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Abstract 

We formulate the kinematic equations-of-motion of wheeled mobile robots incorporating con- 
uentionaI, omnidirectional, and ball wheels. While our approach parallels the kinematic modeling 
of stationary manipulators, we extend the methodology to accommodate such special characteris- 
tics of wheeled mobile robots as multiple closed-link chains, higher-pair contact points between a 
wheel and a surface, and unactuated and unsensed wheel degrees-of-freedom. We survey existing 
wheeled mobile robots to motivate our development. To communicate the kinematic features of 
wheeled mobile robots, we introduce a diagrammatic convention and nomenclature. We apply the 
Sheth- Uicket convention to assign coordinate axes and develop a matriz coordinate transformation 
algebra to derive the equations-of-motion. A wheel Jacobian matriz is formulated to relate the 
motions of each wheel to the motions of the robot. We combine the individual wheel equations to 
form the composite robot equation-&motion. We calculate the sensed forward and actuated inverse 
solutions and interpret the conditions wbich guarantee their existence. We interpret the properties 
of the composite robot equation to characteriee the mobility of a wheeled mobile robot according 
to the mobility characterization tree. Similarly, we apply actuation and sensing characterization 
trees to delineate the robot motiohs producible by the wheel actuators and discernable by the 
wheel sensors, respectively. We apply our kinematic model to design, kinematics-based control, 
dead-reckoning and wheel dip detection. To illustrate the development, we formulate and interpret 
the kinematic equations-of-motion of six prototype wheeled mobile robots. 



1. Introduction 

Over the past twenty years, as robotics has become a scicntific discipline, research and devel- 
opment have concentrated on stationary robotic manipulators[l%, 431, primarily because of their 
industrial applications. Less effort has been directed to mobile robots. Although leggcd(581 and 
treaded[37] locomotion has been studied, the overwhelming majority of the mobile robots which 
have been built and evaluated utilize wheels for locomotion. Wheeled mobile robots (WMRs) 
are more energy a c i e n t  than legged or treaded robots on hard, smooth surfaces[6,7]; and will 
potentially be the fist  mobile robots to find widespread application in industry, because of the 
hard, smooth plant floors in existing industrial environments. Wheeled transport vehicles, which 
automatically follow paths &ked by reflective tape, paint, or buried wire, have already found 
application[20]. WMRs find application in space and undersea exploration, nuclear and explo- 
sives handling, warehousing, security, agricultural machinery, military, education, mobility for the 
disabled and personal robots. 

The wheeled mobile robot liteiature documents investigations which have concentrated on the 
application of mobile platforms to perform intellight tasks [52], rather than on the development 
of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved me- 
chanical designs and mobility control systems will enable the application of WMRS to tasks were 
there are no marked paths and to autonomous mobile robot operation. A.Binematic methdology 
is the first step towards achieving these goals. 

Even though the methodologies for modeling and controlling stationary manipulators are appli- 
cable to WMRs, there are inherent differences which cannot be addressed with these methodologies. 
Examples include: 
1.) WMRs contain multiple closed-link chains[53]; whereas stationary manipulators form closed- 

link chains only when in contact with stationary objects. 

.2.) The contact between a wheel and a planar surface is a higher-pair; whereas stationary ma- 
nipulators contain only lower-pair joints[3,62,63]. 

3.) Only some of the degrees-of-freedom (DOFs) of a wheel on a WMR are actuated; whereas 
all of the DOFs of each joint of a stationary manipulator are actuated. 

4.) Only some of the DOFs of a wheel on a WMR have position or velocity sensors; whereas 
all of the DOFs of each joint of a stationary manipulator have both p i t i o n  and velocity 
sensors. 

Wheeled mobile robot control requires a methodology for modeling, analysis and design which 
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parallels the technology of stationary manipulators. 

Our objcctive is thus to model the kinemutics of WMRs. Kinematics is the study of the 
geometry of motion. In the context of WMRs, wc are interested in determining the motion of the 
robot from the geometry of the constraints imposed by the motion of the whecls. Our kinematic 
analysis is based upon the assignment of coordinate axes within the robot and its environment, 
and the application of (4x4) matrices to express transformations between coordinate systems. 
Each step is defined precisely to lay a solid foundation for the dynamic modeling and feedback 
control of WMRs. Dynamic models may then.be applied to design dynamics-based controllers and 
simulators. A kinematic methodology may dso be applied to design W M R s  which satisfy such 
mobility characteristics as t h e e  DOFs (i.e., two translations and a rotation in the plane). 

Our kinematic analysis of WMRs parallels the development of kinematics for stationary ma- 
nipulators. A standard method for x+nodeling the kinematics of stationary robotic manipulators 
begins by applying the Denavit-Hattenberg convention[l8] to assign coordinate axes to each of the 
robot joints. Successive coordinate systems on the robot are related by (4x4) homogeneous trans- 
formation A-matrices. The A-matrices are specified completely by four characteristic parametera 
(two displacements and two rotations) between consecutive coordinate systems. Each A-matrix de- 
scribes both the shape and size of a robot link, and the translation (for a prismatic joint) or rotation 
(for a rotational joint) of the associated joint. We assign coordinate axes to the steering links and 
wheels of a WMR, and apply the Sheth-Uicker convention(61] to define transformation matrices. 
The Sheth-Uicker convention separates the constunt shape and size parameters fiom the outitable 
wheel joint parameters, and simplifies the matrix fornulation. The Sheth-Uicker convention allows 

us to model the highet-puir relationship between each wheel on a WMR and the floor. 

The position and orientation in base coordinates of the end-effector of a stationary manip 
ulator is found by cascading the A-matrices from the base link to the end-eEector(56). VelociQ 
and acceleration relationships are found by differentiating the matrix positions[19]. Velocities of 
the individual joints are related to the velocities of the end-effector by the manipulator Jacobian 
matrixfM] in the forwurd solution. The inverse Jacobian matrix is applied in the inoerse solution to 
calculate the velocities of the joint variables fiom the velocities of the end-dector. We develop the 
wheel Jacobian matrix to relate the velocities of each wheel on a WMR to the robot body veloci- 
ties. Since WMRs are multiple dosed-link chains, the forward and inverse solutions are obtained 
by solving simultaneously the kinematic equations-of-motion of all of the wheels. 

In this paper, we advance the kinematic modeling of WMRs, fiom the motivation of the kine 
=tic methodology through its development and applications. In Section 2, we survey kinematic 
con&prations (i.e., the relative arrangements and types of wheels) of existing WMRs. These proto- 
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types illuminate the complexity of the lcihematic problcm. In Scction 3, we describe the three wheels 
(conventional, o’mnidirectional and ball wheels) utilized in all cxisting and foreseeable WMRs. 

. 

In Section 4, we develop our approach for modcling the kinematics of WMRs. Coordinate sys- 

tems are assigned to prescribed.positions on the the robot. We introduce transformation matrices 
to characterize the translations and rotations between coordinate systems. We develop a matrix 
coordinate transformation algebra to calculate the position, velocity, and acceleration relationships 
between coordinate systems. We apply the axioms and corollaries of this algebra to transform 
positions, velocities, and accelerations which are specified in one cmrdinate frame to another co- 
ordinate frame, and develop the wheel Jacobian matrix to relate the motions of a wheel to the 
motions of the robot. In Section 4.9, we outline our kinematic methodology for WMRs. 

In Section 5, we form the composite robot equation-of-motion by adjoining the equations-of- 
motion of all of the wheels. We then solve the composite robot equation. .Specifically, we calculate 
the actuated wheel velocities in t.erms of the robot velocities (the actuated isverse solution), and 
the robot velocities in terms of the sensed wheel velocities (the sensed forward solution). We 
characterize a WMR by interpreting the properties of the composite robot equation. We present a 
mobility characterization tree which specifies tests to be conducted on the composite robot equation 
and displays the mobility characteristics of the WMR. We also calculate the number of degrees- 
of-freedom of a WMR,. The ability of the actuators to produce robot motion is determined by 
the actuation characterization tree. Similarly, the sensing structure is specified by the sensing 
characterization tree. 

In Section 6, we apply our kinematic modeling methodology to the design, dead-reckoning, 
kinematics-based contro1,’and wheel slip detection for WMRs. Just as we apply the mobility 
characterization tree to delineate the mobility of a WMR, we may design a WMR to satisfy desired 
mobility characteristics by proper choice of wheel type and placement. We calculate the current 
robot position (i.e., dead-reckoning) by summing the robot velocities in real-time. We introduce a 
kinematics-based WMR feedback control system in which the actuated inverse and sensed forward 
solutions are integral components. Our development of the sensing characterization tree illuminates 
a method of detecting the onset of wheel slip. We present our slip’detection method and describe 
the proper positioning of the wheel sensors for implementation. We are continuing our study of 
WMRs by applying our kinematic model to formulate dynamic models of WMRs. 

In Section 7, we apply our kinematic modeling methodology to six prototype WMRs. We 
present the hematic  description, coordinate system assignments, transformation matrices, wheel 
Jacobian matrices, mobility characteristics and the sensed forward and actuated inverse solutions 
for each. From our experience with these prototype examples, we draw practical conclusions about 
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the applicability of thrce DOFs vs two DOFs and thc utilization of redundant steered-conventional 
wheels. 

We summarize (in Scction 8) our kinematic mcthodology and its implications, and outline (in 
Section 9) our plans for continued research in dynamic modeling and feedback control. In Appendix 
2, we compile our symbols. 

a 



2. Survey of Kinematic Configurations 

In this section, we survey the kinematic configurations of existing WMRs. We are interested 
in determining the types of wheels utilized and thc relative placement of the wheels on Wh4Rs. 
Documentation of WMRS is scattered throughout the robotics, artificial intelligence, control en- 
gineering, scientific, industrial, popular and hobbiest literature[8,16,23,38,60]. We examine docu- 
mented WMRs to understand the requirements of a kinematic methodology for .this class of mobile 
robots. We then generalize the kinematic model of these exemplary robots and define (in Section 4) 
a WMFt which specifies the range of mobile robots to which our methodology applies. Our survey 
also provides a set of prototype WFdRS for evaluating our kinematic methodology. 

In Appendix 1, we introduce a nomenclature and a pictorial representation for describing 
the kinematic structure of WMRs. The diagramming conventions provide a convenient tool for 
describing and comparing kinematic structures of WMRs. We apply these rules to develop sym- 
bolic diagrams and kinematic names for the WMRs presented in this survey and refer to these 
representations as we describe each WMR. 

The most common kinematic arrangement of mobile robots documented in the literature has 
two diametrically opposed wheels (i.e., two parallel conventional wheels, one on each side of the 
robot). These robots also possess one or two castors for stability. Among the most widely known 

examples are: Shakey[52], Newt[32J (in Figure 2.1), Jason[G4], Hilare[24], Yamabiko[40,35], RO- 
BART II[22], and RB5X[44]. By mounting the two driven wheels at an acute angle to the floor in 
their Topo[27] robot (in Figure 2.1), the Androbot Company stabilized the robot without the use 
of castors. 

Shakey Newt Top0 

Bicsun-Bicas-Whemor Bicas-Unicsun-Whemor B i cas-Whemo r 

c 

Figure 2.1 

Kinematic Representations of Shakey, Newt, and Top0 
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Mobile robots which possess multiple non-stkred, driven wheels whosc axes are non-colinear 
must rely on whcel slip if the robot is to navigate turns. Such is the case with the RDS Prowler[59]. 
and the Tcrregator[GG] (in Figure 2.2), both of which use six pardd, non-steered, conventional 
wheels, three on each side. Similarly, Gemini(28] (in Figure 2.2) utilizes two synchronously driven 
wheels on each side. 

Te r rag  a t o r  Gemi n i 

Hexacas-Whemor Tetracas-Whemor 

-Figure 2.2 

Kinematic Representations of Terregator and Gemini 

The mechanically more complex, steered and driven conventional*wheel is utilized on Nep- 
tune[57] (in Figure 2.3), Hero-1[26] and .Avatar[4]. These three robots have a tricycle whed ar- 
rangement; the front wheel is steered and driven, while the two rear wheels are at a fixed paraJIel 
orientation and are undriven. 

Neptune Rover 

Bicun-Unicsan-Whemor T r i c s as - Wh em0 r 

Figure 2.5 

Kinematic Representations of Neptune and Pluto 
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The CMU Rover[48] (in Figure 2.3), also known as Pluto, has three steered and driven wheels. 
The Stanford Cart[46] (in Figure 2.4) has two steered, undriven wheels in the front and two fixed, 
driven whccls in the rear. The two front wheels are coupled by an Aclierman steering linkage.' Both 
the front and back wheels of the JPL ItOver[41] (in Figure 2.4) are coupled by Ackerman steering 
linkages, and all four wheels are driven indcpendently. Kludge[30] (in Figure 2.4) is an example of a 
robot with complex functional dependencies between the wheels. This robot has three conventional 
wheels that are both steercd and driven. A chain and gear arrangement is used to equalize all drive 
velocities and steering angles (Synchro-Drive). To complicate further the arrangement, each wheel 
is mouuted on an actuated link which can be pivoted towards or away from the center of the robot 
for stability. Kludge's successor K2A[30] embodies the synchro-drive mechanism using concentric 
shafts instead of chains and does not have any actuated links. The Denning Sentry robot[70] also 

utilizes a three-wheel synchronous drive and steer system. 

Stanford Cart  JPL Rover K1 udge 

Pseud0-B i Csan-Bican- Pseudo4 icsas-Bi csas- Pseudo-Tri csas-Whemor 

Yhernor Whemo r 

Figure 2.4 

Kinematic Representations of the Stanford Cart, the JPL Rover, and Kludge 

The hybrid spider drive[29] (in Figure 2.5) utilites four conventional wheels, two on either 
side of the robot, each of which is mounted at the end of a three DOF leg linkage. The hybrid 
locomotion vehide[34] (in Figure 2.5) utilizes six steered and driven conventional wheels, each at 
the end of an actuated vertical leg. 

6 

A n  Ackerrnan steering lin&ge[45] approxinratly ensurea the correct wheel angles to avoid wheel dip. 
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Hybr id  Spider  D r i v e  Hybrid-Locomotion V e h i c l e  

Pseudo-Tetracsas-Whemor 

Figure 2.5 

Pseudo-Hexacsas-Whemor 

Kinematic Representations of the Hybrid Spider Drive 
and the Hybrid Locomotion Vehicle 

Equally obscure is the triangle wheel step climber[67], which possesses four sets of three wheels 
mounted at the vertices of equilateral triangles. When a wheel encounters a step, the triangle pivots 
about its center and the robot reaches the top of the step by rolling on a Merent set of wheels. 

The recent application of omnidirectional wheels (in Section 3) has led to novel mobile kine- 
matic configurations. Omnidirectional wheels have been used for powered wheelchairs (e.g., Omni 
drive[29] and Wheelon[%]) and ambulatory drive platforms [69]. The later orients the omnidirec- 
tional wheels at an acute angle to the floorfor stability. Uranus[49] (in Figure 2.6) has a rectangular 
wheel base with four omnidirectional wh&s having rollers at 45' angles. The Unimation robot[ld] 
(in Figure 2.6) and Fetall[38] have triangular wheel bases and three omnidirectional wheels with 
90" rollers. 

Omnidirectional treads[lO, 11) operate as omnidirectional wheels wi th  the rollers mounted 
upon tank-like treads. A ball wheel (in Section 3) is the most maneuverable wheel allowing three 

DOF motion[47, 13,391. The first design of Jason[64] incorporated three ball. wheel castors which 
were later replaced by a single conventional castor. We are unaware of any other documented 
applications of ball wheels on WMRS. 

. 
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Uranus Unimation Robot 

Tetroas-Whemor T roas -Whemo r 
i 

Figure 2.6 
I 

Kinematic Representations of Uranus and the Unimation Robot 

Because of the variability in'the numbers and types of wheels and actuating mechanisms, 
formulating a kinematics methodology for WMRs requires analytically complex robot models. Since 
the preponderance of existing and foreseeable WMRs have simpler kinematic co&gurations then 
those on the periphery of WMRs (e.g., the hybrid spider drive), applying a general-purpose and 
universal approach to model the kinematics of practical WMRs would be unduly cumbersome. To 
reduce substantially'the complexity of the kinematic model and associated calculations, we limit 
our analysis to WMRs with zero or one steering links per wheel. The robots which do not satisfy 
this constraint (e.g., hybrid spider drive, hybrid locomotion vehicle, and Kludge) can be modeled 
by extending our analytical approach on a case-by-case basis. 

From this survey, we specify the requirements of a kinematic model of WMRs. A WMR model 
must allow any number of wheels. The wheels can be mounted at any position and orientation 
with respect to the robot body provided that each touches the surface of travel. This constraint 
includes the ability to mount wheels at acute angles to the surface. The WMR can incorporate 
any combination of conventional, omnidirectional or ball wheels. Even though each wheel can be 
mounted at the end of an articulated linkage, we will deal with zero or one steering link per wheel. 
Finally, there may be coupling between wheels (e.g., two wheels may steer together as on the 
Stanford Cart). With these observations, we define a WMR in Section 4 to develop a methodology 
for kinematic modeling. In Section 3, we detail the operation of the three basic wheel types. 
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3. Wheel Types 

Three wheel types are used in WMR designs: conventional, omnidirectional, and ball wheels. 
In addition, conventional wheels are often mounted on a steering link to provide an additional 
DOF. Schematic views of the three whcels are shown in Figure 3.1. The DOFs of each wheel are 
indicated by the arrows in Figure 3.2. The kinematic relationships between the angular velocity of 
the wheel and its linear velocity along the surface of travel are also compiled in the figure, 

The Conventional wheel having two DOFs is the simplest to construct. It allows travel along a 
surface in the direction of the wheel orientation, and rotation about the point-of-contact between the 
wheel and the floor. We note that the rotational DOF is slippage, since the point-of-contact is not 
stationary with respect to the floor surface1. Even though we define the rotational slip as a DOF, 
we do not consider slip transverse to the wheel orientation a DOF, because the magnitude of force 
required for the transverse motion is huch larger than that for rotational slip. The conventional 
wheel is by far the most widely used wheel; automobiles, roller skates and bicycles utilize this wheel. 

The omnidirectional wheel has three DOFs. One DOF is in the direction of the wheel orienta- 
tion. The second DOF is provided by motion of rollers mounted around the periphery of the main 

wheel. In principle, the roller axlcs can be mounted at any nonzero angle q with respect to the 
wheel orientation. The omnidirectional wheels in Figures 3.1 and 3.3 have roller axle angles of 90" 
[9,11,25], and 45"[36), respcutively. The third DOF is rotational slip about the pointsf-contact. It 
is possible, but not common. to actuate the rollers of an omnidirectional whee1[29] with a complex 
driving arrangement. Whtu skctching WMRs having omnidirectional wheels, the rollers on the 
underside of the wheel (i.e., those touching the surface of travel) are drawn and not the rollers 
which are actually visable from a top view, to facilitate kinematic analysis. 

The most maneuverable wheel is a bdl which possesses three DOFs without slip. Schemes have 
been devised for actuating and sensing ball wbeels[47], but we are unaware of any existing imple- 
mentations. An omnidirectional wheel which is steered about its point-of-contact is kinematically 
equivalent to a ball wheel, and may be a practical design alternative. 

- 

otha[bS]. 

Two bodies are in rolling contact if the po&s-of-contact of the two bodies are stationary dative to each 
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4. Kinematic Modeling 

4.1 Introduction 

In this section, we apply and extend .standard robotic nomenclature 
model the kinematics of WMRs. The novel aspects are our treatment 

and mcthodology[54] to 
of the highcr-pair joint 

between each wheel and the floor, and the development of a transformation matrix algebra. 

We begin (in Section 4.2) by defining a WMR and enumerating our modding assumptions to 
constrain the class of mobile robots to which our modeling methodology applies. To include all 
existing and foreseeable WMRs, we would have to generalize our'methodology and thereby com- 
plicate the modeling of the overwhelming majority of WMRs. In Section 4.3, we assign coordinate 
systems to the robot body, wheels and steering links to facilitate kinematic modeling. It is essen- 
tial to define instantaneously coincident coordinate s y s t e m  to model the higher-pair joints at the 
point of contact between each wheel and the floor. In Section 4.4, we assign homogeneous (4 x 4) 
transformation matrices to relate coordinate'systems. We present (in Section 4.5) a matrix coor- 
dinate transformation algebra to formulate the equations-of-motion of a WMR. All kinematics are 
derived by straightforward application of the axioms and corollaries of the transformation algebra: 
Position kinematics are treated in Section 4.6. We demonstrate that transforming the coordinates 
of a point between coordinate systems is equivalent to Gnding a path in a transformakon graph. 
Then, in Section 4.7, we formulate the velocity kinematics. The relationships between the wheel 
velocities and the robot velocities .are line&. We thus develop a wheel Jacobian matrix to calculate 
the vector of robot velocities h m  the vqtor of wheel velocities. Finally, in Section 4.8, we apply 
our matrix coordinate transformation algebra to acceleration kinematics. 

To summarize the development, we enumerate in Section 4.9 our kinematic modeling procedure. 
In Section 5, we combine the equations-of-motion of all of the wheels to form the composite robot 
equation. We then proceed to solve the composite robot equation and interpret the solutions. 

4.2 Definitions And Assumptions 

The Robot Institute of America dehes a robot as A ptogrammable, multifunction manipulator 
designed to move material, parts, tools, or specialized devices through variable progtammed motions 
for the performance of a variety of task.sm(29]. Our survey of kinematic configurations in Section 
2 anticipates the definition of a WMR. Kinematic models of WMRs are inherently different &om 
those of stationary robotic manipulators and legged or treaded mobile robots. We thus introduce an 
operational definition of a WMR to spec* the range of robots to which the bemat ic  methodology 
presented in this paper applies. 
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Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the 
actuation of wheel assemblics mounted on the robot and in contact with the surface. A wheel 
assembly is a device which provides or allows relative motion between its mount and a surface on 
which it is intended to have a single point of rolling contact. 

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body 
and the wheel constitute a wheel assembly. With the exception of the omnidirectional treaded 
vehicle, the hybrid spider drive (when walking), the hybrid locomotion vehicle (when climbing) 
and the triangle wheel step dimber (when climbing steps), the mobile robots reviewed in Section 
2 satisfy ow dehition of a WMR. 

