] locomotion has been studied, the overwhelming majority of the mobile robots which
have been built and evaluated utilize wheels for locomotion. Wheeled mobile robots (WMRs)
are more energy efficient than legged or treaded robots on hard, smooth surfaces[6,7); and will
potentially be the first mobile robots to find widespread application in industry, because of the
hard, smooth plant floors in existing industrial environments. Wheeled transport vehicles, which
automatically follow paths marked by reflective tape, paint, or buried wire, have already found
application[20]. WMRs find application in space and undersea exploration, nuclear and explo-
sives handling, warehousing, security, agricultural machinery, military, education, mobility for the
disabled and personal robots.

The wheeled mobile robot literature documents investigations which have concentrated on the -
application of mobile platforms to perform intelligént tasks [52], rather than on the development
of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved me-
chanical designs and mobility control systems will enable the application of WMRs to tasks were
there are no marked paths and to autonomous mobile robot operation. A -kinematic methodology

is the first step towards achieving these goals.

Even théugh the methodologies fof modeling and controlling stationary manipulators are appli-
cable to WMRs, there are inherent differences which cannot be addressed with these methodologies.

Examples include:
1.) WMRs contain multiple closed-link chains[53); whereas stationary manipulators form closed-

link chains only when in contact with stationary objects.

2.) The contact between a wheel and a planar surface is a higher-pair; whereas stationars' ma-

nipulators contain only lower-pair joints[3,62,63)].

3.) Only some of the degrees-of-freedom (DOF's) of a wheel on a WMR are actuated; whereas
all of the DOF's of each joint of a stationary manipulator are actuated.

4.) Only some of the DOF's of a wheel on a WMR have position or velocity sensors; whereas
all of the DOF's of each joint of a stationary manipulator have both position and velocity

sensors.

Wheeled mobile robot control requires 2 methodology for modeling, analysis and design which



|
|
|

‘

parallels the technology of stationary maﬁip\ﬂators.

Our objective is thus to model the kinematics of WMRs. XKinematics is the study of the
geometry of motion. In the context of WMRs, we are interested in determining the motion of the

' robot from the geometry of the constraints imposed by the motion of the wheels. Our kinematic

analysis is based upbn the assignment of coordinate axes within the robot and its environment,

| and the application of (4x4) matrices to express transformations between coordinate systems.

Each step is defined precisely to lay a solid foundation for the dynamic modeling and feedback
control of WMRs. Dynamic models may then - be applied to design dynamics-based controllers and
simulators. A kinematic methodology may also be applied to design WMRs which satisfy such
mobility characteristics as three DOF's (i.e., two translations and a rotation in the plane).

Our kinematic analysis of WMRs parallels the development of kinematics for stationary ma-
nipulators. A standard method for modeling the kinematics of stationary robotic manipulators
begins by applying the Denavit-Hartenberg convention[18] to assign coordinate axes to each of the
robot joints. Successive coordinate systems on the robot are related by (4x4) homogeneous trans-
formation A-matrices. The A-matrices are specified completely by four characteristic parameters
(two displacements and two rotations) between consecutive coordinate systems. Each A-matrix de-
scribes both the shape and size of a robot link, and the translation (for a prismatic joint) or rotation
(for a rotational joint) of the associated joint. We assign coordinate axes to the steering links and
wheels of a WMR, and apply the Sheth-Uicker convention[61] to define transformation matrices.
The Sheth-Uicker convention separates the constant shape and size parameters from the variable
wheel joint parameters, and simplifies the matrix formulation. The Sheth-Uicker convention allows
us to model the higher-pair relationship between each wheel on a WMR and the floor.

The position and orientation in base coordinates of the end-effector of a stationary manip- .
ulator is found by cascading the A-matrices from the base link to the end-effector[56]. Velocity
and acceleration relationships are found by differentiating the matrix positions[19]. Velocities of
the individual joints are related to the velocities of the end-effector by the manipulator Jacobian
matrix[54] in the forward solution. The inverse Jacobian matrix is applied in the énverse solution to
calculate the velocities of the joint variables from the velocities of the end-effector. We develop the
wheel Jacobian matrix to relate the velocities of each wheel on a WMR to the robot body veloci-
ties. Since WMRs are multiple closed-link chains, the forward and inverse solutions are obtained
by solving simultaneously the kinematic equations-of-motion of all of the wheels.

In this paper, we advance the kinematic modeling of WMRs, from the motivation of the kine-
matic methodology through its development and applications. In Section 2, we survey kinematic
configurations (i.e., the relative arrangements and types of wheels) of existing WMRs. These proto-



types illuminate the complexity of the kinematic problem. In Scction 3, we describe the three wheels
(conventional, omnidirectional and ball wheels) utilized in all existing and foresecable WMRs.

In Section 4, we develop our approach for modeling the kinematics of WMRs. Coordinate sys-
tems are assigned to prescribed. positions on the the robot. We introduce transformation matrices
to characterize the translations and rotations between coordinate systems. We develop a matrix
coordinate transformation algebra to calculate the position, velocity, and acceleration relationships
between coordinate systems. We apply the axioms and corollaries of this algebra to transform
positions, velocities, and accelerations which are specified in one coordinate frame to another co-
ordinate frame, and develop the wheel Jacobian matrix to relate the motions of a wheel to the
motions of the robot. In Section 4.9, we outline our kinematic methodology for WMRs.

In Section 5, we form the composite robot equation-of-motion by adjoining the equations-of-
motion of all of the wheels. We then solve the composite robot equation. Specifically, we calculate
the actuated wheel velocities in terms of the robot velocities (the actuated inverse solution), and
the robot velocities in terms of the sensed wheel velocities (the sensed forward solution). We
characterize a WMR by interpreting the properties of the composite robot equation. We present a
mobility characterization tree which specifies tests to be conducted on the composite robot equation
and displays the mobility characteristics of the WMR. We also calculate the number of degrees-
of-freedom of a WMR. The ability of the actuators to produce robot motion is determined by
the actuation characterization tree. Similarly, the sensing structure is specified by the sensing

characterization tree.

In Section 6, we apply our kinematic modeling methodology to the design, dead-reckoning,
kinematics-based control,” and wheel slip detection for WMRs. Just as we apply the mobility
characterization tree to delineate the mobility of a WMR, we may design a WMR to satisfy desired
mobility characteristics by proper choice of wheel type and placement. We calculate the current
robot position (i.e., dead-reckoning) by summing the robot velocities in real-time. We introduce a
kinematics-based WMR feedback control system in which the actuated inverse and sensed forward
solutions are integral components. OQur development of the sensing characterization tree illuminates
a method of detecting the onset of wheel slip. We present our slip'detection method and describe
the proper positioning of the wheel sensors for implementation. We are continuing our study of
WMRs by applying our kinematic model to formulate dynamic models of WMRs.

In Section 7, we apply our kinematic modeling methodology to six prototype WMRs., We
present the kinematic description, coordinate system assignments, transformation matrices, wheel
Jacobian matrices, mobility characteristics and the sensed forward and actuated inverse solutions

for each. From our experience with these prototype examples, we draw practical conclusions about

i e —y



the applicability of thrce DOF's vs two DOFs and the utilization of redundant steered-conventional
wheels.

We summarize (in Section 8) our kinematic methodology and its implications, and outline (in
Section 9) our plans for continued research in dynamic modeling and feedback control. In Appendix
2, we compile our symbols.



2. Survey of Kinematic Conﬁgurations

In this section, we survey the kinematic configurations of existing WMRs. We are interested
in determining the types of wheels utilized and the relative placement of the wheels on WMRs.
Documentation of WMRs is scattered throughout the robotics, artificial intelligence, control en-
gineering,‘ scientific, industrial, popular and hobbiest literature[8,16,23,38,60]. We examine docu-
mented WMRs to understand the requirements of a kinematic methodology for this class of mobile
robots. We then generalize the kinematic model of these exemplary robots and define (in Section 4)
a WMR which specifies the range of mobile robots to which our methodology applies. Our survey
also provides a set of prototype WMRs for evaluating our kinematic methodology.

In Appendix 1, we introduce a nomenclature and a pictorial representation for describing
the kinematic structure of WMRs. The diagramming conventions provide a convenient tool for
describing and comparing kinematic structures of WMRs. We apply these rules to develop sym-
bolic diagrams and kinematic names for the WMRs presented in this survey and refer to these
representations as we describe each WMR.

The most common kinematic arrangement of mobile robots documented in the literature has
two diametrically opposed wheels (i.e., two parallel conventional wheels, one on each side of the
robot). These robots also possess one or two castors for stability. Among the most widely known
examples are: Shakey[52], Newt[32] (in Figure 2.1), Jason[64], Hilare[24], Yamabiko[40,35], RO-
BART II[22], and RB5X[44]. By mounting the two driven wheels at an acute angle to the floor in
their Topo|27] robot (in Figure 2.1), the Androbot Company stabilized the robot without the use -

of castors. ‘
Shakey Newt ' Topo
Bicsun-Bicas-Whemor Bicas-Unicsun-Whemor Bicas-Whemor
Figure 2.1

Kinematic Representations of Shakey, Newt, and Topo
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Mobile robots which possess multiple non-steered, driven wheels whose axes are non-colinear
must rely on wheel slip if the robot is to navigate turns. Such is the case with the RDS Prowler[59]:
and the Terregator[66] (in Figure 2.2), both of which use six parallcl, non-steered, conventional
wheels, three on each side. Similarly, Gemini[28] (in Figure 2.2) utilizes two synchronously driven

wheels on each side.

Terragator Gemini

Hexacas-Whemor Tetracas-Whemor
- Figure 2.2

Kinematic Representations of Terregator and Gemini

The mechanically more complex, steered and driven conventional wheel is utilized on Nep-
tune[57] (in Figure 2.3), Hero-1[26] and ‘Avatar[4]. These three robots have a tricycle wheel ar-
rangement; the front wheel is steered and driven, while the two rear wheels are at a fixed parallel

orientation and are undriven.
Neptune Rover

O

Bicun-Unicsan-Whemor Tricsas-Whemor

Figure 2.3

Kinematic Representations of Neptune and Pluto
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The CMU Rover|[48] (in Figure 2.3), also known as Pluto, has three steered and driven wheels.
The Stanford Cart[46] (in Figure 2.4) has two stecred, undriven wheels in the front and two fixed,
driven wheels in the rear. The two front wheels are coupled by an Ackerman steering linkage.! Both
the front and back wheels of the JPL Rover(41] (in Figure 2.4) are coupled by Ackerman steering
linkages, and all four wheels are driven independently. Kludge[30] (in Figure 2.4) is an example of a
robot with complex functional dependencies between the wheels. This robot has three conventional
wheels that are both steercd and driven. A chain and gear arrangement is used to equalize all drive
velocities and steering angles (Synchro-Drive). To complicate further the arrangement, each wheel
is mouunted on an actuated link whi:ch can be pivoted towards or away from the center of the robot
for stability. Kludge’s successor K2A[30] embodies the synchro-drive mechanism using concentric
shafts instead of chains and does not have any actuated links. The Denning Sentry robot[70] also
utilizes a three-wheel synchronous drive and steer system.

Stanford Cart JPL Rover

Pseudo-Bicsan-Bican- Pseudo-Bicsas-Bicsas- Pseudo-Tricsas-Whemor
Whemor Whemor

Figure 2.4
Kinematic Representations of the Stanford Cart, the JPL Rover, and Kludge

The hybrid spider drive[29] '(in Figure 2.5) utilizes four conventional wheels, two on either
side of the robot, each of which is mounted at the end of a three DOF leg linkage. The hybrid
locomotion vehicle[34] (in Figure 2.5) utilizes six steered and driven conventional wheels, each at
the end of an actuated vertical leg.

1 An Ackerman steering linkage(45] approximatly ensures the correct wheel angles to avoid wheel slip.
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Hybrid Spider Drive Hybrid ‘Locomotion Vehicle

Pseudo-Tetracsas-Whemor Pseudo-Hexacsas-Whemor

Figure 2.5

Kinematic Representations of the Hybrid Spider Drive
and the Hybrid Locomotion Vehicle

Equally obscure is the triangle wheel step climber[67], which possesses four sets of three wheels
mounted at the vertices of equilateral triangles. When a wheel encounters a step, the triangle pivots
about its center and the robot reaches the top of the step by rolling on a different set of wheels.

The recent application of omnidirectional wheels (in Section 3) has led to novel mobile kine-
matic configurations. Omnidirectional wheels have been used for powered wheelchairs (e.g., Omni
drive[29]) and Wheelon[2]) and ambulatory drive platforms [69]. The later orients the omnidirec-
tional wheels at an acute angle to the floor for stability. Uranus[49] (in Figure 2.6) has a rectangular
wheel base with four omnidirectional wheels having rollers at 45° angles. The Unimation robot[14]
(in Figure 2.6) and Fetal1[38] have triangular wheel bases and three omnidirectional wheels with

90° rollers.

Omnidirectional treads[10, 11] operate as omnidirectional wheels with the rollers mounted
upon tank-like treads. A ball wheel (in Section 3) is the most maneuverable wheel allowing three
DOF motion[47, 13, 39]. The first design of Jason[64] incorporated three ball wheel castors which
were later replaced by a single conventional castor. We are unaware of any other documented
applications of ball wheels on WMRs.




Uranus Unimation Robot

50 [
ba) g d

Tetroas-Whemor Troas-Whemor

Figure 2.6

Kinematic Representations of Uranus and the Unimation Robot

Because of the variability in‘the numbers and types of wheels and actuating mechanisms,
formulating a kinematics methodology for WMRs requires analytically complex robot models. Since
the preponderance of existing and foreseeable WMRs have simpler kinematic configurations then
those on the periphery of WMRs (e.g., the hybrid spider drive), applying a general-purpose and
universal approach to model the kinematics of practical WMRs would be unduly cumbersome. To
reduce substantially’ the complexity of the kinematic model and associated calculations, we limit
our analysis to WMRs with zero or one steering links per wheel. The robots which do not satisfy
this constraint (e.g., hybrid spider drive, hybrid locomotion vehicle, and Kludge) can be modeled
by extending our analytical approach on a case-by-case basis.

From this survey, we specify the requirements of a kinematic model of WMRs. A WMR model
must allow any number of wheels. The wheels can be mounted at any position and orientation
with respect to the robot body provided that each touches the surface of travel. This constraint
includes the ability to mount wheels at acute angles to the surface. The WMR can incorporate
any combination of conventional, omnidirectional or ball wheels. Even though each wheel can be
mounted at the end of an articulated linkage, we will deal with zero or one steering link per wheel.
Finally, there may be coupling between wheels (e.g., two wheels ﬁlay steer together as on the
Stanford Cart). With these observations, we define a WMR in Section 4 to develop a methodology
for kinematic modeling. In Section 3, we detail the operation of the three basic wheel types.




3. Wheel Types

Three wheel types are used in WMR designs: conventional, omnidirectional, and ball wheels.
In addition, conventional wheels are often mounted on a steering link to provide an additional
DOF. Schematic views of the three wheels are shown in Figure 3.1. The DOFs of cach wheel are
indicated by the arrows in Figure 3.2. The kinematic relationships between the angular velocity of
the wheel and its lincar velocity along the surface of travel are also compiled in the figure.

The conventional wheel having two DOF's is the simplest to construct. It allows travel along a
surface in the direction of the wheel orientation, and rotation about the point-of-contact between the
wheel and the floor. We note that the rotational DOF is slippage, since the point-of-contact is not
stationary with respect to the floor surface!. Even though we define the rotational slip as a DOF,
we do not consider slip transverse to the wheel orientation a DOF, because the magnitude of force
required for the transverse motion is much larger than that for rotational slip. The conventional
wheel is by far the most widely used wheel; automobiles, roller skates and bicycles utilize this wheel.

The omnidirectional wheel has three DOFs. One DOF is in the direction of the wheel orienta-
tion. The second DOF is provided by motion of rollers mounted around the periphery of the main
wheel. In principle, the roller axles can be mounted at any nonzero angle 5 with respect to the
wheel orientation. The omnidirectional wheels in Figures 3.1 and 3.3 have roller axle angles of 90°
[9,11,25], and 45°[36], respectively. The third DOF is rotational slip about the point-of-contact. It
is possible, but not common, to actuate the rollers of an omnidirectional wheel{29] with a complex
driving arrangement. Wheu sketching WMRs having omnidirectional wheels, the rollers on the
underside of the wheel (i.e., those touching the surface of travel) are drawn and not the rollers
which are actually visable from a top view, to facilitate kinematic analysis.

The most maneuverable wheel is a ball which possesses three DOFs without slip. Schemes have
been devised for actuating and sensing ball wheels[47], but we are unaware of any existing imple-
mentations. An omnidirectional wheel which is steered about its point-of-contact is kinematically
equivalent to a ball wheel, and may be a practical design alternative.

- Y Two bodies sre in rolling contact if the poix.:t»of—contut of the two bodies are stationary relative to each

other(63].
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Figure 3.1

Conventional, Omnidirectional, and Ball Wheels
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Figure 3.2

Wheel Equations-of-Motion
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Figure 3.3

Omnidirectional Wheel (Rollers at 45°)
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¢ 4. Kinematic Modeling

- 4.1 Introduction

!
In this section, we apply and extend standard robotic nomenclature and methodology[54] to

‘, model the kinematics of WMRs. The novel aspects are our treatment of the higher-pair joint
} between each wheel and the floor, and the development of a transformation matrix algebra.

We begin (in Section 4.2) by defining a WMR and enumerating our modeling assumptions to
constrain the class of mobile robots to which our modeling methodology applies. To include all
existing and foreseeable WMRs, we would have to generalize our methodology and thereby com-
plicate the modeling of the overwhelming majority of WMRs. In Section 4.3, we assign coordinate
systems to the robot body, wheels and steering links to facilitate kinematic modeling. It is essen-
tial to define tnstantaneously coincident coordsinate systems to model the higher-pair joints at the
point of contact between each wheel and the floor. In Section 4.4, we assign homogeneous (4 x 4)
transformation matrices to relate coordinate systems. We present (in Section 4.5) a matrix coor-
dinate transformation algebra to formulate the equations-of-motion of a WMR. All kinematics are
derived by straightforward application of the axioms and corollaries of the transformation algebra.
Position kinematics are treated in Section 4.6. We demonstrate that transforming the coordinates
of a point between coordinate systems is equivalent to finding a path in a transformation graph.
Then, in Section 4.7, we formulate the velocity kinematics. The relationships between the wheel
velocities and the robot velocities are linear. We thus develop a wheel Jacobian matrix to calculate
the vector of robot velocities from the vector of wheel velocities. Finally, in Section 4.8, we apply
our matrix coordinate transformation algebra to'accelm'ation kinematics.

To summarize the development, we enumerate in Section 4.9 our kinematic modeling procedure. -
In Section 5, we combine the equations-of-motion of all of the wheels to form the composite robot
equation. We then proceed to solve the composite robot equation and interpret the solutions.

4.2 Definitions And Assumptions

The Robot Institute of America defines a robot as ” A programmable, multifunction manipulator
designed to move material, parts, tools, or specialized devices through varsable programmed motions
Jor the performance of a variety of tasks®[29]. Our survey of kinematic configurations in Section
2 anticipates the definition of 2 WMR. Kinematic models of WMRs are inherently different from
those of stationary robotic manipulators and legged or treaded mobile robots. We thus introduce an
operational definition of a WMR to specify the range of robots to which the kinematic methodology
presented in this paper applies.
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Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the
actuation of wheel assemblics mounted on the robot and in contact with the surface. A wheel
assembly is a device which provides or allows relative motion between its mount and a surface on

which it is intended to have a single point of rolling contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body
~and the wheel constitute a wheel assembly. With the exception of the omnidirectional treaded
vehicle, the hybrid spider drive (when walking), the hybrid locomotion vehicle (when climbing)
and the triangle wheel step climber (when climbing steps), the mobile robots reviewed in Section
2 satisfy our definition of a WMR.

We introduce the following practical assumptions to make the modeling problem tractable.

' Design Assumptions
1.) The WMR does not contain flexible parts.
2.) There is zero or one steering link per wheel.
3.) All steering axes are perpendicular to the surface.

Operational Assumptions

4.) The WMR moves on a planar surface.
5.) The translational friction at the point of contact between a wheel and the surface is large

enough so that no translational slip may occur.
6.) The rotational friction at the point of contact between a wheel and the surface is small

enough so that rotational slip may occur.

We discuss our assumptions in turn. Assumption 1 states that the dynamics of such WMR
components as flexible suspension mechanisms and tires are negligible. We make this assumption
to apply rigid body mechanics to kinematic modeling. We recognize that flexible structures may
play a significant role in the kinematic analysis of WMRs. A dynamic analysis to determine the
changes in kinematic structure due to forces/torques acting on flexible components is required
to model these components. Such an analysis is appropriate for WMRs even though it has not
conventionally been addressed for stationary open-link manipulators because WMRs are inherently
closed-link mechanisms. Flexible components, that allow compliance in the multiple closed-link
chains of a WMR, lead to a consistent kinematic model. Without compliant structures, there
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cannot be a consistent kinematic model for WMRs in the presence of surface irregularities, inexact
component dimensions and inexact control actuation|[50]. A simultancous kinematic and dynamic

analysis of WMRs is thus a natural continuation of our research.

We introduce Assumptions 2 and 3 to reduce the range of WMRs that our methodology must
address, by limiting the complexity of our kinematic model. WMRs which have more than one link
per wheel can be analyzed by our methodology if only one steering link is allowed to move. We
require that all non-steering links must be stationary, as if they are extensions of the robot body
or wheel mounts. By constraining the steering links to be perpendicular to the surface of travel in
Assumption 3, we reduce all motions to a plane. We thus constrain all component motions to a
rotation about the normal to the surface, and two translations in a plane parallel to the surface.

Assumption 4 neglects irregularities in the actual surface on which a WMR travels. Even
though this assumption restricts the range of practical applications, environments which do not
satisfy this assumption (e.g., rough, bumpy or rocky surfaces) do not lend themselves to energy
efficient wheeled vehicle travel[7).

.Assumption 5 ensures the applicability of the theoretical kinematic properties of a wheel in
rolling contact[5, 62] for the two translational degrees-of-freedom. This assumption is realistic for
dry surfaces as demonstrated by the success of braking mechanisms on automobiles. Automobiles
also illustrate the practicality of Assumption 6. The wheels must rotate (i.e., slip) about their
points-of-contact to navigate a turn. Since WMRs also rely on rotational wheel slip, we include

Assumption 6.

4.3 Coordinate System Assignments
4.3.1 Sheth-Uicker Convention

Coordinate system assignment is the first step in the kinematic modeling of a stationary
manipulator[54]. Lower-pair mechanisms! (such as revolute and prismatic joints) function with two
surfaces in relative motion. In contrast, the wheels of a WMR are higher-pairs which function ideally
by point contact. Because the A-Matrices which model manipulators depend upon the relative
position and orientation of two successive joints, the Denavit-Hartenberg convention[18] leads to
ambiguous assignments of coordinate transformation matrices in multiple closed-link chains[61]
which are inherent in WMRs. The ambiguity arises in deciding the joint ordering when there are

more than two joints on a single link.

1 Lower-pair mechanisms are pairs of compone;:n whose relative motions are constrained by a common surface

contact; whereas higher-pairs are constrained by point or line contact[5).
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We apply the Sheth-Uicker convention[61] to assign coordinate systems and model each wheel
as a planar pair at the point of contact. This convention allows the modeling of the higher-pair
wheel motion and eliminates ambiguities in coordinate transformation matrices. The planar pair
allows three DOF's as shown in Figure 4.3.1 : X and Y translation, and rotation about the point-
of-contact. The Sheth-Uicker convention is ideal for modeling ball wheels; the angular velocities
of the wheel are converted directly into translational velocities along the surface. The planar pair
motions must be constrained to include wheels which do not allow three DOFs. For example, the
coordinate system assigned at the point-of-contact of a conventional wheel is aligned with the y-axis
parallel to the wheel. The wheel model is completed by conshaiﬁﬁg the x-component of the wheel
velocity to zero to satisfy Assumption 5 (in Section 4.2) and avoid translational slip.

