
Space-Time Filtering, 
Sampling and Motion Uncertainty 

Radu S.  Jasinschi 

CMU-RI-TR-88-9 

The Robotics Institute 
Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 

June 1988 

0 1988 Carnegie Mellon University 

This research was supported by the Defense Advanced Research Projects Agency @OD), monitored by the U.S. 
Army Engineer Topographic Laboratories under Contract DACA 76-85-C-OOO2. 

Address: Center for Automation Research, University of Mayland, College Park, MD 20742 





Abstract 

We analyse the structure of filters which are space-time oriented. Basically, this paper consists of two parts. In the 
first one, we present the cascade of space-time DOG as an energy filter, discuss its general properties and show how 
to compute its energy. In the second part, we discuss the consequences of applying the sampling theorem to 
uniformly translating patterns in the presence of motion uncertainty. It is shown that, for a given motion 
uncertainty, there exists a bound on the maximum sampling interval, such that for larger values aliasing will occur. 





1 INT.RODUCl7ON 

1 Introduction 
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The problem of the extraction of the optical flow has, in recent ytats, been treated from a new point 

of view, that is, through the use of space-time filters [7,4,6,5]. The basic idea behind this method 

is to extract the optical flow without having to perform any type of operation other than to use a 

collection of filters which arc tuned to different orientations in space-time (or equivalently in the 

frequency domain). Also, given that the outputs of these filters have been computed, it is necessary 

to establish a method by which we can determine the value of the tstimatcd optical flow, because 

the output of a filter tuned to a specific orientation (even if with maximal rtspanse) is not enough to 

extract the optical flow and wc have to use a complete set of filters (in the scnsc that it takes into 

account all possible orientations). In space-time filtering, we umvolve a squencc of images with a 

(space-time) filter, such that the interval h w e m  SuccSSive images is small. Thc minimum temporal 

interval between sucessive images is basically dictated by practical considerations, because if it is too 

small wc get little amount of information about the moving pattern from frame to frame. On the other 

hand, we would like to know what the value of the maximum temporal interval between sucessive 

images should be such that wc umtinue to be able to use a filtering approach to the extraction of 

optical flow 

The answer to this question comes by considering the sampling issues involved in this filtering 

proctss. As I will show in section 3, if the= exists a certain degree of motion uncertainty, then 

the maximum sampling interval. is fixed by this motion uncertainty. This means that the= exists a 

(non-linear) relatiamhip between the motion uncertainty and the maximum sampling interval. 

The procedure of using a collection of filters to extract optical flow corresponds, in a general 

SCIISC, to a signal processing approach, which is mainly concerned with the extraction of information 

about the original signal, in the p m c e  of noise. It involves the construction of filters, if possible 

optimal ones, parameter estimation and the analysis of sampling issues. 

On the other hand, in the feature based approach to the extraction of optical flow [3] it is necessary 

to, previously to the actual computation of of the optical flow, extract edges (zero crossings) which 
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have to be matched in suctssive fhmes. If the temporal intend between succesive images is large 

and the number of edges to be matched between frames is not high, then a contour-based approach 

can be sucessful in extracting the optical flow. But, on the other hand, if the number of edges is 

large, the amount of mismatchings can lead to a high rate of error, and as a consequence of this to a 

wrong estimation of the optical flow. 

It is therefore important to be able to detect moving fcatuns and extract their optical flow in 

the presence of noisy data and imprecise measurements. Depending on the spatial complexity of 

information available at each image, in the temporal sequence of images, it can be more reliable to 

use a filtering approach, especially for the casc in which the interval between these images is small 

and them exits a high spatial content of infomation (which makes a featwe matching approach highly 

unstable). 

In this paper we discuss, in d o n  2, the issue of extracting the optical flow through feature 

or intensity based approaches versus space-time filtering, and present the space-time DOG cascade 

as an energy filter. In d o n  3 we analyst sampling issues which apply for uniformly translating 

patterns in the presence of noise (motion uncertainty). Finally, we draw conclusions in d o n  4, 

and make an analogy between the long and short-range processes of motion extraction in the human 

visual systtm and the feature-based and space-time filtering methods in Computer Vision. 

2 Space-time filtering 

2.1 Extraction of the optical flow in intensity and feature-based approach 

The extraction of the optical flow field fran the intensity variations in the image plane has been mated 

until very recently, in Computer Vision, as a feature or intensity-based problem. In the feature-based 

approach we have to detect relevant features, such as edges, from a pair of succssive images (in 

a temporal sequence of images), and afterwards perform a matching of corresponding elements, so 
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that, as a d t  of this proctdurt, we assign a specific value of the optical flow to the corresponding 

elements. 