We introduce the following practical assumptions to make the modeling problem tractable. 

Design Assumptiona 
1.) The WMR does not contaia flexible parts. 
2.) There is zero or one steering link per wheel. 
3.) All steering axes are perpendicular to the surface. 

Operational Assumptione 
4.) The WMR moves on a planar surf’e. 

5.) The translational fiction at the point of contact between a wheel and the surface is large 

6.) The rotational Sction at the point of contact between a wheel and the surface is small 
enough so that no translational slip may occur. 

enough so that rotational slip may occur. 

We discuss our assumptions in turn. Assumption 1 states that the dynamics of such WMR 
components as flexible suspension mechanisms and tires are negligible. We make this assumption 
to apply rigid body mechanics to kinematic modeling. We recognize that flexible structures may 
play a significant role in the kinematic analysis of WMRs. A dynamic analysis to determine the 
changes in hematic structure due to forces/torques acting on flexible components is required 
to model these components. Such an analysis is appropriate for WMRs even though it has not 
conventionally been addressed for stationary open-link manipulators because WMRs are inherently 
closed-link mechanisms. Flacible components, that allow compliance in the multiple closed-link 

chains of a WMR, lead to a consistent kinematic model. Without compliant structures, there 
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cannot be a consistent kinematic model for WMRs in the presence of surface irregularities, inexact 
component dimensions and inexact control actuation[50). A six~~ultancous kinematic and dynamic 
analysis of WMRs is thus a natural continuation of our research. 

We introduce Assumptions 2 and 3 to reduce the range of W M R s  that our methodology must 
address, by limiting the complexity of our kinematic model. WMRs which have more than one link 
per wheel can be analyzed by our methodology if only one steering link is allowed to move. We 
require that all noo-steering links must be stationary, as if they are extensions of the robot body 
or wheel mounts. By constraining the steering links to be perpendicular to &e surface of travel in 
Assumption 3, we reduce all motions to a p h e .  We thus constrain all component motions to a 
rotation about the n o d  to the surface, and two translations in a plane parallel to the surface. 

Assumption 4 neglects irregularities in the actual surface on which a WMR travels. Even 
though this assumption restricts the tange of practical applications, environments which do not 
satidy this assumption (e.g., rough, bumpy or rocky surfaces) do not lend themselves to energy 
a c i e n t  wheeled vehicle travel[7]. 

Assumption 5 ensures the applicability of the theoretical kinematic properties of a wheel in 
rolling contact[5,62] for the two translational degrees-of-freedom. This assumption is realistic for 
dry surfaces as demonstrated by the success of braking mechanisms on automobiles. Automobiles 
also illustrate the practicality of Assumption 6. The wheels must rotate (i.e., slip) about their 

points-of-contact to navigate a turn. Since WMRs also rely on rotational wheel slip, we include 
Assumption 6. 

4.3 Coordinate System Assignments 
4.3.1 Sheth-Uicker Convention 

Coordinate system assignment is the first step in the kinematic modeling of a stationary 
manipulator[54]. Lower-pair mechanisms1 (such as revoIute and prismatic joints) function with two 

surfaces in relative motion. In contrast, the wheels of a WMR are higher-pairs which function ideally 
by point contact. Because the A-Matrices which model manipulators depend upon the relative 
position and orientation of two successive joints, the Denavit-Hartenberg convention[l8] leads to 
ambiguous assignments of coordinate tranaformation matrices in multiple closed-link chains[61] 
which are inherent in WMR,s. The ambiguity arises in deciding the joint ordering when there are 
more than two joints on a single link. 

~ ~~~~ 

' 

Loner-pair mechanism. UI pakr of cornpone& whoac relative motionr u e  constraiaed by a common d e e  

contact; whereas higher-pain arc constrained by point or line contact[b]. 

j 
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We apply thc Sheth-Uicker convention[61] to assign coordinate systems and model each wheel 
as a planar pair at the point of contact. This convcntion allows the modeling of the higher-pair 
wheel motion arid eliminates ambiguities in coordinate transformation matrices. The planar pair 
allows three DOFs as shown in Figure 4.3.1 : X and Y translation, and rotation about the point- 
of-contact. The Sheth-Uicker convention is ideal for modeling ball wheels; the angular velocities 
of the wheel are converted directly into translational velocities along the surface. The planar pair 
motions must be constrained to include wheels which do not allow three DOFs. For example, the 
coordinate system assigned at the point-of-contact of a conventional wheel is aligned with the y-axis 

parallel to the wheel. The wheel model is completed by constraining the x-component of the wheel 
velocity to zero to satisfy Assumption 5 (in Section 4.21 and avoid translational slip. 

P1 anar Pai r Conventional Wheel 

Figure 4.5.1 

Planar Pair Model of a Wheel 
4.3.2 WMR Coordinate Systems 

We assign coordinate systems at both ends of each link of the WMR. The links of the closed- 
link chain of a WMR are the floor, the robot body and the steering links. The joints are: a revolute 
pair at each steering axis, a p h a r  pair to model each wheel, and a planar pair to model the robot 
body. When the joint variables are zero, the coordinate systems of the two links which share the 
joint coincide. We summarbe our approach to the modeling of a WMR having N wheels with 

the coordinate system assignments defined in Table 4.3.1 . Placement of the coordinate systems 
is illustrated in Figure 4.3.2 for the pictorial view of a WMR. For a WMR with N wheels, we 
assign 3N + 1 coordinate systems to the robot and one stationary reference frame. There are also 

N + 1 instantaneously coincident Coordinate systems (described in +tion 4.3.3) which need not 
be assigned explicitly. 
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Figure 4.3.2 

Placement of Coordinate Systems on a WMR 

The floor coordinate system F is stationary relative to the d a c e  of travel and serves as the 
reference coordinate frame for robot motions. The robot coordinate system R is assigned to the 
robot body so that the position of the WMR is the displacement &om the floor coordinate system 
to the robot coordinate system. The hip coordinate system Hi is assigned at the point on the robot . 
body which intersects the steering axis of wheel i. The steering coordinate system Si is assigned 
at the Same point along the steering axis  of wheel i, but is fixed relative to the steering link. We 
assign a contact point coordinate system Ci at the point-of-contact between each wheel and the 
floor. 

Coordinate system assignments are not unique. There is freedom to assign the coordinate 
systems at positions and orientations which lead to convenient structures of the kinematic model. 
For example, all of the hip coordinate systems may be assigned parallel to the robot coordinate 
system resulting in sparse robot-hip transformation matrices and thus simplifying the model. Al- 
ternatively, the x-axes of the hip coordinate systems can be aligned with the zero position of the 
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steering joint position encoders so that the hip-steering transformation is expressed in terms of the 
actual stccring angle. 
4.3.3 Instantaneously Coincident Coordinate Systems 

To introduce the concept of instantaneously coincident coordinate systems, we consider the 
onedimensional example of a ball rolling in a straight line on a flat surface. The position of the 
ball is depicted by the point r in Figure 4.3.3. 

S t  a t  i onary 
Reference 

Point  B a l l  

Figure 4.3.3 

Ball in Motion Before Instantaneous Coincidence 

The ball is moving right to left with velocity u, and acceleration a,. The stationary reference 
point f lies iu the path of the moving ball. At the instant the ball (point r) and the reference (point 
f) coincide in Fig& 4.3.4, we observe that: (1) The position of the ball relative to the reference 
point ' p ,  is zero: and (2) The velocity and acceleration 'a,  of the ball relative to the reference 
point are non-zcro. We call the point F an instantaneously Coincident reference point for the moving 
ball at the instant shown in Figure 4.3.4. 

Stat ionary 
Refe rence 

Point  

Conventional 
Reference 

Point  

I 

0 

ball 

Figure 4.3.4 

Ball in Motion at Instantaneous Coincidence 

We continuously assign an instantaneously coincident reference point +' during the motion 
of the ball to generalize our observations for all time t. The position of the ball relative to its 
instantaneously coincident reference point is zero (Le., 'p,(t)  = 0),  and the velocity and acceleration 
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of the ball relative to its instantaneously coincident reference point are non-zcro (i.e., 'u,.(t) # 0 and 
'a , ( t )  # 0) .  In thc framework of instantaneously coincident reference points, we emphasize that we 
cannot differentiate the position (velocity) equation-of-motion to obtain the velocity (acccleration) 
equa tion-of-motion . 

The stationary reference point f in Figure 4.3.4 is a conventional reference point whose position 
is fixed. Since both reference points f and r' are stationary, the velocity (acceleration) of.the ball 
relative to the point f is equal to the velocity (acceleration) of the ball relative to the point F in this 
one-dimensional example. Consequently, it is not advantagous to introduce instantanmusly coinci- 
dent references in the one-dimensional example. The practical need for instantaneously coincident 
coordinate systems arises in the multi-dimensional example as depicted in Figure 4.3.5. 

R, R l -  
Y 

F 

Figure 4.3.5 

Coordinate System R in Motion 

The coordinate system R is moving in three-dimensions: X, Y, and 8. The coordinate sys- 
tems fi and F are stationary; fi is an instantaneously, coincident coordinate system and F is a 

conventional reference coordinate system. We make the analogous observations. The position of 
the moving coordinate system relative to its instantaneously coincident coordinate system is zero 

(Le., R p ~  = 0). The position of the moving coordinate system relative the conventional reference 
coordinate system is non-zero (i.e., FpR # 0). The non-zero velocity 'vR (acceleration RaB) of 
the moving coordinate system relative to the instantaneously coincident coordinate system is not 
equal to the velocity F ~ R  (accderation paR) of the moving coordinate system da t ive  to the con- 
ventional reference coordinate system. The velocity (acceleration) of the moving coordinate system 
relative to the conventional reference coordinate system F depends upon the position and orienta- 
tion of the moving coordinate system nlat&e to the reference coordinate system. The motivation 
for assigning instantaneously coincident coordinate systems is that the velocities (accelerations) of 
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a multi-dirnmsional moving coordinate' system cun be computed or specified independently of the 
position of the moving coordinate system. The instantaneously coincident coordinate system is a 
conceptual tool which enables us to calculate the vciocitics and accclcrations of a moving coordinate 
system relative to its instantaneous current position and orientation. 

Table 4.3.1: Coordinate System Assignments 

F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of 
travel. 

R Robot : Coordinate system which moves with the WMR body, with the z-axis orthogonal to 
the surface of travel. 

H; Hip (for i = 1, ..., N) : Coordinate system which moves with the WMR body, with the z-axis 
coincident with the axis of steering joint i if there is one; coincident with the contact point 
coordinate system C; if there is no steering joint. 

S; Steering (for i = 1, ... $N) : Coordinate system which moves with steering link i ,  with the 

z-axis coincident with the z-axis of H;, and the origin coincident with the origin of H;. 

Ci Contact Point (for.; = 1, ..., N) : Coordinate system which moves with steering link i ,  with 
the origin at the point-of-contact between the wheel and the surface; the y-axis is parallel to 
the whecl (if the wheel h& a preferred orientation; if not, the y-axis is assigned arbitrarily) 
and the x-y plane is tangent 'to the surface. 

- 
R Instanianeously Coincident Robot : Coordinate system coincident with the R coordinate 

system and stationary relative to the F coordinate system. 

- 
Ci Instantaneously Coincident Contact Point (for i = 1, ..., N) : Coordinate system coincidknt 

with the C; coordinate system and stationary relative to the F coordinate system. 
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For stationary scJial link manipulators, all joints are one-dimensional lower-pairs: prismatic 
joints allow 2 motion and revolute joints allow 8 motion. In contrast, WMns have three-dimensional 
higher-pair wheel-to-floor and robot-to-floor joints allowing simultaneous X, Y and 0 motions. We 
assign an instantaneously coincident robot coordinate system at the same position and orientation 
in space as the robot coordinate system R. In Table 4.3.1, we define the instantaneously coincident 
robot coordinate system to be stationary relative to the floor coordinate system F. By design, the 
position and orientation of the robot coordinate system R and the instantaneously coincident robot 
coordinate system x are identical, but (in general) the relative.velocities and accelerations between 
the two coordinate systems are non-gero. When the mbot coordinate system moves relative to the 
floor coordinate system, we assign a different instantaneously coincident coordinate system for each 
time instant. The instantaneously coincident robot coordinate system facilitates the specification of 
robot velocities (accelerations) independently of the robot position. Similarly, the iwtankneowly 

coincident contact point coordinate system ci (in Table 4.3.1) coincides with the contact point 
coordinate system C; and is stationary relative to the floor coordinate system. Since the position 
of the wheel contact point is not sensed, we-require the instantaneously coincident contact point 
coordinate system to speciry wheel velocities and accelerations. 

4.4 Transformation Matrices 

Homogeneous (4 x 4 )  transformation matrices are defined to express the relative positions and 
orientations of coordinate systems[54]. The homogeneous transformation matrix transforms 
the coordinates of the point *r in coordinate frame B to its corresponding coordinates Ar in the 
coordinate frame A: 

(4.4.1) 

We adopt the following notation. Scalar quantities are denoted by lower case letters (e.g., w).  

Vectors are denoted by lower case boldface letters (e.g., r). Matrices are denoted by upper case 
boldface letters (e.g., II). Pre-superscripts denote reference coordinate systems. For example, Ar 

is the vector r in the A coordinate frame. The pre-superscript may be omitted if the coordinate 
frame is transparent from the context. Post-subscripts are used to denote coordinate systems or 
components of a vector or matrix. For example, the transformation matrix defines the position 
and orientation of coordinate system B relative to coordinate frame A; and rz is the x-component 
of the vector r. 

Vectors denoting points in space, such as Ar in (4.4.1), consist of three Cartesian coordinatea 
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and a scale factor as the fourth element: 

(4.4.2) ! 

We always use a scale factor of unity. lkansformation matrices contain the (3 x 3) rotational matrix 

(n o a), and the (3 x 1) translational vector p[54): 

(4.4.3) 

The three vector components n, 0, and a of the rotational matrix in (4.4.3) express the orientation 
of the x, y, and e axes, respectively, of the B coordinate system relative to the A coordinate system 
and are thus or thonca l .  The three components p2, p,,, and pz of the translational vector p 
express the displacement of the origin of the B coordinate system relative to the origin of the A 
coordinate system along the x, y, and c axes of the A coordinate system, respectively. 

The aforementioned properties of a transformation matrix guarantee that its inverse always 
has the special form: 

(4.4.4) 

Before we d&e the transformation matrices between the coordinate systems of our WMR model, 
we compile in Table 4.4.1 our nomenclature for rotational and translational displacements, velocities 
and accelerations. 

In general, any two coordinate systems A and B in our WMR model are located at non-zero 
x, y and z-coordinates relative to each other. The transformation matrix must therefore contain 
the translations AdgL, Ad,ey and AdB.. We have assigned all coordinate systems with the z-axes 

perpendicular to the surface of travel, so that all rotations between coordinate systems arc about 
the E-axis. A transformation matrix in our WMR model thus embodies a rotation ABB about the 

z-axis of coordinate system A and the translations Adg,, AdB,, and AdBL along the respective 
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coordinate axes: 

i 

(4.4.5) 

For zero rotational and translational displacements, the coordinate transformation matrix in (4.4.5) 

reduces to the identity math. 

In Section 4.6, we apply the inverse of the transformation matrix in (4.4.5) to calculate position 
kinematics. By applying the inverse in (4.4.4) to the transformati6n matrix in (4.4.5), we obtain 

1 0  0 . o  1 

In Section 4.7, we differentiate the transformation matrix in (4.4.5) componentwise to calculate 
robot velocities: 

and in Section 4.8, we differentiate the transformation matrix in (4.4.7) componentwise to calculate 
robot accelerations: . 

0 0 0 0 )  

24 



1 

~~ ~ ~ 

Table 4.4.1 

Scalar Rotational and Translational Displacements 

A U ~  : The rotational displacement about the z-axis of the A coordinate system between the x-axis 

of the A coordinatc system and the x-axis of the B coordinate system (couutcrclockwise by 
convui tion). 

"dBj : (for j E [z, y, z]) : The translational displacemuat along the j-axis of the A coordinate system 
bctwccn the origin of the A coordinate eystem and the origin of the D coordinate system. 

* .  

Scalar Rotational and Translational Velocities 

A ~ g  : The rotational velocity A & ~  about the z-tutis of the A coordinate eystem between the x - d s  

of the A coordinate system and the x-axi;of the B coordinate system. 

: (for j E [z, VJ) : The translationd velocity A ~ B ,  dong the j-Bxis of the A coordinate system 
between the origin of the A coordinate system and the origin of the B coordinate system. 
since ~II motion is in &e x-y plane, the c-component A&, of tbe translational velocity is 
zero. 

Scalar Rotational and 2kanslational Acceleratioas . 

" a ~  : The rotational acceleration A ~ B  = A;B about the t a x i s  of the A coordinate system between 
t.he x-axis of the A coordinate system and the x-axis of the B coordinate system. 

AaB, : (for j E [z,y~) : The translational acceleration ~i', = B;A dong the +axis of the A 
coordinate system between the origin of the A coordinate system and the origin of the B 
coordinate system. Since ~II motion is parael  to the x-y plane, the t-component A&* of 
the translational acceleration is w o .  
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The assignment of coordinate systems results in two types of transformation matrices between 
coordinat.e systems: constant and variable. The transformation matrix between coordinate systems 
fixed at two Mercnt positions on the samc link is constant. Transformation matrices relating 
the position and orientation of coordinate systems on different links include joint variables and 
thus are variable. Constant and variable transformation matrices are denoted by *T3 and *@3, 
respectivdy[61]. In Table 4.4.2, we compile the transformation matrices in our WMR model. The 
constant transformation matrices are the floor-Fobot transformation (FTx), the robot-hip transfor- 
mation ( R T ~ i ) ,  the steering-contact transformation (aTci) and the floor-Eontact transformation 
(PTz).  Since the instantaneously coincident'coordinate systems and ci are stationary relative 
to the floor coordinate system, all transformation matrices between the floor coordinate system 
and the instantanmusly coincident coordinate systems are constant. The variable transformation 
matrices are the Fobot-robot transformation (R@~), the hipsteering transformation (Hi *si) and 
the Eontact-contact transformation (T+ 0 ~ ~ ) .  The transformation.matrix from a coordinate system 
to its instantaneously coincident counterpart (or visa-versa) is variable because there is relative 
motion. We compile the first and second timederivatives of the variable transformation matrices 
in Tables 4.4.3 and 4.4.4, respectively. The matrix derivatives involving instantaneously coincident 
coordinate systems (i.e., R & ~ ,  ci&~6, &@R, and ci@ci) are formed by differentiating and impli- 
fying the elements of the transformation -trices R @ ~  and respectively, by substituting 
R8R = 0 and cGeci = 0. Because of the simplifying substitutions, the second time-derivative of 
a transformation matrix involving an instantaneously coincident coordinate system cannot be ob- 
tained by Werentiating the &st time-derivative. Time-derivatives of instantaneously coincident 
coordinate systems me calculated in Section 4.5 by applying matrix coordinate transformation 
algebra. The timederivatives of constant transformation matrices are zero. 

. -  

For wheels which do not have steering links, the hip and steering coordinate systems are as- 
signed to coincide with the contact point coordinate system, so that the hipsteering and steering- 

contact transformation matrices reduce to identity matrices and thereby simplify the ensuing kine; 
matic modeling. 
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Table 4.4.2 : Transformation Matrices of the WMR Model 

Floor - zobot Trans formation : 

Robot - Robot Trans f onrurtion : 

Robot - Hip Trans f ormatimi : 

COS'OE 0 Fdxz 
sinF% cosF% 0 "dxV 

0 0 1 F d s  
0 0 0 1  

FTX = 

0 0 1 1  

Hip - Steen'ng Trans f ormotion : 

.._ 
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Table 4.4.3 : Transformation Matrix Time-Derivatives 

Robot - Robot : 

Hip - Steen'ng : 

0) 0 0 0 )  

Table 4.4.4 : Transformation Matrix Second Time-Derivatives 

Hip - Steen'ng : 



4.5 Matrix Coordinate Transformation Algebra 

The kinematics of stationary manipulators are modeled by exploiting the properties of trans- 
formation matrices[l9]. We formalize the manipulation of transformation matrices in the presense 
of instantaneously coincident coordinate systems by defining a mahiz coordinate transformation al- 
gebra. The algebra consists of a set of operands and a set of operations which may be applied to the 
operands. The operands of matrix coordinate transformation algebra are transformation matrices 
and their first and second time-derivatives (in Section 4.4). The operations are listed in Table 4.5.1 

as seven axioms. In the table, A, B, and X are coordinate systems and II denotes either a constant 
T transformation matrix or a variable 0 transformation matrix. Matrix coordinate transformation 
algebra allows the direct calculation of the relative positions, velocities and accelerations of robot 
coordinate systems (including instantaneously coincident coordinate systems). 

i 

Table 4.5.1 : Matrix Coordinate Transformation Algebra Axioms 

The identity aziom is self-evident since neither rotations nor translations are required to trans- 
form from a coordinate system to itself or to its instantaneously coincident coordinate system. The 
cascade an'om specifies the order in which transformation matrices are multiplied: the coordinate 
transformation matrix fiom the refetence system to the destination is the cascade of two coordi- 
nate transformation matrices, the first from the reference system to an intermediate coordinate 
system, and tbe second fiom the intermediate coordinate system to the destination. The inversion 
aziom states that the coordinate transformation matrix from a reference coordinate system to a 
destination coordination system is the inverse of the coordinate transformation matrix fiom the 
destination coordinate system to the reference coordinate system. 
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Just as the multiplication of transformation &trices is specified by the cascade axiom, time- 
differentiation of transformation matrices is specified by the four velocity and acceleration axioms.. 
Specifically, we cannot differentiate both sides of a matrix transformation equation. For example, 
if we were to differentiate both sides of the equation AI Ix  = I, we would obtain the incorrect result 
that Allx = 0 since the velocities between a coordinate system and its instantaneously coincident 
counterpart are (in gcneral) non-zero. The zero-velocity axiom states that the relative velocities 
between a coordinate system A and itself (B = A) or another coordinate system assigned to the 
Same link (IT = T) are zero. This is because two 'coordinate systems assigned to the same link are 

stationary relative to the link and each other. Similarly, the zero-acceleration axiom states that 
the relative accelerations between a coordinate system A and itself (B  = A) or another coordinate 
system assigned to the same link (n = T) are zero. The uelocity axiom specifies how the time- 

derivative of a transformation matrix may be expressed in t e r m s  of the two cascaded transformation 
matrices and their time-derivatives. Finally, the acceleration axiom specifies how the second time- 
derivative of a transformation matrix may be expressed in terms of the two cascaded &ansformation 
matrices and their first and second time-derivatives. 