[ Floor [ Floor

Planar Pair Conventional Wheel

Figure 4.3.1

Planar Pair Model of a Wheel
4.3.2 WMR Coordinate Systems

We assign coordinate systems at both ends of each link of the WMR. The links of the closed-
link chain of a WMR are the floor, the robot body and the steering links. The joints are: a revolute
pair at each steering axis, a planar pair to model each wheel, and a planar pair to model the robot
body. When the joint variables are zero, the coordinate systems of the two links which share the
joint coincide. We summarize our approach to the modeling of a WMR having N wheels with
the coordinate system assignments defined in Table 4.3.1 . Placement of the coordinate systems
is illustrated in Figure 4.3.2 for the pictorial view of a WMR. For a WMR with N wheels, we
assign 3N + 1 coordinate systems to the robot and one stationary reference frame. There are also
N + 1 instantaneously coincident coordinate systems (described in Section 4.3.3) which need not

~ be assigned explicitly.
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Floor
Figure 4.3.2

Placement of Coordinate Systems on a WMR

The floor coordinate system F is stationary relative to the surface of travel and serves as the
reference coordinate frame for robot motions. The robot coordinate system R is assigned to the
robot body so that the position of the WMR is the displacement from the floor coordinate system
to the robot coordinate system. The hip coordinate system H; is assigned at the point on the robot
body which intersects the steering axis of wheel . The steering coordinate system S; is assigned
at the same point along the steering axis of wheel ¢, but is fixed relative to the steering link. We
assign a contact point coordinate system C; at the point-of-contact between each wheel and the

floor.

Coordinate system assignments are not unique. There is freedom to assign the coordinate
systems at positions and orientations which lead to convenient structures of the kinematic model.
For example, all of the hip coordinate systems may be assigned parallel to the robot coordinate
system resulting in sparse robot-hip transformation matrices and thus simplifying the model. Al-
ternatively, the x-axes of the hip coordinate systems can be aligned with the zero position of the
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steering joint position encoders so that the hip-steering transformation is expressed in terms of the

actual steering angle.
4.3.3 Instantaneously Coincident Coordinate Systems

To introduce the concept of instantaneously coincident coordinate systems, we consider the
one-dimensional example of a ball rolling in a straight line on a flat surface. The position of the

ball is depicted by the point r in Figure 4.3.3.

Stationary
Reference
Point Ball

J0

Figure 4.3.3

Ball in Motion Before Instantaneous Coincidence

The ball is moving right to left with velocity v, and acceleration a,. The stationary reference
point 7 lies in the path of the moving ball. At the fnstant the ball (point r) and the reference (point
7) coincide in Figure 4.3.4, we observe that: (1) The position of the ball relative to the reference
point p, is zero: and (2) The velocity v, and acceleration "a, of the ball relative to the reference
point are non-zero. We call the point ¥ an tnstantaneously coincident reference point for the moving

ball at the instant shown in Figure 4.3.4.

Stationary Conventional
Reference Reference
Point Point
' t
€— . o
ball

Figure 4.3.4

Ball in Motion at Instantaneous Coincidence

We continuously assign an instantaneously coincident reference point ¥ during the motion
of the ball to generalize our observations for all time ¢. The position of the ball relative to its

instantaneously coincident reference point is zero (i.e., “p,(t) = 0), and the velocity and acceleration
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of the ball relative to its instantaneously coincident reference point are non-zcro (i.e., Tv(t) # 0 and
"a,(t) # 0). In the framework of instantaneously coincident reference points, we cmphasize that we
cannot differentiate the position (velocity) equation-of-motion to obtain the velocity {acccleration)

equation-of-motion.

The stationary reference point f in Figure 4.3.4 is a conventional reference point whose position
is fixed. Since both reference points f and ¥ are stationary, the velocity (acceleration) of the ball
relative to the point f is equal to the velocity (acceleration) of the ball relative to the point 7 in this
one-dimensional example. Consequently, it is not advantagous to introduce instantancously coinci-
dent references in the one-dimensional example. The practical need for instantaneously coincident

coordinate systems arises in the multi-dimensional example as depicted in Figure 4.3.5.

Figure 4.3.5
Coordinate System R in Motion

The coordinate system R is moving in three-dimensions: X, Y, and 6. The coordinate 8ys-
tems R and F are stationary; R is an instantaneously coincident coordinate system and F is a
conventional reference coordinate system. We make the analogous observations. The position of
the moving coordinate system relative to its instantaneously coincident coordinate system is zero
(i.e., Bpp = 0). The position of the moving coordinate system relative the conventional reference
coordinate system is non-zero (i.e., Fpr # 0). The non-zero velocity vy (acceleration £ap) of
the moving coordinate system relative to the instantaneously coincident coordinate system is not
equal to the velocity Fvg (acceleration Fap) of the moving coordinate system relative to the con-
ventional reference coordinate system. The velocity (acceleration) of the moving coordinate system
relative to the conventional reference coordinate system F depends upon the position and orienta-
tion of the moving coordinate system relative to the reference coordinate system. The motivation

Jor assigning instantaneously coincident coordinate systems is that the velocities (accelerations) of
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¢ multi-dimensional moving coordinate systcm can be computed or specified independently of the
position of the moving coordinate system. The instantaneously coincident coordinate system is a
conceptual tool which enables us to calculate the velocitics and accelcrations of a moving coordinate

system relative to its instantaneous current position and orientation.

Table 4.3.1: Coordinate System Assignments

F Floor : Stationary reference coordinate system with the 2-axis orthogonal to the surface of
travel.

R Robot : Coordinate system whicﬁ moves with the WMR body, with the z-axis orthogonal to
the surface of travel.

H; Hip (fori=1,...,,N): Coordinate system which moves with the WMR body, with the z-axis
coincident with the axis of steering joint 1 if there is one; coincident with the contact point

coordinate system C; if there is no steering joint.

S; Steering (for ¢ = 1,...,N) : Coordinate system which moves with steering link ¢, with the
z-axis coincident with the z-axis of H;, and the origin coincident with the origin of H;.

C; Contact Point (for i = 1,..., N) : Coordinate system which moves with steering link i, with
the origin at the point-of-contact between the wheel and the surface; the y-axis is parallel to
the wheel (if the wheel has a preferred orientation; if not, the y-axis is assigned arbitrarily)
and the x-y plane is tangent to the surface.

Instantaneously Coincident Robot : Coordinate system coincident with the R coordinate
system and stationary relative to the F coordinate system.

ol

C; Instantaneously Coincident Contact Point (for i = 1,..., N) : Coordinate system coincident
with the C; coordinate system and stationary relative to the F coordinate system.
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For stationary serial link manipulators, all joints are onc-dimensional lower-pairs: prismatic
joints allow Z motion and revolute joints allow @ motion. In contrast, WMRs have three-dimensional
higher-pair wheel-to-floor and rbbot-to—ﬁoor joints allowing simultaneous X, Y and @ motions. We
assign an instantaneously coincident robot coordinate system R at the same position and orientation-
in space as the robot coordinate system R. In Table 4.3.1, we define the instantaneously coincident
robot coordinate system to be stationary relative to the floor coordinate system F. By design, the
position and orientation of the robot coordinate system R and the instantaneously coincident robot
coordinate system R are identical, but (in general) the relative velocities and accelerations between
the two coordinate systems are non-zero. When the robot coordinate system moves relative to the
floor coordinate system, we assign a diﬂ'ergpt instantaneously coincident coordinate system for each
time instant. The instantaneously coincident robot coordinate system facilitates the specification of
robot velocities (accelerations) independently of the robot position. Similarly, the snstantaneously
cotncident contact point coordinate system C; (in Table 4.3.1) coincides with the contact point
coordinate system C; and is stationary relative to the floor coordinate system. Since the position
of the wheel contact point is not sensed, we-require the instantaneously coincident contact point
coordinate system to specify wheel velocities and accelerations.

4.4 Transformation Matrices

Homogeneous (4 x 4) transformation matrices are defined to express the relative positions and
orientations of coordinate systems[54]. The homogeneous transformation matrix 4I1p transforms
the coordinates of the point Pr in coordinate frame B to its corresponding coordinates “r in the

coordinate frame A:

Ar= AT1p Br . (4.4.1)

We adopt the following notation. Scalar quantities are denoted by lower case letters (e.g., w).
Vectors are denoted by lower case boldface letters (e.g., r). Matrices are denoted by upper case
boldface letters (e.g., II). Pre-superscripts denote reference coordinate systems. For example, “r
is the vector r in the A coordinate frame. The pre-superscript may be omitted if the coordinate
frame is transparent from the context. Post-subscripts are used to denote coordinate systems or
components of a vector or matrix. For example, the transformation matrix 4TIz defines the position
and orientation of coordinate system B relative to coordinate frame A; and r; is the x-component
of the vector r.

Vectors denoting points in space, such as “r in (4.4.1), consist of three cartesian coordinates
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and a scale factor as the fourth element:

vi. , (4.4.2)

We always use a scale factor of unity. Transformation matrices contain the (3 x 3) rotational matrix
(n o a), and the (3 x 1) translational vector p[54):

Ny Oz Gx P:x

AMp=1v % % Pvi, , (4.4.3)
z Og Qg Do
0 0 0 1

The three vector components n, o, and a of the rotational matrix in (4.4.3) express the orientation
of the x, y, and z axes, respectively, of the B coordinate system relative to the A coordinate system
and are thus orthonormal. The three components p;, p,, and p, of the translational vector p
express the displacement of the origin of the B coordinate system relative to the origin of the A
coordinate system along the x, y, and z axes of the A coordinate system, respectively.

The aforementioned proﬁerties of a transformation matrix guarantee that its inverse always

has the special form:

n: n, n, —(p . n;
Aq-1_f[ oz o, o —(p-o
ng' = @y o o, —(p-a)] (4.4.4)
0 0 0 1

Before we define the transformation matrices between the coordinate systems of our WMR model,
we compile in Table 4.4.1 our nomenclature for rotational and translational displacements, velocities

and accelerations.

In general, any two coordinate systems A and B in our WMR model are located at non-zero
x, y and z-coordinates relative to each other. The transformation matrix must therefore contain
the translations 4dp,, 4dp, and Adp.. We have assigned all coordinate systems with the z-axes
perpendicular to the surface of travel, so that all rotations between coordinate systems are about
the z-axis. A transformation matrix in our WMR model thus embodies a rotation 48z about the
z-axis of coordinate system A and the translations 4dg., “dB, and “4dg, along the respective
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coordinate axes:

COSAﬂp —SillAGB 0 Ade

A A A
App. — | sin®8p cos®bp 0 “dp,
Mg = 0 0 1 Adg. (4.4.5)
0 0 0 1

For zero rotational and translational displacements, the coordinate transformation matrix in (4.4.5)

reduces to the identity matrix.

In Section 4.6, we apply the inverse of the transformation matrix in (4.4.5) to calculate position
kinematics. By applying the inverse in (4.4.4) to the transformation matrix in (4.4.5), we obtain

cos40p sin40g 0 —Adp,cos46p — AdBy sin 40p

—ain A A A s A o A A
“Hg’: su:) 05 cosooa' 2 deSIn 9fAdBjBycos 03 . | (4.4.6)

0 0o .0 1

In Section 4.7, we differentiate the transformation matrix in (4.4.5) componentwise to calculate

robot velocities:

-Aypsin4dpy —Awpgcos4lp 0 Aup,

. A A A i A A
My = | “emctis fundntes 0 dusy | (44)
0 - ) 0 0 0

and in Section 4.8, we differentiate the transformation matrix in (4.4.7) componentwise to calculate

robot accelerations:

—4apsin49p — 4wk cos40p —“agcos4ip +4wlsin40g 0 “ap.
A A A3 A A, oo A A2 o A A
ATT . — apg Cos 03 = Twg s1n 03 —“ap8in 03 — “wpgcos 03 0 apy
IIg = 0 0 0 0 . (4.4.8)
0 0 0 0
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Table 4.4.1
Scalar Rotational and Translational Displacements

The rotational displacement about the z-axis of the A coordinate system between the x-axis
of the A coordinate system and the x-axis of the B coordinate system (counterclockwise by

convention).

: (for 5 € [z,¥,2]): The translational displacement along the j-axis of the A coordinate system

between the origin of the A coordinate system and the origin of the B coordinate system.

Scalar Rotational and Translational Velocities

: The rotational velocity 453 about the z-axis of the A coordinate system between the x-axis

of the A coordinate system and the x-axis of the B coordinate system.

(for 5 € [z,¥]) : The translational velocity Aciaj along the j-axis of the A coordinate system
between the origin of the A coordinate system and the origin of the B coordinate system.
Since all motion is in the x-y plane, the z-component Adp, of the translational velocity is

Zero.

Scalar Rotational and Translational Accelerations:

: The rotational acceleration 465 = Awp about the z-axis of the A coordinate system between

the x-axis of the A coordinate system and the x-axis of the B coordinate system.

: {for j € [z,y]) : The translational acceleration AJB,- = By, along the j-axis of the A

coordinate system between the origin of the A coordinate system and the origin of the B
coordinate system. Since all motion is parallel to the x-y plane, the z-component 4dg, of

the translational acceleration is zero.
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The assignment of coordinate systemé results in two types of transformation matrices between
coordinate systems: constant and variable. The transformation matrix between coordinate systems
fixed at two different positions on the same link is constant. Transformation matrices relating
the position and orientation of coordinate systems on different links include joint variables and
thus are variable. Constant and variable transformation matrices are denoted by ATz and 4® B,
respectively[61]. In Table 4.4.2, we compile the transformation matrices in our WMR model. The
constant transformation matrices are the floor-Fobot transformation (¥ T%), the robot-hip transfor-
mation (®Ty,), the steering-contact transformation (5 Tc,) and the floor-gontact transformation
(F TC—) Since the instantaneously coincident :coordinate systems R and C; are stationary relative
to the floor coordinate system, all transformation matrices between the floor coordinate system
and the instantaneously coincident coordinate systems are constant. The variable transformation
matrices are the Fobot-robot transformation (EQ r), the hip-steering transformation (#:®gs,) and
the Contact-contact transformation (5-" ®c.). The transformation matrix from a coordinate system
to its instantaneously coincident counterpart (or visa-versa) is variable because there is relative
motion. We compile the first and second time-derivatives of the variable transformation matrices
in Tables 4.4.3 and 4.4.4, respectively. The matrix derivatives involving instantaneously coincident
coordinate systems (i.e., Ry, G i’c,., R$p, and c‘éc‘) are formed by differentiating and simpli-
fying the elements of the transformation matrices Ry r and ¢ &, respectively, by substituting
Rﬂg =0 and & 6c, = 0. Because of the simplifying substitutions, the second time-derivative of
a transformation matrix involving an instantaneously coincident coordinate system cannot be ob-
tained by differentiating the first time-derivative. Time-derivatives of instantaneously coincident
coordinate systems are calculated in Section 4.5 by applying matrix coordinate transformation

- algebra. The time-derivatives of constant transformation matrices are zero.

For wheels which do not have steering links, the hip and steering coordinate systems are as-
signed to coincide with the contact point coordinate system, so that the hip-steering and steering-
contact transformation matrices reduce to identity matrices and thereby simplify the ensuing kine-

matic modeljng.
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Table 4.4.2 : Transformation Matrices of the WMR Model

Floor — Robot Transformation :

Robot — Robot Transformation :

Robot ~ Hip Transformation :

Hip — Steering Transformation :

Steering — Contact Transformation :

Contact — Contact Transformation :

Floor ~ Contact Transformation :

c?s :0—§ - sinFFﬂk- 0 :d_R-::
Fp_ - | St b cos6p O dz,
R 0 0 1 Fdg,
0 0 0 1
cos ’?03 —sin "’03 0 ﬁdR
Ry, - sin®9r cosRor 0 Rip
0 0 1 Rdp
0 0 0 1
cos ROy, —sinRoy, 0 Bdy,.
: R R R
R _ | sin®0yg, cos™ 0y, 0 "dy,
Tm=1 "¢ 0 1 Rdg,
0 0 0 1
cos Higs, —sinHdg, 0 0
< H H
H; _ | sin®bs;, cosZbs, O O
Bs.=1 o 0 10
0 0 01
cosSi0c, —sinSbc, 0 Sidg,
S _ | sin®%f0g, cosZbg;, 0 “dgy,
Te. = 0 0 1 Sidg,,
0 0 0 1
cosClo, —sinCbc, 0 Cidg,
Cigp = sinc‘ﬂc‘ cos c‘ﬂc‘. 0 é‘dc,._
; 0 0 1 Cidg,
0 0 0 1
cos s —sinfos 0 Fdgs
FT—— = SinFo'é'.- cosFD-c-‘, 0 Fd-c-ﬂl
C: 0 0 1 Fdz
0 0 0 1
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Table 4.4.3 : Transformation Matrix Time-Derivatives

0 -Rup 0 )‘:vm
= . R
Robot — Robot : Ry, = ‘(“;R g g ’(’)Rv
0 0 0 0
—Hiyg, sin#igs, —Hiwg, cosHifs, 0 0
. H; H; —H; i Hi
Hip — Steering : Hgg = ¥s cgs Os. ws; gm Os. g g
0 0 "0 0
0 ~Ciwg, 0 Civg,e
- - ci c-
Contact — Contact : G, = | oo g 8 '(’)C-'v
0 0 0 0

Table 4.4.4 : Transformation Matrix Second Time-Derivatives

R

—Rwﬁ - —RQR 0 “ag.
- R R 2 R
Robot — Robot : Rgp=| or —"wgr 0 Tag,
Robot — Robo - R 0 0 o 0
0 0 0 0
Hzip — Steering :
—Hiag, sin ifs, — Hiwd cos Hifs, —Hias, cosHifs, + Hiwd sinfifs, 0 0
By = | Tas cosFbs, - Hiwg sinHifs,  —Hiag sinHifs, — Fiwg cosHigs, 0 0
S 0 0 00
0 0 00
—c‘w"". —c‘ac‘ 0 c‘ac_.,,
- = G ~Ci,2 C;
Contact — Contact : Cidg, =] e wg, 0 acy
0 0 0 0
0 0 0 0
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4.5 Matrix Coordinate Transformation Algebra

The kinematics of stationary manipulators are modeled by exploiting the properties of trans-
formation matrices[19]. We formalize the manipulation of transformation matrices in the presense
of instantaneously coincident coordinate systems by defining a matriz coordinate transformation al-
gebra. The algebra consists of a set of operands and a set of operations which may be applied to the
operands. The operands of matrix coordinate transformation algebra are transformation matrices
and their first and second time-derivatives (in Section 4.4). The operations are listed in Table 4.5.1
as seven axioms. In the table, 4, B, and X are coordinate systems and IT denotes either a constant
T transformation matrix or a variable & transformation matrix. Matrix coordinate transformation
algebra allows the direct calculation of the relative positions, velocities and accelerations of robot
coordinate systems (including instantaneously coincident coordinate systems).

Table 4.5.1 : Matrix Coordinate Transformation Algebra Axioms

Identity: = ANg=1 forB=AorB=4
Cascade : Allp = “TIx I
Inversion : ATl = BII?
Zero — Velocity : | ATIg=0 forB=AorT=T
Velocsty : ATlp = ATIx XTI + ANy XIIg
Zero — Accdcration : AfIz =0 forB=AorII=T
Acceleration : Aflp = Allx XTIp + 2 Allx XHp + ATx XI5

The identity aziom is self-evident since neither rotations nor translations are required to trans-
form from a coordinate system to itself or to its instantaneously coincident coordinate system. The
cascade aziom specifies the order in which transformation matrices are multiplied: the coordinate
transformation matrix from the reference system to the destination is the cascade of two coordi-
nate transformation matrices, the first from the reference system to an intermediate coordinate
system, and the second from the intermediate coordinate system to the destination. The tnversion
aziom states that the coordinate transformation matrix from a reference coordinate system to a
destination coordination system is the inverse of the coordinate transformation matrix from the
destination coordinate system to the reference coordinate system.
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Just as the multiplication of transformation matrices is specificd by the cascade axiom, time-
differcntiation of transformation matrices is specified by the four velocity and acceleration axioms.:
Specifically, we cannot differentiate both sides of a matrix transformation equation. For example,
if we were to differentiate both sides of the equation “II-; = I, we would obtain the incorrect result
that AIZIX = 0 since the velocities between a coordinate system and its instantaneously coincident
counterpart are (in general) non-zero. The zero-velocity axiom states that the relative velocities
between a coordinate system A and itself (B = A) or another coordinate system assigned to the
same link (IT = T) are zero. This is because two coordinate systems assigned to the same link are
stationary relative to the link and each other. Similarly, the zcro-accelcratién axiom states that
the relative accelerations between a coordinate system A and itself (B = A) or another coordinate
system assigned to the same link (IT = T) are zero. The velocity axiom specifies how the time-
derivative of a transformation matrix may be expressed in terms of the two cascaded transformation
matrices and their time-derivatives. Finally, the acceleration axiom specifies how the second time-
derivative of a transformation matrix may be.erpressed in terms of the two cascaded ﬁwsformation

matrices and their first and second time-derivatives.

The matrix coordinate transformation axioms in Table 4.5.1 lead to the corollarses in Table
4.5.2 which we apply to the kinematic modeling of WMRs.

Table 4.5.2 : Matrix Coordinate Transformation Algebra Corollaries

Instantaneous Coincidence : ATlp = ATy = ‘il'[B = 41p
Cascade Position : ATI; = 4Ilg BIlc €TIp ... Yz
Cascade Velocity : ATl; = ATl BITz + AMlg BIic Mz + ... + Ay YIIz
Cascade Acceleration : AT, = ATl Bz + AIl BNic Oz +... + ATly YIIz
+2 ATIg(BIIc Nz + BIic Cp PNz +... + Blly Y1)
+2 A BIIc[CHp PNz +...+ Oy Y1Ig)
+ ... +24TIx XMy Yz

We develop the instantaneous cotncidence corollary by applying the identity and cascade ax-
ioms. The instantaneous coincidence corollary simplifies transformation matrix expressions by
eliminating the instananeously coincident coordinate systems. The cascade position corollary cal-
culates the transformation matrix from a reference coordinate system to a destination coordinate
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system which may be kinematically separated from the reference system by a number of cascaded
intermediate coordinate systems. The cascade position corollary, which is derived by repeated
applications of the cascade axiom, is the foundation of position kinematics (in Section 4.6). The
cascade velocity corollary is derived by repeated applications of the velocity axiom and the cascade
axiom. The cascade acceleration corollary is derived by repeated applications of the cascade, ve-
locity and acceleration axioms. In Sections 4.7 and 4.8, we apply the cascade velocity and cascade
acceleration corollaries to relate linear and angular velocities and accelerations between coordinate
systems. Throughout Section 4.7, we apply the axioms and corollaries of the matrix coordinate

* transformation algebra to derive the wheel Jacobian matrix.

4.6 Position Kinematics

We apply the transformation matrices (in Section 4.4) and the matrix coordinate transforma-
tion algebra (in Section 4.5) to calculate position kinematics. The practical position relationships
in WMR control require the calculation of the position of a point {e.g., r) relative to one coordinate
system (e.g., A) from the position of the point relative to another coordinate system (e.g., Z). For"
example, we calculate the position of the point mass relative to the floor coordinate system from.
the position of the point mass in a steering link relative to the steering coordinate system.

We transform position vectors by applying the transformation matrix in (4.4.1):
Ar =411z %r. (4.6.1)

When the transformation matrix 4TI z is not known directly, we apply the cascade position corollary
to calculate 4TI from known transformation matrices:

ATz = 4TIp Bric ‘nip ... Y115 . (4.6.2)

We apply transformation graphs to determine whether there is a complete set of known transfor-
mation matrices which can be cascaded to create the desired AITz. In Figure 4.6.1, we display a
transformation graph of a WMR with one steering link per wheel.