This method has to overcome two major problems: 

1. The correspondence problem 

2. The apexture problem. 

The correspondence problem [l] addresses the question of how to assign the same identity for 

elements which appear in temporal rmccssioa of images. The contspondence, or matching, can be 

computed in different ways. depending, in part, on the temporal interval between succtsive images. 

If this interval is small, the wmspondence between features can be performed through a set of local 

opemions over elements which are spatially close to each other. One of these operations [1,17] 

consists in the minimiion of the distance a set of elements takes to travel fnnn one image to its 

mrctssive me. On the other hand, if this temporal interval is large, it is more likely that a more 

global type of operation for the matching of fcaturcs has to be implemented. In general, the matching 

of corresponding elements in suctssive images c a ~ ~  be unstable, due to noise in the image, and also 

computationally expensive if the number of features to be matched is large. 

In respect to the ape- problem, which states that it is not possible to measwe both components 

of the optical flow field given a small ape- in the image, we have to inmduce additional conmints 

into the model describing the extraction of Optical flow, so as to make it possible to obtain the 

full optical flow field. Actually, given a small apcrwt, we are only able to measwe the normal 

component (to the gradient of the intensity) of optical flow field, while its tangential component 

mains undetermined. As one example of the solution to the aperrurt problem, we can mention the 

area-based [2] formulation which assumes the use of a smoothntss term, in addition to the intensity 

continuity equation, represented by the sum of the squaxw of the spatial derivatives of the optical flow 

field components. Another example is given by the contaur-bastd [3] approach, wheE the mntraint 

is represented by the gradient in respect to the arc length along the intensity gradient of the optical 
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flow field, in addition to the difference between the normal component of the optical flow and its 

measured value. 

Both, the comspondence and the aperture problem, involve in practice a artain amount of 

arbitrariness in t e r n  of having to choose a set of coI1sv8ln ' ts which enable us to extract the full 

optical flow. It is therefore desirable to be able to eliminate the necessity of having to cope with both 

of these problems. The method of space-time filtering docs this, in part, by eliminating altogether the 

necessity of the use of the comspondcnce problem. In respect to the aperture problem the solution 

given by Hccger [SI consists in modeling thc image flow as (locally) purely translational, so that 

the optical flow is extracted by fitting a plane to the energy of the filter. This is equivalent to the 

computation of both components of the optical flow field, because for translational motion the support 

in the frequency domain is given by a plane whose orientation is a function of the velocity vector. 

2.2 Space-time oriented iilters 

Space-time filtering ccmsists, basically, in the convolution of a temporal sequence of images (closely 

displaced) with a (space-time) filter. The most important aspect of space-time filtering lies in the fact 

that, if we consider an uniformly translating pattern, we arc able to select a specific velocity by using 

(space-time) ori~nttd filttrs [a]. 

Let us take the example of onedimcnsional motion (in the x direction). If we analysc the picture 

which is generated in space-time by an uniformly translating pattern (through a cross-scction parallel 

the x-t plane), then we can conclude that the orientation of the individual elements (like lines or 

Stripes) is intrinsically determined by the velocity of the pattern (the slopc of a line in the EPI plane 

is equal to the velocity of the feature associated to it). A very htemting example of this kind of 

relationship between (space-time) orientation and velocity is described by the cpipolar plane images 

@PIS) mated by Bollts and Baker [8] for the case of a camera moving (perpcndicularly to the 

dirtction of motion) in a static environment. There, at a given EPI, we are able to track the temporal 

evolution of each image element (at a fixed height), and this is described by a seaight line. 
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Once we know that, for uuiform translation, the space-time evolution of image elements is given 

by straight lines, in order to select a specific velocity (optical flow), we can use (space-time) oriented 

filters [6,7]. A particularly impoxtaut aspect of this analysis comes from the fact that, for an uniformly 

translating pattern, the support of the contrast fundon in the fnquency domain is given by a plane 

(or a line for the cast of onedimensional motion) [7,10] passing through the origin of the coordinate 

system. In t e r n  of space-time filtering, this means that, in order to select a specific velocity of an 

uniformly translating pattern, we have to tune the filter to the orientation in the fresuency domain 

which gives the highest nsponse. 