The matrix coordinate transformation axioms in Table 4.5.1 lead to the corollaries in Table 
4.5.2 which we apply to the kinematic modeling of WMRs. 

~ ~ 

Table 4.5.2 : Matrix Coordinate Transformation Algebra Corollaries 

We develop the instantaneow coincidence corollary by applying the identity and cascade ax- 
ioms. The instantaneous coincidence corollary simplSes transformation matrix expressions by 
eliminating the instananeously coincident c&rdinate systems. The cascade position corollary cal- 
culates the transformation matrix from a reference coordinate system to a destination coordinate 
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system which may be kinematically separated fkom the reference systcm by a number of cascaded 
intermediate coordinate systems. The cascade position corollary, which is derived by repeated 
applications of the cascade axiom, is the foundation of position kinematics (in Section 4.6). The 
cascade velocity corollary is derived by repeated applications of the velocity axiom and the cascade 
axiom. The cascade acceleration corollary is derived by repeated applications of the cascade, ve- 
locity and acceleration axioms. In Sections 4.7 and 4.8, we apply the cascade velocity and cascade 
acceleration corollaries to relate linear and angular velocities and accelerations between coordinate 
systems. Throughout Section 4.7, we apply the axioms and corollaries of the matrix coordinate 
transformation algebra to derive the wheel Jacobian matrix. 

4.6 Position Kinematics 

We apply the transformation matrices (in Section 4.4) and the matrix coordinate transfonna- 
tion algebra (in Section 4.5) to calculate position kinematics. The practical position relationships 
in WMR control require the calculation of the position of a point (e.g., r) relative to one coordinate 
system (e+, A) from the position of the point relative to another coordinate system (e.g., 2). For 
example: we calculate the position of the point mass relative to the floor coordinate system from. 
the position of the point mass in a steering link relative to the steering coordinate system. 

We transform position vectors by applying the transformation matrix in (4.4.1): 

Ar = Ang %. (4.6.1) 

When the transformation matrix AIIz is not known directly, we apply the cascade position corollary 
to calculate AIIz fiom known transformation matrices: 

(4.6.2) 

We apply transformation graphs to determine whether there is a complete set of known transfor- 
mation matrices which can be cascaded to create the desired In Figure 4.6.1, we display a 
transformation graph of a WMR with one steering link per wheel. 

The origin of each coordinate system is represented by a dot, and transformations between 
coordinate systems are depicted by directed arrows. The transformation in the direction opposing 
an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to 
calculate a desired transformation matrix (e.g. pIIs,) is thus equivalent to finding a path from the 
reference coordinate system d the desired transformation (F) to the destination coordinate system 
(SI). The matrices to be cascaded are listed by traversing the path in order. Each transformation 
in the path which is traversed from the tail to the head of an arrow is listed as the matrix itself, 
while transformations traversed &om the head to the tail are listed as the inverse of the matrix. 
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Robot 

F 
F l o o r  

Figure 4.6.1 

Transformation Graph 'of a WMR 

For example, the point mass in Figure 4.6.2 located at position r relative to the steering coor- 
dinate system 51 is transformed to its position relative to the floor coordinate system F according 
to: 

Fr = p ~ s ,  'lr, 

where 

(4.6.3) 

(4.6.4) 



Robot 

Figure 4.6.2 

Point Mass in the Steering Link 

In this example, the reference coordinate system is the floor coordinate system P and the 
destination coordinate system is the steering coordinate system SI. There are multiple paths 
between any two coordinate systems in Figure 4.6.1 because WMRs are closed-link structures. In 
practice, the number of feasible paths is reduced because some of the transformation matrices are 
unknown. For example, we may seek to calculate the desired transfonnatiorr matrix in (4.6.4) as: 

(4.6.5) 

but the transformation matrix fiom the floor to the wheel contact point P T ~ ,  is typically unknown. 

4.7 Velocity Kinematics 
4.7.1 Introduction 

We relate the velocities of the WMR by applying the matrix coordinate transformation algebra 
axioms and the cascade velocity corollary. In Section 4.7.2, we calculate the velocity of a point 
(e.g., r) relative to a coordinate system (e.g., A), when the position of the point is Gxed relative to 
another moving coordinate system (e.g., 2). This solution is applicable to the dynamic modeling of 
WMRS (in Section 9) for computing the velocity of a difTerential mass element on the WMR relative 
to the floor coordinate system. In Section 4.7.3, we apply this same methodology to calculate the 

velocities of the robot relative to the instantaneously coincident robot coordinate system when 
the velocities of a wheel2 are sensed. We introduce the wheel Jacobian matrix to calculate the 

robot velocity vector from the wheel velocity vector. We also calculate (in Section 4.7.4) the robot 

T h e  wheel velocities are tbt steering velocity 011, the wheel velocity about its axle WpDz, the rotational dip 

velocity Wwrr the toller velocities W, (for omnidirectioaal wheels) and the rotatioaal velocity Ww (for ball wheela). 
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velocity vector relative to the floor coordinate system, when the robot velocity vector is sensed 
relative to the instantaumusly coincident robot coordinate system. Iu Scction 6.3, we apply these 
calculations to dead reckoningJ for WMX control. 

4.7.2 Point Vel0 ci ties 

We differentiate the point transformation in (4.6.1) with respect to time to compute the velocity 
of the point r in the A coordinate system: 

Ai' = AirZ % . (4.7.1) 

When the matrix is not known diiectly, we apply the cascade velocity corollary to calcu- 
late A f i ~  from known transformation matrices and known transformation matrix time-derivatives 
according to: 

For example, equation (4.6.3) relates the position r of a pbint mass in the steering coordinate 
system SI to its position in the floor coordinate system F. We calculate the velocity of the point 
r relative to the floor coordinate system by differentiating (4.6.3): . 

p i  = *fis, 511 . (4.7.3) 

Since the vector slr is constant, its time-derivative is zero. We apply the cascade velocity corollary 
and the WMR transformation graph to ob& an expression for the unknown transformation matrix 
derivative in (4.7.3): 

We simplify (4.7.4) to require only known transformation matrices and known transformation 
matrix derivatives. 

(4.7.5) 

Dead reckoning is the real-time calculation of the WMR position in floor coordinata h m  wheel sensor 

mearurernenfr. 
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In (4.7.5), the robot velocity (A "8,) is calculated in the sensed forward solution (in Section 5.7), 
the steering position (in H*@s,)  and velocity (in  ha&^,) are sensed, the robot position (in F I l ~ )  
is calculated by dead rcckoning (in Section 6.3), and the robot-to-hip transformation ( R T ~ i )  is 
specified by design. The right-hand side of (4.7.5) is thus known. We then substitute (4.7.5) into 
(4.7.3) to calculate the velocity of the point mass r relative to the. floor coordinate system. 

- I  
4.7.3 Wheel Jacobian Matrix 

We formulate the equations-of-motion to model the velocities of the robot in terms of the 
velocities of a wheel. We begin our development by applying the cascade velocity corollary to write 

the matrix equation (4.7.6) with the unknown dependent variables (i.e., robot velocities, on 
the left-hand side, and the independent variables (i.e., the wheel i velocities, H - & ~ i  and Ei@ci) on 
the right-hand side: 

- 

The transformation graph of Figure 4.6.1 is utilized to determine the order in which to cascade the 
transformation matrices; the inversion axiom is applied when an arrow in the transformation graph 
is traversed from head-&tail and the zero-velocity axiom is applied to eliminate the matrices 
which multiply the derivatives of constant T matrices. Since the position of the wheel contact 
point relative to the floor is typically unknown, we apply the cascade position corollary to write an 
alternative expression for the floor-Eontact transformation matrix: 

- - 
F T ~ i  = FTx * R  R T H i  HiOsi "Tc, ci@6n1 . (4.7.7) 

We substitute (4.7.7) into (4.7.6) .to obtain: 

We apply the identity axiom to simplifjt (4.7.8). 

(4.7.9) 



We next apply Tables 4.4.2 and 4.4.3 to write the transformation matrices and the transfor- 
mation matrix derivativcs and multiply the result to obtain: 

To simplify the notation in (4.7.10), we have made the following substitutions: 

Upon equating the elements in (4.7.10), we obtain the robot velocities: 

where i = 1.. . N is the wheel index, x p ~  is the vector of robot velocities in the %bot frame, & is 
the pseudo- Jacobian matrix for wheel i, and is the pseudo-velocity vector for wheel i. We define 
the number of wheel variables of wheel i to be wi. The physical velocity vector qi of typical wheels 
does not contain the four component velocities in (4.7.12). Typical wheels posses fewer than four 
wheel variables and thus fewer than four iements in the velocity vector. huthefplore, since all 
physical wheel motions are rotations about physical wheel axes, the wheel velocity vector containa 
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the angular velocitics of thc wheels rather than the linear velocities of the point of contact along 
the surface of travcl. We relate the (4 x 1) pseudo-velocity vector to the (w; x 1) physical velocity 
vector qj by the (4 x w;) wheel matrix W;: 

q; = w; qi . (4.7.13) 

We subst.itute (4.7.13) into (4.7.12) to calculate the robot velocities fiom the wheel velocity vector: 

(4.7.14) 

The product J; = (3; W;) is the (3 x w;) wheel Jacobian matrix of wheel i. The rank of 
the wheel Jacobian matrix indicates the number of DOFs of the wheel. A whecl having fewer 
DOFs than wheel variables is redundant. The Jacobian matrix of a redundant wheel has dependent 
columns. We thus formulate the following computational method to determine whether a wheel is 
non-redundant : 

Non-Redundant Wheel Criterion 

det[JTJi] # 0 (4.7.15) 

Only three Werent wheels have been utilized in the WMR designs of Section 2: non-steered 
conventional wheels, steered conventional wheels and omnidirectional wheels. The wheel Jacobian 
matrices for these wheels and the ball wheel are detailed in Appendix 3. We utilize (4.7.14) in 
Section 5 to develop the inverse and forward solutions. In Section 6, we apply the matrices in 
Appendix 3 to calculate the inverse and forward solutions of specific WMRs. 

. 4.7.4 Transforming Robot Velocities 

We equate the components in matrix equation (4.7.2) to compute the translational A u ~ z ,  and 
*wzy and rotational A u ~  velocities' of the coordinate system 2 relative to coordinate system A. 
We apply this mr?thodology to the practical problem of transforming velocities of the robot from 
Fobot coordinates I2 to floor coordinates F. We assume that the floor-robot transformation matrix 
*TR (i.e., the position and orientation of the robot da t ive  to the floor) and the matrix R*R (i.e., 
the velocities of the robot relative to its current position and orientation) are known. The velocities 

- 

' mere are no translational vclociti- dong the s-&a OT angular vdoeitier about the x and y - u a  because of 

our coordinate system assignment.. 
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to be calculated (ie, the velocities of the robot relative to the floor) arc the components of the 
matrix = f i n .  We apply the cascdc velocity corollary (in Section 4.5) and the WMR transformation 
graph (in Section 4.6) to write the matrix equation 

in tcrms of known matrices. To simplify (4.7.15), we apply the 
taneous coincidence corollary: 

~ i r R  = F ~ R R ~ R  

zero-velocity axiom and the instan- 

(4.7.16) 

We expand each matrix into scalar components: the matrix derivative according .to 
(4.4.7), the transformation matrix F T ~  according to (4.4.5), and the transformation matrix deriva- 

tive R G ~  according to Table 4.4.3. Upon multiplying, we obtain: 
- 

(4.7.17) 

We obtain the angular velocity of the robot P~~ from dements (1,l) and (2,l) and read the tram- 

lational velocities ' u a  and p ~ ~ v  directly from elements (1,4) and (2,4) of (4.7.17), respectively. 
We find that: 

In (4.7.18), we observe that the angular velocity of the robot is equal in both coordinate 
frames; whereas the translational vel&ties in the floor coordinate fkame are dependent upon the 

robot orientation. The matrix V is the (3 x 3) motion mubiz which depends upon the robot 
position F p ~ .  In Section 6.3, we apply the motion matrix to dead-reckoning'for WMRs. 
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4.8 Acceleration Kinematics 

We calculate the accelerations of the WMR by applying the cascade acceleration corollary. 
Since the dcvelopment parallels that of the velocity kinematics in Section 4.7, we omit the compu- 
tational details and concentrate on interpreting the results. We cannot formulate the acceleration 
equations-of-motion by differentiating the results of Sect.ion 4.7, because differentiation of both 
sides of a transformation matrix equation is not an allowable operation in our matrix coordinate 
transformation algebra. This is in contrast to the acceleration kinematics of mechanisms contain- 
ing only lower-pairs (e.g., stationary manipulators) which are formdated by differentiating velocity 
kinematics. 

The acceleration of the point r ked relative to the moving coordinate system 2 is transformed 
to the A coordinate frame according to: 

A5 - - (4.8.1) 

We apply the cascade acceleration .corollary to calculate the second time-derivative of the transfor- 
mation matrix Aft# .  

By applying the cascade acceleration corollary, the component accelerations of the robot (%&, 
R u ~ v  and %R) are related to the wheel accelerations (Hias<, ciaciz, Ci~c!,,, and Ciacis) as the 
cascade velocity corollary, in Section 4.7.3, relates the robot velocities to the wheel velocities. In 
the notation of (4.7.11), the robot accelerations are: 

- - - - - 

The robot accelerations in (4.8.2) are composed of three components: the self-accelerations 
(C*aor, C i u ~ , v ,  cat, and wiasi);  the centripetal accelerations (Ew& and "W; , )  having squared 
velocities; and the Coriolis accelerations (c;wci Hiwsi) having products of diEerent velocities. 

- - 

Transforming robot accelerations from %bot coordinates to floor coordinates is analogous to 

transforming robot velocities (in'Section 4.7.4). We find that the robot accelerations are trans- 

formed &om the Fobot to the floor coordinate frame by the motion matrix V that transforms the 
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velocities in (4.7.18): 

(4.8.3) 

The acceleration equations-of-motion are not solved in practice because accurate acceleration mea- 
surements are difEcult to obtain. 

4.9 summary 

We have formulated a systematic procedure for modeling the position, velocity and acceleration 
kinematics of a WMR. In this section, we outline a stepby-step enumeration of the methodology 
to  facilitate engineering applications. 

1.) Make a sketch of the WMR. Show the relative positioning of the wheels and the 
steering links. The sketch need not be to 'scale. A top and a side view are typically suffici&t. 

2.) Assign the coordinate systems.. The robot, hip, steering, contact point and floor 
coordinate systems are assigned according to the conventions introduced in Table 4.3.1. 

3.) Develop the (4 x4) coordmate transformation matrices. The robot-hip, hipsteering, 
and steering-contact transformation matrices are written according to Table 4.4.1. 

4.) Formulate the position equations-of-motion. The relative positions and orienta- 
tions of two coordinate systems are determined by applying the cascade position corollary. The 
transformation graph of Figure 4.6.1 is utilized to determine the order in which to cascade the 
matrices. 

5.) Formulate the velocity equations-of-motion. The equations relating velocities are 
formulated by applying the cascade velocity corollary. The wheel Jacobian matrix, which relates 
wheel velocities to robot velocities, may be written directly by substituting components of the 
transformation matricies into the symbolic wheel Jacobian matricies compiled in Appendix 3. 

6.) Formulate the acceleration equations-of-motion. The equations relating accelera- 

tions are formulated by applying the cascade acceleration corollary. 

The non-redundunt wheel criterion in (4.7.15) is a test on the Jacobian matrix to determine 
whether a wheel has as many DOFs as wheel variables. We apply this criterion in Section 5 to reveal 
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disadvantages of redundant w h d s .  A kinematic model; i.e., the position, velocity and acceleration 
equations-of-motion, may be applied to the dynamic modeling, design and control of a WMR. In 
these applications, the equations-of-motion are solved to compute unknown Variables from constant 
and sensed variables. In Section 5, we compute the inverse and forward solutions by utilizing the 
wheel Jacobian matrix (introduced in Section 4.7.3) as the foundation. 
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5. The Composite Robot Equation 

5.1 Introduction 

We combine the kinematic equations-of-motion of all of the wheels on a WMR to form the 
composite robot equation. We then investigate solutions of the composite robot equation and their 
properties and implications for WMR locomotion. Our investigation illuminates WMR mobility 
(in Section 5.4), actuation (in Sections 5.5 and 5.6) and sensing (in Sections 5.7 and 5.8). 

In Section 5.2, we formulate the composite robot equation and in Section 5.3 we discuss the 
conditions for its solution. We apply the results of Section 5.3 to develop a mobility character- 
ization tree in Section 5.4 which allows us to interpret the solubility conditions in terms of the 
mobility characteristics of the WMR. The mobility characterization tree indicates whether the 
mobility structure is determined, overdetermined or undetermined and associates specific mobility 
characteristics with each possibility. For -pie, we may apply themobility characterization tree 

to determine whether a WMR allows three DOF motion, and if it does not, the tree indicates the 
motion constraints. 

We proceed to solve the composite robot equation by addressing two classical kinematic mod- 
eling problems: the actuated invexse solution (in Section 5.5) and the sensed forward Solution (in 
Section 5.7). The actuated inverse solution computes the actuated wheel velocities fioni the robot 
velocities. For WMR control, we solve only for the velocities of the actuated wheel variables. The 
solution for dl of the wheel velocities is a special case which may be obtained by assuming that all 

of the wheel variables are actuated. 

The actuated inverse solution does not guarantee that the specified robot velocities wil l  be 
attained when the actuated wheel variables are driven to the calculated velocities. We investigate 
the possible robot motions when the actuafed wheel variables attain the velocities computed by 
the actuated inverse solution in Section 5.6. We develop an actuation characterizafion tree, anal- 

ogous to the mobility characterization-tree, which allows us to determine the actuation structure 
(determined, overdetermined or undetermined) of a WMR. The actuation characterization tree is 
applicable for WMR design to avoid overdetermined actuation (which may cause actuator c o a c t )  
and undetermined actuation (which allows the WMR uncontrollable DOFs). From our analysis, 

we are able to determine whether the actuated wheel variables are sufficient for producing all of 
the motions allowed by the mobility structure. 

The sewed forward solution in Section 5.7 computes the robot velocities from the sensed wheel 
velocities and positions. Since a WMR consists of closed kinematic chains, it is pot required to 
sense all of the wheel positions and velocities, and in practice, it is difficult to do 80. 
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In Section 5.8, we develop a sensing characterization free which allows us to dcterruine the 
character (undetermined, determined or overdetermined) of the WMR sensing. We thus are able 
to determine whether the sensed wheel variables are sufficient for discerning all of the motions 
allowed by the mobility structure. Finally, in Section 5.9, we summarize our development. 

5.2 Formulation of the Composite Robot Equation 

In Section 4.7.3, we developed the wheel Jacobian matrix J; by applying velocity kinematics 
to compute the robot velocity vector p from the wheel velocity vector qi: 

p =  Jik for i = 1, ..., N , (5.2.1) 

where i is the wheel index, N is the total number of wheels, p is the vector of robot velocities, Ji 
is the (3 x Wi)  Jacobian matrix for wheel i, wi is the number of variables for wheel i, and is the 
(wi x 1) vector of wheel velocities. 

The 3N wheel equations in (5.2.1) must be solved simultaneously to characterize the WMR 
motion. We combine the wheel equations to form the composite robot cqudion: 

(") 
4N 

(5.2.2) 

or 
A,p = B,Q (5.2.3) 

where the I;, fur i = 1,. . . ,N, are (3 x 3) identity matrices, A0 is a (3N x 3) matrix, Bo is a 
(3N x w )  block diagonal matrix, w = w1 +'w2 + . . . + ZUN is the total number of wheel .variables 
and q is the composite wheel velocity vector. 

Having formulated the matrix equation in (5.2.3) to model the robot motion, we proceed to 
investigate the solution for the robot velocity vector p in Section 5.3 Ad its implications for WMR 
locomotion in S&tion 5.4. 

5.3 Solution of A x  = By 

We characterize WMR mobility (in Section 5.4), + m t i o n  (in Section 5.6) and sensing (in 
Section 5.8) by examining the properties of the solutions of the composite robot equation in (5.2.3). 
We extend the standard criteria[lS] for the systems of linear algebraic equations Ax = b, where A 
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is an (rn x n) matrix, x is a (n x 1) vcctor and b is a (m x 1) vector, to the solution of the systems 
of linear algebraic equations 

A x = B y ,  (5.3.1) 

where B is an (m x p) matrix and y is a (p x 1) vector. Since the composite robot equation (5.2.3) 
has the form of (5.3.1), solutions of (5.3.1) are directly applicable to the solution of the composite 
robot equation. 

We apply the method of least-squares[l5] to compute the vector x for overdetermined (ie., 
having fewer variables than independent equations) and determined (i.e., having the same number 
of variables as independent equations) systems of hear algebraic equations: 

x = (AT A)-'A* B y . (5.3.2) 

The necessary condition for applying the least-squares solution in (5.3.2) is that rank(A) = n. There 
is no unique solution for undetermined systems (Le., systems having fewer independent equations 
than independent variables). 

The residual error of the least-squares method is: 

AX - BY = (A(AT'A)-'AT - 11 B y = A(A) B y . 

We define the Deftu matrix function A ( 0 )  for expository convienience as: 

-I for U = n d  
A(U)= { 

U(U* U)-'U= - I  Otherwise 

(5.3.3) 

(5.3.4) 

where the argument U is a (c x d)  matrix of rank d. 