The origin of each coordinate system is represented by a dot, and transformations between
coordinate systems are depicted by directed arrows. The transformation in the direction opposing
an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to
calculate a desired transformation matrix (e.g. FILg,) is thus equivalent to finding a path from the
reference coordinate system of the desired transformation (F') to the destination coordinate system
(51). The matrices to be cascaded are listed by traversing the path in order. Each transformation
in the path which is traversed from the tail to the head of an arrow is listed as the matrix itself,
while transformations traversed from the head to the tail are listed as the inverse of the matrix.
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Floor

Figure 4.6.1

Transformation Graph of a WMR

For example, the point mass in Figure 4.6.2 located at position r relative to the steering coor-
dinate system S is transformed to its position relative to the floor coordinate system F according

to:

Fr = FrIg, Sir, (4.6.3)

where

Flis, = FT; Rap BTy, Mg, . (4.6.4)




Robot

Figure 4.6.2

Point Mass in the Steering Link

In this example, the reference coordinate system is the floor coordinate system F and the
destination coordinate system 1s the steering coordinate system S;. There are multiple paths
between any two coordinate systems in Figure 4.6.1 because WMRs are closed-link structures. In
practice, the number of feasible paths is reduced because some of the transformation matrices are
unknown. For example, we may seek to calculate the desired transformationr matrix in (4.6.4) as:

Fis, = &g, Ciac, O, (4.6.5)

but the transformation matrix from the floor to the wheel contact point ¥ Tg, is typically unknown.

4.7 Velocity Kinematics
4.7.1 Introduction

We relate the velocities of the WMR by applying the matrix coordinate transformation algebra
axioms and the cascade velocity corollary. In Section 4.7.2, we calculate the velocity of a point
(e.g., r) relative to a coordinate system (e.g., A), when the position of the point is fixed relative to
another moving coordinate system (e.g., Z). This solution is applicable to the dynamic modeling of
WMRs (in Section 9) for computing the velocity of a differential mass element on the WMR relative
to the floor coordinate system. In Section 4.7.3, we apply this same methodology to calculate the
velocities of the robot relative to the instantaneously coincident robot coordinate system when
the velocities of a wheel? are sensed. We introduce the wheel Jacobian matrix to calculate the
robot velocity vector from the wheel velocity vector. We also calculate (in Section 4.7.4) the robot

2 The wheel velocities are the steering velocity Wz, the wheel velocity about its axle Wyz, the rotational slip

velocity Wygz, the roller velocities Wy, (for omnidirectional wheels) and the rotational velocity Wy (for ball wheels).
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velocity vector relative to the floor coordinate system, when the robot velocity vector is sensed
relative to the instantancously coincident robot coordinate system. In Section 6.3, we apply these

calculations to dead reckoning® for WMR control.

4.7.2 Point Velocities
We differentiate the point transformation in (4.6.1) with respect to time to compute the velocity
of the point r in the A coordinate system:
Ap = ATIZ Zr .  @70)

When the matrix 4TIz is not known directly, we apply the cascade velocity corollary to calcu-
late ATI; from known transformation matrices and known transformation matrix time-derivatives

according to:

ATlz = ATl PNz + 4N Blic Iz + ... + 4ly YII; (4.7.2)

For example, equation (4.6.3) relates the position r of a pi)int mass in the steering coordinate
system S; to its position in the floor coordinate system F. We calculate the velocity of the point
r relative to the floor coordinate system by differentiating (4.6.3):

Fi = Pl Sir. T (413)

Since the vector Sir is constant, its time-derivative is zero. We apply the cascade velocity corollary
and the WMR transformation graph to obtain an expression for the unknown transformation matrix

derivative in (4.7.3):
Flls, = FT5 *lls, + 7T Fdg *ls, + TMp Rly, M5, + TNy, Bids, . (4.7.4)

We simplify (4.7.4) to require only known transformation matrices and known transformation

matrix derivatives.

Flis, = FTx %@p M5, + Fllg, Fids, Zero — Velocity Aziom
= FT-Rap BTy, Bi@,, + PTp Rdg PTy, Mds, Cascade Corollary
= FT; B8y RTy, B85, + FTy BTy, H1ds, Identity Aziom
= FoIp 751.»3 Rry Hidg, + Fllig BTy, Fi1ds, Instananteous Cosncidence

(4.7.5)

s Dead reckoning is the real-time calculation of the WMR position in floor coordinates from wheel sensor

measurements.




In (4.7.5), the robot velocity (m R R) is calculated in the sensed forward solution (in Section 5.7),
the steering position (in #@s,) and velocity (in H:®s,) are sensed, the robot position (in FIIg)
is calculated by dead reckoning (in Section 6.3), and the robot-to-hip transformation (RTpy,) is
specified by design. The right-hand side of (4.7.5) is thus known. We then substitute (4.7.5) into
(4.7.3) to calculate the velocity of the point mass r relative to the floor coordinate system.

4.7.3 Wheel Jacobian Matrix

We formulate the equations-of-motion to model the velocities of the robot in terms of the
velocities of a wheel. We begin our development by applying the cascade velocity corollary to write
the matrix equation (4.7.6) with the unknown dependent variables (i.e., robot velocities, Rg R) oD
the left-band side, and the independent variables (i.e., the wheel  velocities, Hids, and &, ) on

the right-hand side:

EﬁR = FT%1 Fry E‘i'c.- Sipg! Higgl Ryl
(4.7.6)

+ P2t Frg Cdc, STl me5! A1yl .

The transformation graph of Figure 4.6.1 is utilized to determine the order in which to cascade the
transformation matrices; the inversion axiom is applied when an arrow in the transformation graph
is traversed from head-to-tail and the zero-velocity axiom is applied to eliminate the matrices
which multiply the derivatives of constant T matrices. Since the position of the wheel contact
point relative to the floor is typically unknown, we apply the cascade position corollary to write an
alternative expression for the floor-contact transformation matrix:

Pry, =TTg Rop FTy, P &5, STc, C'a5! . (4.2.7)

We substitute (4.7.7) into (4.7.6) to obtain: -

Rllgp = Rdp BTy, Hds, SiTq, Cidgl Cidg, STG! Higsl Ryt

- . (4.7.8)
+ R@p Bry, H@s, Bag! BTyl
We apply the identity axiom to simplify (4.7.8).
Rz = BTy Fs, %Tc, Cide, ST Fo5! Pry! (4.7.9)

+ RTH.' H"ﬁS.' H‘QE.-I RTI.?}
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We next apply Tables 4.4.2 and 4.4.3 to write the transformation matrices and the transfor-

mation matrix derivatives and multiply the result to obtain:

_0 —Ryp 0 f_ URx
ng 0 0 Rv}z
0 0 0 0
0 0 0. 0
0 ~Ciwg, 0 C_ Rdc,, + C'vc_z cos Boc, — c'vc y Sin Roc‘
= c‘wc'.‘ 0 0 c‘wc Rdc‘z + c‘vc., sin Roc. + C‘vc ;y CO8 Roc.
0 0 0 0
0 0 0 0
. (4.7.10)
0 H"ws_. 0 —H"ws'. Rdﬂ.v
+ —H‘ws‘. 0 0 Hiyg Rd};‘,
0 0 0 0
0 0 0 .0

To simplify the notation in (4.7.10), we have made the following substitutions:

Rog‘. H‘as + S Oc, = Roc.
Sidg,z cos(POm, + Hi0s,) — Sidg,y sin(POy, + H0s,) + Rdy,. = Rdg, . (4.7.11)

Sidg,. sin(®0y, + é‘as..) + _s‘dc,.y cos(Roy, + Hibs,) + RdH‘.v = Rdc..v

Upon equating the elements in (4.7.10), we obtain the robot velocities:

_ [ Evg, cos Roc,. —~sin Rﬂc_- RdC.-y -Rdﬁ.-'y '5:.:0‘: ..
R]')R = RvRy = | sin RGC,- cos Roc.' —RdC.'z RdH.'z o Gy | = J; Q, ’ (47'12)
R 0 0 1 -1 H'_“’C'.'
lws_ *

WgR

where ¢ = 1... N is the wheel index, E]’) R is the vector of robot velocities in the Fobot frame, J; is
* the pseudo-Jacobian matrix for wheel ¢, and Q is the pseudo-velocity vector for wheel :. We define
the number of wheel variables of wheel ¢ to be w;. The physical velocity vector §; of typical wheels
does not contain the four component velocities in (4.7.12). Typical wheels posses fewer than four
wheel variables and thus fewer than four elements in the velocity vector. Furthermore, since all
physical wheel motions are rotations about physical wheel axes, the wheel velocity vector contains
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the angular velocities of the wheels rather than the linear velocities of the point of contact along
the surface of travel. We relate the (4 x 1) pseudo-velocity vector to the (w; x 1) physical velocity
vector g; by the (4 X w;) wheel matrix W,:

a4 = Wiq. | (4.7.13)
We substitute (4.7.13) into (4.7.12) to calculate the robot velocities from the wheel velocity vector:
Fpr = LiWia = Ji & . _ (4.7.14)

The product J; = (J; W;) is the (3 X w;) wheel Jacobian matrix of wheel 5. The rank of
the wheel Jacobian matrix indicates the number of DOFs of the wheel. A wheel having fewer
DOFs than wheel variables is redundant. The Jacobian matrix of a redundant wheel has dependent
columns. We thus formulate the following computational method to determine whether a wheel is

non-redundant:

Non-Redundant Wheel Criterion

| det[3T3,)# 0 | (4.7.15)

Only three different wheels have been utilized in the WMR designs of Section 2: non-steered
conventional wheels, steered conventional wheels and omnidirectional wheels. The wheel Jacobian
matrices for these wheels and the ball wheel are detailed in Appendix 3. We utilize (4.7.14) in
Section 5 to develop the inverse and forward solutions. In Section 6, we apply the matrices in
Appendix 3 to calculate the inverse and forward solutions of specific WMRs.

4.7.4 Transforming Robot Velocities

We equate the components in matrix equation (4.7.2) to compute the translational 4vz., and
4yz, and rotational 4wz velocities* of the coordinate system 2 relative to coordinate system A.
We apply this meéthodology to the practical problem of transforming velocities of the robot from
Fobot coordinates R to floor coordinates F. We assume that the fioor-robot transformation matrix
FTp (i.e., the position and orientation of the robot relative to the floor) and the matrix Rp R (e,
the velocities of the robot relative to its current position and orientation) are known. The velocities

4 There are no translational velocities along the s-axis or angular velocities about the x and y-axes because of

our coordinate system assignments.
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to be calculated (i.e, the velocities of the robot relative to the floor) are the components of the
matrix FTI Rr- We apply the cascade velocity corollary (in Section 4.5) and the WMR transformation
graph (in Section 4.6) to write the matrix equation )

F]:IR = FTE EQR + FT-E EQR ’ (4.7.15)

in terms of known matrices. To simplify (4.7.15), we apply the zero-velocity axiom and the instan-

taneous coincidence corollary:
F]:[R = Frp 'EQR (4.7.16)

We expand each matrix into scalar components: the matrix derivative F n Rr according to
(4.4.7), the transformation matrix FTg according to (4.4.5), and the transformation matrix deriva-

tive E®  according to Table 4.4.3. Upon multiplying, we obtain:

~FupsinFop -Fwgcos¥p 0 Fup,
FwR €Os FGR —FszinFOR 0 Fvn,,
0 0 0 0
0 0 0 0
—RupsinFop —PwgrcosFIgp 0 Rup,cosFdp ~ Fug,sinFop
—_ ng cos "03 —ng sin Fag 0 Rvaz Sinpon + Rvny cos FOR . (4.7.17)
0 0 -0 0
0 0 0 0

We obtain the angular velocity of the robot Fwg from elements (1,1) and (2,1) and read the trans-
lational velocities Fvg, and Fup, directly from elements (1,4) and (2,4) of (4.7.17), respectively.
We find that:

) FoRrs cosFop —sinFop 0 _7'_-1)12: .
Fpr=|Fup, | = | snFor cosFor 0 Rvr, | =V Bpg (4.7.18)
Fup 0 o 1) \=®,,

In (4.7.18), we observe that the angular velocity of the robot is equal in both coordinate
frames; whereas the translational velocities in the floor coordinate frame are dependent upon the
robot orientation. The matrix V is the (3 X 3) motion matriz which depends upon the robot
pdsition Fpg. In Section 6.3, we apply the motion matrix to dead-reckoning for WMRs.
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4.8 Acceleration Kinematics

We calculate the accelerations of the WMR by applying the cascade acceleration corollary.
Since the development paraliels that of the velocity kinematics in Section 4.7, we omit the compu-
tational details and concentrate on interpreting the results. We cannot formulate the acceleration
equations-of-motion by differentiating the results of Section 4.7, because differentiation of both
sides of a transformation matrix equation is not an allowable operation in our matrix coordinate
transformation algebra. This is in contrast to the acceleration kinematics of mechanisms contain-
ing only lower-pairs (e.g., stationary manipulators) which are formulated by differentiating velocity

kinematics.

The acceleration of the point r fixed relative to the moving coordinate system Z is transformed
to the A coordinate frame according to:

AfF = Az %r. : (4.8.1)

We apply the cascade acceleration corollary to calculate the second time-derivative of the transfor-

mation matrix 4T1z.

By applying the cascade acceleration corollary, the component accelerations of the robot (ﬁa Rz
Ean,, and Eag) are related to the wheel accelerations (Fag,, a‘-ac'.,,, aac‘.v, and E'Ta_c..;,') as the
cascade velocity corollary, in Section 4.7.3, relates the robot velocities to th-e wheel velocities. In
the notation of (4.7.11), the robot accelerations are:

R "Ry - _g R R R “acy
GRz cos “0c, —sin"fc, dcy —"dmy o
-3 . 'ac-v
Rq Ry = sin Roc,- cos Rac‘. —Rdc‘., R4 H;z o *
Ry 0 0 1 -1 ' aC;
R Hc’as‘
(4.8.2)
i
2d0;z :dH.-z 2‘13.'2 -—-C' “"C.-
+ dc;y “dmy Tdmy -2 Ciwg, Hiwg,

The robot accelerations in (4.8.2) are composed of three components: the self-accelerations
(Cac,z, _c-"-ac‘,,, a'Tac;'. and Hiqg,); the centripetal accelerations (a’-wa and Fiw} ) having squared

velocities; and the Coriolis accelerations (C:wc, Hiws,) having products of different velocities.

Transforming robot accelerations from Fobot coordinates to floor coordinates is analogous to
transforming robot velocities (in Section 4.7.4). We find that the robot accelerations are trans-
formed from the Fobot to the floor coordinate frame by the motion matrix V that transforms the
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velocities in (4.7.18):

Faaz cos Fog —sin F9R 0 EGR:: -
Fpr=|Fapy | = | sinFlr cosFop 0 Rapy, | =V Rpg . (4.8.3)

The acceleration equations-of-motion are not solved in practice because accurate acceleration mea-

surements are difficult to obtain.

4.9 Summary

We have formulated a systematic procedure for modeling the position, velocity and acceleration
kinematics of a WMR. In this section, we outline a step-by-step enumeration of the methodology
to facilitate engineering applications.

1.) Make a sketch of the WMR. Show the relative positioning of the wheels and the
steering links. The sketch need not be to 'scale. A top and a side view are typically sufficient.

2.) Assign the coordinate systems.- The robot, hip, steering, contact point and floor
coordinate systems are assigned according to the conventions introduced in Table 4.3.1.

3.) Develop the (4x4) coordinate transformation matrices. The robot-hip, hip-steering,

and steering-contact transformation matrices are written according to Table 4.4.1.

4.) Formulate the position equations-of-motion. The relative positions and orienta-
tions of two coordinate systems are determined by applying the cascade position corollary. The
transformation graph of Figure 4.6.1 is utilized to determine the order in which to cascade the

matrices.

5.) Formulate the velocity equations-of-motion. The equations relating velocities are
formulated by applying the cascade velocity corollary. The wheel Jacobian matrix, which relates
wheel velocities to robot velocities, may be written directly by substituting components of the
transformation matricies into the symbolic wheel Jacobian matricies compiled in Appendix 3.

6.) Formulate the acceleration equations-of-motion. The equations relating accelera-

tions are formulated by applying the cascade acceleration corollary.

The non-redundant wheel criterion in (4.7.15) is a test on the Jacobian matrix to determine
whether a wheel has as many DOF's as wheel variables. We apply this criterion in Section 5 to reveal
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disadvantages of redundant wheels. A kinematic model; i.e., the position, velocity and acceleration
equatjons-of-motion, may be applied to the dynamic modeling, design and control of a WMR. In
these applications, the equations-of-motion are solved to compute unknown variables from constant
and sensed variables. In Section 5, we compute the inverse and forward solutions by utilizing the

wheel Jacobian matrix (introduced in Section 4.7.3) as the foundation.

41




§. The Composite Robot Equation

5.1 Introduction

We combine the kinematic equations-of-motion of all of the wheels on a WMR to form the
composite robot equation. We then investigate solutions of the composite robot equation and their
properties and implications for WMR locomotion. Qur investigation illuminates WMR mobility
(in Section 5.4), actuation (in Sections 5.5 and 5.6) and sensing (in Sections 5.7 and 5.8).

In Section 5.2, we formulate the composste robot equation and in Section 5.3 we discuss the
conditions for its solution. We apply the results of Section 5.3 to develop a mobility character-
tzation tree in Section 5.4 which allows us to interpret the solubility conditions in terms of the
mobility characteristics of the WMR. The mobility characterization tree indicates whether the
mobility structure is determined, overdetermined or undetermined, and associates specific mobility
characteristics with each possibility. For example, we may apply the-mobility characterization tree
to determine whether a WMR allows threq DOF motion, and if it does not, the tree indicates the

motion constraints.

We proceed to solve the composite robot equation by addressing two classical kinematic mod-
eling problems: the actuated inverse solution (in Section 5.5) and the sensed forward solution (in
Section 5.7). The actuated tnverse solution computes the actuated wheel velocities from the robot
velocities. For WMR control, we solve only for the velocities of the actuated wheel variables. The
solution for all of the wheel velocities is a.special case which may be obtained by assuming that all

of the wheel variables are actuated.

The actuated inverse solution does not guarantee that the specified robot velocities will be
attained when the actuated wheel variables are driven to the calculated velocities. We investigate
the possible robot motions when the actuated wheel variables attain the velocities computed by
the actuated inverse solution in Section 5.6. We develop an actuation characterization tree, anal-
ogous to the mobility characterization-tree, which allows us to determine the actuation structure
(determined, overdetermined or undetermined) of a WMR. The actuation characterization tree is
applicable for WMR design to avoid overdetermined actuation (which may cause actuator conflict)
and undetermined actuation (which allows the WMR uncontrollable DOFs). From our analysis,
we are able to determine whether the actuated wheel variables are sufficient for producing all of
the motions allowed by the mobility structure.

The sensed forward solution in Section 5.7 computes the robot velocities from the sensed wheel
velocities and positions. Since a WMR consists of closed kinematic chains, it is not required to
sense all of the wheel positions and velocities, and in practice, it is difficult to do so.
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In Section 5.8, we develop a sensing characterization tree which allows us to dctermine the
character (undetermined, determined or overdetermined) of the WMR sensing. We thus are able
to determine whether the sensed wheel variables are sufficient for discerning all of the motions

allowed by the mobility structure. Finally, in Section 5.9, we summarize our development.

5.2 Formulation of the Composite Robot Equation

In Section 4.7.3, we developed the wheel Jacobian matrix J; by applying velocity kinematics
to compute the robot velocity vector p from the wheel velocity vector d:

p=J:4 fori=1,.,N, (5.2.1)

where 1 is the wheel index, N is the total number of wheels, p is the vector of robot velocities, J;
is the (8 X w;) Jacobian matrix for wheel 1, w; is the number of variables for wheel ¢, and §; is the

(ws % 1) vector of wheel velocities.

The 3N wheel equations in (5.2.1) must be solved simultaneously to characterize the WMR
motion. We combine the whee] equations to form the composite robot equation: :

I; ’J 0 ... 0 Q
1 .. : O ’
Ple=| % B A (5.2.2)
. : .. ., 0 .:
IN. ) 0 REE 0 Jn qnN
or
Ayp= Bod (5.2.3)

where the I;, for ¢ =1,...,N, are (3 x 3) identity matrices, Aq is a (3N x 3) matrix, By is a
(3N x w) block diagonal matrix, w = wy +'wz + ... + wy is the total number of wheel variables
and q is the composite wheel velocity vector.

Having formulated the matrix equation in (5.2.3) to model the robot motion, we proceed to
investigate the solution for the robot velocity vector p in Section 5.3 and its implications for WMR

locomotion in Section 5.4.

5.3 Solution of Ax =By

We characterize WMR mobility (in Section 5.4), actuation (in Section 5.6) and sensing (in
Section 5.8) by examining the properties of the solutions of the composite robot equation in (5.2.3).
We extend the standard criteria[15] for the systems of linear algebraic equations Ax = b, where A
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is an (m X n) matrix, x is a (n X 1) vector and b is a (m X 1) vector, to the solution of the systems

of linear algebraic equations .
Ax =By, (5.3.1)

where B is an (m X p) matrix and y is a (p X 1) vector. Since the composite robot equation (5.2.3)
has the form of (5.3.1), solutions of (5.3.1) are directly applicable to the solution of the composite

robot equation.

We apply the method of least-squares|15] to compute the vector x for overdetermined (i.e.,
having fewer variables than independent equaitions) and determined (i.e., having the same number
of variables as independent equations) systems of linear algebraic equations:

x=(ATA)'ATBy. (5.3.2)

The necessary condition for applying the least-squares solution in (5.3.2) is that rank(A) =n. There
is no unique solution for undetermined systems (i.e., systems having fewer independent equations

than independent variables).
The residual error of the least-squares method is: -
Ax-By=[A(AT A)'AT-]|By=A(A)By. (5.3.3)

We define the Delta matrix function A(s) for expository convienience as:

-1 Jor U =null

_ . 5.3.4
U(UTU)'UT =1 Otherwise (6.3.4)

A(U)= {
where the argument U is a (¢ X d) matrix of rank d.

To characterize WMR motion, we must determine whether the least-squares error in (5.3.3) is
zero for all y. To do so, we may apply either of the following equivalent tests:

A(A)B=0 (5.3.5)

rank[A; B] = rank[A] . (5.3.6)

If either test (5.3.5) or (5.3.6) is satisfied, the least-squares error is zero for all y. The first test
in (5.3.5) is apparent from the expression for the least-squares error in (5.3.3). The second test in
(5.3.6) states that if the columns of the matrix B lie in the vector space spanned by the columns
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of the matrix A, then the vector By must also lie in the vector space spanned by the columns of
A for all y. The vector By can then be expressed as a linear combination of the columns of A
by proper choice (via the least-squares solution) of x. Similarly, we may determine whether the

least-squares error is zero for a specific y by applying either of the following two equivalent tests:
A(A)By=0, (5.3.7)

or :
rank[A; By] =rank[A] . - (5.3.8)

We depict in Figure 5.3.1 a tree illustrating the nature of all possible solutions for the vector x
of the system of linear algebraic equations in (5.3.1). The tree branches (directed arrows) indicate
tests on the matrices A, B and y and are numbered for future reference. The leaves (boxes) indicate

the corresponding properties of the solution.

As depicted in Figure 5.3.1, the system of linear algebraic equations in (5.3.1) may be deter-
mined, overdetermined or undetermined. The top branches, (0) and (1), determine whether the
least-squares solution is applicable by testing the rank of the matrix A. If the rank of Ais n
(branch (0)). the least-squares solution is applicable and there is a unique solution for some y. If
the rank of A is less than n (branch (1)), the least-squares solution is not applicable indicating that
the system is undetermined and there is no unique solution for any y. An undetermined system

has more unknowns than independent equations.

A determined system is one in which the number of independent equations (less than or equal
to m) equals the number of unknowns (n). The least-squares error is zero for all y and thus tests
(5.3.3) and (5.3.4) apply at branch (00).

An overdetermined system is ope in which the number of independent equations is greater
than the number of unknowns. The least-squares error of an overdetermined system is thus non-
zero for some y (branch (01)). Tests (5.3.7) and (5.3.8) are applied at branch (010) to determine
whether the least-squares error is zero for a specific y. If so, the system is consistent and t};ere is
a unique solution. If the least-squares error is non-zero for a specific y (branch (011)), the system

is inconsistent and there is no exact solution.