The use of directionally selective (space-time) filters posc a limitation in the sense that they are 

phase sensitive (61. This means that, depending on the alignment between the space-time configuration 

of moving pattern and the filter shape, wc cau get different results: the filtercd output may oscillate 

or vary betweem positive and negative values. A solution to this problem is given by computing the 

mergy (power sptcaum) of the filter output. The energy of a convolved signal is independent of any 

phase problem, and for thc case of an uniformly translating pattcm its output is constant. 

If, for example, we compute the energy associated to a space-time Gabor filter [5] convolved with 
an arbitrary function, them the final result will not oscilate or depend on any phase factor. This leads 

to the concept of space-time oriented filters as energy filters, which, with the assumption of random 

texturtd images and Parstval’s theorem made it possible for Httger [5] to, analytically, predict the 

mergy assaciatexi to a particular space-time oriented pattern. 

2.3 Space!-time Difference-of-Gaussian @OG) cascade as an energy filter 

Space-time filtering, either through energy filters or cascades, is primarily concerned with the pro- 

cessing of a temporal sequence of images, such that the interval between successive images is small. 

On one hand, the wodt of Hecger 151 showed us that it is possible to obtain a dcnse image flow 
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map by using a collection of twelve space-time Gabor filters, each tuned to a different direction in 

space-time. The space-time Gabor filter is parameaized by three (gaussian) filter sizes (ax, uy and 

a,), in addition to the (three) sine or cosine space-time frequencies (whose relative ratios correspond 

to different orientations in space-time). It would be desirable to have a broader space-time tuning 

capability, as, for example, in the case of the cascaded filters proposed by Fleet and Jepxm [9]. They 

proposed the construction of space-time oriented filters in terms of cascades of the CS filter. The CS 

filter is dehed as the diffeEnce of spatial gaussians which arc each multiplied by a temporal expo- 

nentially decaying function, comsponding to a temporal center (C)-surround (S) model, in analogy to 

biological systems, plus, a temporal delay term emboddied in the S part. The space-time orientation 

is obtained by canvolving the CS filter with a sum of (space-time) Dirac distxibutions, each centered 

at a specific location in space-time so that the d t  is a oriented pattern. The use of l a y e d  cascades 

of the CS filter improves the orientation specificity of the filters, as shown by Fleet and Jepson [9]. 

In respect to its tuning capabilities, these layered cascades of the CS filter, arc able, in addition to 

their specific orientation, to select fcaturts moving at high or low speed by adjusting the ratio of the 

spatial or temporal filter sizes to one, rtspectively. 

We would like to use a filter which exibits a wide range of space-time tuning and can also be used 

to extract the image flow as an energy filter. The simplest fusion of these two aspccts is exibited by 

the space-time DOG filter, used in cascade. In fact, if we substitute the temporal exponential decay 

term in the CS filter by a temporal gaussian, and eliminate the temporal delay, we get a space-time 

DOG. The number of parameters of this filter is qual 9, where 4 c~mspond to the center and 

rmrround filter sizes (the spatial filter sizes llft assumed to be qual), spatial and temporal offsets 

make up 3 parameters, plus the center and surround multiplicative wnstauts. The only FeaSOn for 

not using the CS cascade filter of Fleet and Jepson directly as an energy filter comes from the fact 

that the energy expnssion nuns out to be more complex than that of the space-time DOG cascade 

because it has a linear temporal exponential decay, whereas for the DOG filter the temporal decay is 

gaussian, thus making it easier to perfom the temporal integral in ordcr to get the energy expression. 

We should remind ourselves that the space-time DOG and Gabor filters an non-causal, as a 

consequence of the Paley-Wiener thmrem [121 which states that, if a temporal filterf(t) has a square 
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integrable Fourier transform f (w) and satisfies the relation 

7 

thenf(z) is causal. The CS filter, on the contrary, due to its linear exponential temporal decay, is a 

causal filter. 

The space-time DOG filter is given by the following expression 

where a, (0,) and p, (p,) arc the center (!nmmnd) spatial and temporal filter sizts respectively, while 

A, and A, arc adjustable parameters (used in the discrete versim of the filter to tune the sum of all 

elements of the mask to zero). Its Fourier transform is given by 

where the spatial and temporal fnquencies arc rtsptctively given by k' ( E  = (kz, k,)) and w. 

A cascade of filters comsponds to applying, in sucession, a set of linear filters, to a collection of 

signals [9], such that the intend bttwten their suctssive positions of highest magnitude is measured 

by the offset. In the case of space-time filtering these offsets have a spatial as well as a temporal 

part. Also, they can occur in a set of layers, where each layer comspoads to a different collection 

of space-time offsets. 