To characterize WMR motion, we must determine whether the least-squares error in (5.3.3) is 
zero for df y. To do 80, we may apply either of the following equivalent tests: 

A(A) B = 0 (5.3.5) 

or 
runk[A; B] = rank[A] . (5.3.6) 

If either test (5.3.5) or (5.3.6) is satisfied, the least-squares error is zero'for all y. The first test 
ih (5.3.5) is apparent from the expression for the least-squares error in (5.3.3). The second test in 
(5.3.6) states that if the columns of the matrix B lie in the vector space spanned by the columns 
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of the matrix A, tlicu the vector By must also lie in thc vector space spanned by the columns of 
A for all y .  The vector By can then be expressed as a linear combination of the columns of A 
by proper choice (via the least-squares solution) of x. Similarly, we may determine whether the 
least-squares error is zero for a specific y by applying either of the following two equivalent tests: 

A(A) B y  = 0, (5.3.7) 

or 
runk[A; By] = rank[A] . (5.3.8) 

We depict in Fi,oue 5.3.1 a tree illustrating the nature of all possible solutions for the vector x 
of the system of linear algebraic equations in (5.3.1). The tree branches (directed arrows) indicate 
tests on the matrices A, B and y and are numbered for future reference. The leaves (boxes) indicate 
the corresponding properties of the solution. 

As depicted in Figure 5.3.1, the system of linear algebraic equations in (5.3.1) may be deter- 
mined, overdetermined or undetermined. The top branches, (0) and (l), determine whether the 
least-squares solution is applicable by testing the rank of the matrix A. If the rank of A is n 

(branch (0)). the least-squares solution is applicable and there is a unique solution for some y. If 
the rank of A is less than n (branch (l)), the least-squares solution is not applicable indicating that 
the system is undetermined and there is no unique solution for any y. An'undetermined system 
has more unkno~ms than independent equations. 

A determined system is one in which the number of independent equations (less than or equal 

to m) equals the number of &owns (n). The least-squares error is zero for all y and thus tests 
(5.3.3) and (5.3.4) apply at branch (00). 

An overdetermined system is one in which the number of independent equations is greater 
than the number of unknowns. The least-squares error of an overdetermined system is thus non- 
zero for some y (branch (01)). Tests (5.3.7) and (5.3.8) are applied at branch (010) to determine 
whether the least-squares m o r  is zero for a specific y. If so, the system is consistent and there is 
a unique solution. If the least-squares error is non-zero for a specific y (branch (Oll)), the system 
is inconsistent and there is no exact solution. 

In Section 5.4, we apply the solution tree in Figure 5.3.1 to the composite robot equation in 
(5.2.3) and discuss the implications for WMR mobility characteritation. 
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Ax = By 
Modeling Equation 

Unique Solut ion 
f o r  Some y 

Least-Squares Solut ion 

Determined Ove r de t e r m  i ne d 
Unique Solut ion Unique Solut ion 

Undetermined 
No Unique Solut ion 

Least-Squares Solut ion 

rank[A : B y ]  = rank[ A ]  

Consistent Inconsistent  
Unique Solut ion No Solut ion 
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Figure 5.3.1 

The- Solution Tree for the Vector x in (5.3.1) 

5.4 Robot Mobility Characteristice 

The composite robot equation in (5.2.3) has the form of the system of linear algebraic equations 
in Figure 5.3.1, in which A,, Bo, p, and 4 play the roles of A, B, x and y, respectively. Since 
the robot velocity vector p plays the role of the dependent variable, we investigate the conditions 



under which the forward solution may be computed. In Figure 5.4.1, we apply the solution tree in 
Figure 5.3.1 to the composite robot equation in (5.2.3). 

A o i  = B o i  
Composite Robot Equation 

Least-Squares Solutlon 
’ Applicable 

rank[Ao; Bo J = 3 rank[Ao: Bo] > 3 

Determined Overdetermined Undetermined 
No Unique Solut ion . 

o\l 
Consistent 

Unique So lu t ion  

1 No Wheel S l l p  

Incons is tent  
No Solut ion  

Wheel S l l p  Occurs 

Figure 5.4.1 

The Solution Tree for the Robot Velocity Vector 6 
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By inspection of (5.2.2), we observe that the'rank of the (3N x 3) matrix A, is 3 and thus 
branch (0)  always applies. Since brauch (1) does not apply, the solution cannot be undetermined; 
and hcnce the robot niotion is complctcly specified by the motion of the wkcels. horn the structure 
of the matrices A, and Bo in (5.2.2), we observe that the rank of the augmented matrix [A,, Bo] is 
greater than 3 when there is more than one wheel. A WMR with one wheel is determined (branch 
(00)), and a WMR with more than one wheel is overdetermined (branch (01)). The overdetermined 
nature of WMRs having more than one wheel is a consequence of the closed-link kinematic structure 
of a WMR. As indicated in Figure 5.4.1, the composite robot equation in (5.2.3) will be consistent 
(and have a solution at  branch (010)) or inconsistent (and have no solution at branch (011)) 
depending upon the wheel velocity vector 6. Our no-slip assumpti,on (in Section 4.2) ensures that 
the motions of the wheels and the robot &e consistent and that there is thus an exact solution. 

We depict in Figure 5.4.1 the solution of the robot velocity vector i, from the complete wheel 
velocity vector 4. In practice, the wheel velocity vector must be measured by sensors; It is =cult 
to sense some of the wheel velocities, such ris the rotational wheel &p. Since a WMR with more 
than one wheel has closed-link chains, it is hot necessary to sense all of the wheel velocities to 
calculate the robot velocity because many of the sensor motions are dependent. In Sections 5.7 
and 5.8, we investigate the solution of the robot velocity vector from the sensed wheel Velocities. 

Although the nature of the forward solution of the composite robot equation proviaes us with 
little physical insight. we gain significant understanding of WMR motion by investigating the nature 
of the inverse solution. For WUR control it is not necessary to compute all of the wheel variables 
in the inverse solution ince  they are not all actuated. Because of the closed-link chains, moreover 
not all of the wheel variables must be actuated.. In Section 5.5, we compute the actuated inverse 
solution for the actuated wheel variables. In tbe remainder of this section, we focus on the complete 
inverse solution to gain physical insight into WMR mobility characteristics. 

We investigate the inverse solution by interchanging the roles of the right and left-hand sides 
of the comjmsite robot equation in (5.2.3) and applying the solution tree in Figure 5.3.1. Thereby, 
Bo, A,, q and p in (5.2.3) play the roles of A, B, x and y in (5.3.1), respectively. "he solution tree 
for the inverse solution, subsequently referred to as the rnobdify chorocterizufion free, is depicted 
in Figure 5.4.2 . The branch tests indicated within curly brackets "{e)" are simplified tests which 
apply if there are no couplings between wheels. 

i 
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The Mobility Characterisation 'he 

The inverse solution can be determined, undetermined or overdetermined depending upon the 
kinematics (i.e., Bo and Ao). The top branches test the rank of the (3N x w )  matrix Bo against 
the total number of wheel variables 10. Since the rank of Bo is the sum of the ranks of all of 
the wheel Jacobian matrices when there are no wheel couplings, we test the rank of each wheel 
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Jacobian matrix J, against the number of wheel variables w; for all wheels i = 1,. . . , N. The rank 
of the (3 x tu;) wheel Jacobian matrix J; is w; if the determinant of the matrix [JTJi] is non-zero 
as indicated by the non-redundant wheel criterion in (4.7.15). We refer to branch test (MO) as the 
soluble motion criterion because it determines whether the composite robot equation can be solved. 

! 

Soluble Motion Criterion 

r~nk[Bo) = w (5.4.1) 

Soluble Motion Criterion With No Wheel Couplings 

det[J,TJiJ#O for  i=l, ..., N 

If the determinant of the matrix [JTJi] is zero, the associated wheel is redundant. A WMR 
having redundant wheels and no whed couplings i a  undetermined. We cannot compute the inverse 
solution for a WMR with redundant wheels. Since the inverse solution is utilieed in WMR control 
(in Section 6.4), we suggest that undetermined mobility structures (Le., redundant wheels) be 
avoided. 

WMRs without redundant wheels allow some robot motions since there is a unique solution 
to the system of linear algebraic equations in (5.2.3) for some fi. Branches (MOO) and (Mol) test 
the rank of the augmented matrix [Bo; Ao] against the rank of Bo. From their structure in (5.2.2), 

the ranks of these two matrices are equal when all of the wheel Jacobian matrices are (3 x 3) and 
rank 3 (i.e., all of the wheels are non-redundant and possess three DOFs). The mobility structure ' 

of a WMR is therefore determined if the test at branch (MOO) succeeds. A determined structure 
has a unique solution for all p; i.e., for any desired three dimensional robot velocity vector i, there 
is a wheel velocity vector q which is consistent with the motion. We thus conclude: The kinematic 
design of a WMR allows three DOF motion if and onlg all of the wheels possess three DOFa. 
This requirement is expressed computationally in the three DOF motion criterion in (5.4.2). 
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Three DOF Motion Criterion 

rank[%] = w und A(Bo) A. = 0 (5.4.2) 

Three DOF Motion Criterion With N o  Wheel Couplings 

det[JTJi]#O u I L ~  ~ i = 3  for i=l ,  ..., N . 

If branch (MO) succeeds and the WMR does not possess three DOFs, the solution is overde- 
termined (branch (Mol)). The mb6t does not allow some motions because some of the robot 
DOFs are dependent. For example, a WMR with a non-steered conventional wheel which satisfies 
branch (MO) must have an overdetermined mobility structure because no motions perpcndicular to 
the wheel orientation may occur without slip. Branches (M010) and (Moll) indicate the possible 
robot motions fi without slip. If the least-squares error is zero, the solution is consistent, and the 
motion may occur. We thus determine the kinematic constraints on the robot motion by equating 
the least-squares error to zero in (5.4.3). By examining the structure of the error in (5.4.3), we find 
an equivalent computation& simpler test in (5.4.3) when there are no couplings between wheels. 

Kinematic Motion Contraints 

A(B0) A& = 0 (5.4.3) 

Kinematic Motion Constraints With N o  Wheel Couplings 

A(Ji)p=O fot i = l ,  ..., N 

We may thus determine the kinematic motion constraints for a WMR without redundant 
wheels or wheel couplings by considering each wheel mdependently. 

The augmented matrix [A(Bo) A*] indicates whether the WMR possesses three DOFs at 
branch (MOO) or fewer than three'DOFs at branch (Mol). When there ?e fewer than three DOFs, 
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the number of indcpcndcnt columns of thc matrix [A(Bo) AoJ specifies the number of dependent 
robot DOFs. The number of DOFs of a WMR having no rcdundant wheels is: 

Number of WMR DOFs 

DOFs = 3 - rank[A(Bo) Ao) . (5.4.4) 

The test at branch (MO) determines whether the complete inverse solution for all of the wheel 
variables csn be calculated by the least-squares solution. In Section 5.5, we apply the least-squares 
solution to calculate the uctucrted inverse solution for the actuated wheel variables. Although the 
actuated inverse solution may exist for some robot velocities p for which the complete inverse 
solution does not, it is not practical to apply such an actuated inverse solution because the desired 
robot velocities are constrained by the unac'tuated wheel variables. We thus utilize the soluble 
motion criterion in (5.4.1) to indicate when the actuated inverse solution in Section 5.5 is practically 
applicable. 

5.5 Actuated Inverse Solution 

We calculate the actuated inverse solution by solving for the actuated wheel velocities in 
(5.2.3). Because of the closed-link chains in WMRs, we need not actuate Sll of the wheel variables. 
To separate the actuated and unactuated wheel variables, we partition the wheel equation in (5.2.1) 

into two components: 

(5.5.1) 

The "a" subscripts denote the actuated components and the "u" subscripts denote the unactuated 
components. We let ai denote the number of actuated variables, and q denote the number of 
unactuated variables for wheel i (i.e., = wi). We define the total number of actuated wheel 
variables to be u = uy + 02 + . . . + UN and the total number of unactuated wheel variables to be 
u = u1 + u2 + . . . + UN. We combine the partitioned wheel equations in (5.5.1) to rewrite the 

+ 
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composite robot equation in (5.2.2) as 

Jlu 

0 

0 

or 

7 (5.5.2) 

(5.5.3) 

The (3N x w )  matrix Bo, and the (w x 1) vector ilp are the partitioned counterparts of the . 

matrix Bo and the vector cj in (5.2.2). The soluble motion criterion in (5.4.1) indicates under what 
conditions the least-squares solution may be practically applied to compute the inverse solution (i.e., 
runk[Bo] = tu). We heaceforth assume that the least-squares solution is applicable and that all 

matrix inverses encou.kered in its application are computable. We apply the least-squares solution 
in (5.3.2) to calculate the vector of wheel variables from the robot velocity vector: 

& = (B&B*)-l B& A0 p . (5.5.4) 

In Appendix 4, we compute the vector of acfuutcd wheel velocities & = [k: . . . qsa] T in (5.5.2) 

as: 

Actuated Inverse Solution 

(5.5.5) 

Each (ui x 3) block row of the matrix on the right-hand side of (5.5.5), corresponding to the 

involves only the Jacobian matrix of wheel i. The inverse solution for each actuated velocities 
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wheel is thus independent of the kinematic equations of all of the (N - 1) other wheels. When 
wheel i is non-redundant with three DOFs and all three wheel variables are actuated, each block. 
row of (5.5.5) simplifies to 

= (JT1)fi . (5.5.6) 

We may therefore assume that all of the wheel variables of all of the non-redundant wheels having 
three DOFs are actuated, apply the inverse Jacobian matrix in (5.5.6) to calculate the wheel veloc- 
ities, and extract the actuated velocities for robot control. This approach requires approximately 
one-tenth of the arithmetic operations required for the direct application of (5.5.5). 

5.6 Robot Actuation Characteristics 

A WMR control engineering application of the actuated inverse solution (in Section 5.5) is to 
command the velocities of the actuated wheel variables to their calculated values. We investigate the 
characteristics of the robot motion when the actuated wheel veldcities attain the d u e s  computed 
by the actuated inverse solution. We relate the robot velocity vector 6 the .&uated wheel'vdocities 
by eliminating the unactuated wheel velociCies from the composite robot equation in (5.2.2). Under 
the no-slip assumption, the unactuated wheel velocities will be consistent and comply to the robot 
motion. We compute the unactuated wheel velocities from the robot velocities in the actuateci 
inverse solution in (5.5.5) by interchangingthe roles of the actuated ("a" subscripts) and unactuated 
vu" subscripts) variables: 

(5.6.1) 

The conditions guaranteeing the computability of the unactuated and actuated inverse soh- 
tions are identical and are indicated in .the soluble motion criterion in (5.4.1) . We substitute (5.6.1) 

into the partitioned composite robot equation in (5.5.2) to obtain. 

& , (5.6.2) 

or 
(5.6.3) 



The robot actuation equation in (5.6.3) has the form of (5.3.1) with A,, B,, fi, and qa playing 
the roles of A, B, x, and y ,  respectivcly. We apply the solution trce in Figure 5.3.1 to (5.6.3) and 
obtain the actuation characterization tree in Figure 5.6.1. 

The actuation characterization tree, in analogy with the mobility characterization tree, indi- 
cates the properties of the actuation structure of a WMR. The branch tests are developed from the 
solution tree in Figure 5.3.1. We concentrate on the implications of the solutions. 

The system of linear algebraic equations in (5.6.3) representing the actuation structure of the 
WMR may be determined, undetermined or overdetermined. If branch (Al) succeeds, the actuation 
structure is undetermined and .there is no unique solution for the robot motion p. Since we cannot 
calculate the robot motion, it is unpredictable, and some robot DOFs are uncontrollable. We 
suggest that undetermined actuation structures be avoided. 

If branch (AO) succeeds, we are assured that all robot DOFs are actuated. Specifically, all 

robot motions allowed by the mobility structure can be produced by the actuators. Consequently, 
we refer to branch test (AO) as the adequate actuation criterion: 

Adequate Actuation Criterion 

. &t(ATL)#O (5.6.4) 

If the actuation structure is overdetermined (branch (AOl)), some of the actuator motions 
are dependent. If the dependent actuator motions are consistent (at branch (AOlO)) robot motion 
is produced, otherwise (at branch (AOll)) wheel slip occurs. Any mechanical couplings between 
actuated wheel variables must satisfy the actuator dependencies to allow robot motion; we therefore 
refer to branch test (AOlO) as the crctuufor coupling criterion: 

Actuator Coupling Criterion 

A(A,) B, & = 0 (5.6.5) 
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Figure 5.6.1 

The Actuation Characterimtion Tree 

If the dependent actuator motions are not consistent (branch (AOll)), wheel slip must occur 

because the least-squares error is non-zero. Since a control system cannot 'guarantee ~ e r o  actuator 
&acking errors, the actuated wheel velocities may deviate from the values computed by the actu- 
ated inverse solution. In the presence of these tracking errors, the actuator coupling criterion is 
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not satisfied and the system of linear dgcbraic cquations in (5.6.3) becomes inconsistcnt with no 
solution. We refer to this situation as actuator conflict because the forces and torques produced 
by the inconsistent actuator motions generate stress forces and torques within the WMR structure 
causing wheel slip instead of generating robot motion. A determined actuation structure (when 
branch (AOO) succeeds) is robud in the sense that actuator conflict cannot occur in thc presense 
of actuator tracking errors. The actuator motions are independent and all possible actuated wheel 
velocity vectors map into unique robot velocity vectors. Branch test (AOO) is thus referred to as 
the robust actuation criterion: 

Robust Actuation Criterion 

Because of actuator conflict, we suggest that overdetermined actuation structures be avoided. 
We recommend actuator arrangements leading to a robust (determined) actuation structure. In 
Sections 5.7 and 5.8, we turn our attention to the sensed forward solution and relate the sensed 
wheel variables to the robot motion. 

5.7 Sensed Forward Solution 

The sensed forward solution calculates the robot velocity vector p in (5.2.3) &om the sensed 
wheel positions and velocities qa and qa. The development of the sensed forward solution parallels 
the actuated inverse solution in Section 5.5. The first step is to separate the sensed and not-sensed 
wheel velocities and write (5.2.1) 88: 

fi = Jia&a + Jin&n (5.7.1) 

The subscripts “s” and “n” denote the sensed and not-sensed quantities, respectively. The numbers 
of sensed and not-sensed variables of wheel i are si and TQ, respectively (i.e., si + n; = wi): We 
assume that both the position and velocity of a sensed wheel variable are available. We combine 
the wheel equations in (5.7.1) for i = 1,. . . , N to form the partitioned robot sensing equation, with 
a3l of the unknown robot and wheel positions and velocities on the left-hand side: 
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We define the total numbex of sensed wheel velocities to be a = 91 + . . . + SN and the total 
number of not-sensed wheel variables to be n = n1 + . . . + nN. Thereby, An is (3N X'[3 + TI]), i)n 

is ((3 + n] x l), B, is (3N x a) and q. is (a x 1). We apply the least-squares solution in (5.3.2) 
to calculate the vector of robot and not-sensed wheel velocities pn &om the sensed wheel velocity 

(5.7.4) 

In Section 5.8, we develop the adeq&te sensing criterion in (5.8.4) which indicates the con- 
ditions under which the sensed forward solution in (5.7.5) is applicable. In the remainder of this 
section, we assume that the sensed forward solution applies and that all matrix inverses, such as 
(A:An)-' in (&?A), are computable. 

In contrast to the actuated inverse solution, the least-squares forward solution need not produce 
a eero error because of sensor noise and wheel slippage. In thi presense of these m o r  sources, we 
cannot calculate the exact velocity of the robot. Our least-squares solution does provide an optimal 
solution by minimizing the sum of the squared errors in the velocity components. Our least-squares 
forward solution may thus be applied practically to dead-reckoning for a WMR in the presense of 
sensor noise and wheel slippage. 

In Appendix 5, we solve (5.7.4) for the robot velocities p. We find that 

Sensed Forward Solution 

or 

e =  J,& . (5.7.5) 

A whed without =sed vrrriables does not contribute ~ n y  co l~p ln~  A(Jin)Jie to (5.7.5). Fur- 
thermore, if three independent wheel variables are not sensed, the matrix A (Jim) is zero. We may 
thus eliminate the kinematic equations-of-motion of any wheel which has three not-sensed DOFs 
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in the calculation of the sensed forward solution. We note that the Jacobian matrix of a steered 
wheel depends upon the steering angle. Therefore, if any wheel variables of a sbecred wheel are 
senscd, the steering angle must also be sensed so that Jin and Ji, arecornputable. Since the matrix 
[A(J,n) + A(J2,) + . . . + A(J,n)] is (3 x 3), solving the system of linear algebraic equations in 
(5.7.5) for the robot velocities p is not a computational burden. 

5.8 Robot Sensing Characteristics 

The relationship between the .-sed wheel variables and the robot motion is the dud of the 
relationship between the actuated wheel variables and the robot motion. Our development thus 
parallels the discussion in Section 5.6 on actuation characteristics. We begin by rewriting the 
composite robot equation in (5.2.2) to relate the robot velocity vector to the sensed wheel velocity 
vector. We express the not-sensed wheel velocities in terms of the robot velocities by applying the 
actuated inverse solution 6 (5.5.5) with the not-sensed (an" subscripts) and sensed ("s" subscripts) 
wheel velocities playing the roles of the actuated ("a" subscripts) and unactuated ("u" subscripts) 
wheel velocities, respectively: 

(5.8.1) 

The inverse solution is applicable for any WhdR satisfying the soluble motion criterion in 
(S.4.1). We partition the sensed and not-sensed wheel vel&ties in the composite robot equation 
in (5.2.2) and substitute (5.8.1) for the not-sensed wheel velocities to obtain: 

A8p = B8& . (5.8.3) 

The robot sensing equution in (5.8.3) has the form of (5.3.1) with A,, B,, p, and qd playing 
the roles of A, B, x, and y,  respectively. We apply the solution tree of Figure 5.3.1 to the robot 
sensing equation in (5.8.3) to obtain the s e w k g  chuructetizution tree in Figure 5.8.1. 
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The solution of the robot velocity p fiom the sensed whecl velocities q. may be determined, 
undetermined or ovcrdetcrmined, depending on the matrices A, and B,. In parallcl with WMR. 
actuation, undetermined systems are undesirable because one or more DOFs of t.he robot motion 
cannot be discerned &om the sensed wheel velocities. Both determined and overdetermined sensing 
structures allow a unique solution for consistent sensor motions q.. Branch (SO) thus provides 
the adequate sensing criteria in (5.8.4) which specifies whether all WMR motions allowed by the 
mobility structure are discernable through sensor measutements: 

Adequate Sensing Criterion I 
(5.8.4) 

The adequate sensing criterion also spedifies the conditions under which the sensed forward 
solution in (5.7.5) is applicable. 