In Section 5.4, we apply the solution tree in Figure 5.3.1 to the composite robot equation in
(5.2.3) and discuss the implications for WMR mobility characterization.
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Ax = By

Modeling Equation

rank[ A] = m rank[ AJ< m

(0)

Unique Solution
for Some Yy

Least-Squares Solution

Applicadble ..
rank[A:B ] = rank[ A] rank[A: B ]
or > rank[ A]
A(A)B=0 or
(A) AA) B 0
(00) 01)
Determined Overdetermined UndpterMnod .
Unique Solution Unique Solution No Unique Solution
for A11 y for Some .y
Least-Squares Solution
Least-Squares Error = 0 Not Applicable
rank[A By ] = rank[ A] A rank[A By ] > rank[ A]
or . A or
A(A)By= 0 A(A)By> 0
(010) 011)
Consistent Inconsistent
Unique Solution No Solution
Least-Squares Error = 0 Least-Squares Error > 0

Figure 5.3.1
The Solution Tree for the Vector x in (5.3.1)
5.4 Robot Mobility Characteristics

The composite robot equation in (5.2.3) has the form of the system of linear algebraic equations
in Figure §.3.1, in which A,, B,, p, and § play the roles of A, B, x and y, respectively. Since
the robot velocity vector p plays the role of the dependent variable, we investigate the conditions



under which the forward solution may be computed. In Figure 5.4.1, we apply the solution tree in
Figure 5.3.1 to the composite robot equation in (5.2.3).

A,p = B.g

Composite Robot Equation

rank[A,] = 3

Always True

rank[A,]< 3

Never true

)

Unique So‘lut.ion
for-Some q

Least~Squares Solution
Applicable

rank[A,*Bo] = 3 rank[ Ay Bo] > 3

(00) . (01)

Determined Overdetermined Unqeterminod'
Unique Solution Unique Solution No Unique Solution

for AT11 ¢

Only One Wheel

for Some q

More Than One Wheel
Closed-Link Chains

Not Possible

rank[A,s Boq] = 3 rank[A.:B,q] > 3

(010) 011)

Consistent

Inconsistent
Unique Solution

No Solution

No Wheel S1ip Wheel Siip Occurs

Figure 5.4.1

The Solution Tree for the Robot Velocity Vector p
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By inspection of (5.2.2), we observe that the rank of the (3N x 3) matrix A, is 3 and thus
branch (0) always applies. Since brauch (1) does not apply, the solution cannot be undetermined;-
and hence the robot motion is completely specified by the motion of the wheels. From the structure
of the matrices A, and B, in (5.2.2), we observe that the rank of the augmented matrix [A,, B,] is
greater than 3 when there is more than one wheel. A WMR with one wheel is determined (branch
(00)), and a WMR with more than one wheel is overdetermined (branch (01)). The overdetermined
nature of WMRs having more than one wheel is a consequence of the closed-link kinematic structure
of a WMR. As indicated in Figure 5.4.1, the composite robot equation in (5.2.3) will be consistent
(and have a solution at branch (010)) or inconsistent (and have no solution at branch (011))
depending upon the wheel velocity vector q. Our no-slip assumption (in Section 4.2) ensures that
the motions of the wheels and the robot are consistent and that there is thus an exact solution.

We depict in Figure 5.4.1 the solution of the robot velocity vector p from the complete wheel
velocity vector q. In practice, the wheel velocity vector must be measured by sensors. It is difficult
to sense some of the wheel velocities, such as the rotational wheel slip. Since a WMR with more
than one wheel has closed-link chains, it is not necessary to sense all of the wheel velocities to
calculate the robot velocity because many of the sensor motions are dependent. In Sections 5.7
and 5.8, we investigate the solution of thé robot velocity vector from the sensed wheel velocities.

Although the nature of the forward solution of the composite robot equation provides us with
little physical insight, we gain significant understanding of WMR motion by investigating the nature
of the inverse solution. For WMR control it is not necessary to compute all of the wheel variables
in the inverse solution since they are not all actuated. Because of the closed-link chains, moreover
not all of the wheel variables must be actuated. In Section 5.5, we compute the actuated inverse
solution for the actuated wheel variables. In the remainder of this section, we focus on the complete
inverse solution to gain physical insight into WMR mobility characteristics.

We investigate the inverse solution by interchanging the roles of the right and left-hand sides
of the composite robot equation in (5.2.3) and applying the solution tree in Figure 5.3.1. Thereby,
B,, Ao, q and P in (5.2.3) play the roles of A, B, x and y in (5.3.1), respectively. The solution tree
for the inverse solution, subsequently referred to as the mobility characterization tree, is depicted
in Figure 5.4.2 . The branch tests indicated within curly brackets ”{e}” are simplified tests which
apply if there are no couplings between wheels.
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Boq = Aop

Composite Robot Equation

. rank{B,] = w
{det(J;J:) # 0 for i=1,...,N }

Soluble Motion Criterion

(M0)

rank[Bo]< w _
{det(J3d¢) = 0 for some i}

Unique Solution
for Some p
Motion Equations are Soluble
Inverse Solution Applicable
{No Wheels Have Redundant DOFs)

A(By) A, = 0 A(B,) A, = 0

{wi= 3 for i=1,...,N } {wi< 3 for some i}
Three DOF Criterion .
(M00 (MO1)
Determined ’ Overdetermined ' Undetermined
i i i i No Unique Solution
Unique So'lujnon Unique Sol Ut’10l\ Some Hhee'lsqlhve Redundant DOFs
for All P . for Some p . Inverse and Forward Solutions,
3-DOF Mobitlity Fewer Than 3-DOF Mobility and Actuation and Sensing Trees
Inverse Least-Squares Error = 0 Some Robot DOFs Dependent - Not Applicable.

A(B,) Ap p = 0
{A(Ji) p =0 for some i}
MO11)

A(B,) A p = 0
{A(3i) p = 0 for i=1,...,N}

Kinematic Motion Constraints ("010)

Inconsistent

No Solution

Motion Dependencies Not s-tisficd1
Robot Motion p Not Possible

Inverse Least-Squares Error > 0

Consistent
Unique Solution
Motion Dependencies Satisfied
Robot Motion ﬁ Possible
Inverse Least-Squares Error = 0

Figure 5.4.2

The Mobility Characterisation Tree

The inverse solution can be determined, undetermined or overdetermined depending upon the
kinematics (i.e., B, and A,). The top branches test the rank of the (3N x w) matrix By against
the total number of wheel variables w. Since the rank of By is the sum of the ranks of all of
the wheel Jacobian matrices when there are no wheel couplings, we test the rank of each wheel
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Jacobian matrix J; against the number of wheel variables w; for all wheelst =1,..., N. The rank
of the (3 x w;) wheel Jacobian matrix J; is w; if the determinant of the matrix [JT J;] is non-zero
as indicated by the non-redundant wheel criterion in (4.7.15). We refer to branch test (M0) as the

soluble motion criterion because it determines whether the composite robot equation can be solved.

Soluble Motion Criterion

rank[Bo] = w (54.1)

Soluble Motion Criterion With No Wheel Couplings

det[JTI]#0 for i=1,...,N

If the determinant of the matrix [J7J;] is zero, the associated wheel is redundant. 4 WMR
having redundant wheels and no wheel couplings 1s undetermined. We cannot compute the inverse
solution for a WMR with redundant wheels. Since the inverse solution is utilized in WMR control
(in Section 6.4), we suggest that undetermined mobility structures (i.e., redundant wheels) be

avoided.

WMRs without redundant wheels allow some robot motions since there is a unique solution
to the system of linear algebraic equations in (5.2.3) for some p. Branches (M00) and (MO01) test
the rank of the augmented matrix [Bo; Ao} against the rank of Bg. From their structure in (5.2.2),
the ranks of these two matrices are equal when all of the wheel Jacobian matrices are (3 x 3) and
rank 3 (i.e., all of the wheels are non-redundant and possess three DOFs). The mobility structure '
of a WMR is therefore determined if the test at branch (M00) succeeds. A determined structure
has a unique solution for all p; i.e., for any desired three dimensional robot velocity vector p there
is a wheel velocity vector G which is consistent with the motion. We thus conclude: The kinematsc
design of a WMR allows three DOF motion if and only if all of the wheels possess three DOFs.
This requirement is expressed computationally in the three DOF motion criterion in (5.4.2).
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Three DOF Motion Criterion

rank[Bg) =w and A(Bg) Ag=0 (5.4.2)

Three DOF Motion Criterion With No Wheel Couplings

det[JTI] #0 and w;=3 for i=1,...,N

If branch (MO) succeeds and the WMR does not possess three DOF's, the solution is overde-
termined (branch (M01)). The robot does not allow some motions because some of the robot
DOFs are dependent. For example, a WMR with a non-steered conventional wheel which satisfies
branch (M0) must have an overdetermined mobility structure because no motions perpendicular to
the wheel orientation may occur without slip. Branches (M010) and (M011) indicate the possible
robot motions p without slip. If the least-squares error is zero, the solution is consistent, and the
motion may occur. We thus determine the kinematic constraints on the robot motion by equating
the least-squares error to zero in (5.4.3). By examining the structure of the error in (5.4.3), we find
an equivalent computationé.lly simpler test in (5.4.3) when there are no couplings between wheels.

| Kinematic Motion Contraints

A(Bg) Agp =0 (5.4.3)

Kinematic Motion Constraints With No Wheel Couplings

AJ)p=0 for i=1,..,N.

We may thus determine the kinematic motion constraints for a WMR without redundant
wheels or wheel couplings by considering each wheel independently.

The augmented matrix [A(Bg) Ag) indicates whether the WMR possesses three DOFs at
branch (M00) or fewer than three DOFs at branch (M01). When there are fewer than three DOFs,
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the number of independent columns of the matrix [A(By) Ag) specifies the number of dependent
robot DOFs. The number of DOFs of a WMR having no redundant wheels is:

Number of WMR DOFs

DOFs = 3-rank[A(Bo) Ag] . (5.4.4)

The test at branch (M0) determines whether the complete inverse solution for all of the wheel
variables can be calculated by the least-squares solution. In Section 5.5, we apply the least-squares
solution to calculate the actuated inverse solution for the actuated wheel variables. Although the
actuated inverse solution may exist for some robot velocities p for which the complete inverse
solution does not, it is not practical to apply such an actuated inverse solution because the desired
robot velocities are constrained by the unactuated wheel variables. We thus utilize the soluble
motion criterion in (5.4.1) to indicate when the actuated inverse solution in Section 5.5 is practically

applicable.

5.5 Actuated Inverse Sohition

We calculate the actuated inverse solution 'by solving for the actuated wheel velocities in
(5.2.3). Because of the closed-link chains in WMRs, we need not actuate all of the wheel variables.
To separate the actuated and unactuated wheel variables, we partition the wheel equation in (5.2.1)

into two components:

f’ = Jia(lt'n + Jiuéiu . (5.5.1)

The "a” subscripts denote the actuated components and the "u” subscripts denote the unactuated
components. We let a; denote the number of actuated variables, and u; denote the number of
unactuated variables for wheel ¢ (i.e., a; + u; = w;). We define the total number of actuated wheel
variables to be @ = a; + a2 + ... + an and the total number of unactuated wheel variables to be
v = u; +uz +... +uny. We combine the partitioned wheel equations in (5.5.1) to rewrite the
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composite robot equation in (522) as

(‘:lla\

) Q2aq
1, Jia« 0 ... 0 J. O ... 0
1.2 p= 0 Jo . : 0 Ja - 4Ne (5.5.2)
. E t., . 0 E . ‘.. 0 {llu ’ e
In 0 ... 0 Jva 0 ... 0 Jy,/ |9
\‘.lNuJ
or
Aop = Bopqp - : (5.5.3)

The (3N x w) matrix Bo, and the (w x 1) vector §, are the partitioned counterparts of the -
matrix Bg and the vector § in (5.2.2). The soluble motion criterion in (5.4.1) indicates under what
conditions the least-squares solution may be practically applied to compute the inverse solution (i.e.,
rank(Bo] = w). We henceforth assume that the least-squares solution is applicable and that all
matrix inverses encountered in its application are computable. We apply the least-squares solution
in (5.3.2) to calculate the vector of wheel variables from the robot velocity vector:

4 = (B3,Bop) ™! BY, Aop . (5.5.4)

In Appendix 4, we compute the vector of actuated wheel velocities g, = [qF, ... QEG]T in (5.5.2)

as:

Actuated Inverse Solution

BT AG 1)) IT,A(31)
07, A(J24)324) ' ILA(33.) 5

il
Cond
0

(5.5.5)

(5. ANa)INg 3T ATne)

Each (a; x 3) block row of the matrix on the right-hand side. of (5.5.5), corresponding to the
actuated velocities §;,, involves only the Jacobian matrix of wheel i. The inverse solution for each
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wheel is thus independent of the kinematic equations of all of the (N — 1) other wheels. When
wheel 7 is non-redundant with threc DOF's and all three wheel variables are actuated, each block-
row of (5.5.5) simplifies to .

Gia = (I7Y)p - (5.5.6)
We may therefore assume that all of the w'heel variables of all of the non-redundant wheels having
three DOF's are actuated, apply the inverse Jacobian matrix in (5.5.6) to calculate the wheel veloc-
ities, and extract the actuated velocities for robot control. This approach requires approximately

one-tenth of the arithmetic operations required for the direct application of (5.5.5).

5.6 Robot Actuation Characteristics

A WMR control engineering application of the actuated inverse solution (in Section 5.5) is to
command the velocities of the actuated wheel variables to their calculated values. We investigate the
characteristics of the robot motion when the actuated wheel velocities attain the values computed
by the actuated inverse solution. We relate the robot velocity vector to the actuated wheel velocities
by eliminating the unactuated wheel velocities from the composite robot equation in (5.2.2). Under
the no-slip assumption, the unactuated wheel velocities will be consistent and comply to the robot
motion. We compute the unactuated wheel velocities from the robot velocities in the actuated
inverse solution in (5.5.5) by interchanging the roles of the actuated (*2" subscripts) and unactuated

("u” subscripts) variables:

BRAEIN T IRAL)
[Jg'uA_'(J2c)J2\f] - Jg‘uA(J2a) !o, . (561)

Qu =

0% A@N)IN] 3%, A(Na)

The conditions guaranteeing the computability of the unactuated and actuated inverse solu-
tions are identical and are indicated in the soluble motion criterion in (5.4.1) . We substitute (5.6.1)
into the partitioned composite robot equation in (5.5.2) to obtain:

I- 35,37, A(312)314) 137, A(J1a) Ja 0 ... 0
1-J2.[3% A(J20)d °1JT,‘AJ¢
2u[J2, A( 24:) 2u] 7133, A(J24) p=] .?,, | z &, (562)
I-INu IR A(INa)INu] 13T A(INe) 0 ... 0 Jna
or
Aub = Bada - (5.6.3)
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The robot actuation equation in (5.6.3) has the form of (5.3.1) with A, B,, p, and §, playing
the roles of A, B, x, and y, respectively. We apply the solution tree in Figure 5.3.1 to (5.6.3) and

obtain the ectuation characterization tree in Figure 5.6.1.

The actuation characterization tree, in analogy with the mobility characterization tree, indi-
cates the properties of the actuation structure of a WMR. The branch tests are developed from the

solution tree in Figure 5.3.1. We concentrate on the implications of the solutions.

The system of linear algebraic equations in (5.6.3) representing the actuation structure of the
WMR may be determined, undetermined or overdetermined. If branch (A1) succeeds, the actuation
structure is undetermined and there is no unique solution for the robot motion p. Since we cannot
calculate the robot motion, it is unpredictable, and some robot DOFs are uncontrollable. We
suggest that undetermined actuation structures be avoided.

If branch (A0) succeeds, we are assured that all robot DOFs are actuated. Specifically, all _
robot motions allowed by the mobility structure can be produced by the actuators. Consequently,
we refer to branch test (A0) as the adequate actuation criterion:

Adequate Actuation Criterion

det(ATA,)#0 (5.6.4)

If the actuation structure is overdetermined (branch (A01)), some of the actuator motions
are dependent. If the dependent actuator motions are consistent (at branch (A010)) robot motion
is produced, otherwise (at branch (A011)) wheel slip occurs. Any mechanical couplings between
actuated wheel variables must satisfy the actuator dependencies to allow robot motion; we therefore
refer to branch test (A010) as the actuator coupling criterion:

Actuator Coupling Criterion

A(A,) B, 4. =0 . (56.5)
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rank[A,] = 3
(det(A,A,) =0}

Aaﬁ = Baéa

Robot Actuation Equation

rank[A;] < 3
{det(AA,) = 0 )

Adequate Actuation Criterion

(A0

Unique Sol ut.ion

for Some gq,

Adequate Actuation
A1l Robot DOFs Actuated

A(Al) Ba = 0 A(Ag) B‘ =~ 0
Robust Actuation Criterion
(AOO (A01)
ROBUST ACTUATION
Determined Overdetormined
Unique Solution Unique So]utjon
for A11 q, for Some q,

Actuator Conflict Impossible
A1) Actuvator Motions Independent

Actuator Conflict Possible
Some Actuator Motions Dependent

Undetermined
No Unique Solution

Inadequate Actuation
Some Robot DOFs Unactuated

A(A,) B, q,= 0

Actuator Coupling Criterion

AD(A,) By g% 0

(A010) A011)

Inconsistent
No Solution

Consistent
Unique Solution

Actuator Conflict
Causing Wheel Slip

No Actuator Conflict

Figure 5.6.1

The Actuation Characterization Tree

If the dependent actuator motions are not consistent {(branch (A011)), wheel slip must occur

because the least-squares error is non-zero. Since a control system cannot guarantee zero actuator

tracking errors, the actuated wheel velocities may deviate from the values computed by the actu- -

ated inverse solution. In the presence of these tracking errors, the actuator coupling criterion is
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not satisfied and the system of lincar algebraic equations in (5.6.3) becomes inconsistent with no
solution. We refer to this situation as actuator conflict because the forces and torques produced
by the inconsistent actuator motions generate stress forces and torques within the WMR structure
causing wheel slip instead of generating robot motion. A determined actuation structure (when -
branch (A00) succeeds) is robust in the sense that actuator conflict cannot occur in the presense
of actuator tracking errors. The actuator motions. are independent and all possible actuated wheel
velocity vectors map into unique robot velocity vectors. Branch test (A00) is thus referred to as

the robust actuation criterion: .

Robust Actuation Criterion

A(A,)B, =0 (5.6.6)

Because of actuator conﬂici:, we suggest that overdetermined actuation structures be avoided.
We recommend actuator arrangements leading to a robust (determined) actuation structure. In
Sections 5.7 and 5.8, we turn our attention to the sensed forward solution and relate the sensed

wheel variables to the robot motion.

5.7 Sensed Forward Solution

The sensed forward solution calculates the robot velocity vector p in (5.2.3) from the sensed
wheel positions and velocities q, and §,. The development of the sensed forward solution parallels
the actuated inverse solution in Section 5.5. The first step is to separate the sensed and not-sensed
wheel velocities and write (5.2.1) as:

P = JiaGis + Jindin - (5.7.1)
The subscripts ”s” and "n” denote the sensed and not-sensed quantities, respectively. The numbers
of sensed and not-sensed variables of wheel ¢ are s; and n;, respectively (i.e., s; + n; = w;). We
assume that both the position and velocity of a sensed wheel varie'xble are available. We combine
the wheel equations in (5.7.1) for i = 1,..., N to form the partitioned robot sensing equation, with
all of the unknown robot and wheel positions and velocities on the left-hand side:

11 "’Jln 0 cea 0 .P J]. 0 0 ‘.110
. . qlﬂ . . 3
— .. : - .. : q2
I S B i ol R
: : . . 0 : . . .0 .
In 0 0 —JInn ANn 0 vee 0 Iy, AN
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or _
A.bn =B,4, . (5.7.3)

We define the total number of sensed wheel velocities to be s = 83 + ... + sy and the total
number of not-sensed wheel variables to be n = n; + ...+ ny. Thereby, A, is (3N x.[3 +1}), Pn
is ([3+n] x 1), B, is (3N x s) and q, is (s x 1). We apply the least-squares solution in (5.3.2)
to calculate the vector of robot and not-sensed wheel velocities p,, from the sensed wheel velocity

vector q,: X
. T -1 T . .
pn = (An An) AnB.q. . (5.7.4)

In Section 5.8, we develop the a.deqﬁzite sensing criterion in (5.8.4) which indicates the con-
ditions under which the sensed forward solution in (5.7.5) is applicable. In the remainder of this
section, we assume that the sensed forward solution applies and that all matrix inverses, such as
(ATA,)"" in (5.7.4), are computable.

In contrast to the actuated inverse solution, the least-squares forward solution need not produce
a gero error because of sensor noise and wheel slippage. In the presense of these error sources, we
cannot calculate the exact velocity of the robot. Our least-squares solution does provide an optimal
solution by minimizing the sum of the squared errors in the velocity components. Our least-squares
forward solution may thus be applied practically to dead-reckoning for a WMR in the presense of

sensor noise and wheel slippage.

In Appendix 5, we solve (5.7.4) for the robot velocities p. We find that

Sensed Forward Solution

b= [AJ1m) + AWT2n) + ...+ AINa) T [AG10)31e A(Tn)I2 .. AQ@Na)ING
or
p=J.4.. (5.7.5)

A wheel without sensed variables does not contribute any columns A(J;,)J;, to (5.7.5). Fur-
thermore, if three independent wheel variables are not sensed, the matrix A(J;,) is zero. We may
thus eliminate the kinematic equations-of-motion of any wheel which has three not-sensed DOFs
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in the calculation of the sensed forward solution. We note that the Jacobian matrix of a steered
wheel depends upon the steering angle. Therefore, if any wheel variables of a stecred wheel are
senscd, the stecring angle must also be sensed so that J;,, and J;, are computable. Since the matrix
[A(J1n) + A(T2:) + ... + A(INn)] is (3 x 3), solving the system of linear algebraic equations in
(5.7.5) for the robot velocities p is not a computational burden.

5.8 Robot Sensing Characteristics

The relationship betwecen the sensed wheel variables and the robot motion is the dual of the
relationship between the actuated wheel variables and the robot motion. Our development thus
parallels the discussion in Section 5.6 on actuation characteristics. We begin by rewriting the
composite robot equation in (5.2.2) to relate the robot velocity vector to the sensed wheel velocity
vector. We express the not-sensed wheel velocities in terms of the robot velocities by applying the
actuated inverse solution in (5.5.5) with the not-sensed ("n” subscripts) and sensed (”s” subscripts)
wheel velocities playing the roles of the actuated (*a” subscripts) and unactuated ("u” subscripts)
wheel velocities, respectively:

IT.AF) 3] I A1)
T ~iyT
qn = [J2ﬂA(J2')J27.'] JzﬁA(Jz') ﬁ (5-8-1)

{JEnA(JNn)JNn]—IJEnA(JNn)

The inverse solution is applicable for any WMR satisfying the soluble motion criterion in
(5.4.1). We partition the sensed and not-sensed wheel velocities in the composite robot equation
in (5.2.2) and substitute (5.8.1) for the not-sensed wheel velocities to obtain:

I- J1n[J{nA(J1,)J1ﬂ]_lJf,‘A(Jx.) Jla 0 .ee 0
I-J2, JT,,A(J J2on —IJT,,A(Jz.) ‘.. .
[ 2 20:) 2 ] 2 b= (.) .?3, . 0 & , (582)
: : .. . 0
1= INa[I3mAINA)INn] 135 A(INn) 0 ... 0 JIns
or
Ap=B,4,. . (5.8.3)

The robot sensing equation in (5.8.3) has the form of (5.3.1) with A,, B,, p, and ¢, playing
the roles of A, B, x, and y, respectively. We apply the solution tree of Figure 5.3.1 to the robot
sensing equation in (5.8.3) to obtain the sensing characterization tree in Figure 5.8.1.
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The solution of the robot velocity p from the sensed wheel velocities g, may be determined,
undetermined or overdetermined, depending on the matrices A, and B,. In parallel with WMR:
actuation, undetermined systems are undesirable because one or more DOF's of the robot motion
cannot be discerned from the sensed wheel velocities. Both determined and overdetermined sensing
structures allow a unique solution for consistent sensor motions §,. Branch (S0) thus provides
the adequate sensing criteria in (5.8.4) which specifies whether all WMR motions allowed by the

mobility structure are discernable through sensor measurements:

Adequate Sensing Criterion

det{ATA,)#0 (5.8.4)

The adequate sensing criterion also specifies the conditions under which the sensed forward

solution in (5.7.5) is applicable.