Determined sensing structures provide d c i e n t  information for discerning the robot motion. 
Overdetermined sensing structures become inconsistent in the presence of sensor noise, which is 
analogous to the impact of actuator tracking errors on overdetermined actuation structures. Our 
forward solution in (5.7.5) anticipates the overdetermined nature of the sensor measurements and 
provides the least-squares solution. In the case of actuation, an overdetermined actuator structure 
causes undesirable actuator codlict. In cgntrast, redundant (and even inconsistent) information is 
desirable for the least-squares solution of the robot velocity from sensed wheel velocities. Redundant 
information in the least-squares solution reduces the effects of sensor noise on the solution of the. 

robot velocity. Overdetermined sensing structures are thereby robust and branch test (Sol) is 
referred to as the robust sensing cn'tcrion: 

Robust Sensing Criterion 

A(&) B, it 0 (5.8.5) 
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The Sensing Characterization ' Ibe 

W e  thus recommend that the wheels and wheel sensors be arranged so that the robust sensing 
criterion is satisfied. When the sensing structure is overdetermined, the least-squared error is zero 

(at branch (Solo)) if there is no wheel slip or sensor noise and non-cero (at branch (SOll)) w h q  
wheel slip occurs. We therefore denote branch test (SOll) as the wheel slip m'terion: 
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Wheel Slip Criterion 

B868 # (5.8.6) 

In Section 6.5, we detect wheel slip by applying the fact that the system of linear algebraic 
equations in (5.8.3) of a robust sensing structure becomes inconsistent in the presence of wheel slip. 

5.9 Conclusions 

We have combind the equations-of-motion of each wheel on a WMR to formulate and solve the 
composite robot equation. The actuated inverse solution in (5.5.5) computes the actuated wheel 
velocities fiom the robot velocity vector and is applicable when the soluble motion criterion in 
(5.4.1) is satisfied. We have shown that the actuated inverse solution is calculated independently 
for each wheel on a WMR. For wheels which possess three DOFs, the actuated inverse solution 
is calculated directly by applying the inverse wheel Jacobian matrix. The actuated velocities are 
then extracted for robot control applications. 

The sensed forward solution in (5.7.5) is the least-squares solution of the robot velocities in 
t e r m s  of the sensed wheel velocities and is applicable when the adequate sensing criterion in (5.8.4) 

is satisfied. The least-squares forward solution, which minimizes the sum of the squared mors in 
the velocity components, is the optimal solution of the robot velocities in the presense of sensor 
noise and wheel slippage. We have found that the sensed forward solution may be simpli6ed by 
eliminating the equations-of-motion of wheels having three not-sensed DOFs because they do not 
affect the solution. If any variables of a steered wheel are sensed, the steering angle must also be 
Sensed. 

We have discussed the nature of solutions of the composite robot equation and their implica- 
tions for robot mobility (in Section 5.4), actuation (in Section 5.6) and sensing (in Section 5.8). 
We have developed the mobility churacterizution free in Figure 5.4.2 to characterize the motion 
properties of a WMR. The implications of the mobility characteritation tree are ~ ~ m m e r i d  by 
the following insights. If the sofubfe motion criterion in (5.4.1) is satisfied, the actuated inverse 
solution, actuation and sensing t rees,  and the WMR DOF calculation in (5.4.4) are applicable. 
The three DOF motion criterion in (5.4.2) indicates whether the WMR bematic  structure allows 
three DOF motion. If the kinematic structure does not allow three DOF motion, the kinernafic 

motion constraints are computed according to (5.4.3). The number of WMR DOFs are calculated 
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from (5.4.4). 

The implications of the actuation characterization tree in Figure 5.6.1 are summerizcd by three 
criteria. The adequate actuation criterion in (5.6.4) indicates whether the number and placement 
of the actuators is adequate for producing all motions allowed by the mobility structure. If the 
adequate actuation criterion is not satisfied, some robot DOFs are uncontrollable. The robwt 
actuation criterion in (5.6.6) determines whether the actuation structure is robust; i.e., actuator 
conflict cannot occur in the presense-of actuator tracking errors. If the actuation structure is 
adequate but not robust, some actuator motions are dependent. The actuator coupling criterion 
in (5.6.5) calculates these actuator dependencies which must be satisfied to avoid actuator conflict 
and forced wheel slip. 

The sensing characterization tree in Figure 5.8.1 indicates properties of the sensing structure 
of a WMR. The adequate sensing criterion in (5.8.4) indicates whether the number and placement 
of the wheel sensors is adequate for discerning all robot motions allowed by the mobility structure. 
The robust sensing criterion in (5.8.5) indicates whether the 'sensing structure is such that the 
calculation of the robot position from wheel sensor measurements is minimslll y sensative to wheel 
slip and sensor noise. The wheel slip criterion in (5.8.6) provides a computational algorithm for 
detecting wheel slip in robust sensing structures. 

In Section 6, we address the question of three versus two DOFs, the design of WMRs to satisfy 

kinematic mobility characteristics, and control engineering applications of WMR kinematics. Then, 
in Section 7, we apply .the kinematic modeling of Section 4 and the actuated inverse and sensed 

forward solutions to prototype WMRs. 



i 

6. Applications 

6.1 Introduction 

WMR kinematics play fundamental roles in design, dynamic modeling, and control. In this 
section, we illustrate four practical applications of our kinematic methodology: design, dead reck- 
oning, kinematic feedback control and wheel slip detection. We are continuing our study of whas 
by applying our kinematic methodology to the dynamic modeling of WMRs (in Section 9). In 
Section 6.2, we apply the composite robot equation-of-motion in Section 5 to the design'of WMRs. 
We explain how WMRs can be designed to satis& such desirable mobility characteristics as two 
and three DOFs, and the ability to actwte and sense the DOFs. Dead-reckoning is presented in 
Section 6.3; the robot velocity calculated from wheel sensor measurements is intepated to calculate 
the robot position in real-time. We highlight a kinematics-based WMR control system (in Section 
6.4) by applying the actuated inverse solution in the fdorward path and dead reckoning in the 
feedback path to reduce the error between +e actual robot position and the desired robot posi- 
tion. Knowledge of the robot dynamics will improve control-system performance. We apply the 
kinematic equations-of-motion to detect wheel dip in Section 6.5. When a WMR detects the onset 
of wheel slip, the current robot position is corrected by utilizing slower absolute locating methods 
(such as computer vision) before continuing motion. The feedback control system can thus track 
desired trajectories more accurgtely by continually ensuring an accurate estimate of robot position. 
Finally, in Section 6.6, we summarbe the four applications. 

6.2 Design 

Just as studying the composite robot equation enables the determination of such mobility char- 
acteristics as the number of DOFs, we may design a WMR to possess desirable mobility character- 

istics. Desirable mobility characteristics which are determinable from an analysis of the composite 
robot equation are two or three DOFs, and the ability to actuate and sense the motion robustly. 
By robust we mean that the robot motion is insensitive to actuator tracking errors and that the 
calculation of the robot position from sensor measurements is insensitive to m s o r  noise and wheel 
slippage. Designing a WMR to satisfy the desired mobility, actuation and sensing characteristics 
before construction kilitates the subsequent control system design. 

A general-purpose WMR has the ability to move along an X-Y path with an orientation 
trajectory 8. The WMR thus is capable of controlled motion in the three dimensions 2, y, and 
B at all times, or equivalently possesses three DOFs. This mobility characteristic is sometima 
referred to as omnidirectionality[l]. For a WMR to operate successfully with three DOFs, it must 
embody the important characteristics tabulated in Table 6.2.1 'and discussed below. First, it must 
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allow three DOF motion. A WMR which posscsses thrcc DOFs satisfies the three DOF motion 
critcriou in (5.4.1). An omnidirectional WMR design must thus consist of ball, omnidirectional 
or non-redundant conventional wheels to allow three DOF motion.' A castered backrest used by 
mechanics for working underneath automobilcs has this characteristic. 

Table 6.2.1: Design Criteria for an Omnidirectional (3 DOF) WMR 

Three DOF Motion : det[JTJ;] # 0 und w; = 3 

Adequate Actuation : det[ArA,] # 0 

for  i = 1, ...,N 

Robust Actuation : u = 3 

Adequate Sensing : det[ATA,] # 0 

Robust Sensing : s > 3 

Second, all three of the robot DOFs must be actuated to produce motion in three DOFs. The 
placement of wheels and actuators in the WMR design must be chosen to satisfy tbe adequate 
actuation criterion in (5.6.4). We require that the actuator structure satisfy the robust actuation 
criterion in (5.6.6) to avoid actuator codict. The robust actuation criterion states that theie 
be exactly three actuated wheel variables for the special case of three DOF motion. If there are' 
more than three actuators, their motions must be dependent because robot motion occurs in three 

dimensions. If there me fewer than three actuators, some robot motions are not actuated and thus 
not controllable. The design should thus include only three actuators to ensure robust control. 

The Unimation robot (in Section 7.2) has three actuated omnidirectional wheels (%as- 
whemor) and is an example of a WMR having a robust actuation structure. Uranus (in Section 7.4) 

has four actuated omnidirectional wheels (Tetroas-whemor) and is not robust because the actuator 
motions are dependent. In Section 7.4.5, we examine an alternate design of Uranus having a robust 
actuation structure. Our study of Uranus provides a technique for redesigning adequate actuation 
structures to be robust. 

The third requirement for an omnidirectional WMR is that a control system (e.g., the kinematic 
feedback control system in Section 6.4) communicates signals to the actuators so that the WMR 
follows a specified (2, J, 6)) trajectory. An omnidirectional WMR which calculates its present 
position from wheel shaft encoder measurements and controls the actuators to reduce the error 
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between the desired robot position and the actual' robot position possesses this characteristic. To 
calculate the robot position from wheel shaft encoder measuremcnts, the wheel sensors must be 
positioned so that the robot motion may be discerned in three DOFs. To discern any robot motion, 
the sensing structure must satisfy the adequate sensing criterion in (5.8.4). We require a robust 
sensing arrangement (i.e., the W M R  desigh should include more than three wheel sensors) to allow 
robust calculation of the robot position from wheel sensor measurements. 

A WMFt which does not allow three DOF motion has singdarities in its workspace. At a 
singularity, the WMR canuot attain motion along one or more dimensions &e., z, y, or e). We 
may determine the kinematic motion constraints of a WMR allowing fewer than three DOFs by 
computing (5.4.3). Once a WMR design possesses the desired mobility characteristics, we apply 
the actuation and sensing criteria in Sections 5.6 and 5.8 to verify that the actuation and sensing 
structures are adequate or robust. 

A W M R  with two DOFs allows locomotion along any X - Y path and thus has wide applicabil- 
ity for parts and materials transport. Topo[27], Newt (in Section 8.3), and Shakey[52] each possess 
two DOFs utilizing two diametrically opposed conventional drive wheels. These biw-polycsun- 
whemors also have OJ, and 2 casters, respectively, for stability. We show in Section 7.3 that a 

design utilizing two diametrically opposed drive wheels is appealing because of its mechanical and 
modeling simplicity. Because of the practical advatages of two diametrically opposed diive wheels, 
we recommend the application of bicas-polycsun structures for all tasks requiring fewer than three 
DOFs. This guideline simplifies the design process for the majority of parts and materials transport 
applications. 

6.3 Dead Reckoning 

Dead reckoning i$ the real-time calculation of the WMR position &om whed sensor measure- 
ments. The current robot position is utilized by closed-loop robot control systems, performance 
monitoring processes and high-level robot planning processes. The least-squares sensed forward 
solution in (5.7.5) is the exact solution for the robot velocities under the no-slip assumption, if 
the wheel sensing structure is adequate. The adequate sensing criterion is a prerequisite for imple- 
menting three dimensional dead reckoning. To determine the robot position in real-time, the robot 
velocity is integrated over each sampling period. Since the dead reckoning calculation is erroneous 
when wheel slip occurs, an alternate method of determining the robot position (e.g., computer 
vision) must be applied to correct the position calculation before dead reckoning is continued. In 
Section 6.5, we propose a method to detect the onset of wheel slip. 

The integration begins when the robot is at rest or has a sensed initial velocity I r f i ~ ( 0 ) .  The 
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initial robot position ' p ~ ( 0 )  is either specified or sensed, We assume that the robot motion 
is adequately modclcd by piecewise constant accelerations' since the robot is being actuated by 
constant force/torque generators in each sampling pcriod (the same sampling period as the dead 
reckoning process). The robot velocity R ~ R  in the sampling period from time t = (n - l)T to time 
t = n T i s  

where the robot velocity Rfi~(d') at each sampling instant is calculated by the sensed forward 
solution in (5.7.5). We transform the robot velocity to the floor coordinate system by applying the 
velocity transformation in (4.7.18): 

p $ R ( f )  = v [ ( n  - 1)T] ' f i R ( t )  . (6.3.2) 

We use the angular position of the robot at the sampling instant t = (n  - l)T to calculate the 
motion matrix V [ ( n  - 1)T] since the current angular robot position at time t is unknown. We 
calculate the robot position at the current sampling instant t = riT by integrating the velocity over 

the sampling period and adding the result to the robot position at sampling instant t = (n - 1)E 

(6.3.3) 

By subtituting (6.3.1) and (6.3.2) into the integral in (6.3.3), we express the present robot position 
in terms of the position at the last sampling instant and the robot velocity at the present and last 
sampling instants: 

Dead Reckoning Update Calculation I 

The computational 1oad.for dead reckoning is thus the calculation of the sensed forward solution 
in (5.7.5). 

' We apply thir assumption u an example. For a specific WMR, it may be neccuary to atiliw higher-ordy 

models of the velocity trajectory. 
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6.4 Kinematics-Based Feedback Control 

The documented WMR control systems are kinematically basedp3, 171; i.e., they do not 
incorporate a dynamic model of the robot motion. A reference robot trajectory is provided by an 
independent process (the trajectory planner) and the task of the control system is to produce signals 

to the wheel actuators so that the WUR tracks the reference trajectory. This is accomplished 
by wheel level or robot level control (in analogy with joint space or Cartesian space control of 
manipulators [12, 681). 

For wheel level control, the reference robot trajectory is applied to generate trajectories for 
each wheel actuator by calculating the actuated inverse solution. Each wheel actuator is then 
servoed independently to its calculated tra,j+xy. Each wheel controller may utilize wheel sensors 
for feedback and a dynamic model of the wheel operating independently, but does not compcnsafe 
for coupling forces between wheels[50]; 

Robot boel control which utilizes feedback at the robot level is more desirable than wheel level 
control. A kinematics-based robot level control system is diagramed in Figure 6.4.1. Directed 
arrows indicate the flow of information. The number of scalar variables represented by each arrow 

is indicated within the body of the anow. The computer control algorithm to be executed at each 
sampling instant T is enumerated in Table 6.4.1 and the sequence of steps is indicated in Figure 
6.4.1. At time nT, we sense the wheel variables q,(nT) and &(nT) and the desired robot position 
vector Ppd(nT) in Step 1 of Table 6.4.1 . The (8 x 1) sensor gain vector k, scales @e msor signals. 

In Step 2: we apply the sensed forward solution in (5.7.5) to compute the robot velocity 'p~(nT). 
We apply the dead reckoning update in (6.3.4) in Step 3 to compute the robot position Fp~(nT). 
We compare the reference robot position Ppd(nT) with the actual robot position Fp~(nT) (in Step 
4) to calculate the robot position error FeR(nT). The position emor is multiplied by the (3 x 3) 
feedforward gain vector kf and is then transformed to the robot coordinate h m e  by applying the 
inverse motion matrix V-l (nT)  in Step 5. Under the assumption that the robot tracking error 

remains small, the robot position error ' e ~  is treated as the differential displacement %pR. This 
robot differential displacement is transformed into actuator displacements 6% (as velocities are 

transformed) by applying the actuated inverse solution in Step 6: 

6% = J, . (6.4.1) 

In Step 6, we also multiply the computed actuator reference velocities fia by the (u x 1) actuator 
gain vector k,. The actuator gain vectar is the ratio of the actuator set-points fo the steady- 

state actuator velocities under nominal operating conditions and must be 'determined empirically. 
The (3 x 1) feedforward gain kf is also adjusted experimentaUy to provide a fast robot tracking 
response without excessive robot overshoot or oscillations about the reference trajectory. In Step 
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7, the resulting actuator set-points arc then communicated to the actuator hardware. 

F F F 
ia(nT)  lp) Pd(nT) OR(IT) R0 (nT) R 

Actuated Wheeled 
Inverse Mobi le 

Solut ion Robot 

Floor t o  Robot 
Coordinate 

Transformation 
Tra jectory  - 
Planner 

Wheel Sensors 

LJ 

Figure 6.4.1 

Kinematics-Based WMR Control System 

Table 6.4.1: Kinematics-Based WMR Control Algorithm I 

1.) Sample a8(nT), i18(nT) and Fpd(nT) 

2.) Compute and Store RpR(nT) = &,J,&(nT) 

3-) Compute ad Store PPR(nT) = PPR[(n - 1)T] + $v[(n - 1)T]{'p~3[(?2 - 1)T] + Rp~(nT)} 

4.) Compute FeR(nT) = =pd(nT) - 'pR(nT) 

5.) Compute %R(nT) = kfV-l(nT)PeR(nT) 

6.) Compute b(nT) = koJaReR(nT) 

7.) Communicate the Computed Set-Points &(nT) to the Actuatonr 
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Over the past twenty years, manipulator control systems have improvcd progressively; &om 
independent joint-space control[55], to kinematics-based cartesian-space control[68], to dynamics- 
based cartcsian-space fccdback control[42], to robust dynamics-bascd feedback control[65] and adap 
tive control algorithms[21). We anticipate that fbture WMR control systems will also incorporate 
kinematic and dynamic models. Prescnt WMR control system designs are independent wheel level 
controllers. Future WMR control systems will improve pdomance once a kinematic methodology 
(such as our present paper) and dynamic models (outlined in Section 9) become available. 

8.5 Wheel Slip Detection 

In Section 5.7, we computed the WMR velocity vector from the wheel sensor measurements 
&e., the sensed forward solution), and in Section 5.8 we discussed the characteristics of the solution. 
We can discern all WMR motions if the adequate sensing criterion is satis6ed. If the sensing 

structure is adequate but not robust, the eqw.&ons-of-motion will be consistent irrespective of the 
presense of wheel slip and the error in the least-squares forw4d solution will be zero. In contrast, 
for a robust sensing stnicture (i.e., a sensing structure satisfying the robust sensing criterion), the 
kinematic equations-of-motion are inconsistent in the presence of wheel slip. The error in the least- 
squares forward solution is then greakr than’zero. We fhcrejore propose to detect the occurrence 
of wheel dippage for a WMR ham*ng a tobwf sensing structure calculating the error in the Zewf- 
squeres solution. In the improbable case that all wheels on a WMR slip simulheously in such a 

msnner that the equations-of-motion remain consistent,.our method wil l  fail to detect the wheel 
slip. 

In practice, sensor noise cau also cause the kinematic equationssf-motion to become incon- 
sistent, but we expect that the least-squares error due to sensor noise will be small in comparison 
with the error caused by wheel slippage. Instead of testing the least-squares error against zero, 

we propose to compare it with an error threshold et get by the worst case sensor noise error. If 
the least-squares error in the forward solution exceeds the threshold, we conclude that wheel dip 
has occurred. When a WMR detects that wheel slip bas occurred, it should resort to absolute 
methods of determining its position (e.g., computer vision, ultrasonic ranging sensors, and laser 
range iinders) before contiwing the dead-reckoning calculations. Since current locating methods 
are computationally slow relative to the robot motion, the WMR should halt motion until its dead 
reckoning calculations are updated by the absolute locating method. 

Calculation of the sensed forward solution in (5.7.5) is the first step in determining the least- 
s~uates error. The calculated robot velocity vector R f i ~  is substituted for the actual robot velocity 
vector in the robot sensing equation (5.8.3). The least-squares m o r  vector e is calculated by 
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subtractirg the right-hand side of (5.8.3) from the lcft-hand side: 

R e = A, f i ~  - B, 4.. (6.5.1) 

We calculate and compare the norm of the least-squares error [eT.] with tb scalar threshold 
e:. If the norm of the least-squares error exceeds the threshold, we conclude that wheel slip has 
occurred: 

I Detection of Wheel Slip 

T 2 e e > e , ,  wheel slip has occurred .. (6.5.2) 

I I 

We note that (6.5.2) is, in principle, equivalent to the wheel slip criterion in (5.8.6) and has 
the added advantage that the sensed forward solution in (5.7.5) is computed as an intermediate 
result. The sensed forward solution may then be applied to dead-reckoning and WMR control. . 

6.6 Summary 

We have applied our kinematic methodology to the design, dead reckoning, kinematics-bakd 
feedback control and wheel slip detection for WMRs. By proper choice of the wheel type and 
placement, and the actuator and emor  placement, we may design two and three DOF WMRa. 
Specifically, we must satisfy the criterh in Table 6.2.1 to achieve a robust omnidirectional WMR 
design. For two DOFs, a WMR design having two diametrically opposed drive wheels, bicas- 
polycsun-whemor (e.g., as on the WMRs Newt, Shakey, and Topo), has both mechanical and 
modeling advantages over other designs. Dead reckoning is the real-time integration of the robot 
velocity to obtain the robot position. The robot velocity is first calculated by applying the -sed 
forward solution. We integrate the robot velocity by the update algorithm in (6.3.4) which is 
a linear b c t i o n  of the robot position and velocity. Current WMR control systems incorporate 
wheel level algorithms. We have introduced a kinematics-based robot level algorithm which relies 
on dead reckoning for fedback, and the actuated inverse solution to calculate actuator inputs as 
feedforward control signals. Future WMR control systems will exhibit enhanced performance by 
incorporating dynamic models and absolute position feedback. As our final application, we have 
proposed to detect wheel slippage in robust sensing structures by calculating the least-squares error 
in the sensed forward solution. If the error exceeds a threshold which can be attributed to wheel 
sensor noise, we conclude that wheel slip has occurred. By detecting the onset of wheel slippage, 
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and correcting the calculated robot position with ib absolute locating device, the WMR will follow 
planned trajectories more accurately. 