Determined sensing structures provide sufficient information for discerning the robot motion.
Overdetermined sensing structures become inconsistent in the presence of sensor noise, which is
analogous to the impact of actuator tracking errors on overdetermined actuation structures. Our
forward solution in (5.7.5) anticipates the overdetermined nature of the sensor measurements and
provides the least-squares solution. In the case of actuation, an overdetermined actuator structure
causes undesirable actuator conflict. In contrast, redundant (and even inconsistent) information is
desirable for the least-squares solution of the rpbot velocity from sensed wheel velocities. Redundant
information in the least-squares solution reduces the effects of sensor noise on the solution of the .
robot velocity. Overdetermined sensing structures are thereby robust and branch test (S01) is

referred to as the robust sensing criterton:

Robust Sensing Criterion

A(A,) B, #0 (5.8.5)
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Figure 5.8.1

The Sensing Characterization Tree

We thus recommend that the wheels and wheel sensors be arranged so that the robust sensing
criterion is satisfied. When the sensing structure is overdetermined, the least-squared error is zero
(at branch (S010)) if there is no wheel slip or sensor noise and non-zero (at branch (S011)) when
wheel slip occurs. We therefore denote branch test (S011) as the wheel slip criterion:
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Wheel Slip Criterion

A(A)) By, #0 (5.8.6)

In Section 6.5, we detect wheel slip by applying the fact that the system of linear algebraic
equations in (5.8.3) of a robust sensing structure becomes inconsistent in the presence of wheel slip.

5.9 Conclusions

We have combind the equations-of-motion of each wheel on a WMR to formulate and solve the
composite robot equation. The actuated inverse solution in (5.5.5) computes the actuated wheel
velocities from the robot velocity vector and is applicable when the soluble motion criterion in
(5.4.1) is satisfied. We have shown that the actuated inverse solution is calculated independently
for each wheel on a WMR. For wheels which possess three DOF's, the actuated inverse solution
is calculated directly by applying the inverse wheel Jacobian matrix. The actuated velocities are
then extracted for robot control applica.ﬁoﬁs.

The sensed forward solution in (5.7.5) is the least-squares solution of the robot velocities in
terms of the sensed wheel velocities and is applicable when the adeguate sensing criterion in (5.8.4)
is satisfied. The least-squares forward solution, which minimizes the sum of the squared errors in
the velocity components, is the optimal solution of the robot velocities in the presense of sensor
noise and wheel slippage. We have found that the sensed forward solution may be simplified by
eliminating the equations-of-motion of wheels having three not-sensed DOFs because they do not
affect the solution. If any variables of a steered wheel are sensed, the steering angle must also be

sensed.

We have discussed the nature of solutions of the composite robot equation and their implica-
tions for robot mobility (in Section 5.4), actuation (in Section 5.6) and sensing (in Section 5.8).
We have developed the mobility characterization tree in Figure 5.4.2 to characterize the motion
properties of a WMR. The implications of the mobility characterization tree are summerized by
the following insights. If the soluble motion criterion in (5.4.1) is satisfied, the actuated inverse
solution, actuation and sensing trees, and the WMR DOF calculation in (5.4.4) are applicable.
The three DOF motion criterion in (5.4.2) indicates whether the WMR kinematic structure allows
three DOF motion. If the kinematic structure does not allow three DOF motion, the kinematic
motion constraints are computed according to (5.4.3). The number of WMR DOFs are calculated
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from (5.4.4).

The implications of the actuation characterization tree in Figure 5.6.1 are summerized by three
criteria. The adequate actuation critersion in (5.6.4) indicates whether the number and placement
of the actuators is adequate for producing all motions allowed by the mobility structure. If the
adequate actuation criterion is not satisfied, some robot DOFs are uncontrollable. The robust
actuation criterion in (5.6.6) determines whether the actuation structure is robust; i.e., actuator
conflict cannot occur in the presense-of actuator tracking errors. If the actuation structure is
adequate but not robust, some actuator motions are dependent. The actuator coupling criterion

in (5.6.5) calculates these actuator dependencies which must be satisfied to avoid actuator conflict
and forced wheel slip. )

The sensing characterization tree in Figure 5.8.1 indicates properties of the sensing structure
of a WMR. The adequate sensing criterion in (5.8.4) indicates whether the number and placement
of the wheel sensors is adequate for discerning all robot motions allowed by the mobility structure.
The robust sensing criterion in (5.8.5) indicates whether the sensing structure is such that the
calculation of the robot position from wheel sensor measurements is minimally sensative to wheel
slip and sensor noise. The wheel slip criterion in (5.8.6) provides a computational algorithm for

detecting wheel slip in robust sensing structures.

In Section 6, we address the question of three versus two DOF's, the design of WMRs to satisfy
kinematic mobility characteristics, and control engineering applications of WMR kinematics. Then,
in Section 7, we apply -the kinematic modeling of Section 4 and the actuated inverse and sensed

forward solutions to prototype WMRs.




6. Applications

6.1 Introduction

WMR kinematics play fundamental roles in design, dynamic modeling, and control. In this
section, we illustrate four practical applications of our kinematic methodology: design, dead reck-
oning, kinematic feedback control and wheel slip detection. We are continuing our study of WMRs
by applying our kinematic methodology to the dynamic modeling of WMRs (in Section 9). In
Section 6.2, we apply the composite robot equation-of-motion in Section 5 to the design of WMRs.
We explain how WMRs can be designed to satisfy such desirable mobility characteristics as two
and three DOFs, and the ability to actuate and sense the DOF's. Dead-reckoning is presented in
Section 6.3; the robot velocity calculated from wheel sensor measurements is integrated to calculate
the robot position in real-time. We highlight a kinematics-based WMR control system (in Section
6.4) by applying the actuated inverse solution in the feedforward path and dead reckoning in the
feedback path to reduce the error between the actual robot position and the desired robot posi-
tion. Knowledge of the robot dynamics will improve control system performance. We apply the
kinematic equations-of-motion to detect wheel slip in Section 6.5. When a WMR detects the onset
of wheel slip, the current robot position is corrected by utilizing slower absolute locating methods
(such as computer vision) beforc continuing motion. The feedback control system can thus track
desired trajectories more accurately by continually ensuring an accurate estimate of robot position.
Finally, in Section 6.6, we summarize the four applications.

6.2 Design

Just as studying the composite robot equation enables the determination of such mobility char-
acteristics as the number of DOFs, we may design a WMR to possess desirable mobility character- |
istics. Desirable mobility characteristics which are determinable from an analysis of the composite
robot equation are two or three DOFs, and the ability to actuate and sense the motion robustly.
By robust we mean that the robot motion is insensitive to actuator tracking errors and that the
calculation of the robot position from sensor measurements is insensitive to sensor noise and wheel
slippage. Designing a WMR to satisfy the desired mobility, actuation and sensing characteristics
before construction facilitates the subsequent control system design.

A general-purpose WMR has the ability to move along an X-Y path with an orientation
trajectory . The WMR thus is capable of controlled motion in the three dimensions z, y, and
0 at all times, or equivalently possesses three DOFs. This mobility characteristic is sometimes
referred to as omnidirectionality[1]. For a WMR to operate successfully with three DOFs, it must
embody the important characteristics tabulated in Table 6.2.1 and discussed below. First, it must
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allow three DOF motion. A WMR which possesses three DOF's satisfies the three DOF motion
critcriou in (5.4.1). An omnidirectional WMR design must_thus consist of ball, omnidirectional
or non-redundant conventional wheels to allow three DOF motion. A castered backrest used by

mechanics for working underneath automobiles has this characteristic.

Table 6.2.1: Design Criteria for an Omnidirectional (3 DOF) WMR

Three DOF Motion : det[JTJ;)#0 and w;=3 for i=1,..,N
Adequate Actuation: det|[ATA,]#0
Robust Actuati;’n: a=3
Adequate Sensing: det[ATA,]#0
Robust Sensing: s> 3

Second, all three of the robot DOFs must be actuated to produce motion in three DOFs. The
placement of wheels and actuators in the WMR design must be chosen to satisfy the adequate
actuation criterion in (5.6.4). We require that the actuator structure satisfy the robust actuation
criterion in (5.6.6) to avoid actuator conflict. The robust actuation criterion states that there
be exactly three actuated wheel variables for the special case of three DOF motion. If there are-
more than three actuators, their motions must be dependent because robot motion occurs in three
dimensions. If there are fewer than three actuators, some robot motions are not actuated and thus
not controllable. The design should thus include only three actuators to ensure robust control.

The Unimation robot (in Section 7.2) has three actuated omnidirectional wheels (Troas-
whemor) and is an example of a WMR having a robust actuation structure. Uranus (in Section 7.4)
has four actuated omnidirectional wheels (Tetroas-whemor) and is not robust because the actuator
motions are dependent. In Section 7.4.5, we examine an alternate design of Uranus having a robust
actuation structure. Qur study of Uranus provides a technique for redesigning adequate actuation
structures to be robust.

The third requirement for an omnidirectional WMR is that a control system {e.g., the kinematic
feedback control system in Section 6.4) communicates signals to the actuators so that the WMR
follows a specified (z, y, 0) trajectory. An omnidirectional WMR which calculates its present
position from whee! shaft encoder measurements and controls the actuators to reduce the error
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between the desired robot position and the actual robot position possesses this characteristic. To
calculate the robot position from wheel shaft encoder measurements, the wheel sensors must be:
positioned so that the robot motion may be discerned in three DOFs. To discern any robot motion,
the sensing structure must satisfy the adequate sensing criterion in (5.8.4). We require a robust
sensing arrangement (i.e., the WMR design should include more than three wheel sensors) to allow
robust calculation of the robot position from wheel sensor measurements.

A WMR which does not allow three DOF motion has stngularities in its workspace. At a
singularity, the WMR cannot attain motion along one or more dimensions (i.e., z, y, or §). We
may determine the kinematic motion constraints of a WMR allowing fewer than three DOFs by
computing (5.4.3). Once a WMR design possesses the desired mobility characteristics, we apply
the actuation and sensing criteria in Sections 5.6 and 5.8 to verify that the actuation and sensing

structures are adequate or robust.

A WMR with two DOF's allows locomotion along any X —Y path and thus has wide applicabil-
ity for parts and materials transport. Topo[27], Newt (in Section 8.3), and Shakey[52] each possess
two DOFs utilizing two diametrically opposed conventional drive wheels. These bicas-polycsun-
whemors also have 0,1, and 2 casters, respectively, for stability. We show in Section 7.3 that a
design utilizing two diametrically opposed drive wheels is appealing because of its mechanical and
modeling simplicity. Because of the practical advantages of two diametrically opposed drive wheels,
we recommend the application of bicas-polycsun structures for all tasks requiring fewer than three
DOFs. This guideline simplifies the design process for the majority of parts and materials transport
applications. ‘

6.3 Dead Reckoning

Dead reckoning is the real-time calculation of the WMR position from wheel sensor measure-
ments. The current robot position is utilized by closed-loop robot control systems, performance
monitoring processes and high-level robot planning processes. The least-squares sensed forward
solution in (5.7.5) is the exact solution for the robot velocities under the no-slip assumption, if
the wheel sensing structure is adequate. The adequate sensing criterion is a prerequisite for imple-
menting three dimensional dead reckoning. To determine the robot position in real-time, the robot
velocity is integrated over each sampling period. Since the dead reckoning calculation is erroneous
when wheel slip occurs, an alternate method of determining the robot position (e.g., computer
vision) must be applied to correct the position calculation before dead reckoning is continued. In
Section 6.5, we propose a method to detect the onset of wheel slip.

The integration begins when the robot is at rest or has a sensed initial velocity Fpz(0). The
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initial robot position Fpg(0) is cither specified or sensed. We assume that the robot motion
is adequately modcled by piecewise constant accelerations! since the robot is being actuated by
constant force/torque generators in each sampling period (the same sampling périod as the dead
reckoning process). The robot velocity 2py in the sampling period from time t = (n - 1)T to time

=nTis

foa(nT) = Ppaln 1T (o nymy),  (es)

Bpr(t) = Pprln-1)T) + 7

where the robot velocity £pg (nT) at each sampling instant is calculated by the sensed forward
solution in (5.7.5). We transform the robot velocity to the floor coordinate system by applying the
velocity transformation in (4.7.18):

Fpr(t) = Viin - 1)T] Bpa(t) . (6.3.2)

We use the angular position of the robot at the sampling instant ¢ = (n — 1)T to calculate the
motion matrix V|(n — 1)7T) since the current angular robot position at time ¢ is unknown. We
calculate the robot position at the current sampling'vi'nsta.nt t = nT by integrating the velocity over
the sampling period and adding the result to the robot position at sampling instant t = (n — 1)T":

nT '
Fpr(nT) = Fpgl(n-1)T) + / Fpr(t)dt . (6.3.3)
_ (n-1)T

By subtituting (6.3.1) and (6.3.2) into the integral in (6.3.3), we express the present robot position
in terms of the position at the last sampling instant and the robot velocity at the present and last
sampling instants:

Dead Reckoning Update Calculation

Tpa(nT) = Fpalln~1)7] + 3 Vi~ 17) {Pballn-1T) + Ppa(eT)}  (634)

The computational load for dead reckoningis thus the calculation of the sensed forward solution
in (5.7.5).

1 We apply this assumption ss an example. For a specific WMR, it may be necessary to utilise higher-order

models of the vélocity trajectory.
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6.4 Kinematics-Based Feedback Control

The documented WMR control systems are kinematically based[33, 17); i.e., they do not
incorporate a dynamic model of the robot motion. A reference robot trajectory is provided by an
independent process (the trajectory planner) and the task of the control system is to produce signals
to the wheel actuators so that the WMR tracks the reference trajectory. This is accomplished
by wheel level or robot level control (in analogy with joint space or cartesian space control of
manipulators [12, 68]). '

For wheel level control, the reference robot trajectory is applied to generate trajectories for
each wheel actuator by calculating the actuated inverse solution. Each wheel actuator is then
servoed independently to its calculated trajectory. Each wheel controller may utilize wheel sensc;rs
for feedback and a dynamic model of the wheel operating independently, but does not compensate
for coupling forces between wheels[50]:

Robot level control which utilizes feedback at the robot level is more desirable than wheel level
control. A kinematics-based robot level control system is diagramed in Figure 6.4.1. Directed
arrows indicate the flow of information. The number of scalar variables represented by each arrow
is indicated within the body of the arrow. The computer control algorithm to be executed at each
sampling instant 7 is enumerated in Table 6.4.1 and the sequence of steps is indicated in Figure
6.4.1. At time nT, we sense the wheel variables q,(nT) and §,(nT') and the desired robot position
vector Fpy(nT) in Step 1 of Table 6.4.1 . The (s x 1) sensor gain vector k, scales the sensor signals.
In Step 2, we apply the sensed forward solution in (5.7.5) to compute the robot velocity &pr (nT).
We apply the dead reckoning update in (6.3.4) in Step 3 to compute the robot position Fpr(nT).
We compare the reference robot position #pa(nT) with the actual robot position Fpg(nT) (in Step
4) to calculate the robot position error Feg(nT). The position error is multiplied by the (3 X 3) |
feedforward gain vector ky and is then transformed to the fobot coordinate frame by applying the
inverse motion matrix V~1(nT) in Step 5. Under the assumption that the robot tracking error
remains small, the robot position error Rep, is treated as the differential displacement R&pn. This
robot differential displacement is transformed into actuator displacements 6q, (as velocities are
transformed) by applying the actuated inverse solution in Step 6:

bq, =3, Répx . (6.4.1)

In Step 6, we also multiply the computed actuator reference velocities 6., by the (@ x 1) actuator
gain vector k,. The actuator gain vector is the ratio of the actuator set-points to the steady-
state actuator velocities under nominal operating conditions and must be determined empirically.
The (3 x 1) feedforward gain k; is also adjusted experimentally to provide a fast robot tracking
response without excessive robot overshoot or oscillations about the reference trajectory. In Step
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7, the resulting actuator set-points are then communicated to the actuator hardware.
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Kinematics-Based WMR Control System

©

a,(nT)

1.) Sample q,(nT), 4,(nT) and Fpy(nT)

2.) Compute and Store 2pp(nT) = k,J,4,(nT)

Table 6.4.1: Kinematics-Based WMR Control Algorithm

3.) Compute and Store Fpg‘(nT) = Fpgl(n - 1)T]+ IV[(n - 1)T{Bpr[(n - 1)T] + Epr(nT)}

4.) Compute Fep(nT) = Fpy(nT) — Fpg(nT)

5.) Compute Rep(nT) = k;V-1(nT)Fer(nT)

6.) Compute §,(nT) = kI, Rep(nT)

7.) Communicate the Computed Set-Points §,(nT) to the Actuators
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Over the past twenty years, manipulator control systems have improved progressively; from
independent joint-space control[55], to kinematics-based cartesian-space control{68], to dynamics-
based cartesian-space feedback control[42], to robust dynamics-based feedback control[65] and adap-
tive control algorithms[21]. We anticipate that future WMR control systems will also incorporate
kinematic and dynamic models. Present WMR control system designs are independent wheel level
controllers. Future WMR control systems will improve performance once a kinematic methodology
(such as our present paper) and dynamic models {outlined in Section 9) become available.

6.5 Wheel Slip Detection

In Section 5.7, we computed the WMR velocity vector from the wheel sensor measurements
(i.e., the sensed forward solution), and in Section 5.8 we discussed the characteristics of the solution.
We can discern all WMR motions if the adequate sensing criterion is satisfied. If the sensing
structure is adequate but not robust, the equations-of-motion will be consistent irrespective of the
presense of wheel slip and the error in the least-squares forward solution will be zero. In contrast,
for a robust sensing structure (i.e., a sensing structure satisfying the robust sensing criterion), the
kinematic equations-of-motion are inconsistent in the presence of wheel slip. The error in the least-
squares forward solution is then greater than zero. We therefore prlopoae to detect tﬁe occurrence
of wheel slippage for a WMR having a robust sensing structure by calculating the error tn the least-
squares solution. In the improbable case that all wheels on a WMR slip simultaneously in such a
manner that the equations-of-motion remain consistent, our method will fail to detect the wheel
slip.

In practice, sensor noise can also cause the kinematic equations-of-motion to become incon-
sistent, but we expect that the least-squares error due to sensor noise will be small in comparison ‘
with the error caused by wheel slippage. Instead of testing the least-squares error against zero,
we propose to compare it with an error threshold e, set by the worst case sensor noise error. If
the least-squares error in the forward solution exceeds the threshold, we conclude that wheel slip
has occurred. When a WMR detects that wheel slip has occurred, it should resort to absolute
methods of determining its position (e.g., computer vision, ultrasonic ranging sensors, and laser
range finders) before continuing the dead-reckoning calculations. Since current locating methods
are computationally slow relative to the robot motion, the WMR should halt motion until its dead
reckoning calculations are updated by the absolute locating method.

Calculation of the sensed forward solution in (5.7.5) is the first step in determining the least-
squares error. The calculated robot velocity vector Bpp, is substituted for the actual robot velocity
vector in the robot sensing equation (5.8.3). The least-squares error vector e is calculated by
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subtracting the right-hand side of (5.8.3) from the left-hand side:
e = A, % -B,a,. (6.5.1)

We calculate and compare the norm of the least-squares error [eTe] with the scalar threshold
el. If the norm of the least-squares error exceeds the threshold, we conclude that wheel slip has

occurred:

‘Detection of Wheel Slip

If eTe > e, wheel slip has occurred .. (6.5.2)

We note that (6.5.2) is, in principle, equivalent to the wheel slip criterion in (5.8.6) and has
the added advantage that the sensed forward solution in (5.7.5) is computed as an intermediate
result. The sensed forward solution may then be applied to dead-reckoning and WMR control. *

6.6 Summary

We have applied our kinematic methodology to the design, dead reckoning, kinematics-based
feedback control and wheel slip detection for WMRs. By proper choice of the wheel type and
placement, and the actuator and sensor placement, we may design two and three DOF WMRs.
Specifically, we must satisfy the criteria in Table 6.2.1 to achieve a robust omnidirectional WMR
design. For two DOFs, a WMR design having two diametrically opposed drive wheels, bicas-
polycsun-whemor (e.g., as on the WMRs Newt, Shakey, and Topo), has both mechanical and
modeling advantages over other designs. Dead reckoning is the real-time integration 6f the robot
velocity to obtain the robot position. The robot velocity is first calculated by applying the sensed
forward solution. We integrate the robot velocity by the update algorithm in (6.3.4) which is
a linear function of the robot position and velocity. Current WMR control systems incorporate
wheel level algorithms. We have introduced a kinematics-based robot level algorithm which relies
on dead reckoning for feedback, and the actuated inverse solution to calculate actuator inputs as
feedforward control signals. Future WMR control systems will exhibit enhanced performance by
incorporating dynamic models and absolute position feedback. As our final application, we have
proposed to detect wheel slippage in robust sensing structures by calculating the least-squares error
in the sensed forward solution. I the error exceeds a threshold which can be attributed to wheel
sensor noise, we conclude that wheel slip has occurred. By detecting the onset of wheel slippage,
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and correcting the calculated robot position with an absolute locating device, the WMR will follow

planned trajectories more accurately.

We are also applying our kinematic methodology to the dynamic modeling of WMRs (in Section
9). By analogy with manipulator dynamic modeling, our kinematic methodology will serve as the
foundation upon which to formulate the dynamic models. In contrast to manipulator dynamics,
we must resolve the special problems of closed-link chains and higher-pair joints.

We note that the composite robot equation in (5.2.2) and the actuated inverse and sensed
forward solutions in (5.5.5) and (5.7.5) are essential components of these applications. In Section 7,
we apply our kinematic methodology to specific WMRs. For each WMR, we calculate the actuated
inverse and sensed forward solutions, where applicable, and characterize their mobility, actuation

and sensing structures.
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7. Examples

7.1 Introduction

We illustrate the kinematic modeling of six WMRs: the Unimation robot, Newt, Uranus,
Neptune, Pluto, and the Stanford cart. For each WMR, we provide four kinematic descriptions: a
written description, a top and side view sketch, the symbolic diagram and the kinematic name. We
asstgn the coordinate systems to create the coordinate transformation matrices. We then form the
_ wheel Jacobian matrices by substituting elements of the coordinate transformation matrices into
the symbolic wheel Jacobian matrices in Appendix 3. We determine the nature of the mobility,
actuation and sensing structures to gain insight into the mobslity characteristics of the WMR. We
compute the actuated wheel velocities from the robot velocity vector (i.e., actuated inverse solution)
and the least-squares robot velocity vector from the sensed wheel velocities and positions (i.e.,
sensed forward solution) when the mobility analysis indicates that these solutions are applicable.
We complete each example with remarks on its kinematic structure and its suitability for particular
tasks.

7.2 Unimation Robot
7.2.1 Kinematic Description

The Unimation’ robot[14] illustrated in Figure 7.2.1 utilizes three symmetrically positioned
omnidirectional wheels with rollers at 90°. A motor actuates each wheel and the velocity of each
wheel is measured by shaft encoders. The rollers are neither actuated nor sensed. The coordinate
system assignments and pertinent robot dimensions are shown in the figure.

7.2.2 Coordinate Transformation Matrices

We write the coordinate transformation matrices in Table 4.4.2 from Figure 7.2.1:

0

~ly Higs, = 51T¢, =1

1

cComo
|
ocoo

V3/2 1)2

A 0 V3l,/2

-1/2 V3/2 0 -l,/2 '

RT_”’ - o/ 0/ 1 _..I{ His, =T, =1
0 0 0 1
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-V3/2 1/2 0 =3l,/2 .
-1/2 - ~V3/2 0 -l./2
RTH: - 0/ \{)g/ 1 —'l{ HS,st =5 Te,=1.
0 0 o 1 '

Unimation Robot
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wheel radius = R
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(The z-axes are out of the page)

Top View Side View

Figure 7.2.1

Coordinate System Assignments for the Unimation Robot
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7.2.3 Wheel Jacobian Matrices

We substitute the elements of the transformation matrices, the wheel and roller radii, and the
roller angles into the symbolic Jacobian matrix for omnidirectional wheels in (A3.4.2) to write the

matrix wheel equations:

sz _R 0 la ww‘z
i’ =1 YRy = 0 r 0 Wy, r = Jlél (721)
wWR 0 0 1 Ww, z

YRz R/2 V32 —l,/2 Wrogz

p= (va,,) = | V3R/2 -r/2 —-\/51,,/2) Ww,r | = J242 (7.2.2)
wr 0 0 1 Wy s
YRz R/2 =312 . -1,/2 Wesz

p= (”Rv ) = (—\/gR/z *7/2 \/510/2) (wwsr ) = JSQS (723)
WR 0 0 1 . Wiy

7.2.4 Mobility Characteristics

To characterize the robot mobility, we note that the soluble motion criterion is satisfied.
Therefore, none of the wheels has redundant DOFs and the actuated inverse solution is applicable.
Since the three DOF motion criterion is also satisfied, the Unimation robot allows 3-DOF motion.

We calculate the adequate actuation criterion det[ATA,] = 2712 /4 as the first step in charac-
terizing the actuation structure. Since the determinant is nonzero, all robot motions are producable
by the motions of the actuators. The value of A(A;) B, is zero which indicates that the robust
actuation criterion is also satisfied. The actuator motions are independent and no actuator con-
flict can occur. Since the adequate sensing criterion is satisfied but the robust sensing criterion is
not, the sensing structure is adequate but not robust. Although the sensing structure allows three
‘DOFs to be discerned by applying the sensed forward solution, wheel slip cannot be detected by
the method of Section 6.5.

7.2.5 Actuated Inverse Solution

Since the soluble motion criterion is satisfied, the actuated inverse solution is computable. The

actuated inverse solution in (5.5.5) applies directly:

d). (PBLAGWIL] T ILAGW)
4 | = ([J%A(Jzu)Jzal_ng‘oA(ng) R,
dsa (97, A(33)3350) 3T, A(Is0)
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resulting in

W,z -1 0 a YRs '
(w,,,,) =1/R (1/2 V3/2 1,) (vR,) . (7.2.4)
Weoyz 1/2 —-V3/2 1, wWr .

7.2.6 Sensed Forward Solution

Since the adequate sensing criterion is satisfied, the sensed forward solution is computable.

We apply the least-squares sensed forward solution in (5.7.5):

Q1s
f’ = [A(Jln) + A(JZn) + A(JSn)]_l[A(Jln)Jla A(JZn)J2a A(JSn)Jsa] (‘:];0)
’ qs,

and obtain

YRz -2/3  1/3 1/3° Weyz |
(%) =R( 0 1/V3 -1/\/5) (w.,,,) . (7.2.5)
wr 1/(3l) 1/(3k) 1/(3la)

Wz

7.2.7 Remarks

The Unimation robot is a general-purpose three DOF WMR. It allows three DOF motion, has
adequate actuation to produce three DOF motion, and has adequate sensing to discern three DOF
motion. The actuated inverse and sensed forward solutions are computable in real-time, enabling
accurate closed-loop control. The low ground clearance, which only allows locomotion on smooth,
level surfaces is a disadvantage of the design. The mechanical complexity of the omnidirectional
wheels increases the cost and difficulty of fabrication. It is difficult to construct perfectly round
omnidirectional wheels when the rollers are at 90° because of the discontinuities between rollers.

" An improved wheel design allowing circular omnidirectional wheel profiles has been implemented
for Uranus (in Section 7.4). We have noted that the sensing structure does not allow wheel slip
detection by the method of Section 6.5. Although the wheel variables which are not-sensed are
difficult to instrument, an additional instrumented caster can be added to the design to provide

. practical robust sensing and wheel glip detection.

Three DOF locomotion is not necessary for parts and materials transport. A transport WMR
may operate with two DOFs. The three DOF locomotion is advantageous when utilized with
an onboard manipulator. The mobility of the WMR enhances and extends the workspace of the
manipulator. Consequently, a manipulator having fewer than six DOFs mounted on the WMR
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has an unlimited workspace and can accomplish the tasks of a stationary manipulator having six
DOFs. '

7.3 Newt -

7.3.1 Kinematic Description

Newt[32] is a WMR having two diametrically opposed drive wheels and a free-wheeling castor,

as shown in Figure 7.3.1. Both drive wheels are actuated and sensed, while the castor is neither

(Bicas-unicsun-whemor)

actuated nor sensed.
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Figure 7.3.1

Coordinate System Assignments for Newt

77




7.3.2 Coordinate Transformation Matrices

The coordinate transformation matrices for Newt are:

100 I,
010 O
RT;h = 00 1 -l H’Qsz = S’Tc, =1
0 0 0 1
010 O
T =0 0 1 -I Higs, = ST, =1
0 0 0 1
1 00 0 cosfs, —sinfs, 0.0
R _({0 10 ~l H _ | sinfs,” cosfg, 0 0
Tos=10 0 1 —(l.-1) e 0 10
0 0 O 1 0 0 0 1
1 00 O
01 0 -1
*Tes={g 0 1 I
0 0 0 1

7.3.3 Wheel Jacobian Matrices

The radii of wheels one and two are identical: R; = R; = R, and the radius of wheel three
is Ry = r . By applying the Jacobian matrix for non-steered conventional wheels in (A3.2.2), we
write the matrix equations for drive wheels one and two:

YRz 0 0 w.
p= vrRy | = { R -l ( 1“’:) =Jiq1 ’ (7.3.1)
0 1 ) \Yme

WR

P= (32:) = (% ;1')’) (::::) = J24a (7.3.2) .

Wg

Similarly, by applying the Jacobian matrix for a. steered conventional wheel in (A3.3.2), we
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write the matrix equation for wheel three:

YRz —Rsinfg, —l.cosbg, -1l I Wiwsz _
Pp=|vr, | =| Rcosbs, ~l. sin 0g, 0 Wwsz | =Js 4s . (7.3.3)
WR2 0 1 -1 WS,

7.3.4 Mobility Characteristics

The soluble motion criterion is satisfied, indicating that the actuated inverse solution is appli-
cable and none of the wheels is redundant. Since w; = 2 for wheels one and two, the three DOF
motion criterion is not satisfied. The robot has fewer than three DOFs; i.e., some robot DOFs are
dependent. The matrix product [A(By) Ap] has rank one, and according to the expression for
the number of WMR DOFs in (5.4.1), Newt has two DOFs. The kinematic motion constraints for
wheels one and two simplify to vr; = 0. Wheel three imposes no constraints on the robot motion. |
The WMR thus allows indepeqdent motion in two DOFs: Y and 6.

We determine the actuation structure by first calculating the adequate actuation criterion
det|ATA,) = 8I2. This indicates that all robot DOF's are actuated (i.e., all robot motions in the
Y and 0 directions may be produced by the actuators). We find further that the robust actuation
criterion A(A,) B, = 0 is satisfied. All actuator motions are independent, providing robust
two DOF actuation. The sensing structure is adequate but not robust because the sensed wheel
variables and the actuated ones are identical. Even though the sensing structure is not robust, the

sensed forward solution is applicable.

7.3.5 Actuated Inverse Solution

Although the actuated inverse solution is applicable, only robot motions for which the trans-
lational velocity vg. is zero are possible. This means that the actuated inverse solution will be the
exact solution if the X-component of the robot velocity is chosen to be zero. If the X-component
of the robot velocity is non-zero, the actuated inverse solution will be computable, but it will be
erroneous. The result in this case will be the optimal set of actuated wheel velocities which min-
imizes the least-squares error between the desired robot velocity and the resulting robot velocity.
We apply the actuated inverse solution in (5.5.5):

Qe _ (LA 1)1 I AT .
(c‘m) - ([J%‘,A(J:,,)J;]'IJ%,A(J:,.)) P
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and obtain

|

(on)-3( 1 5) (%) 250

7.3.6 Sensed Forward Solution

Since the sensing structure is adequate, the sensed forward solution in (5.7.5) is applicable:
b =[A01) + A(J2n) + A(T3a] ! [A(T1n)I10 A(T2n)T20] (3) :

and hence

YRx 0 0
vry | =R/l [l & | (%) . 7.3.5
(R ) J(at.) (1 _1) ) (7.35)

wWR

The X-component of the robot velocity is zero independent of the sensor measurements. The
Y -component of the robot velocity is proportional to the sum of the wheel velocities, and the
0-component is proportional to the difference of the wheel velocities.

7.3.7 Remarks

Newt is a general-purpose robot for tasks requiring only two-dimensional motion. Any path in -
a plane can be traced by a WMR possessing two DOF's. Since the vast majority of existing WMRs
are applied for transporting parts, materials, and tools from one point to another along a path,
Newt has wide applicability. The simple mechanical design is advantageous over omnidirectional
designs because it requires fewer parts and has reduced cost. A robust sensing structure may be
obtained by sensing the wheel and steering velocities of the castor. An important feature of this
design is that the dead-reckoning integration calculations for the angular position of the robot are
not required. If no wheel slip occurs, the angular robot position can be calculated at any time nT
according to
Fon(nT) = g sz (nT) = by (nT)] + F02(0) . (7.36)

The computatiénal errors due to finite precision limits and sensor noise do not accumulate in the
calculation of F8(nT) as they would if the dead reckoning integration in (6.3.4) were required.
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From our analysis, we conclude that Newt has two DOF's in the Y and 0 directions. If the
robot coordinate system is assigned at any point along the robot Y -axis except zero, thetwo DOFs
will be X and Y. If the robot coordinate system is rotated 90°, the two DOFs will be X and 6.
Finally, if the robot coordinate system is assigned to an arbitrary position not on the X or Y axes,
the two DOFs cannot be specified by two of the three components X, Y, and 6. We conclude
that the number of DOFs of a robot is independeht of the assignment of coordinate axes, but the
allowable directions of motion depend upon the placement of the robot coordinate system.

7.4 Uranus
7.4.1 Kinematic Description

Uranus[49] has the kinematic structure of the Wheelon wheelchair [2]: four omnidirectional
wheels with rollers at 45° angles to the wheels. The coordinate system assignments and robot
dimensions are shown in Figure 7.4.1.

7.4.2 Coordinatg Transformation Matrices

Since there are no steering links, the coordinate transformation matrices for Uranus are:

100 I
010 1

"Ta =0 0 1 L Mgs, = HT¢, =1
000 1
100 —l,
010 !

RTH3= 0 0 1 —;c Hz@sz — $2TC’ =1
000 1
100 -l
010 -4

"Twm=10 01 - Hods, = #Tq, =1
000 1
100 I
010 -

"Tm={g o 1 —l: Hds, = HTq, = 1.
000 1
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Figure 7.4.1

Coordinate System Assignments for Uranus

7.4.3 Wheel Jacobian Matrices

TheradiusassignmentgareRl =R;=Rs=Ry=R,andr; =r3 =r3 =rq = r, and the
roller angles are n; = ns = —45°, and 2 = 5 = 45°. The Jacobian matrix for omnidirectional
wheels in (A3.4.2) allows us to write the equation-of-motion for each wheel:

VRz 0 —rv2/2 Iy We,z
p= (”Rv) = (R -—r\/f/Z -la) (w,,,,) =Ji1qa (7.41)

wWgr 0 0 1 Wi, s
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VRz 0 T\/2-/2 U W,z
p= (vn,,) = (R —-rv2/2 l.,) (ww,r) = Jads (7.4.2)

wr 0 0 1 W, z
YRz 0 ~rv2/2 -1 Wy z '

p={ovy |=|R -r/2/2 I Wwsr | = Jsds (7.4.3)
wr 0 0 1 ww;z
VYR2 0 r\/f/2 —lb Weoez

p=]ve |=|R —r\/i/Z =l Wwer | = Jela (7.4.4)
wr ‘ 0 0 1 W, x

7.4.4 Mobility Characteristics

Since the soluble motion criterion is satisfied, the actuated inverse solution is applicable and
none of the wheels has redundant DOFs. Furthermore, the three DOF criterion is satisfied and the

motion structure is capable of three DOF motion.

The adequate actuation criterion yields: det[ATA,] = 64(l; +I;)2. The actuators are thus
able to provide motion in all three DOFs. We find that the robust actuation criterion is not
satisfied. The actuation structure is thus not robust and actuator conflict may occur. The sensed
and actuated wheel variables are identical so that the sensing structure is robust which allows the
detection of wheel slip by the method of Section 6.5. The sensed forward solution is therefore
applicable.

7.4.5 Alternativ;e Designs

Uranus is a convenient WMR with which to develop an understanding of the differences between
inadequate, adequate and robust actuation (sensing) structures, and the need for a kinematic
analysis in the design of 8 WMR. We have shown that Uranus has an adequate but not a robust
actuation structure which provides motion in all three DOF's, but allows actuator conflict. In Figure
7.4.2, we consider a slightly different WMR design.

The WMR in Figure 7.4.2 is identical to Uranus except the the wheels on the right and left
hand sides of the WMR have been interchanged and the distances I, and l; are equal. The wheels
are actuated (sensed) as with Uranus. Upon modeling this WMR and characterizing its actuation
(sensing) structure, we find that it is inadeguate (i.e., det[ATA,] = 0) . The problem is that the
angular rotation of the WMR is not constrained by the motions of the actuators (sensors). We
observe in Figure 7.4.2 that the robot can be spun about its center even if the wheel actuators are
locked to one position because the rollers are free to turn.
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Uranus with an Inadequate Actuation Structure

We realize that the non-robust nature of Uranus’ actuation structure allows actuator conflict.
We now imagine how Uranus might be altered to avoid actuator conflict. Since we are interested
in a practical symmetric alternative, we eliminate the possibility of simply removing one of the
actuators. We must ensure that the actuator coupling criterion in (5.6.5) is satisfied. The rank one

actuator coupling criterion for Uranus reduces to the scalar equation:
W,z + Wepsz — Wwsz — Wy = 0. (7.4.5) :

Only three of the four actuator motions are independent. Our solution in Figure 7.4.3a is to con-
strain mechanically the wheel motions with gearing between wheels to ensure that the dependencies
in (7.4.5) and thus the actuator coupling criterion is satisfied.

We utilize differential gearing and reversing gearing. A differential gearbox is designed so that
the output shaft rotates at a rate equal to the difference of the two input shafts. A reversing
gearbox is designed so that the output shaft rotates at a rate equal and opposite to the input shaft.
In Figure 7.4.3b, we add three symmetrically placed motors for actuation. The actuation structure
of 7.3.3b is robust. We write the composite robot equation-of-motion in terms of the motor shaft
rotations (instead of the wheel axle rotations), and apply the robust actuation criterion to verify
the design. Even though the complexity of this gearing may prohibit practical implementation, the
procedure may be applied to the design of any WMR.
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Converting Uranus into a Robust Actuation Structure

7.4.6 Actuated Inverse Solution

Since the mobility structure of Uranus allows three DOFs, the actuated inverse solution in
(5.5.5) is exact for all robot motions. The actuated inverse solution is:

ww;z —1 1 lc + lb sz

Wwsz | l 1 1 -la-U

Wosz | RI{-1 1 -lg-1, ';Rv . (7.4.6)
W,z 1 1 L+ R

The actuated inverse solution in (7.4.6) may be obtained by assuming that all wheel variables are
actuated, applying the inverse solution in (5.5.6) and extracting only the actuated wheel variables.
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This alternate approach is less computationally intensive because the inverse solution for cach wheel

simplifies to inverting each of the Jacobian matrices.

7.4.7 Sensed Forward Solution

We apply the least-squares sensed forward solution in (5.7.5) to obtain:

Wepsz

(vnz) R (—(t..+t..) (la+1) —(la+1) (ta+tb)) s
ws= (7.4.7)

VR T TR} (la + lb) (lc + lb) (la + lb) (la + lb)
wp ) 4lath) 1 -1 -1 1

qu z

7.4.8 Remarks

Uranus s a general-purpose three DOF WMR, with the kinematic capabilities of the Unimation
robot. The actuation structure is adequate and the sensing structure is robust as compared with
Unimation’s robust actuation and adequate sensing. Uranus has more ground clearance because
of the arrangement of the wheels. Also, the wheel profiles are exact circles because the rollers are
at 45° angles avoiding the discontinuity of wheels with 90° rollers. To utilize practically the three
DOF capabilities of this robot, we envision the simultaneous operation of an onboard manipulator.

7.5 Neptune
7.5.1 Kinematic Description

Neptune has a tricycle-like kinematic structure as depicted in Figure 7.5.1. The front wheel
i steered about its center, and both the steering and the wheel rotations are actuated. The two

fixed-orientation wheels are neither actuated nor sensed.
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Coordinate System Assignments for Neptune

7.5.2 Coordinate Transformation Matrices

The coordinate transformation matrices are:

1 00 0 cosfs, —sinfs, 0 0

R - 010 lb H, _ Sinas cosﬂs 0 0
Toi=1lo 0 1 1,-1 it Tl H S
0 00 1 0 0 01
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100 0
010 0
s —_ .
Te,=19 0 1 -1y
000 1
100 4
010 0
"Ta =10 0 1 -1 Fags, = 5Tc, =1
000 1
010 0.
RTH3= 0 0 1 —lc Hs§$s=ssTcs=I
000 1

7.5.3 Wheel Jacobian Matrices

The wheel radius assignments are R; = R = Rg = R. We use the Jacobian matrix for a
steered conventional wheel in (A3.3.2) to write the equation for wheel one:.

YRs —Rsinfs, Iy, b\ [ W,z
f) = YRy = Rcos 931 0 0 We, x = Jlél (751)
wWgr y 0 1 -1 ws,

The matrix equations for wheels two and three are speciﬁed by (A3.2.2):
YRz 0 0 w. . .
f) = YRy = R —lc ( u""':) = Jzt‘h (7.5.2)
0 1 wwal )

wgr
(% z;) ( z:':) =J3 4s (7.5.3)

vl

I

e @
L
w3 P
s’

i

7.5.4 Mobility Characteristics

The soluble motion criterion is not satisfied because whee! one is redundant. Columns two and
three of the Jacobian matrix are linearly dependent and thus the associated wheel variables (the
steering velocity w,,, and the wheel rotational slip velocity w,,, ) are redundant. The actuated
inverse solution is not applicable for Neptune. We cannot determine the actuation and sensing
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structures because the foundations of the actuation and sensing characterization trees, the robot
actuation and sensing equations in (5.6.3) and (5.8.3), utilize the inverse solution. Furthermore,
we cannot determine the number of DOFs by applying (5.4.4) because the matrix A(Byg) is not
computable.

7.5.5 Remarks

Neptune was constructed to provide a mobile platform for vision research a.r.1d for that purpose
the design is sufficient. From a control engineer’s point-of-view, the design is undesirable because
the actuated iﬁverse and sensed forward solutions cannot be calculated. 'The redundant wheel
disallows these calculations. We suggest two practical design alternatives which allow. the mobility
and computational simplicity of Newt but require few changes to Neptune. First, wheel one can be
made non-redundant by offsetting its center from the steering axis. Secondly, the front wheel can
be offset as in the first alternative, and the steering and drive motors can be moved from wheel one
to drive wheels two and three producing a structure kinematically identical to Newt.

7.6 Rover
7.6.1 Kinematic Description

As illustrated in Figure 7.6.1, the Rover consists of three conventional steered wheels sym-
metrically arranged about the center of the robot body. The steering and drive of each wheel
is actuated and sensed. Actuator conflict producing shaky robot motion[50], encountered while
developing a controller for Rover, fostered our modeling of WMRs.

7.6.2 Coordinate Transformation Matrices

To simplify the coordinate transformation matrices, we have assigned all hip coordinate sys-
tems parallel to the robot coordinate system and all steering coordinate systems parallel to their
respective contact point coordinate systems: -

100 0 cosfs, ~—sinfs, 0 0

R _{10 1 0 la H, ginfg cosfg, 0 O
Toi=10 0 1 3-1. =0 0 o0 10

000 1 0 0 0 1

1 00 —/3,/2 - (cosfs, —sinfs, 0 0

R _jo0o 10 -l/2 H _ | sinfg cosfs, 0 0
T =10 01 11, ®s=1"0° 0 10
000 1 0 0 0 1
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! 10 0 V3, /2 cosfs, —sinfs, 0 0
R — 010 —10/2 Hs _ sillos3 Cos 033 0 0
l Tas=10 0 1 14-1, = 0 10
0 0O 1 0 0 0 1
1
! 1 0 0 -4
010 0
l S‘TCx = S’TCz = ssTGs =lo o0 1 -y
000 1

7.6.3 Wheel Jacobian Matrices

The radius assignments are B; = R3 = Rs = R. The wheel equations are written by applying
the Jacobian matrix for steered conventional wheels in (A3.3.2): -

YR —Rsinos, la - lbsinas, —lc Wy, x
Pp=]|vry | =] Rcosbg, Iy cos b, 0 Weoy s (7.6.1)
wR 0 1 -1 ws, »
YRz —Rsinfs, —l,sinfs, —1,/2 l./2 Weyz
p=|vry | = Rcosbs, Ilycosbs, +/3l,/2 -3l /2 Wess (7.6.2)
wg 0 1 -1 ws,

YRz —Rsinfg, —lysinfs, —1,/2 l./2 Wz
P=|vry | =| Rcosbls, Ilycosls, + V3, /2 V3l, /2 Wesx (7.6.3)
' 1 -1

wWR 0 ws,

7.6.4 Mobility Characteristics

The soluble motion criterion is not satisfied because the wheels are redundant. Consequently,
the inverse solution is not applicable, the actuation and sensing structures cannot be determined
and the sensed forward solution cannot be calculated. A dynamic force analysis is required to
compute the wheel and robot motions since we cannot determine when wheel rotational slip will
occur by kinematic calculations alone. Likev:vise, the number of DOFs cannot be determined from
(5.4.9).
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Coordinate System Assignments for Rover

7.6.5 Remarks

We conclude from this example that kinematic modeling of a WMR must be addressed in
the design stage. Rover can be redesigned to operate as an omnidirectional WMR by construct-
ing the steering links so that the wheels are non-redundant. Since there are six actuators, the
redesigned actuation structure will not be robust and will allow actuator conflict. The Denning
Sentry robot[70] replicates the kinematic structure of Rover, with the exception that all three
wheels are mechanically steered and driven in unison. The Denning WMR avoids actuator conflict
by utilizing only two actuators and mechanically coupling the wheel motions, but in so doing it
sacrifices omnidirectionality.
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7.7 Stanford Cart
7.7.1 Kinematic Description

The Stanford Cart has the kinematic structure of an automobile, two front wheels with coupled
steering angles and two parallel non-stecred back wheels, as shown in Figure 7.7.1. The rotations
of wheels three and four and the coupled steering for wheels one and two are actuated.