We are also applying our kinematic methodology to the dynamic modeling of WMRs (in Section 
9). By analogy with manipulator dynamic modeling, our kinematic methodology will serve as the 
foundation upon which to formulate the dynamic models. In contrast to manipulator dynamics, 
we must resolve the special problems of closed-link chains and higher-pair joints. 

W e  note that the composite robot equation in (5.2.2) and the actuated inverse and sensed 

forward solutions in (5.5.5) and (5.7.5) are essential components of these applications. In Section 7, 
we apply our kinematic methodology to specific WMRs. For each .WMR, we calculate the actuated 
inverse and sensed forward solutions, where applicable, and characterize their mobility, actuation 
and sensing structures. 
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7. Examples 

7.1 Introduction 

We illustrate the hematic  modeling of six WMRs: the Unimation robot, Newt, Uranus, 
Neptune, Pluto, and the Stanford cart. For each WMR, we provide four kinematic descriptions: a 
written description, a top and side view sketch, the symbolic diagram and the kinematic name. We 
ussign the coordinute systems to create the coordinute transjotmation matrices. We then form the 
wheel Jacobian matrices by substituting elements of the coordinate transformation matrices into 
the symbolic wheel Jacobian matrices in Appendix 3. We determine the nature of the mobility, 
actuation and sensing structures to gain insight into the mobility characteristics of the WMFt. We 
compute the actuated wheel velocities from the robot velocity vector (i.e., actuated inoerse solution) 
and the least-squares robot velocity vector &om the sensed wheel velocities and positions (i.e., 
sensed forwurd solution) when the mobility analysis indicates that these solutions are applicable. 
We complete each example with remurb on its kinematic structure and its suitability for particular 
tasks. 

7.2 Unimation Robot 
7.2.1 Kinematic Description 

The Unimation- robot[l4] illustrated in Figure 7.2.1 utilizes three symmetrically positioned 
omnidirectional wheels with rollers at 90". A motor actuates each wheel and the velocity of each 
wheel is measured by shaft encoders. The rollers are neither actuated nor sensed. The coordinate 
system assignments and pertinent robot dimensions are shown in the figure. 

7.2.2 Coordinate nansformation Matrices 

We write the coordinate transformationmatrices in Table 4.4.2 fiom Figure 7.2.1: 
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Unimation Robot 

(Troas-whemor) 

(The z-axes are out of t b r  pago) 

Top View 

X 

Side View 

I 

Figure 7.2.1 

Coordinate System Assignments for the Unimation Robot 
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7.2.3 Wheel Jacobian Matrices . 

We substitute thc elements of the transformation matrices, the wheel and roller radii, and the 
roller angles into the symbolic Jacobian matrix for omnidirectional wheels in (A3.4.2) to write the 
matrix wheel equations: 

-R 0 lo 
P=(z) = ( 0 r 0 )  (2:;) =JlGl (7.2.1) 

0 0 1  W W l Z  

(7.2.3) 
0 0 

7.2.4 Mobility Characteristics 

To characterize the *bot mobility, we note that the soluble motion criterion is satisfied. 
Therefore, none of the wheels has redundant DOFs and the actuated inverse-solution is applicable. 
Since the three DOF motion criterion is also satisfied, the Unimation robot allows 3-DOF motion. 

We calculate the adequate actuation criterion det[ATA,] = 271214 as the first step in charac- 
terizing the actuation structure: Since the determinant is nonzero, all robot motions are producable 
by the motions of the actuators. The value of A(Ao) Bo is zero which indicates that the robust 
actuation criterion is also satisfied. The actuator motions are independent and no actuator con- 
flict can occur. Since the adequate sensing criterion is satisfied but the robust sensing criterion is 
not, the sensing structure is adequate but not robust. Although the sensing structure allows three 
'DOFs to be discerned by applying the sensed forward solution, wheel dip m o t  be detected by 
the method of Section 6.5. 

7.2.5 Actuated Inverse Solution 

Since the soluble motion criterion is satisfied, the actuated inverse solution is computable. The 
actuated inverse solution in (5.5.5) applies directly: 
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resulting in 

(7.2.4) 
0 

7.2.6 Sensed Forward Solution 

Since the adequate sensing criterion is satisfied, the sensed forward solution is computable. 
We apply the least-squares sensed forward solution in (5.7.5): 

and obtain 

(7.2.5) 

7. 

, 

*7 Remarks 

The Unimation robot is a general-purpqse three DOF WMR. It allows three DOF motion, has 
adequate actuation to produce three DOF motion, and has adequate sensing to discern three DOF 
motion. The actuated inverse and sensed forward solutions are computable in real-time, enabling 
accurate closed-loop control. The low ground clearance, which only allows locomotion on smooth, 

level surfaces is a disadvantage of the design. The mechanical complexity of the omnidirectional 
wheels increases the cost and difficulty of fabrication. It is difEcult to construct pedstly round 
omnidirectional wheels when the rollers are at 90" because of the discontinuities between rollers. 
An improved wheel design allowing circular omnidirectional wheel profiles has been implemented 
for Uranus (in Section 7.4). We have noted that the sensing structure does not allow wheel slip 
detection by the method of Section 6.5. Although the wheel variables which are not-sensed are 
difficult to instrument, an additional instrumented caster can be added to the design to provide 

. practical robust sensing and wheel slip detection. 

Three DOF locomotion is not necessary for parts and materials transport. A transport WMR 
may operate with two DOFs. The three DOF locomotion is advantageous when utilized with 
an onboard manipulator. The mobility of the WMR enhances and extends the workspace of the 
manipulator. Consequently, a manipulator having fewer than six DOFs mounted on the WMR 
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has an unlimited workspace and can accomplish the tasks of a stationary manipulator having six 

DOFs. .. 

7.3 Newt 
7.3.1 Kinematic Description 

Newt[32] is a WMR having two diametrically opposed drive wheels and a free-wheeling castor, 
as shown in Figure 7.3.1. Both drive wheels are actuated and sensed, while the castor is neither 
actuated nor sensed. 

Newt 

(Bicas-unicsun-whemor) 

a (The z-axes are out  o f  t h e  page) 

Top View 

~ 

(Castor shorn p a r a l l e l  t o  Floor y-axis]  

(The x-axes a r e  out  of the page) 

radius = R 

R L Y  

S ide View 

Figure 7.3.1 

Coordinate System Assignments for' Newt 
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7.3.2 Coordinate Transformation Matrices' 

The coordinate transformation matrices for Newt are: 

0 1 0  0 

0 0 0  1 
[ 0 0 1 

R 

0 1 0  0 '  

0 0 0  1 
RTH, = [ o  0 1 - l e )  

1 0 0  0 
R T H s = (  0 1 0  ) 

0 0 1 -(Ze 
0 0 0  

1 0 0  0 
'%,= ( o  0 1 0  0 1 1;;) - 

0 0 0  1 

7.3.3 Wheel Jacobian Matrices 

( 0  o o i J  

The radii of wheels one and two are identical: R1 = Rz = R, and the radius of wheel three 

I 

l 

is Rs = r . By applying the Jacobian matrix for non-steered conventional wheels in (A3.2.2), we 
write the matrix equations for drive wheels one and two: 

(7.3.1) 
i 

(7.3.2) . 

Similarly, by applying the Jacobian matrix for a steered conventional wheel in (A3.3.2), we 
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write the matrix equation for wheel three: 

7.3.4 Mobility Characteristics 

The soluble motion criterion is satisfied, indicating that the actuated inverse solution is appli- 
cable and none of the wheels is redundant. Since toi = 2 for wheels one and two, the three DOF 
motion criterion is not satisfied. The robot has fewer than three DOFs; i.e., some robot DOFs are 
dependent. The matrix product [A(Bo) A*] has rank one, and according to the expression for 
the number of WMR DOFs in (5.4.1), Newt has two DOFs. The kinematic motion constraints for 
wheels one and two simplify to u& = 0. Wheel three imposes no constraints on the robot motion. 
The WMR thus allows independent motion in two DOFe: Y and 8. 

We determine the actuation structure by first calculating the adequate actuation criterion 
det(AzAo] = 81:. This indicates that all'robot DOFs are actuated (i.e., all robot motions in the 
Y and 8 directions qxiy be produced by the actuators). We find further that the robust actuation 
criterion A(Aa) B e  = 0 is satisfied. AU actuator motions are independent, providing robust 
two DOF actuation. The sensing structure is. adequate but not robust because the sensed wheel 
variables and the actuated ones are identical. Even though the sensing structure is not robust, the 
sensed forward solution is applicable. 

7.3.5 Actuated Inverse Solution 

Although the actuated inverse solution applicable, only robot motions for which the trans- 
lational velocity UR= is zero are possible. This means that the actuated inverse solution wil l  be the 
exact solution if the X-component of the robot velocity is chosen to be zero. E. the X-component 
of the robot velocity is non-zero, the actuated inverse solution will be computable, but it will be 
erroneous. The rgsult in this case will be the optimal set of actuated wheel velocities which min- 
imizes the least-squares error between the desired r o b t  velocity and the resulting robot velocity. 
We apply the actuated inverse solution in (5.5.5): 
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and obtain 

1 0 1  I ,  (2;:) = E  ( 0  1 -1.) (g )  * 
(7.3.4) 

7.3.6 Sensed Forward Solution 

Since the sensing structure is adequate, the sensed forward solution in (5.7.5) is applicable: 

and hence 

(7.3.5) 

The X-component of the robot velocity is cero independent of the sensor measurements. The 
Y-component of the robot velocity is proportional to the sum of the wheel velocities, and the 
&component is proportiond to the difference of the wheel velocities. 

7.3.7 Remarks 

Newt is a general-purpose robot for tasks requiring only two-dimensional motion. Any path in 
a plane can be traced by a WMR possessing two DOFs. Since the vast majority of existing WMRs 
are applied for transporting parts, materials, and tools from one point to another along a path, 
Newt has wide applicability. The simple mechanical design is advantageous over omnidirectional 
designs because it requires fewer parts and has reduced cost. A robust sensing structure may be 
obtained by sensing the wheel and steering velocities of the castor. An important feature of this 
design is that the dead-reckoning integration calculations for the angular position of the robot are 

not required. If no wheel dip occurs, the angular robot position can be calculated at any time nT 
according to 

(7.3.6) 

The computational mors due to finite p d o n  limits and sensor noise do not accumulate in the 
calculation of FOR(nT) as they would if the dead reckoning integration in (6.3.4) were required. 

. 
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From our analysis, we conclude that Newt has two DOFs in the Y and 0 directions. If the 
robot coordinate system is assigned at any point along the robot Y-axis except zero, thctwo DOFs 
will be X and Y. If the robot coordinate system is rotated go", the two DOFs will be X and 6. 
Finally, if the robot coordinate system is assigned to an arbitrary position not on the X or Y axes, 
the two DOFs cannot be specified by two of the three components X, Y, and 8. We coiiclude 

that the number of DOFs of a robot is independent of the assignment of coordinate axes, but the 
allowable directions of motion depend upon the placement of the robot coordinate system. 

7.4 Uranus 
7.4.1 Kinematic Description 

Uranus[49] has the kinematic stFcture of the Wheelon wheelchair [2]: four omnidirectional 
wheels with rollers at 45' angles to the wheels. The coordinate system assignments and robot 

dimensions are shown in Figure 7.4.1. 

7.4.2 Coordinate Transformdion Matricem 

Since there are no steerkg links, the coordinate transformation matrices for Uranus are: 

1 0 0 -1, 
R 0 1 0  

0 0 0  1 

1 0 0 -10 
0 1 0  

0 0 0  1 

1 0 0  1, 
R 0 1 0  

0 0 0  1 
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Top View S ide  View 

Figure 7.4.1 

Coordinate System Assignments for Uranus 

7.4.3 Wheel Jacobian Matricea 

The radius assignments are R1 = R2 = RJ = & = R, and rl = r2 = TJ = r4 = r, and the 
roller angles are q 1  = qs = - 4 5 O ,  and 72  = q4 = 45'. The Jacobian matrix for omnidirectional 
wheels in (A3.4.2) allows us to write the equationsf-motion for each wheel: 
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0 - 4 1 2  
R -&I2 (7.4.3) 

P =  (z) = ( 0 0 1 

0 4 1 2  ww,, 

WR 0 0 1 Ow,= 
p = (::) = (R -rfi/2 1::) ( ww4,) = J444 (7.4.4) 

7.4.4 Mobility Characteristics 

Since the soluble motion criterion is satisfied, the actuated inverse solution is applicable and 
none of the wheels has redundant DOFs. Furthermore, the three DOF criterion is satisfied and the 
motion structure is capable of three DOF motion. 

The adequate actuation criterion yields: &t[AzA,] = 64(1, + l b )2 .  The actuators are thus 
able to provide motion in all three DOFs. We find that the robust actuation criterion is not 
satisfied. The actuation structure is thus not robust and actuator codict may occur. The sensed 

and actuated wheel variables are identical so that the sensing structure is robust which allows the 
detection of wheel slip by the method of Section 6.5. The sensed forward solution is therefore 
applicable. 

7.4.5 Alternative Designs 

Uranus is a convenient WMR with which to develop an understanding of the differences between 
inadequate, adequate and robust actuation (sensing) structures, and the need for a kinematic 
analysis in the design of a WMR, We have shown that Uranus has an adequate but not a robust 
actuation structure which provides motion in all three DOFs, but allows actuator conflict. In Figure 
7.4.2, we consider a slightly different WMR design. 

The WMR in Figure 7.4.2 is identical to Uranus except the the wheels on the right and left 
hand sides of the WMR have been interchanged and the distances Z, and IS are equal. The wheels 
are actuated (sensed) as with Uranus. Upon modeling this WMR and characterizing its actuation 
(sensing) structure, we find that it is inadequate @e., &[AfA,] = 0 )  . The problem is that the 
angular rotation of the WMR is not constrained by the motions of the actuators (sensors). We 
observe in Figure 7.4.2 that the robot can be spun about its center even if the wheel actuators are 

locked to one position because the rollers are free to turn. 
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q j =  4s0 V,= .-4S0 

(The t - a x b t  are out o f  the page) 

Figure 7.4.2 

Uranus with an Inadequate Actuation Structure 

We realize that the non-robust nature of Uranus' actuation structure allows actuator conflict. 
We now imagine how Uranus might be altered to avoid actuator conflict. Since we are interested 
in a practical symmetric alternative, we.diminate the possibility of simply removing one of the 
actuators. We must ensure that the actuator coupling criterion in (5.6.5) is satidled. The rank one 
actuator coupling criterion for Uranus d u c e s  to the scalar equation: 

-12 + w,,o - wwsz - Ww,r = 0 .  (7.4.5) 

Only three of the four actuator motions are independent. Our solution in Figure 7.4.3a is to con- 
strain mechanically the wheel motions with gearing between wheels to ensure that the dependencies 
in (7.4.5) and thus the actuator coupling criterion is satisfied. 

We utilize differential gearing and reversing gearing. A Merential gearbox is designed so that 
the output shaft rotates at a rate equal to the difference of the two input shafts. A reversing 

gearbox is designed so that the output shaft, rotates at a rate equal and opposite to the input shaft. 
In Figure 7.4.3b, we add three symmetrically placed motors for actuation. The actuation structure 
of 7.3.3b is robust. We write the composite robot equation-of-motion in terms of the motor shufi 
rotafions (instead of the wheel axle rotations), and apply the robust actuation criterion to verify 
the design. Even though the complexity of this gearing may prohibit practical implementation, the 

procedure may be applied to the design of any WMR 



! 
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Uranus with Gearing to Insure 

Actuator Dependencies 

D = Differential gearing 
R = Reversing gearing 
M = Motor 

Figure 7.4.3a 

Uranus with Determined Actuation 

Figure 7.4.3b 

Converting Uranus into a Robust Actuation Structure 

7.4.6 Actuated Inverse Solution 

Since the mobility structure of Uranus allows three DOFs, the actuated inverse solution in 
(5.5.5) is exact for all robot motions. The actuated inverse solution is: 

(7.4.6) 

The actuated inverse solution in (7.4.6) may be obtained by assuming that all wheel variables are 

actuated, applying the inverse solution in (5.5.6) and extracting only the actuated wheel variables. 
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This alternatc approach is less computationally intensive because the inverse solution for each wheel 
simplifies to inverting each of the Jacobian matrices. 

7.4.7 Sensed Forward Solution 

W e  apply the least-squares sensed forward solution in (5.7.5) to obtain: 

7.4.8 Remarks 

Uranus is a general-purpose three DOF WMR; with the kinematic capabilities of the Unimation 
robot. The actuation structure is adequate and the sensing structure is robust as compared with , 

Unimation's robust actuation and adequate sensing. Uranus has more ground clearance because 
of the arrangement of the wheels. Also, the wheel proyes are exact drcles because the rollers are 
at 45" angles avoiding the discontinuity of wheels with 90" rollers. To utilice practically the three 
DOF capabilities of this robot, we envision the simultaneous operation of an onboard manipulator. 

7.5 Neptune 
7.5.1 Kinematic Description 

Neptune has a tricycle-like kinematic structure as depicted in Figure' 7.5.1. The front wheel 
& steered about its center, and both the steering and the wheel rotations are actuated. The two 

hed-orientation wheels are neither actuated nor sensed. 
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Figure 7.5.1 

Coordinate System Assignments for Neptune 

7.5.2 Coordinate Transformation Ma trices 

The coordinate transformation matrices are: 

1 0 0  0 

R T H 1  = ( 0 1 0  -) 0 0 1 l d - l e  
0 0 0  

= R  



% , -  

I 

1 1 0 0  0 

\ o o o  1 

R 0 1 0  0 

0 0 0  1 
T H a  = [ o  0 1 -1.) 

1 0 0 -1, 
0 1 0  0 .  

0 0 0  1 

7.5.3 Wheel Jacobian Matrices 

The wheel radius assignments are R1 = R2 = & = R. We use the Jacobian matrix for a 
steered conventional wheel in (A3.3.2) to .write the equation f6r wheel one:. 

The matrix equations for wheels two and three are specified by (A3.2.2): 

(7.5.2) 

(7.5.3) 

7.5.4 Mobility Characteristics 

The soluble motion criterion is not'satisfied because wheel one is redundant. Columns two and 
three of the Jacobian matrix are linearly dependent and thus the associated wheel variablee (the 

steering velocity wals and the wheel rotational dip velocity w,,,) are redundant. The actuated 
inverse solution is not applicable for Neptune. We cannot determine the actuation and sensing 
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structures because thc foundaiious of the actuation and sensing characterbation trees, thc robot 
actuation and sensing equations in (5.6.3) and (5.8.3), utilize the inverse solution. Furthermore, 
we cannot determine the number of DOFs by applying (5.4.4) bccausc the matrix A(Bo) is not 
computable. 

7.5.5 Remarks 

. 

Neptune was constructcd to provide a mobile platform for vision research and for that purpose 
the design is sufficient. From a control engineer’s point-of-view, the design is undesirable because 
the actuated inverse and sensed forward solutions cannot be calculated. The redundant wheel 
disallows these calculations. We suggest two practical design alternatives which allow the mobility 
and computational simplicity of Newt but require few changes to Neptune. First, wheel one can be 
made non-redundant by offsetting its center from the steering axis. Secondly, the front wheel can 
be offset as in the first al&ative, and the steering and drive motors can be moved from wheel one 
to drive wheels two and three producing a structure kinematically identical to Newt. 

7.6 Rover 
7.6.1 Kinematic Description 

As illustrated in Figure 7.6.1, the Rover consists of three conventional steered wheels sym- 
metrically arranged about the center of the robot body. The steering and drive of each wheel 
is actuated and sensed. Actuator conflict producing shaky robot motion[50], encountered while 
developing a controller for Rover, fostered our modeling of WMRs. 

7.6.2 Coordinate Transformation Matrices 

To simplify the coordinate transformation matrices, we have assigned all hip coordinate sys- 

tems parallel to the robot coordinate system and all steering coordinate systems parallel to their 
respective contact point coordinate systems: ’ 

1 0 0  0 
R T H l = ( o  0 1 0  0 1 

0 0 0  

/cases, -sines1 0 0)  

0 O 1 0  O t I s y k  
[ o  0 0 11 

cOsesa 0 
1 0  O O I na4sa - - 



1 0 0 &10/2 
R T H 3 = ( 0  0 0 1 0 1 1 d ; l C )  -10f2 

0 0 0  

/cosess -sines, o 01 

0 11 

( 0 0 0  1 1  

7.6.3 Wheel Jacobian Matrices 

The radius assignments are R1= R2 = Rs = R. The wheel equations are written by applying 
the Jacobian matrix for steered conventional wheels in (A3.3.2): ' 

7.6.4 Mobility Characteristics 

(7.6.1) 

(7.6.2) 

(7.6.3) 

The soluble motion criterion is not satisfied because the wheels are redundant. Consequently, 
the inverse solution is not applicable, the actuation and sensing structures cannot be determined 
and the sensed forward solution cannot be calculated. A dynamic force analysis is required to 
compute the wheel and robot motions since we cannot determine when wheel rotational slip will 
occur by kinematic calculations alone. Like&, the number of DOFs cannot be determined &om 
(5.4.4). 
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Figure 7.6.1 

Coordinate System Aesignments for Rover 

7.6.5 Remarb 

We conclude from th is  example that kinematic modeling of a .WMR must be addressed in 
the design stage. Rover can be redesigned to operate as an omnidirectional WMR by construct- 
ing the steering links so that the wheels are non-redundant. Since there are six actuators, the 

redesigned actuation structure will not be robust and will allow actuator conflict. The Denning 
Sentry robot[70] replicates the kinematic structure of Rover, with the exception that all three 

wheels are mechanically steered and driven in unison. The Denning WMR avoids actuator confiict 
by utilizing only two actuators and mechanically coupling the wheel motions, but in so doing it 
s a d c e s  omr;idirectionality. 