Stanford Cart
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Figure 7.7.1

Coordinate System Assignements for the Stanford Cart
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7.7.2 Coordinate Transformation Matrices

The coordinate systems assigned in Figure 7.7.1 lead to the following coordinate transformation

matrices:
10 0 [ cosfg, -—sinfs, 0 0
R _ 010 lc H _ Sinos‘ (30503l 0 0
Toi=10 01 0 s =] g 0 10
000 1 0 0. 01
100 -l cosfs, —sinfs, O O
R _{0 10 I Hym _ | sinfs, cosfs, 0 O
Tm=10 01 o0 2= o 0o 10
0 00 1 0 0 01
100 0
s _Sm_ |0 10 0
‘T, ="Ta =g ¢ 1 -1
0 00 1
100 I .
‘01 0 -l :
m=10 01 -1y Hgs, = STq, =1
0 00 1
1 0 0 ‘-lc
01 0 -l
RTH‘ = 0 0 1 -l: H‘Qs‘ = S‘Tc‘ =1
0 00 1

7.7.3 Wheel Jacobian Matrices

The equations-of-motion for wheels one and two are written by applying the Jacobian matrix
for steered conventional wheels in (A3.3.2), and for wheels three and four by applying the Jacobian
matrix for non-steered conventional wheels in (A3.2.2): '

(vgz) (—Rsinﬂs‘ Iy —l.,) (w.,,)
vgy | = | Rcosbs, -l I Wy x (7.7.1)
wg 0 1 -1 ws,
YRz \- —Rsinfs, la -la W,z
vgy | = | Rcosbs, I -l Wy (7.7.2)
wWr 0 1 -1 ws,




(:E;) = (% :1::) (Z:::) .(7'7'3)
(Zﬁ:) _ (% ‘11’*) (::‘:) . (7.7.4)

7.7.4 Mobility Characteristics

We assume? that the steering angles are equal; i.e., 0s, = s, = 0g, and consequently wg, =
ws, = wg. We substitute these cqualities into the wheel Jacobian matrices in (7 7.1) and (7.7.2) to
form the composite robot equation in (5.2.2):

—Rsins I, -, 0 0 0 0 0 0\ 1 0 0)
(Rcosﬂs -l 1 0 0 0 0 0 O (0 10
0 1 -1 0 00 0 0o o |(“=\ Jloo1
0 0 —l, —Rsing I, 0 0 0 0[] s 100
0 0 -I, Rcosfs I. 0 0O 0 © ws 010
0 0 1 0 10 0 0 0 cesz ] 10 0 1
0 0 o 0 0 0 - 0 0 ‘-‘,"’"‘100p
0 0 0 0 0 R -I. 0 © sz 010
0 0 0 0 00 1 0 0 wsx 00 1
0 0 o 0 0 0 0 0 =] |%“oe= 100
0 0 0 0 0 0 -0 R l,J Weoes 010
\ 0 0 o 0 00 0 0 1 \0 0 1]

(7.7.5)

Because of the éoupling between wheels one and two, the applicable soluble motion criterion
test is rank[Bo] = w. We observe in (7.7.5) that the rank of the (12 x 9) matrix B, is eight, but
there are nine wheel variables (i.e., w = 9). Acc’ordinély, the mobility structure of the Stanford
cart is not soluble and the inverse and-forward solutions are not applicable.

7.7.5 Remarks

The Stanford Cart is kinematically similar to an automobile. Even though automobiles operate
satisfactorily for transportation, we cannot satisfactorily model the motion of the Stanford cart
using only kinematic characteristics. We conclude that a dynamic analysis is required to model its

motion.

! The Staaford Cart had an Ackerman steering linkage[45] between the two front wheels. The Ackerman linkage

approximatly ensures the u:l:.uctor coupling criterion by providing the correct wheel angles to avoid wheel alip.
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7.8 Conclusions -

The six examples presented in this section demonstrate that our kinematic modecling method-
ology in Section 4 and the solutions in Section 5 establish the foundation for developing and
solving the kinematic equations-of-motion of 2 WMR. Furthermore, we illustrate that writing the
equations;of-motion for complex kinematic structures, such as Rover, is not pracﬁcal without a
systematic framework. The examples show that formulating the equations-of-motion for a WMR
is a straightforward procedure which does not require insight into the operation of the robot.

We note that the actuated invérse and sensed forward solutions are applicable to WMRs which
satisfy the soluble motion criterion (the Unimation robot, Newt and Uranus). The WMRs which
bave redundant wheels (Neptune, Rover, and the Stanford Cart) do not satisfy the soluble motion
criterion and the actuated inverse and sensed forward solutions are not applicable. Without these
calculations, the control of WMRs having redundant wheels is inferior. We conclude that kinematic
modeling of a WMR must be undertaken in the design stage (Section 6.2). Since kinematic modeling
is critical for WMR control, the design of the wheels and the positioning of the wheels, actuators .
and sensors must ensure that all of the modeling calculations are computationally feasible.

These six examples exhibit noteworthy features. If the wheel variables which are actuated
and the wheel variables which are sensed are identical, than either the actuation or the sensing
structure can be robust, but not both. For example, the actuation structure of the Unimation
robot is robust and the sensing structure is not; whereas, the sensing structure of Uranus is robust
but the actuation structure is not. Since we desire both robust actuation and robust sensing, we:
should not limit our WMR designs by sensixig only the wheel variables that are actuated?. When
wheel level feedback control is implemented, the actuated wheel variables must be sensed to provide
local feedback. For the preferred robot level control, we provide robust sensing and actuation. By
sensing and actuating different wheel variables, we also reduce the mechanical complexity of the
hardware. We note further that wheel slip is more likely to occur with actuated wheel variables
than unactuated ones because the actuated variables are force/torque sources. Thus the effects of
wheel slip on the calculation of the robot position from wheel sensor measurements are reduced by

sensing unactuated wheel variables.

The only WMRs which allow three DOFs motion are the ones which consist exclusively of
wheels with three DOFs (the Unimation Robot and Uranus). A WMR having non-steered conven-
tional or redundant conventional wheels may be mechanically easier to construct but cannot allow
three DOF's motion. We suégest that three DOF motion can be practically utilized when the WMR

2 If brushless motors are utilised as actuators, each actuated wheel variable must be sensed to enable electronic

commutation.
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has an onboard manipulator. The mobility of the WMR extends the workspace of the manipulator.

When the WMR is for transportation of parts, materials or tools from place to place, only two-

DOFs are necessary. The mechanically simplest design to provide two DOFs is two diametrically
opposed non-steered conventional wheels, as on Newt. Drive motors may coupled directly to the
wheel axles. One or two additional castors are needed for stability. This design also embodies

simple and easily calculated sensed forward and actuated inverse solutions.

The application of our methodology to exemplary WMRs completes our study of WMR kine-
matics. In Section 8, we summarize our development and provide concluding remarks.




8. Conclusions

We have developed and illustrated a methodology for the kinematic modeling of WMRs. We
have found that the established kinematic modeling methodology for stationary manipulators is not
applicable to WMRs because of the higher pair wheel-to-floor joints, the multiple closed-link chains
formed by multiple wheels, and the unactuated and unsensed wheel variables. Our development
spans the kinematic analysis of WMRs, including:

e A survey of existing WMRs (in Section 2);

. @ Modeling of ball, omnidirectional, and conventioﬁa] wheels (in Section 3);°

o Assignment of coordinate systems (in Section 4.3) ;

¢ Formulation of the transformation matrices (in Section 4.4);

¢ Formulation of the kinematic equations-of-motion (in Sections 4.6, 4.7, and 4.8);
e Solutions of the kinematic equations-of-motion (in Section 5);

e Characteraization of WMR mobility (in Section 5);

e Applications to design, control, 'dead-reckoning, and slip detection (in Section 6);
e Kinematic modeling of six examplary WMRs (in.Section 7); and

e Naming and diagramming of WMR kinematic structures (in Appendix 1).

In this concluding section, we summarize our development and highlight the significant results

and implications.

We begin modeling a WMR by sketching the mechanical structure. We assign one robot
coordinate system, and a hip, steering, and contact coordinate system for each wheel (in Section
4.3). We apply the Sheth-Uicker convention to coordinate system assignment and transformation
matrix calculation because it allows the modeling of the higher-pair wheel contact-point motion and
provides unambiguous transformation matrix labeling for the multiple closed-link chains formed by
the wheels.

We model each wheel (conventional, steered-conventional, omnidirectional or ball wheel) as a
planar-pair which allows three DOFs: X-translation, Y -translation, and #-rotation. A conventional
wheel attains Y -translational motion by rolling contact. The translation in the X direction and the
0 rotation about the point-of-contact occur when the wheel slips. We model the rotational slip as
a wheel DOF beecause relatively small forces are required; furthermore, the majority of all WMRs
rely on this DOF. We do not consider the X-translational wheel slip a DOF because relatively large
forces are necessary. Omnidirectional wheels also rely on rotational wheel slip but ball wheels do

not.

By inspection of the sketch, we write the robot-to-hip, hip-to-steering and steering-to-contact

97




transformation matrices for cach wheel in the format of Tablc 4.4.2. Under the assumption of no
wheel slip, the wheel rotations define the motion of the wheel contact-point coordinate system with
respect to a stationary coordinate system at the same position and orientation on the floor. The
coordinate system fixed with respect to the floor is important because we reference the velocities of
the wheel contact-paint to this instantaneously coincident coordinate system.‘ The rotational veloc-
ity of a wheel about its axle is thus proportional to the translational velocity of the contact point
coordinate system with respect to the instantaneously coincident wheel contact-point coordinate
system. Similarly, there is an instantaneously coincident robot coordinate system to reference the
velocities of the robot coordinate system. We '_assign instantaneously coincident coordinate systems
because of the higher-pair wheel contact points.

For each wheel we develop a Jacobian matrix (in Section 4.7.3) to specify the robot velocities (in
the instantaneously coincident robot coordinate system: Rvg,, Rvgv, ng) as linear combinations
of the wheel velocities (e.g., the steeriﬁg velocity, the rotational velocity about the wheel axle, the
rotational slip velocity, and the roller velocities for omnidirectional wheels). We write the Jacobian
matrix for a wheel by substituting elements of the coordinate transformation matrices, wheel and
roller radii and roller orientation angles into the symbolic Jacobian matrices of Appendix 3. For a
steered wheel, the Jacobian matrix depends explicitly on the steering angle.

Our study has illuminated the following important wheel properties. A (3 x w;) Jacobian
matrix J; is associated with a wheel having w; wheel variables. If the Jacobian matrix has rank
w;, it satisfies the non-redundant wheel criterion in (4.7.15), the wheel has w; DOF's and all wheel
variables are independent. If the rank of the Jacobian matrix is less than w;, the wheel is redundant
having fewer than w; DOFs, and some of the wheel variables are dependent. Speciﬁéally, any
conventional wheel which is steered about an axis that intersects thé wheel contact-point, or is
oriented perpendicularly to the line from the steering axis to the contact-point, is redundant. We -
have noted disadvantages of redundant wheels (without wheel couplings). The actuated inverse and
sensed forward solutions do not apply. We cannot characterize the actuation and sensing structure
of WMRs with redundant wheels because the actuation and sensing characterization trees are
developed by applying the actuated inverse solution. We also cannot determine the number of
DOF's of a WMR with redundant wheels (and no wheel couplings) because the DOF's calculation in
(5.4.4) is not computable. Since the actuated inverse solution is not applicable, we cannot control
such a WMR by calculating the actuator velocities from the desired robot velocities. Steering
the WMR by calculating the steering angle of a redundant wheel is an ad-hoc approach since a
steering angle cannot be controlled instantaneously. We point-out that some existing WMRs having
redundant steered-conventional wheels (e.g., Neptune and the Stanford Cart) are controlled in this
manner with some success. Since our survey and examples show that WMRs have been designed
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with redundant wheels, we infer that the implications of redundant wheels were not previously
well-understood.

We form the composite robot equation (in Section 5.2) by adjoining the equations-of-motion
of all of the wheels. Linear positional couplings between wheel variables (e.g., steering angles or
wheel axle angles) can be incorporated into the model by making the appropriate substitutions in
the composite robot equation, as demonstrated in Section 7.7.4 for the Stanford cart. We solve
the composite robot equation and interpret properties of the solutions to illuminate the mobility

characteristics of the robot.

The éomposite robot equation may have zero, ome, or an infinite number of solutions cor-
responding to three WMR mobility characterizations: overdetermined, determined, and undeter-
mined, respectively. The mobility characterization tree (in Figure 5.4.2) allows us to determine
the mobility characteristics of a WMR by indicating tests to be conducted on the composite robot
equation. The implications of the mobility characterization tree are summerized by the following.
If the soluble motion criterion in (5.4.1) is satisfied, the actuated inverse solution, actuation and
sensing trees and the WMR DOF calculation in (5.4.4) are applicable. The three DOF motion
criterion in (5.4.2) indicates whether the WMR kinematic structure allows three DOF motion. If
the kinematic structure does not allow three DOF motion, the kinematic motion constraints are
computed in (5.4.3). The number of WMR DOFs are calculated from (5.4.4).

1t is both impractical and unnecessary to actuate and sense every wheel variable on a WMR
because of the multiple-closed link chains. A subset of the wheel variables is thus actuated, and
a subset (not necessarily the same subset) is sensed. Even though a specific WMR may allow
three DOF motion, we must be sure that the wheel actuators can actuate all three DOFs, and
that the sensors can discern three DOFs. We apply the actuation and senssing characterization
trees (in Figures 5.6.1 and 5.8.1, respectively) to provide the answers. The implications of the
actuation characterization tree are summarized by the following three criteria. The adegauate
actuation criterion in (5.6.4) indicates whether the number and placement of the actuators is
adequate for producing all motions allowed by the mobility structure. If the adequate actuation
criterion is not satisfied, some robot DOFs are uncontrollable. The robust actuation criterion in
(5.6.6) determines whether the actuation structure is robust; i.e., actuator conflict cannot occur
in the presense of actuator tracking errors. If the actuation structure is adequate but not robust,
some actuator motions are dependent. The actuator coupling criterion in (5.6.5) indicates the
actuator dependencies which must be satisfied to avoid actuator conflict and forced wheel slip. The
implications of the sensing characterization tree are summerized by the following three criteria.
The adegquate sensing criterion in (5.8.4) indicates whether the number and placement of the wheel
sensors is adequate for discerning all robot motions allowed by the mol}ility structure. The robust
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sensing criterion in (5.8.5) indicates whether the sensing structure is robust; i.e., wheel slip and
sensor noise produce minimal effects on the calculation of the robot position from wheel sensor
measurements. The wheel slip criterion in (5.8.6) provides a computational method of detecting

wheel slip in robust sensing structures.

We calculate two solutions of the composite robot equation: the actuated inverse and sensed
forward solutions. In the actuated inverse solution in (5.5.5), we calculate the actuated wheel
velocities from the desired robot velocities. The actuated inverse solution is applicable for WMRs
satisfying the soluble motion criterion. In the sensed forward solution in (5.7.5), we calculate the
robot velocities from the sensed wheel velocities. The adequate sensing criterion indicates whether
the forward solution is applicable for a specific WMR. The composite robot equation in (5.2.2) need
not be formed, if there are no wheel couplings, because the actuated inverse and sensed forward
solutions and the mobility, actuation, and sensing characterization trees are expressed in terms
of the wheel Jacobian matrices. The .computations required for the actuated inverse and sensed
forward solutions are additions, multiplications and the solution of (at most) three linear algebraic

equations.

We apply our kinematic methodology to the design, kinematics-based feedback control, dead-
reckoning and wheel slip detection of WMRs. Our kinematic methodology provides valuable insights
into these areas. Just as the mobility characterization tree allows us to determine the motion
characteristics of an existing WMR, we may utilize the tree to design WMRs to possess such
desired characteristics as two or three DOFs. We may design a WMR with any specified workspace
(i.e., set of allowable motions) by proper choice and placement of the wheels. We have listed the
design criteria for a robust omnidirectional WMR in Tables 6.2.1 . We model two three-DOF
WMRs as examples: the Unimation robot (troas-whemor in Section 7.2) and Uranus (tetroas-
whemor in Section 7.4). We suggest that three DOF WMRs are applicable for use with an on-board -
manipulator. The mobility of the base extends the workspace of the manipulator. The majority
of practica! applications (i.e., parts, tools, and materials transport) require only two DOFs. We
conclude that a WMR having two diametricélly opposed driven wheels (bicas-polycsun-whemor) is
ideal for this application because of the simplicity of its mechanical design and kinematic model.
The actuation characterization tree may be applied to design a WMR to have a robust actuation
structure, thus avoiding actuator conflict, as shown for Uranus in Section 7.4.4. Similarly, the
sensing characterization tree may be applied to design a WMR with a robust sensing structure to
minimize the adverse effects of wheel slip on the calculation of the WMR position. We have noted
that the set of actuated wheel variables and sensed wheel variables cannot coincide if both robust
actuation and robust sensing are desired. '

The few WMR control systems which have been documented are wheel level control sys-
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tems[17,33], without using a dynamic model of the WMR. The documented designs arc tailored to
the specific WMR being controlled. We detailed a kinematics-based robot level control system (in
Section 6.4) for WMRs for which the sensed forward and actuated inverse solutions are applicable.
Dead reckoning is the real time calculation of the robot position from wheel sensor measurements.
We develop a dead reckoning update calculation in Section 6.4 by integrating the robot velocity

computed by the sensed forward solution.

We have uncovered three methods of dealing with wheel slip: design the actuation structure
to avoid slip, design the sensing structure to detect slip, and minimiize the errors in the calculated -
robot position due to slip. We model (in Section 3) rotational wheel slip for both conventional and
omnidirectional wheels because- many WMR designs rely on this DOF. We wish to avoid, detect or
minimize the adverse effects of the unmodeled translational wheel slip. One approach to eliminating
wheel slip is to actuate all of the wheels, such as with the four-wheel drive on an automobile. Since
this can lead to actuator conflict, we must design wheel couplings to ensure that the actuator
coupling criterion is satisfied, as with Uranus (in Section '7.4.4). This solution does not guarantee
zero wheel slip, but_if slip does -oécur, all wheels must slip in unison which is unlikely. We have
noted that a robust sensing structure allows us to detect wheel slip. We thus design the sensing .
structure to satisfy the robust Sensing criterion and wheel slip is detected by the method of Section
6.5. In this way, we are able to detect the onset of wheel slip and notify the robot processor that
an absolute method of robot positioning (e.g., robot vision) should be applied before continuing.
This method will also fail in the unlikely case that all wheels slip in unison. The least-squares
sensed forward solution (in Section 5.7) is less sensitive to wheel slippage if the sensing structure
is designed to be robust. If wheel slip does occur, and no absolute positioning method is available,
the adverse effects can be reduced by applying the least-squares sensed forward solution.

Even though our study is tailored to WMRs, our methodology may be applied to the kinematic
modeling of other mechanisms, such as legged or treaded vehicles. The analysis of mechanisms
having higher-pair joints, multiple closed-link chains or unactuated and unsensed joint variables
may benefit from our methodology. In particular, our matrix coordinate transformation algebra (in
Section 4.5) may be applied to the transformation matrices expressing the relationships between
lower and high-pair joints. Our WMR diagramming and naming conventions (in Appendix 1) may
be extended to legged mobile robots (LMRs) and treaded mobile robots (TMRs).

In Section 9, we discuss our continuing research. We are extending our study of WMRs to
include the dynamic modeling of WMRa.
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9. Continuing Research

Kinematic modeling of WMRs is the first step towards designing feedback control systems. We
are continuing our study by applying our kinematic model to formulate the dynamic equations-of-
motion of WMRs. In analogy with the past thirty-year study of stationary manipulators, we realize
that our kinematic methodology is the foundation for the dynamic modeling of WMRs. As with
stationary manipulators, our coordinate system assignments are reference systems for defining the
masses and inertias of the robot components. The forces/torques produced by actuators and by
motions of the robot components may be transformed from one coordinate system to another by
applying our coordinate transformation matrices. Our kinematic calculations of positions, velocities
and accelerations can be applied to calculate the dynamic forces and torques produced by the
motion of the robot components. For example, the recursive Newton-Euler manipulator dynamics
formulation[31] applies kinematics to propagate positions, velocities and accelerations from the
robot base to the end-effector. The forces/torques are then calculated from the end-effector to the

base.

We are applying, to the extent practicable, existing dynamic formulations of stationary ma-
nipulators[31] to WMR dynamics modeling. We are extending the existing formulations to ac-
commodate the special characteristics of WMRs, such as multiple closed-link chains, higher-pair
wheel-to-floor joints and unactuated and unsensed wheel DOFs. Once the kinematic and dynamic
models are completed, we will focus on WMR control. Qur research is paralleled by the physical
construction of Uranus (in Section 7.4). When we establish the foundation for WMR control, we
will implement our designs on Uranus to veﬁfy the development and evaluate its performance.

We have provided an exténSive methodology for kinematic modeling of WMRs, and we conclude
by pointing out practical extensions to our work. We have developed the actuated inverse and .
sensed forward velocity solutions (i.e., the solutions for the actuated wheel velocities from the
robot velocities and the robot velocities from the sensed wheel velocities). We are utilizing pulse-
width modulation to control the actuators of Uranus. The actuators can be modeled by linear
transfer functions from pulse-width to motor velocity[51]; the pulse-width acts as the velocity
reference signal and the actuated inverse velocity solution can be applied to calculate these reference
velocities. When motor control is accomplished by controlling the motor current, as is the case
with many stationary manipulators, the motor torque and current are proportional. Since the
motor current acts as an acceleration reference signal, the actuated inverse acceleration solution is
required. Since there are no commercially-available rotational accelerometers, we utilize available
rotational position and velocity sensors for wheel feedback. The sensed forward velocity solution is
thus appropriate for computing the robot velocities for feedback control and dead reckoning. When
accurate rotational accelerometers are developed, the sensed forward acceleration solution will be
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applied.

We have advocated the application of kinematic modeling to the design of WMRs for subse-
quent feedback control. Since present designs are based upon experience with non-robotic mech-
anisms (e.g., automobiles and tricycles) and ad-hoc methods, we expect that kinematic modeling
prior to construction will improve future WMR designs. In Section 6.2, we addressed the design of
WMRs. A systematic procedure for designing WMRs to obtain specified mobility characteristics is

thus a promising area for research.

Stationary manipulators are open-link chains for most operations. When the end-effecter comes
in contact with an object (e.g., when picking-up an object and placing a peg in a hole), the structure
becomes a closed-link chain and actuator conflict may occur. Compliance has been introduced in
the operation and construction of stationary manipulators to reduce actuator conflict. Similarly,
sntroducing compliance in either the mechanical design or control system of a WMR to eliminate

actuator conflict in overdetermined actuation structures has practical applications.
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1. Appendix 1: A Nomenclature and Symbolic Represcntation of WMRs

1.1 Introduction

In this appendix, we introduce a nomenclature and a symbolic representation for describing
the essential kinematic structure of WMRs. We define essential kinematic information as the min-
imal information required to solve symbolically the kincmatic equations-of-motion. For example,
the presense of a steering link is considered essential kinematic information because an equation
which relates the velocity of a steered wheel to the velocity of the robot body must depend upon
the steering angle. In contrast, the distance between two wheels is not essential kinematic informa-
tion because knowing the numerical value of the distance does not help to formulate the symbolic
equations-of-motion. The nomenclature provides a convenient literal and verbal representation of
the essential kinematic information. The symbolic representation displays pictorially the essential
kinematic relations between the robot body, wheels and steeriné links using mnemonic symbols.
Our desire to compare the kinematic chara.'c_teristics of WMRs of differing structures has led to
these representations. Without simple, straightforward and informative descriptions of the kine-
matic structure of a WMR, comparisons between robots become confusing and awkward. The
conventional pictorial representations are mechanical drawings in which characteristics unessential
for kinematic analysis complicate understanding. Similarly, the conventional literal descriptions of
WMR kinematics are through lengthy verbal explanations. Our symbolic and literal representa-
tions of WMRs characterize the essential kinematic structure of a WMR through simple diagrams

Or names.

Our symbolic (naming) representation has been devised to be easily drawn (written or spoken)
and interpreted, while providing the following information: .
° The number of wheels;
. The type of each wheel;
) The steered wheels;
. The relative positioning of the wheels;
° The actuated DOF's of each wheel; and
° The sensed DOF's of each wheel.

Our symbolic representation can be augmented to include functional dependencies between
wheels and define the distances and angles between components (although these characteristics are
not considered essential kinematic information). Although functional dependencies are needed for
symbolic solutions, it is difficult to incorporate arbitrary functional relations into our representa-
tions. Our definition of essential kinematic information is chosen because our ultimate objective
is the control of WMRs; consequently, information required for the forward and inverse kinematic
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calculations is directly applicable to WMR control. For this reason, we specify the DOF's of each
wheel which are actuated and sensed. The motion of an unactuated (non-sensed) DOF may con-
strain the motion of the robot, whereas the motion of an actuated (sensed) DOF may be calculated
symbolically from the motion of the robot body. Understanding these representations can
most easily be accomplished by scanning the rules delineated in Sections A1l.2 and
Al.3 and then following the examples in Section A1.4. The reader can then refer back to

the rules for a more detailed understanding.

1.2 Symbolic Representation Rules

The rules for generating and interpreting WMR diagrams follow.

1.) A WMR is depicted by a large circle.