91 



7.7 Stanford Cart 
7.7.1 Kinematic Description 

The Stanford Cart hiss the kinematic structure of an automobile, two front wheels with coupled 
steering anglcs and two parallel non-steered back wheels, as shown in Figure 7.7.1. The rotations 
of wheels three and four and the coupled steering for wheeh one and two are actuated. 

Stanford Cart 

(Pseudo-bicsan-bican-whemor) 

I '  I 

radius = R Y 

< > 
1, 

Y 

(z-axes are out of the page) 

Top View 

Figure 7.7.1 

(x-axrs are out of t h r  page) 

Side View 

Coordinate System Assignements for the Stanford Cart 
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7.7.2 Coordinate Transformation Matrices 

The coordinate systems assigned in Figure 7.7.1 lead to the following coordinate transformation 
matrices: 

R Tu,=  (i 0 ; 0 ; 1 f) 0 

l o  0 .  0 1 1  

7.7.3 Wheel Jacobian Matrices 

The equations-of-motion for wheels me and two are written by applying the Jacobian matrix 
for steered conventional wh&s in (A3.3.2), and for wheels three and four by applying the Jacobian 
matrix for non-steered conventional wheels in (A3.2.2): 

(7.7.1) 

(7.7.2) 



(7.7.3) 

0 1 0. 
0 0 1  
1 0 0  
0 1 0  
0 0 1  
1 0 0  
0 1 0  
0 0 1  
1 0 0  
0 1 0  

(7.7.4) 

7.7.4 Mobility Characteristics 

We assumel that the steering angles are equal; i.e., 8s, = 8s, = Os, and consequently us, = 
WS, = ws. We substitute these cqualities‘iito the wheel Jacobian matrices in (7.7.1) and (7.7.2) to 
form the composite robot equation in (5.2.2): 

f-Rsin8s 
R COS 8s 

0 
0 
0 
0 
0 
0 
0 
0 
0 

. o  

la -la 
-1, 1, 
1 -1 
0 -1, 
0 -1, 
0 1  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

0 
0 
0 

-Rsin8s 

0 
0 
0 
0 
0 
0 
0 

R cos es 

0 0  0 0 0 
0 0  0 0 0 
0 ’ 0  0 0 0 
la 0 0 0 O* 
l e 0  0 0 0 
1 0  0 0 0 

0 R -1, 0 0 
0 0  1 0  0 

0 0 - 0  R 1, 
0 0  0 0 1  

0 0 -lb 0 0 

0 0 0 0 -1b 

P. 

(7.7.5) 

Because of the coupling between wheels one and two, the applicable soluble motion criterion 
test is rcmk[Bo] = w. We observe in (7.7.5) that the rank of the (12 x 9) matrix B, is eight, but 
there are nine wheel variables (i.e., tu = 9). Accordin&y, the mobility structure of the Stanford 
cart is not soluble and the inverse and-forward solutions are not applicable. 

7.7.5 Remarks 

The Stanford Cart is k&ematically similar to an automobile. Even though automobiles operate 
estisfactorily for transportation, we cannot satisfactorily model the motion of the Stanford cart 

using only kinematic characteristics. We conclude that a dynamic analysis is required to model it8 
motion. 

The Stanford Cut had sn Ackamm rteering hhge[45]  betwtcn the two front vrhcck. The Ackcrmlan linkage 

rpproximatly ensures the actuator coupling criterion by providing the correct wheel angler to avoid wheel dip. 
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7.8 Conclusions 

The six examples presented in this scction demonstrate that our kinematic modcling method- 
ology in Section 4 and the solutions in Section 5 establish the foundation for developing and 
solving the kinematic equations-of-motion of a WMR. Furthermore, we illustrate that writing the 
equations-of-motion for complex kinematic structures, such as Rover, is not practical without a 
systematic fiamework. The examples show that formulating the equations-of-motion for a WMR 
is a straightforward procedure which does not require insight into the operation of thc robot. 

We note that the actuated inverse and sensed forward solutions are applicable to WMRs which 
satisfy the soluble motion criterion (the Unimation robot, Newt and Uranus). The WURS which 
have redundant wheels (Neptune, Rover, and the Stanford Cart) do not satisfy the soluble motion 
criterion and the actuated inverse and sensed forward solutions are not applicable. Without these 
calculations, the control of WMRs having redundant wheels is inferior. We conclude that kinematic 
modeling of a WMR must be undertalrenin the design stage (Section 6.2). Since kinematic modeling 

and sensors must ensure that all of the modeling calculations are computationally feasible. 

is critical for WMR control, the design of the wheels and the positioning of the wheels, actuators . !  

These six examples exhibit. noteworthy features. If the wheel variables which are actuated 
and the wheel variables which are sensed are identical, than either the actuation or the sensing 
structure can be robust, but not both. For example, the actuation structure of the Unimation 
robot is robust and the sensing structure is not; whereas, the sensing structure of Uranus is robust 
but the actuation structure is not. Since we desire both robust actuation and robust sensing, we 
should not limit our WMR designs by sens&g only the wheel variables that are actuated2. When 
wheel level feedback control is implemented, the actuated wheel variables must be sensed to provide 
local feedback. For the preferred robot level control, we provide robust sensing and actuation. By 
sensing and actuating different wheel variables, we also reduce the mechanical complexity of the 
hardware. We note further that wheel slip is more likely to occur with actuated whed variables 
than unactuated ones because the actuated variables are force/torque sources. Thus the dects of 
wheel slip on the calculation of the robot position from wheel sensor measurements are reduced by 
sensing unactuated wheel variables. 

The only WMRs which allow three DOFs motion are the ones which consist exclusively of 
wheels with three DOFs (the Unimation Robot and Uranus). A WMR having non-steered conven- 

tional or redundant conventional wheels may be mechanically easier t~ construct but cannot allow 

three DOFs motion. We suggest that three DOF motion can be practically utilized when the WMR 

If brushlas motors are utilircd A &tUMtor8, each actuated wheel variable must be sensed to arable electronic 

commutation. 
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has an onboard manipulator. The mobility of the I h I R  extends the workspacc of the manipulator. 
When the WMR is for trauaportation of parts, matcrials or tools &om place to place, only two. 
DOFs are necessary. Thc mechanically simplest design to provide two DOFs is two diametrically 
opposed non-steered conventional wheels, as on Newt. Drive motors may coupled dircctly to the 
whcd axles. One or two additional castors are needed for stability. This design also embodies 
simple and easily calculated sensed forward and ytuated inverse solutions. 

The application of our methodology to exemplary WMRs completes our study of WMR kine- 
matics. In Section 8, we summarize our development and provide concluding temarks. 
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8. Conclusions 

, 

We have developed and illustrated a methodology for the kinematic modeling of WMRs. We 
have found that the established kinematic modeling methodology for stationary manipulators is not 
applicable to WMRS because of the higher pair wheel-to-floor joints, the multiple closed-link chains 
formed by multiple wheels, and the unactuated and unsensed wheel variables. Our development 
spans the kinematic analysis of WMRs, including: 

A survey of existing WMRs (in Section 2); 

Modeling of ball, omnidirectional, and conventional wheels (in Section 3);- 
0 Assignment of coordinate systems (in Section 4.3) ; 
0 Formulation of the transforxhation matrices (in Section 4.4); 

0 Formulation of the kinematic equations-of-motion (in Sections 44'4.7,  and 4.8); 
0 Solutions of the kinematic equations-of-motion (in Section 5); 

0 Characteraization of WMR mobility (in Section 5); 

0 Applications to design, control, dead-reckoning, and dip detection (in Section 6); 
0 Kinematic modeling of six examplary WMRs (in Section 7); and 
0 Naming and diagramming of WMR kinematic structures (in Appendix 1). 

In this concluding section, we s u d e  our development and highlight the significant results 
and implications. 

We begin modeling a WMR by sketching the mechanical structure. We assign one robot 

coordinate system, and a hip, stcering, and wntact coordinate system for each wheel (in Section 
4.3). We apply the Sheth-Uicker convention to coordinate system assignment and transformation 
matrix calculation because it allows the modeling of the higher-pair wheel contact-point motion and 
provides unambiguous transformation matrix labeling for the multiple closed-link chains formed by 
the wheels. 

We model each wheel (conventional, steered-conventional, omnidirectional or ball wheel) as a 

planar-pair which allows three DOFs: X-translation, Y-translation, and &rotation. A Conventional 
wheel attains Y-translational motion by rolling contact. The translation in the X direction and the 
8 rotation about the pointsf-contact occur when the wheel slips. We model the rotational slip as 
a wheel DOF beeause relatively small forces are required; furthermore, the majority of all WMRS 
rely on this DOF. We do not consider the X-translational wheel slip a DOF because relatively large 
forces are necessary. Omnidirectional wheels also rely on rotational wheel slip but ball wheels do 
not. 

By inspection of the sketch, we write the robot-to-hip, hip-to-steering and steering-to-contact 
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transformation matrices for cach wheel in the format of Tablc 4.4.2. Undcr the assumption of no 
wheel slip, the wheel rotations d e h e  the motion of the wheel contact.-point coordinate system with 
respect to a stationary coordinate system at the same position and orientation on the floor. The 
coordinate system fixed with respect to the floor is important because we reference the velocities of 
the wheel contact-point to this instantaneously coincident coordinate system. The rotational veloc- 
ity of a wheel about its axle is thus proportional to the translational velocity of the contact point 
coordinate system with respect to the instantaneously coincident wheel contact-point coordinate 
system. Similarly, there is an instantaneously coincidcnt robot coordinate system to reference the 
velocities of the robot coordinate system. We &sign instantaneously coincident coordinate systems 
because of the higher-pair wheel contact points. 

For each wheel we develop a Jacobian matrix (in Section 4.7.3) to Bpecify the robot velocities (in 
the instantaneously coincident robot coor&ate system: %&, %R) as linear combinations 
of the wheel velocities (e.g., the steering velocity, the rotational velocity about the wheel axle, the 
rotational slip velocity, and the roller velocities for omnidirectional wheels). We write the Jacobian 
matrix for a wheel by substituting elements of the coordinate transformation matrices, wheel and 
roller radii and roller orientation angles into the symbolic Jacobian matrices of Appendix 3. For a 
steered wheel, the Jacobian matrix depends explicitly on the steering angle. 

Our study has illuminated the following important wheel projm-ties. A (3 x wi) Jacobian 
matrix Ji is associated with a wheel having wi wheel variables. If the Jacobian matrix has rank 
wi, it satisfies the non-redundant wheel aifmion in (4.7.15), the wheel has wi DOFs and all wheel 
variables are independent. If the rank of the Jacobian matrix is less than wi, the wheel is redundant 
having fewer than wi DOFs, and some of the wheel variables are dependent. Specifically, my 
conventional wheel which is steered about an a& that intersects the wheel contact-point, or is 
oriented perpendicularly to the line &om the steering axis to the contact-point, is redundant. We 
have noted disadvantages of redundant wheels (without wheel couplings). The actuated inverse and 
sensed forward solutions do not apply. We cannot characterize the actuation and sensing structure 
of WMRs with redundant wheels because 'the actuation and sensing characterization trees are 
developed by applying the actuated invesse solution. We also cannot determine the number of 
DOFs of a WMR with redundant wheels (and no wheel couplings) because the DOFs calculation m 

(5.4.4) is not computable. Since the actuated inverse solution is not applicable, we cannot control 
such a WMR by calculating the actuator velocities fiom the desired robot velocities. Steering 
the WMR by calculating the Steering angle of a redundant wheel is an ad-hoc approach since a 
steering angle cannot be controlled instantaneously. We pointsut that some existing WMRs having 
redundant steered-conventional wheels (e.g., Neptune and the Stanford C&) are controlled in this 
manner with some success. Since our m e y  and examples show that WMRs have been designed 
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with redundant wheels, we infer that 'the implications of redundant wheels were not previously 
well-understood. 

We form the composite robot eqvution (in Section 5.2) by adjoining the equations-of-motion 
of all of the wheels. Linear positional couplings between wheel variables (e.g., steering angles or 
wheel axle angles) can be incorporated into the model by making the appropriate substitutions in 
the composite robot equation, as demonstrated in Section 7.7.4 for the Stanford cart. We solve 
the composite robot equation and interpret properties of the solutions to illuminate the mobility 
characteristics of the robot. 

The composite robot equation may have zero, one, or an infinite number of solutions cor- 
responding to three WMR mobility characterizations: overdetermined, determined, and undeter- 
mined, respectively. The mobility churucterixution free (in Figure 5.4.2) allows u s  to determine 
the mobility characteristics of a WMFt by indicating tests to be conducted on the composite robot 
equation. The implications of the mobility characterization tree are summericed by the following. 
If the solubZe motion criterion in .(5.4.1) is satisfied, the actUated inverse solution, actuation and 
sensing t r e e s  and the WMR DOF calculation in (5.4.4) are applicable. The three DOF motion 

criterion in (5.4.2) indicates whether the WMR kinematic structure allows three DOF motion. If 
the kinematic structure does not allow three DOF motion, the kinemutic motion construints are 
computed in (5.4.3). The number of WMR DOFs are calculated h m  (5.4.4). 

It is both impractical and unnecessary to actuate and sense every wheel variable on a WMR 
because of the multiple-closed link chains. A subset of the wheel variables is thus actuated, and 
a subset (not necessarily the same subset) is sensed. Even though a specific WMR may allow 

three DOF motion, we must be sure that the wheel actuators can actuate all three DOFs, and 
that the sensors can discern thr& DOFs. We apply the uctuution und sensing churacterization 

trees (in Figures 5.6.1 and 5.8.1, respectively) to provide the answers. The implications of the 
actuation characterization tree are summarized by the following three criteria. The udeqczuufe 

actuution criterion in (5.6.4) indicates whether the number and placement of the actuators is 
adequate for producing all motions allowed by the mobility structure. If the adequate actuation 
criterion is not satisfied, some robot DOFs are uncontrollable. The robust uctuution criterion in 
(5.6.6) determines whether the actuation structure is robust; i.e., actuator conflict cannot occur 
in the presense of actuator tracking errors. If the actuation structure is adequate but not robust, 
some actuator motions are dependent. The uctuutor coupling criterion in (5.6.5) indicates the 
actuator dependencies which must be satisfied to avoid actuator conflict and forced wheel slip. The 
implications of the sensing Characterization tree are summerized by the following three criteria. 
The udequate sensing criterion hi (5.8.4) indicates whether the number and placement of the wheel 
sensors is adequate for discerning all robot motions allowed by the mobility structure. The robwt 
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sensing criterion in (5.8.5) indicates whether the sensing structure is robust; i.e., wheel slip and 
sensor noise produce minimal effects on the calculation of the robot position from wheel sensor 
measurements. The wheel dip  criterion in (5.8.6) provides a computational method of detecting 
wheel slip in robust sensing structures. 

We calculate two solutions of the composite robot equation: the actuated inverse and sensed 
forward solutions. In the actuafed inoerse solution in (5.5.5), we calculate the actuated wheel 
velocities from the desired robot velocities. The actuated inverse solution is applicable for WMRs 
satisfying the soluble motion criterion. In the sensed {orward solution in (5.7.5), we calculate the 
robot velocities from the sensed wheel velocities. The adequate sensing criterion indicates whether 
the forward solution is applicable for a specific WMR. The composite robot equation in (5.2.2) need 
not be formed, if there are no wheel couplings, because the actuated inverse and sensed forward 
solutions and the mobility, actuation, and sensing characterization trees are expressed in terms 
of the wheel Jacobian matrices. The computations required for the actuated inverse and sensed 

forward solutions are additions, multiplications and the solution of (at most) three linear algebraic 
equations. 

We apply our kinematic methodology to the design, kinematics-based feedback control, dead- 
reckoning and wheel slip detection of WhtRs. Our kinematic methodology provides valuable insights 
into these areas. Just as the mobility characterization tree allows us to determine the motion 
characteristics of an existing WMR, we may utilize the tree to design WMRs to possess such 
desired characteristics as two or three DOFs. We may design a WMR with any specified workspace 
(i.e., set of allowable motions) by proper choice and placement of the wheels. We have listed the 
design criteria for a robust omnidirectional WMR in Tables 6.2.1 . We model two three-DOF 
'WMRS as examples: the Unimation robot (tr&whemor in Section 7.2) and Uranus (thoas- 
whemor in Section 7.4). We suggest that three DOF WMRs are applicable for use with an on-board 
manipulator. The mobility of the base extends the workspace of the manipulator. The majoritx 
of practical applications (i-e., parts, tools, and materials transport) require only two DOFs. We 
conclude that a WMR having two diametriczky opposed driven wheels (bicas-polycsun-whemor) is 
ideal for this application because of the simplicity of its mechanical design and kinematic model. 
The actuation characterization tree may be applied to design a WMR to have a robust actuation 
structure, thus avoiding actuator codict, as Shown for Uranus in Section 7.4.4. Similarly, the 
sensing characterization tree may be applied to design a WMR with a robust sensing structure to 

* minimize the adverse effects of wheel slip on the calculation of the WMR position. We have noted 
that the set of actuated wheel variables and sensed wheel variables cannot coincide if both robust 
actuation and robust sensing are desired. 

The few WMR control systems which have been documented are wheel level control sys- 
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tems[l7?33], without using a dynamic model of the WMR. The documentcd dcsigns arc tailored to 
the specific WMR being controlled. We detailed a kinematics-based robot level control system (in 
Section 6.4) for WMRs for which the m s c d  forward and actuated inverse solutions are applicable. 
Dead reckoning is the real time calculation of the robot position from wheel sensor measurements. 
We develop a dead reckoning u'pdate calculation in Section 6.4 by integrating the robot velocity 
computed by the sensed forward solution. 

We have uncovered three methods of dealing with wheel slip: design the actuation structure 
to avoid slip, design the sensing structure to detect slip, and minimize the errors in the calculated 
robot position due to slip. We model (in Section 3) rotational wheel slip for both conventional and 
omnidirectional wheels because many WMR designs rely on this DOF. We wish to avoid, detect or 
minimize the adverse &ects of the unmodeled translational wheel slip. One approach to eliminating 
wheel slip is to actuate all of the wheels, such as with the four-wheel drive on an automobile. Since 
this can lead to actuator conflict, we must design wheel couplings to ensure that the actuator 
coupling criterion is satisfied, as ~ t h  Uranus (in Section-7.4.4). This solution does not guarantee 
zero wheel slip, but if slip does-o&ur, all wheels must slip in unison which is unlikely. We have 
noted that a robust sensing structure allows us to detect wheel slip. We thus design the sensing 
structure to satisfy the robust sensing criterion and wheel slip is detected by the method of Section 
6.5. In t h i s  way, we are able to detect the onset of wheel slip and notify the robot processor that 
an absolute method of robot positioning (e.g., robot vision) should be applied before continuing. 
This method will also fail in the unlikely case that all wheels slip in unison. The least-squares 
sensed forward solution (in &tion 5.7) is less sensitive to wheel slippage if the sensing structure 
is designed to be robust. If wheel slip does occur, and no absolute positioning method is available, 
the adverse &ects can be reduced by applying the least-squares sensed forward solution. 

Even though our study is tailored to WMRs, our methodology may be applied to the kinematic 
modeling of other mechanisms, such as legged or treaded vehicles. The analysis of mechanisms 
having higher-pair joints, multiple closed-link chains or unactuated and unsensed joint variables 
may benefit from our methodology. In particular, our matrix coordinate transformation algebra (in 
Section 4.5) may be applied to the transformation matrices expressing the relationships between 
lower and high-pair joints. Our WMR diagramming and naming conventions (in Appendix 1) may 
be extended to legged mobile robots (LMRs) and treaded mobile robots (TMR,s). 

In Section 9, we discuss our continuing research. We are extending our study of WMRS to 
include the dynamic modeling of WMRs. 
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i Q. Continuing Research 

I Kinematic modeling of WR,s is the first step towar,, designing feedback control systems. We 
are continuing our study by applying our kinematic model to formulate the dynamic equations-of- 
motion of WMRs. In analogy with the past thirty-year study of stationary manipulators, wc realize 

I that our kinematic methodology is the foundation for the dynamic modeling of WMRs. As with 
stationary manipulators, our coordinate system assignments are reference systems for defining the 
masses and inertias of the robot components. The forces/torques produced by actuators and by 
motions of the robot components may be transformed from one coordinate system to another by 
applying our coordinate transformation matrices. Our kinematic calculations of positions, velocities 
and accelerations can be applied to calcdate the dynamic forces and torques produced by the 
motion of the robot components. For example, the recursive Newton-Euler manipulator dynamics 
formdation[31) applies kinematics to propagate positions, velocities and accelerations from the 
robot base to the end-effector. The forces/torques are then calculated from the end-dector to the 
base. 

I 

I 

We are applying, to the extent practicable, existing dynhic  formulations of stationary ma- 
nipulators[31] to WMR dynamics modeling. We are extending the existing formulations to ac- 
commodate the special characteristics of WMRs, such as multiple closed-link chains, higher-pair 
wheel-to-floor joints and unactuated and unsensed wheel DOFs. Once the kinematic and dynamic 
models are completed, we will 'focus on WMR control. Our research is paralleled by the physical 
construction of Uranus (in Section 7.4). When we establish the foundation for WMR control, we 
will implement our designs on Ursnus to verify the development and evaluate its performance. 

We have provided an extensive methodology for kinematic modeling of WMRs, and we conclude 
by pointing out practical extensions to our work. We have developed the actuated inverse and . 

sensed forward velocity solutions (i.e., the solutions for the actuated wheel velocities from the 
robot velocities and the robot velocities &om the sensed wheel velocities). We are utilizing pulse- 
width modulation to control the actuators of Uranus. The actuators can be modeled by linear 
transfer functions from pulse-width to motor velocity[51]; the pulse-width acts as the velocity 
reference signal and the actuated inverse velocity solution can be applied to calculate these &ereace 
velocities. When motor control is accomplished by controlling the motor current, as is the case 

with many stationary ma&pulators, the motor torque and current are proportional. Since the 
motor current acts as an acceleration reference signal, the actuated inverse acceleration solution is 
required. Since there are no commercially-available rotational accelerometers, we utilize available 
rotational position and velocity sensors for wheel feedback. The sensed fwward velocity solution is 
thus appropriate for computing the robot velocities for feedback control and dead reckoning. When 
accurate rotational accelerometers are developed, the sensed forward acceleration solution wil l  be 

. 
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applied. 

We have advocated the application of kinematic modeling to the design of WMRs for subse- 
qucnt feedback control. Since present designs are based upon experience with non-robotic mech- 
anisms (e.g., automobiles and tricycles) and ad-hoc methods, we expect that kinematic modeling 
prior to construction will improve future WMR designs. In Section 6.2, we addressed the design of 
WMRs. A systematic procedure for designing WMRs to obtain specified mobility characteristics is 
thus a promising area for research. 

Stationary manipulators are open-link chains for most operations. When the end-effecter comes 
in contact with an object (e.g., when picking-up an object and placing a peg in a hole), the structure 
becomes a closed-link chain and actuator conflict may occur. Compliance has been introduced in 
the operation and construction of stationary manipulators to reduce actuator conflict. Similarly, 
introducing compliance in hither the mechanical design or control system of a WMR to eliminate 
actuator conflict in overdetermined actuation structures has practical applications. 
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1. Appendix 1: A Nomenclature and Symbolic Represcntation of WMRm 

1.1 Introduction 

In this appendix, we introduce a nomenclature and a symbolic representation for describing 
the essential kinematic structure of WMRs. We define essential kinematic information as the min- 

imal information required to solve symbolically the kinematic equations-of-motion. For example, 
the presenso of a steering link is considered ess&ial kinematic information because an equation 
which relates the velocity of a steered wheel to the velocity of the robot body must depend upon 
the steering angle. In contrast, the distance between two wheels is not essential kinematic informa- 
tion because knowing the numerical value of the distance does not help to formulate the symbolic 
equations-of-motion. The nomenclature provides a convenient literal and verbal representation of 
the essential kinematic information. The symbolic representation displays pictorially the essential 
kinematic relations between the robot body, wheels and steering @ks using mnemonic symbols. 
Our desire to compare the kinematic char&.teristics of WMRs of differing structures has led to 
these representations. Without simple, straightforward and informative descriptions of the he- 
matic structure of a WMR, comparisons between robots become confusing and awkward. The 
conventional pictorial representations are mechanical drawings in which characteristics unessential 
for kinematic analysis complicate undkrstanding. Similarly, the conventional literal desgiptions of 
WMR kinematics are through lengthy verbal explanations. Otu symbolic and literal tepresenta- 
tions of WMRs characterize the essential kinematic structure of a WMR through simple diagrams 
or names. 

Our symbolic (naming) representation bas been devised to be easily drawn (written or spoken) 
and interpreted, while providing the following information: 

0 The number of wheels; 
0 

0 The steered wheele; 
0 

0 

0 

The type of each wheel; 

The relative positioning of the wheels; 
The actuated DOFs of each wheel; and 
The sensed DOFs of each wheel. 

Our symbolic representation can be augmented to include functional dependencies between 
wheels and define the distances and angles between components (although these characteristics are 
not considered essential kinematic Sormation). Although functional dependencies are needed for 
symbolic solutions, it is d8icult to incorporate arbitrary functional relations into our representa- 

tions. Our dehition of essential kinematic'information is chosen because our ultimate objective 
is the control of WMRs; consequently, information required for the forward and inverse kinematic 
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calculations is directly applicablc to WMR. control. For this reason, we specify the DOFs of each 
whcel which are actuatcd and scnscd. The motion of an unactuated (non-sensed) DOF may con- 
strain the motion of the robot, whereas the motion of an actuatcd (sensed) DOF may bc calculated 
symbolically from the motion of the robot body. Understanding these representations can 
most easily be accomplished by scanning the rules delineated in Sections A1.2 and 
A1.3 and then following the examples in Section A1.4. The reader can then refer back to 
thc rules for a more detailed understanding. 

1.2 Symbolic Representation Rules 

The rules for generating and interpreting WMR diagrams follow. 

1.) A WMR is depicted by a large circle. 
2.) Each whcel appears as a small circle within the WMR circle. 
3.) Each steering axis is portrayed as circle smaller than the associated wheel; a steering link 

is drawn as a line segment @om the steering axis to the respective wheel. If the steering 
axis intersects the center of the respective wheel, it is depicted as a small circle within and 
concentric to the wheel circle, and a steering link is not required. 

4.) The relative positions of the wheel circles (for non-steered wheels) and steering axes (for 
steered wheels) correspond to the relative positions of the wheels and steering axes on the 
robot. 

5.) The DOFs of a wheel are indicated by line segments and arcs within the wheel circle drawn 

in the directions of the translational a d  rotational DOFs, respectively. The rotational slip 
DOF of a wheel is implied and no arc is drawn. A conventional wheel has one radial line 
segment in the direction of travel from the wheel center to the wheel circle. Similarly, an 
omnidirectional wheel has two radial line segments, and a ball wheel has two radial line 
segments and an arc (one quarter of a circle) drawn within the wheel d e .  

8 

6.) The actuated DOFs of each wheel are drawn with an arrowhead appended to the line indi- 
cating the DOF. 

7.) The sensed DOFs of each wheel are drawn with a-”T” appended to the line indicting the 
DOF. A DOF, which is both actuated and sensed, is indicated by a closed arrow (i-e., the . 
combination of a ”T” and an arrow). 
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$8.) (Optional) Functional dcpmdencies between DOFs within or between wheels may bc indi- 
cated by dashed lines. Dashed liues may also be used to indicate that a component of a 
WMR cannot be described adequately by our representation. 

1.3 Nomenclature Rules 

Our nomenclature expresses the identical information as the symbolic representation id Section 
A1.2. For compactncss, we limit the amount of positional, actuation and sensing information in 
the name of the WMR. The d e s  for creating.and interpreting W M R  names follow. 
1.) The name of the kinematic structure of a whceled mobile robot ends with the suffix -whemor. 

This s u e  may be omitted when it is understood that the name is of a WMR. 

2.) Sets of one or more wheels of the same functional type are indicated by syllables separated 

by hyphens. 

3.) Two or more wheels of a WMR are of the same functional type if they are of the same basic 
type (i.e., conventional, omnidirectional, or ball); are all steered or all not-steered; are all 

actuated and sensed similarly; and are all placed symmetrically with respect to either the 
center of the robot, a line through the robot center (the major axis), or a line perpendicular 
to the major axis (the minor axis). 

4.) The syllables are ordered from the beginning to the end of the name according to the following 
precedence characteristics which are listed from the most to the least important 

Symmetky with respect to tfie robot center; 
Symmetry with respect to the major axis; 

. 

Symmetry with respect to the minor axis; 

Number of wheels; 
Steered wheels; 
Ball wheels; 
Omnidirectional wheels; 
Conventional wheels; 
Actuated wheela; and 
Sensed wheels. 

For example, all wheel sets which are symmetric with respect to the robot center appear 
Grst; and if there is more than one wheel set which is symmetric with.respect to the robot 
center, the set having the largest number of wheels (if there is not a tie) is listed first in the 
name. 
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5.) Each syllable representing a set, of wheels consists of: 
i.) One of the prefixes "una", " br", " tta", " tetra", "pento", " heza", " hepta", 

"octanY "ennea", "decu", or "poly" to indicate the number of wheels in 
the set; 

ii.) Followed by one of the letters " c" , " o", " b", or " w" to indicate that they 
are either conventional, omnidirectional, ball or an unspecified type of 
wheel. For an omnidirectional whcel, the final vowel of the prefix is 
dropped before adding " 0" to make the name pronounceable; 

iii.) Followed by " s" if the wheels are steered; 
iv.) Followed by either an " a" or " u" to indicate that the wheels are actuated 

or unactuated, respectively. A wheel having more than one DOF and/or 
a steering axis  is considered actuated if the steering angle or any of the 
DOFs is actusted; 

v.) Followed by either an " s" or " n" to indicate that the wheels are sensed or 
not-sensed, respectively. A wheel having more than one DOF and/or a 

steering axis is considered sensed if the steering angle or any of the DOFs 
is sensed. 

6.) A kinematic structure of a' WMR, which cannot be named adequately according to these 

rules, is named by prefixing-the name which most closely indicates the structure with 
pseudo-. 

A class of kinematic structures which may consist of a large number of specific instances of 
WMRs is specified by the poly prefix. For example, a polycas-whemot refers to the class of M?MRa 
which have only conventional non-steered wheels arranged symmetrically with respect to the robot 
center or its major axis. Similarly a class of WMRs which has a number of wheels whose type is 
not specified is called polywas-whemor. Also, if the actuation and sensing characteristics are not 
important for the discussion, the actuation and sensing labels may be omitted, as in polyw-whernor. 
Admittedly, our nomenclature has disadvantages. Names created by these rules may not be easily 
pronounceable. There is not a one-to-one relationship between WMRs and the names created 
by our nomenclature. There are examples of WMRs which have several legal names (e.g., wheel 
sets can always be divided into multiple sets, each having fewer wheels). Furthermore, it is not 
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always possible to determine the symmetry of a WMR from its name (e.g., a hezuc-whemor may be 
symmctric with respect to the robot center or the major axis). These disadvantages are the result 
of our attempt to assign compact names. Most ambiguities in the nomenclature can be eliminated 
by assuming the practical alternative. For example, a tric-whernor must be symmetric with respect 
to the robot center and not the major axis, because it would be more practical to name the latter 
a bic-unic-whemor. 

1.4 Examples 

In Section 2, we illustrate the kinematic diagram and name of fourteen WMRs. The pre- 
dominant WMR kinematic structure documented in the litcrature has two parallel conventional 
wheels, one on each side of the robot (thus, the syllable bicas). These robots also possess one or 
two castors for stability. Among the most widely known examples are Shakey(521 and Newt[32] (in 
Figure 2.1). Shakey has two freewheeling casters for stability (bicsun), whereas Newt utilizes only 
one (unicsun). By mounting the two driven wheels at an acute angle to the floor in their Topo[27] 
robot (in Figure 2.1), the Androbot Company stabilized the robot without the use of castors. Even 
though the acute angle of the wheels cannot be represented in i t h e  the symbolic representation 
or the name, we can infer that the wheels must be angled for stability by assuming the most prac- 
tical realization. Mobile robots which possess.multiple non-steered, driven wheels whose axes are 
non-colinear must rely on wheel slip if the robot is to navigate turns. Such is the case with the 
Terregator[66] (in Figure 2.2) which uses six parallel, non-steered, conventional wheels, three on 
either side (hezucas). The mechanically more complex, steered and driven conventional wheel is 
utilized on Neptune[57] (in Figure 2.3), which has a tricycle wheel arrangement; the front wheel is 
steered and driven (unicsas), while the two rear wheels are at a ked parallel orientation and are 
undriven (bicun). The CMU Rover[48] (in Figure 2.3) has three steered and driven wheels (fricsm). 

The Stanford Cart(461 (in Figure 2.4) has two steered, undriven wheels in the front (bicsan) 

and two fixed, driven wheels in the back (bjcan). The two steered wheels are coupled so as to be 
oriented in the same direction, thus the pseudo prefix. The JPL Rover(41] (in Figure 2.4) is similar 
to the Stanford Cart except that both the front and back wheel pairs have coupled steering pseudo- 

bicsan-bicsun-whemor. Kiudge[29] (in Figure 2.4) has complex functional dependencies between 
the wheels. This robot has three conventional wheels that are both steered and driven, as on the 
CMU Rover. In addition, a chain and gear arrangement is used to equalize all drive velocities and 
steering angles. To complicate further the arrangement, each wheel is mounted on an actuated link 
which can be pivoted towards or away from the center of the robot to adjust its stability properti- 
(pseudo-tricsus). Dashed lines are used in the symbolic representation of Kludge to indicate the 
functional dependencies between steering angles and wheel actuation, and the inability to represent 
the pivoted link. The hybrid spider drive[29] (in Figure 2.5) utiliees four conventional wheels, two - 
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on either side of the robot, &ch of which is mounted at the end of a three DOF leg linkage 
(pseudo-tetracsas). The hybrid locomobion vehicle[34] (in Figure 2.5) utilizes six stecrcd and driven 
conventional wheels, each at the cnd of an actuated vertical leg (pseudo-hezacsas). Uranus[49] (in 
Figure 2.6) utilizes four omnidirectional wheels positioned at the comers of a rectangle (tetrous). 
The Unimation Robot[14] (in Figure 2.6) possesses three DOFs using only three actuators and 
three omnidirectional wheels (troas). The most maneuverable wheel is a ball which is actuated so 
as to possess three DOFs[47] (unibas). 

We note that our representations can be extended to other classes of mobile robots. For 
example, Legged Mobile Robots (LMRs) can be denoted by the s u e  lemor, and Treaded Mobile 
Robots (TMRs) may be dcnoted by the suffix fremor. 
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k j  
kf2 
k* 

Matrices 
Matrix I Page) Dimension I Definition 

68 (3 x l )  control system feedforward gain vector 
68 (a x 1) actuator gain vector 
68 ( S i  x 1) . sensor gain vector 

Ji 
Ji 

Ji, 
Ji ,  

Ji ,  

Ji, 

I Jill I 53 I 

36 (3 x 4) pseudo-Jacobian matrix of wheel i 
37 (3 x W i )  Jacobian matrix of wheel i 
52 ' . (3 x ai) actuated Jacobian matrix of wheel i 
52 (3 x *) unactuated Jacobian matrix of wheel i 
57 (3 x s i )  sensed Jacobian matrix of wheel i 
57 (3 x ni) not-sensed Jacobian matrix of wheel i 

fa x 31 I actuated inverse Jacobian matrix 1 
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3. Appendix 3: Wheel Jacobian Matrices 

3.1 Introduction 

In this appendix, we develop the wheel Jacobian matrices for conventional wheels, steered 
conventional wheels, omnidirectional wheels and ball wheels. The wheel Jacobian matrix (as intro- 
duced in Section 4.7.3) relates the velocities of the WMR to the velocities of the wheel. The wheel 
Jacobian matrix is the product of the pseudo-Jacobian matrix & and the wheel matrix W i :  

Ji = & W1. (A3.1.1) 

The pseudo-Jacobian matrix relates the wheel pseudo-velocities to the robot velocities, 'as 
described in Section 4.7: 

(A3.1.2) 

The wheel matrix in (4.7.13) relates the pseudo-velocities to the actual wheel velocities. The 
wheel equations-of-motion in Figure 3.2 are applied to construct the wheel matrices. The pseudo- 
velocities cwciz, c*ucsu and Ewes are the velocities u,, vv, and w, in Figure 3.1. The actual 

wheel velocities are the angular velocities of the wheel and rollers wwiz, wwiy, wWjt,  and wwi, about 
their respective axes. With these observations, the wheel matrix for each wheel is written directly 
fiom the wheel equations-of-motion in Figure 3.2. The wheel Jacobian matrix is then formed by 
multiplying the pseudo-Jacobian matrix in (A3.1.2) by the wheel matrix. We consider each of the 
aforementioned wheels in turn. 

- - 

3.2 Conventional Non-Steered Wheel 

The conventional non-steered wheel has two DOFs: motion in the direction of the wheel 
orientation, and rotational slip about the point of contact, corresponding to the two wheel pseudo- 
velocities cmu~iv, and ciwci, respectively. The actual wheel velocities are the angular velocity of 
the wheel about its axle wwiz and the angular velocity of the rotational dip wwi=. These velocities 
are related by the (4 x 2) wheel matrix Wi in (A3.2.1). 

- - 

/ o  o \  
(A3.2.1) 
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The wheel matrix is rnultiplicd by the pseudo-Jacobian matrix in (A3.1.2) to form the (3 x 2) 
Jacobian matrix: 

. 
Conventional Non-Steered Wheel Jacobian Matrix 

(A3.2.2) 

This wheel is termed degenerate because the Jacobian is non-square and thus non-invertible. 
Even though a robot velocity vector can be calculated from a wheel velocity vector, it is not always 
possible to compute a wheel velocity vector from a robot velocity vector. The degenerate nature of 
the kinematic equations-of-motion of the non-steered conktional wheel precludes its application 
to three DOF WMRs. 

3.3 Conventional Steered Wheel 

The conven t id  steered wheel has an additional DOF provided by the steering joint corre- 
sponding to thc pseudo-velocity H*wsi. The actual steering velocity w.,, (in Figure 3.2) is equal to 
the steering pseudo-velocity. The (4 x 3) wheel matrix and the (3 x 3) wheel Jacobian matrix are, 
respectively: 

R O O  

0 0 1  
(A3.3.1) 

and 

Conventional Steered Wheel Jacobian Matrix 

(A3.3.2) 
-& sin Reci R d C i ~  - R d H i ~  

-Rdc,= RdHiz 
1 -1 

J1 = . 
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The Jacobian matrix is invertible if its determinant is nonzero; i.e., if 

det(J;) = h?, (s*dcivcos '*eci - s*dci,sins*Oci) # 0 . (A3.3.3) 

The determinant is zero and the conventional steered wheel is redundant if the steering axis  inter- 
cepts the wheel point of contact (i.e., if s* dciZ = s, dciv = 0) or if the wheel is oriented perpendicular 
to the steering link (i.e., if C*ds,v = S*dci,sins*8ci - coss*Bci = 0). 

3.4 Omnidirectional Wheel 

The omnidirectional wheel possessd three DOFs without a steering joint. The DOFs are 

motion in the direction of the wheel orientation, motion in the direction of the roller orientation 
and rotational slip, which correspond respectively to the actual wheel velocities wwiz, wwir, and 
wWiz. The pseudo-velocities qi are linear combinations of the actual velocities ~ i :  

The wheel Jacobian matrix is: 

(A3.4.1) 

Omnidirectional Wheel Jacobian Matrix 

The determinant of the omnidirectional wheel Jacobian matrix is -&risinqi, and come- 
quently the Jacobian matrix is invertible whenever the rollers are not aligned with the wheel (i.e., 
whenever 9i # 0). 

3.5 Ball Wheel 

The ball wheel possesses three DOFs of rotation about the three n o d  axes positioned at 
the wheel center. The wheel matrix relating the actual wheel velocities wwi=, wWiv and owir to the 
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pseudo-velocities is: 

I 

' R O O  
O R 0  

0 0 0  

(A3.5.1) 

* I  
The wheel Jacobian matrix is: 

* .  I 
I 

Ball Wheel Jacobian Matrix 

Since the determinant of the ball wheel Jacobian matrix is Ria, it is invertible for all non-zero 
wheel radii. 

In Section 7, the wheel Jacobian matrices developed in this appendix are applied to obtain the 
kinematic equations-of-motions of specific WMRs. 
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4. Appendix 4: Actuated Inverse Solution'Matrix Calculations 

In this appendix, we detail the matrix manipulations leading to the actuated inverse solution 
in Section 5.5 . Wc solve the composite partitioned robot equation in (5.5.3) ' 

to calculate the actuated wheel velocities & in the least-squares solution @ (5.5.4): 

("> = ( B & B ~ ~ ) - ~  B& A. . 
Qu 

We begin by forming the matrix product: 

(A4.1) 

(A4.2) 

(A4.3) 

To invert (BrpBop), we have written the matrix in block form with four components, each 
one a block diagonal matrix. We let the block matrix X be the inverse of the matrix in (A4.3). 
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To compute the block components of the matrix inverse in terms of the block components of the 
matrix in (A4.3), we apply the fact that the inverse of a matrix times the matrix itself is the identity 
matrix; i.e., 

x 1 2  I O  (A4.4) 

Since we seek only the upper (actuated) components of the wheel velocity vector qa in (A4.1), we 
calculate only the two components in the top row of the block matrix inverse. We thus seperate 
the solution of the actuated wheel velocities 

Ga = (xi1 ~ 1 2  ) B@OP 

from the solution of the uactuated ones. We expand (A4.4) to obtain 

The matrix X11 in (A4.9) is 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 

. (A4.10) 

(A4.11) 
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The matrix X12 in (A4.8) is 

a, 0 ... 
Xl2 = 

... 0 AN 

where, 

(A4.12) 

(A4.13) 

We substitute (A4.12) and (A4.11) into (A4.5) to obtain the actuated wheel velocity vector 

(A4.14) 

Equation (A4.14) is the least-squares solution for the actuated wheel velocity vector. We note 
that this solution is applicable only when the matrix in (A4.3) is invertible. The conditions under 
which this solution is applicable are specified by the soluble motion criterion in (5.4.1). 
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5. Appendix 5: Sensed Forward Solution Matrix Calculationa 

In this appendix, we detail the matrix manipulations leading to the least-squares sensed forward 
solution. We solve the partitioned robot sensing equation in (5.7.2) 

(A5.1) 

to calculate the robot velocities p in the least-squares solution in (5.7.4): 

We begin by formipg the matrix product 

(A5.2) 

I 

(A5.3) 

NI T =(.. D) ' 

where N is the number of wheels and I is the (3 x 3) identity matrix. We let the block matrix X 
be the inverse of the symmetric matrix (A,TAn) in (A5.3). Since the inverse of a matrix times the 
matrix is the identity matrix, 

N I T  I O  
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We use the top block row of the matrix inverse to seperate the robot velocity vector p from the 
non-sensed whccl velocity vector qn : 

From (A5.4), we obtain 
X11NI + X12TT = I 

and 

XiiT + X12D = 0 , 
from which 

x12 = -X~~TD-'  

xll = (NI - TD-~TTI-' . 
and 

The inverse of the block diagonal matrix D is: 

(A5.5) 

(A5.6) 

(A5.7) 

(A5.8) 

(A5.9) 

. (A5.12) 

Finally, we substitute (A5.11) and (A5.12) into (A5.5) to obtain the least-squam solution for 
the robot velocity vector: 

P = [A(J1n) + A(J2n) + - *  + A(JNp)J-'[A(Jin)J1, A(J2n)J2. A(JN~)JN.]& - (A5.13) 

In Section 5.8, we develop the adequate sensing criterion which ensure the invertability of the 

matrix (AT&) in (A5.3) and thereby the applicability of the least~~quares sensed forward solution 
in (A5.13). 
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