2.) Each wheel appears as a small circle within the WMR circle.

3.) Each steering axis is portrayed as circle smaller than the associated wheel; a steering link
is drawn as a line segment from the steering axis to the respective wheel. If the steering
axis intersects the center of the respective wheel, it is depicted as a small circle within and

concentric to the wheel circle, and a steering link is not required.

4.) The relative positions of the wheel circles (for non-steered wheels) and steering axes (for
steered whegls) correspond to the relative positions of the wheels and steering axes on the

robot.

5.) The DOFs of a wheel are indicated by line segments and arcs within the wheel circle drawn
in the directions of the translational and rotational DOF's, respectively. The rotational slip
DOF of a wheel is implied and no arc is drawn. A conventional wheel has one radial line
segment in the direction of travel from the wheel center to the wheel circle. Similarly, an
omnidirectional wheel has two radial line segments, and a ball wheel has two radial line
segments and an arc (one quarter of a circle) drawn within the wheel circle.

6.) The actuated DOFs of each wheel are drawn with an arrowhead appended to the line indi-
cating the DOF.

7.) The sensed DOFs of each wheel are drawn with a " T” appended to the line indicting the
DOF. A DOF, which is both actuated and sensed, is indicated by a closed arrow (i.e., the
combination of 2 ”T” and an arrow).

111



*8.) (Optional) Functional dependencies between DOF's within or between wheels may be indi-
cated by dashed lines. Dashed lines may also be used to indicate that a component of a
WMR cannot be described adequately by our representation.

1.3 Nomenclatm;e Rules

Our nomenclature expresses the identical information as the symbolic representation in Section
Al.2. For compactness, we limit the amount of positional, actuation and sensing information in
the name of the WMR. The rules for creating and interpreting WMR names follow.

1.) The name of the kinematic structure of a wheeled mobile robot ends with the suffix -whemor.

This suffix may be omitted when it is understood that the name is of a WMR. .

2.) Sets of one or more wheels of the same functional type are indicated by syllables separated
by hyphens.

3.) Two or more wheels of a WMR are of the same functional type if they are of the same basic
type (i.e., conventional, omnidirectional, or ball); are all steered or all not-stecred; are all
actuated and sensed similarly; and are all placed éymmetrically with respect to either the
center of the robot, a line thi'ough the robot center (the major axis), or a line perpendicular
to the major axis (the minor axis).

4.) The syllables are ordered from the begmmng to the end of the name according to the following
precedence characteristics which are listed from the most to the least important:
Symmetry with respect to the robot center;
Symmetry with respect to the major axis;
Symmetry with respéct to the minor axis;
Number of wheels; '
Steered wheels;
Ball wheels;
Omnidirectional wheels;
Conventional wheels;
Actuated wheels; and
Sensed wheels.

For example, all wheel sets which are symmetric with respect to the robot center appear
first; and if there is more than one wheel set which is symmetric with respect to the robot
center, the set having the largest number of wheels (if there is not a tie) is listed first in the
name.
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5.) Each syllable rcpresenting a set of wheels consists of:
i.) One of the prefixes "unt”, ”bi”, "tri°, " tetra”, "penta”, "heza”, " hepta”,
" octa”, "enned”, ”deca”, or "poly” to indicate the number of wheels in

the set;

ii.) Followed by one of the letters "¢”, "0”, *b”, or "w” to indicate that they
are either conventional, omnidirectional, ball or an unspecified type of
wheel. For an omnidirectional wheel, the final vowel of the prefix is
dropped before adding ”0” to make the name pronounceable;

iii.) Followed by ”s”, if the wheels are steered;

iv.) Followed by either an ”@” or "4” to indicate that the wheels are actuated
or unactuated, respectively. A wheel having more than one DOF and/or
a steering axis is considered actuated if the steering angle or any of the
DOFs is actuated;

v.) Followed by either an ”s” or "n” to indicate that the wheels are sensed or
not-sensed, respectively. A wheel having more than one DOF and/or a
steering axis is considered sensed if the steering angle or any of the DOF's

is sensed.

6.) A kinematic structure of a WMR, which cannot be named adequately according to these
rules, is named by prefixing .the name which most closely indicates the structure with

pseudo-.

A class of kinematic structures which may consist of a large number of specific instances of
WMRs is specified by the poly prefix. For example, a polycas-whemor refers to the class of WMRs
which have only conventional non-steered wheels arranged symmetrically with respect to the robot
center or its major axis. Similarly a class of WMRs which has a number of wheels whose type is
not specified is called polywas-whemor. Also, if the actuation and sensing characteristics are not
important for the discussion, the actuation and sensing labels may be omitted, as in polyw-whemor.
Admittedly, our nomenclature has disadvantages. Names created by these rules may not be easily
pronounceable. There is not a one-to-one relationship between WMRs and the names created
by our nomenclature. There are examples of WMRs which have several legal names (e.g., wheel
sets can always be divided into multiple sets, each having fewer wheels). Furthermore, it is not
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always possible to dctermine the symmetry of a WMR from its name (e.g., a hezac-whemor may be
symmetric with respect to the robot center or the major axis). These disadvantages are the result
of our attempt to assign compact names. Most ambiguities in the nomenclature can be climinated
by assuming the practical alternative. For example, a tric-whemor must be symmetric with respect
to the robot center and not the major axis, because it would be more practical to name the latter

a bsc-untc-whemor.

1.4 Examples

In Section 2, we illustrate the kinematic diagram and name of fourteen WMRs. The pre-
dominant WMR kinematic structure documented in the literature has two parallel conventional
wheels, one on each side of the robot (thus, the syllable bicas). These robots also possess one or
two castors for stability. Among the most widely known examples are Shakey[52] and Newt[32] (in
Figure 2.1). Shakey has two free-wheeling casters for stability (bécsun), whereas Newt utilizes only
one (unicsun). By mounting the two driven wheels at an acute angle to the floor in their. Topo[27]
robot (in Figure 2.1), the Androbot Company stabilized the robot without the use of castors. Even
though the acute angle of the wheels cannot be represented in either the symbolic representation
or the name, we can infer that the wheels must be angled for stability by assuming the most prac-
tical realization. Mobile robots which possess- multiple non-stecred, driven wheels whose axes are
non-colinear must rely on wheel slip if the robot is to navigate turns. Such is the case with the
Terregator[66] (in Figure 2.2) which uses six parallel, non-steered, conventional wheels, three on
either side (hezacas). The mechanically more complex, steered and driven conventional wheel is
utilized on Neptune[57] (in Figure 2.3), which has a tricycle wheel arrangement; the front wheel is
steered and driven (unicsas), while the two rear wheels are at a fixed parallel orientation and are
undriven (bicun). The CMU Rover[48] (in Figure 2.3) has three steered and driven wheels (tricsas).

The Stanford Cart[46] (in Figure 2.4) has two steered, undriven wheels in the front (bicsan)
and two fixed, driven wheels in the back (bican). The two steered wheels are coupled so as to be
oriented in the same direction, thus the pseudo prefix. The JPL Rover[41] (in Figure 2.4) is similar
to the Stanford Cart except that both the front and back wheel pairs have coupled steering pseudo-
bicsan-bicsan-whemor. Kludge[29] (in Figure 2.4) has complex functional dependencies between
the wheels. This robot bas three conventional wheels that are both steered and driven, as on the
CMU Rover. In addition, a chain and gear arrangement is used to equalize all drive velocities and
steering angles. To complicate further the arrangement, each wheel is mounted on an actuated link
which can be pivoted towards or away from the center of the robot to adjust its stability properties
(pseudo-tricsas). Dashed lines are used in the symbolic representation of Kludge to indicate the
functional dependencies between steering angles and wheel actuation, and the inability to represent
the pivoted link. The hybrid spider drive[29] (in Figure 2.5) utilizes four conventional wheels, two
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on either side of the robot, each of which is mounted at the end of a thrce DOF leg linkage
(pseudo-tetracsas). The hybrid locomotion vehicle[34] (in Figure 2.5) utilizes six steered and driven
conventional wheels, each at the cnd of an actuated vertical leg (pseudo-hezacsas). Uranus[49)] (in
Figure 2.6) utilizes four omnidirectional wheels positioned at the corners of a rectangle (tetroas).
The Unimation Robot{14] (in Figure 2.6) possesses three DOF's using only three actuators and
three omnidirectional wheels (troas). The most maneuverable wheel is a ball which is actuated so

as to possess three DOFs[47] (untbas).

We note that our representations can be extended to other classes of mobile robots. For
example, Legged Mobile Robots (LMRs) can be denoted by the suffix lemor, and Treaded Mobile
Robots (TMRs) may be denoted by the suffix tremor.
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2. Appendix 2: Symbol Tables

Scalars
Scalar Page Definition
Wiz 12 angular velocity of the wheel about the x-axis through its center
Wy 12 angular velocity of the wheel about the y-axis through its center
Wz 12 angular velocity of the wheel about the z-axis through its center
Woz 12 angular veocity of the steering link about its axis
Wepy 12 angular velocity of rollers about their axes
Uz 12 linear velocity along the x-axis
vy 12 linear velocity along the y-axis
"R 12 angular velocity about the z-axis
R 12 wheel radius
r 12 roller radius
n 12 roller angle
N 17 number of wheels
1 36 wheel index
w; 36 number of wheel variables of wheel ¢
a; 52 number of actuated wheel variables of wheel ¢
U 52 number of unactuated wheel variables of wheel
8 57 number of sensed wheel variables of wheel ¢
n; 57 number of not-sensed wheel variables of wheel ¢
w 43 total number of wheel variables
a 52 total number of actuated wheel variables
u 52 total number of unactuated wheel variables
s 58 total number of sensed wheel variables
n 58 total number of not-sensed wheel variables
t 67 continuous time variable
T 67 sampling period
n 67

discrete time index
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Vectors

Vector Page Dimension Definition
P 36 (3x1) robot position vector
Pd 68 (3x1) desired robot position vector
Pn 58 ({3+n}x1) combind robot and not-sensed wheel position vector
q 43 (w x 1) wheel position vector
qQa 53 (a x 1) actuated wheel position vector
Q. 54 (ux1) unactuated wheel position vector
q, 57 (s x 1) sensed wheel position vector
q; 37 (w; x 1) physical wheel position vector of wheel ¢
Q. 36 (4x1) pseudo-wheel position vector of wheel ¢
GQia 52 {(a; x 1) actuated position vector of wheel ¢
Qiu 52 (us x 1) unactuated position vector of wheel ¢
Qe 58 (8: x 1) sensed position vector of wheel ¢
Gin 58 (n x 1) not-sensed position vector of wheel ¢
qp 53 (w x 1) partitioned wheel position vector
épr 68 (3x1) differential robot displacement vector
éq, 68 (ax1) differential actuator displacement vector
e 72 (3N x 1) least-squares error vector
er 68 3x1) robot position error vector
ks 68 (3 x1) control system feedforward gain vector
k, 68 (ax1) actuator gain vector
k. 68 (s: x1) . sensor gain vector
Matrices
Matrix | Page Dimension Definition
J; 36 (3x4) pseudo-Jacobian matrix of wheel ¢
J; 37 (3 x w;) Jacobian matrix of wheel ¢
Jia 52 | - 3 x a;) actuated Jacobian matrix of wheel ¢
Jiw 52 (3 ¥ uy) unactuated Jacobian matrix of wheel $
Jis 57 (3 x s;) sensed Jacobian matrix of wheel 3
Jin 57 (3 x n;) not-sensed Jacobian matrix of wheel ¢
U 44 (¢ x d) an arbitrary matrix
A(U) 44 (e xe) " delta function
J; ! 53 (a x 3) actuated inverse Jacobian matrix
J, 58 (3 xs) sensed forward Jacobian matrix
W; 37 (4 x w;) wheel matrix of wheel
\Z 38 (3x3) motion matrix
Ao 43 (3N x 3) lefthand side of composite robot equation
By 43 (3N x w) righthand side of composite robot equation
Bop 53 (3N x w) righthand side of partitioned composite robot equation
A, 54 (8N x 3 lefthand side of robot actuation equation
B. 54 (3N x a] righthand side of robot actuation equation
A, 58 (3N x {3 +n}) lefthand side of the partitioned robot sensing equation
B, 58 (3N x s) righthand side of robot sensing equation
A, 60 (3N x 3) lefthand side of robot sensing equation
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3. Appendix 3: Wheel Jacobian Matrices

3.1 Introduction

In this appendix, we develop the wheel Jacobian matrices for conventional wheels, steered
conventional wheels, omnidirectional wheels and ball wheels. The wheel Jacobian matrix (as intro-
duced in Section 4.7.3) relates the velocities of the WMR to the velocities of the wheel. The wheel
Jacobian matrix is the product of the pseudo-Jacobian matrix J; and the wheel matrix W,-:

3 =3, w,. (A3.1.1)

The pseudo-Jacobian matrix relates the wheel pseudo-velocities to the robot velocities, as
described in Section 4.7:

sin e, cosROe, —Rdg,. Pdy. (A3.1.2)

R cos Bfs, —sin Roc,. Rdc,.v —Rdy‘.,
J; =
0 0 1 -1

The wheel matrix in (4.7.13) relates the pseudo-velocities to the actual wheel velocities. The
wheel equations-of-motion in Figure 3.2 are applied to construct the wheel matrices. The pseudo-
velocities a'vc;..,, a‘vc..y and awc.. are the velocities v;, vy, and w, in Figure 3.1. The actual
wheel velocities are the angular velocities of the wheel and rollers Wiz Wagys Weo;zy A0 Wy, about
their respective axes. With these observations, the wheel matrix for each wheel is written directly
from the wheel equations-of-motion in Figure 3.2. The wheel Jacobian matrix is then formed by
multiplying the pseudo-Jacobian matrix in (A3.1.2) by the wheel matrix. We consider each of the

aforementioned wheels in turn.

3.2 Conventional Non-Steered Wheel

The conventional non-steered wheel has two DOFs: motion in the direction of the wheel
orientation, and rotational slip about the point of contact, corresponding to the two wheel pseudo-
velocities avc_.,, and a’-wc.. , respectively. The actual wheel velocities are the angular velocity of
the wheel about its axle w,,,, and the angular velocity of the rotational slip w,, .. These velocities
are related by the (4 x 2) wheel matrix W, in (A3.2.1).

ooMmo

.g (w,,,.,) = W q (43.2.1)
0




The wheel matrix is multiplied by the pseudo-Jacobian matrix in (A3.1.2) to form the (3 x 2)

Jacobian matrix:

-

" Conventional Non-Steered Wheel Jacobian Matrix

RicosB0e, —Rdg,, (A3.2.2)

0 1

: —Rt sin RGC; RdC.’V
J; = .

This wheel is termed degenerate because the Jacobian is non-square and thus non-invertible.
Even though a robot velocity vector can be calculated from a wheel velocity vector, it is not always
possible to compute a wheel velocity vector from a robot velocity vector. The degenerate nature of
the kinematic equations-of-motion of the non-steered con'ventit_)na.l wheel precludes its application

to three DOF WMRs.

3.3 Conventional Steered Wheel

The conventioanl steered wheel has an additional DOF provided by the steering joint corre-
sponding to the pseudo-velocity #iwg,. The actual steering velocity w,,, (in Figure 3.2) is equal to
the steering pseudo-velocity. The (4 x 3) wheel matrix and the (3 x 3) wheel Jacobian matrix are,
respectively:

»
oo
OO

(:::) = W, q (43.3.1)

and

Conventional Steered Wheel Jacobian Matrix

R" cos8 Roc.. —Rdc.., Rd};‘., (A3.3.2)

~R;sin Raca RdC-'v ‘Rdﬂév
5 =
0 1 -1
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The Jacobian matrix is invertible if its determinant is nonzero; i.e., if
det(Ji) = R (Si dC-'v cos s‘oC.' - s‘dC"z sin Sioce) #0. (A333)

The determinant is zero and the conventional steered wheel is redundant if the steering axis inter-
cepts the wheel point of contact (i.e., if %d¢,z = Sidc,y = 0) or if the wheel is oriented perpendicular
to the steering link (i.e., if C'ds,, = Sidc,zsinS 8¢, — Sdg,, cos Sic, = 0).

3.4 Omnidirectional Wheel

The omnidirectional wheel possesses three DOFs without a steering joint. The DOFs are
motion in the direction of the wheel orientation, motion in the direction of the roller orientation
and rotational slip, which correspond respectively to the actual wheel velocities wy,z, Ww,r, and
Ww,z- The pseudo-velocities q; are linear combinations of the actual velocities g;:

0 rsnp O w

. R - 0 wiE

a@= |y ';“" 1 (w,,‘.,.) = W, q. (43.4.1)
0 0 -0J \Wms

The wheel Jacobian matrix is:

Omnidirectional Wheel Jacobian Matrix

RicosRoc, —ricos(ROc, +n:) —Rdg,. (A3.4.2)

—R; sin Roc'. r; sin (Rac,- + fl;') RdC.-y
3 =
0 0 1

The determinant of the omnidirectional wheel Jacobian matrix is —R;r;sin#;, and conse-
quently the Jacobian matrix is invertible whenever the rollers are not aligned with the wheel (i.e.,
whenever n; # 0).

3.5 Ball Wheel

The ball wheel possesses three DOF's of rotation about the three normal axes positioned at
the wheel center. The wheel matrix relating the actual wheel velocities Wew,zy We,y aNd wy,, to the
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pseudo-velocities is:

»
cool
coyo

W,z
(ww;y) = W,‘ q; . (A351)

The wheel Jacobian matrix is:

Ball Wheel Jacobian Matrix

Ji = | RisinRbg, RicosRé;, —Rdg,,

0 0 1

R; cos Roc'. —R;sin Rﬂc‘ Rdc..y
(43.5.2)

Since the determinant of the ball wheel Jacobian matrix is R?, it is invertible for all non-zero
wheel radii.

In Section 7, the wheel Jacobian matrices developed in this appendix are applied to obtain the
kinematic equations-of-motions of specific WMRs.
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4. Appendix 4: Actuated Inverse Solution Matrix Calculations

In this appendix, we detail the matrix manipulations leading to the actuated inverse solution

in Section 5.5 . We solve the composite partitioned robot equation in (5.5.3)

(fha\

Q2a
I, Jo 0 ... 0 Ji. O ... O : ,
Iz 0 J2a - I 0 Jj. - 4N (Qn)
p = D= : ’ L 21=8B .
Aop S P s e, t., 0 5 el ., 0 ‘.llu op qQu
Iv 0 ... 0 Jnva O ... 0 Jn/ |
vy
| (A4.1)
to calculate the actuated wheel velocities §, in the least-squares solution in (5.5.4):
( g:) = (BF,Bop) ™! Bj, Ao B - (Ad.2)
We begin by forming the matrix product:
(J,T,J,. 0 ... 0 JTI. 0 ... 0
0 I3 .. 0 JIJa :
: 0 : : 0
T _ 0 0 Jg INa 0 0 JEGJNQ
(BoBop)=|yr3. o .. "0 I O ... 0
0 I3.J. - : 0 JJan
: 0. : .. 0
\ o e 0 ILJia O e 0I5 TN
D.. D
= (D,?: D::) . (44.3)

To invert (B, Boy), We have written the matrix in block form with four components, each
one a block diagonal matrix. We let the block matrix X be the inverse of the matrix in (A4.3).
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To compute the block components of the matrix inverse in terms of the block components of the
matrix in (A4.3), we apply the fact that the inverse of a matrix times the matrix itself is the identity

matrix; i.e.,
xll X12 Daa Dau _ 1 0
(xn Xzz) (Dfu Dw) B (0 - (44.4)

Since we seek only the upper (actuated) components of the wheel velocity vector q, in (A4.1), we
. calculate only the two components in the top row of the block matrix inverse. We thus seperate
the solution of the actuated wheel velocities

4o = (X1 Xi2)Bj,Aop (A4.5)

from the solution of the unactuated ones. We expand (A4.4) to obtain

quac + anZ'. =1 (A4.6) )
and
X11Dgu +X12Dyy = 0. (A4.7)
From (A4.6) and (A4.7), we find
X2 = -xlchuD:ul (A4'8)
and . '
1T 1
xxl = (DGG = DG‘HDuu Dag 9 (A4.g)
where
(J}‘ujlu)—l 0 cee 0
T -1 -, :
D;l= 0 (32.924) ‘ - . - (44.10)
: 0
0 e 0 (@FIn)
The matrix Xn in (A4.9) is
—[JfaA(Jlu)Jicl_l 0 ces 0
T -1 . :
Xy = 0 ~F3 AT T2 ' (44.12)
: .. “.. 0 . )
0 0 —[I%.AQFN)ING
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The matrix X;2 in (A4.8) is

A, 0 ... 0
Xp=|0 4 & ¢ _ (A4.12)
C g ) :
0 ... 0 Apn
where,
Ai = 3T AF:)dia) ITTL(ATT) T (44.13)

We substitute (A4.12) and (A4.11) into (A4.5) to obtain the actuated wheel velocity vector

PTAGWTL] I, A )

[J;GA(Jzu)Jm:]-ng‘oA(Jz“) 5. (A4.14)

5. AN TN 35, AN

Equation (A4.14) is the least-squares solution for the actuated wheel velocity vector. We note
that this solution is applicable only when the matrix in (A4.3) is invertible. The conditions under
which this solution is applicable are specified by the soluble motion criterion in (5.4.1).
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5. Appendix 5: Sensed Forward Solution Matrix Calculations

In this appendix, we detail the matrix manipulations leading to the least-squares sensed forward
solution. We solve the partitioned robot sensing equation in (5.7.2)

L, -3, 0 ... 0 P
. . . qi
A ( P ) | 0 —Ja : flz:
"\an/ S 0 T
Ivn 0 ... 0 -IvaJ \gu.
(A5.1)
Jl. 0 cee 0 qll
—_ 0 J2a . E q2s =B (‘l.
- . . . : - e
R | K
0 ... 0 Jns 9N
to calculate the robot velocities p in the least-squares solution in (5.7.4):
. 1 .
(; ) = (ATA,) ATB.4, - - (45.2)
We begin by forming the matrix product
NI -Jln —Jzn —JNn
=37, I 0 e 0
(AﬁAn) =1 -3 0 I3nd2n
: .. . 0 A5.3
-I%n 0 .ee 0 J%.Inn ( )

_ (NI T
=\1T D)’

where N is the number of wheels and I is the (3 x 3) identity matrix. We let the block matrix X

be the inverse of the symmetric matrix (AT A,) in (A5.3). Since the inverse of a matrix times the
matrix is the identity matrix,

X X2\ /(NI TY_(1 0
(Xn xzz) (TT D)_(“ 1)' (45.4)
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We use the top block row of the matrix inverse to seperate the robot velocity vector p from the

non-sensed wheel velocity vector §, :

p=(Xu Xi2)ATB,q,. (45.5)
From (A5.4), we obtain
Xy NI+ X1, TT =1 (A5.6)
and
XuuT+X33D =0, (A5.7)
from which .
X2 = ~X;; TD™? (A5.8)
and '
X;1 = (NI-TD-1T7)™" . (45.9)

The inverse of the block diagonal matrix D is:

(3T, 31m) " 0 vee. . 0
-1 . .
D= 0 (I d2a) - : : (45.10)
: 0
0 0 (3%,.JInn)

We expand the block elements in (A5.8) and (A5.9) to obtain

Xi2 = ~Xu1 [-31n(00310) 7" =322(35320) 7" ... ~INa(35nINn) "] (45.11)
where '
- - - -1
X11 = [N~ 33037, 310) " 3T, = 320 (35, 320) 35, — oo = INa(@T 0T vn) 35

= =[AJ1n) + AJ20) +... + A(Tna)] 7}
-(A5.12)
Finally, we substitute (A5.11) and (A5.12) into (A5.5) to obtain the least-;quues solution for
the robot velocity vector:
P=[A0J1a) + AJ30) + ...+ A[Nn)] AT 1n)T1e A(J2n)2e oo ATNa)INa)G - (45.13)

In Section 5.8, we develop the adequate sensing criterion which ensure the invertability of the
matrix (ATA,) in (A5.3) and thereby the applicability of the least-squares sensed forward solution
in (A5.13). ’
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