Lct us define, analogously to Fleet and Jepsan [9], the one-layer cascade by the expression 
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6(.) is the Dirac delta (distribution), D(x, y ,  2) the space-time DOG as given by formula (2.2) and * 
the convolution operation. In the frequency domain this cascade is given by 

e(& w) = &i, w )  &E, w) (2.6) 

where 

1 1  
2 4  
1 
2 

E(i,w) = - + - [ e x p ( i ( Z . f +  M)) + c x p < - i ( i . f +  M))] 

= - [ 1  + w s ( i . f + w r ) ] ,  

and &E, w) is given by (2.3). 

(2.7) 

By increasing (decreasing) the offset values of, for example, the me-layer cascade we get more 

(less) specificity to velocity. 'Ihis can be observed by comparing Figurts 1 and 2, or their nspective 

Fourier transform, Figures 3 and 4. We fix V, = 1.0, V, = 3.0, M, = 1.0, M, = 3.0, A, = 1.0 and 

A, = 1.0. 

For Figure 1 we have & = 0.77,6 = 0 and I = 2.89, whercas for Figure 2, & = 0.52, tY = 0 

and I = 1.93, which CoilTtspond to a slope of 15 deg in the x-t plane (or 0.26 pixels per frame). If 

we inspect Figures 3 and 4 it bccames clear that for larger offsets (F@e 3) we get more tuning to 

velocity, although more ringing [9] (due to aliasing of adjacent patterns), for small velocities. A way 

by which wc get less ringing and more velocity specificity, as described by Fleet and Jepson [9], is 

to build cascades out of mort than m e  layer. For example, a two layered cascade is constructed by 

convolving two one-layer cascades, each with a different collection of offset values, that is 
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For this two-layer cascade, Figure 5, and its Fourier transform Figure 6, we can observe (we 

use the same space-time scale as for the one-layer cascade Figures) that there occurs much less 

ringing ( F i p  6) and its space-time shape exibits a broader (also narrower), support at the particular 

orientation for which it is tuned. 

In general, irrtspective of the set of parameters that we choose for the filter, there always exits a 

specific amount of directional -certainty which is a consequence of the fact that the filter response is 

not p e r f d y  tuned to a particular orientation. This is a comqucna of the fact that, in addition to the 

rtsponsc of the 6lter to the particular orientation for which is tuned, there exists a non-zero respense 

to a rcstrictcd range of orientations in its neighborhood. For example, in the case of onedimensional 

motion (parallel to the x axis) of a given image pattern, in order to filter the specific direction (in the 

x-t plane or, cquivalentIy, in the frcqutncy domain) associated to its velocity, we should use a filter 

which exibits its support at a given onentation and is zero otherwise. In practice, we will only be 

able to select a given orientation inside a cone, such that its apcxture is proportional to the motion 

uncertainty. This is a consequence of the fact that any (real) filter will not only select the particular 

direction for which it was &signed, but also adjacent directions h i &  a fixed apcxture. As a result 

of this, there will always d t  a motion uncertainty, and constqucntly, this will affect (space-time) 

the sampling pmpcrtics of the filter. This issue will be discussed in detail in the next section. 

The energy (power sptctnrm) associated to the one-layer cascade is given by 

Since we assume only translational motion, in which case it holds that 

- 
w = k - i ;  (2.14) 

where i; is the velocity field, we can rewrite the previous energy expression in the following form 
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(2.15) 

As a next step we want to develop the expression of the energy (2.15). by performing the integral 

over E. In this respect, it is useful to notice that formula (2.15) Contains the following algebraic 

expression 
W 

1 ( c ~ , a , J )  = lw u%{bZ(E,r-J)[qp(iaZ.(f+ 37)) + qp(-iaZ-(<+ *))]},(2.16) 

where a can be any positive integer number. If we usc the definition of 6(z ,w)  and the constraint 

(2.14), then 

Now, by inserting (2.17) into expression (2.16), we get 

where 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and 
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Finally, if we use the (gaussian) integral formula 

11 

(2.22) 

for an arbitrary (2 x 2) matrix A, then F1 will be given by 
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If we want to extract the optical flow field by using a set of energy filters, each tuned to a different 

orientatian in space-time, then we are confronted with another sourct of motion uncertainty. This 

comes from the fact that we have to determine the optical flow field, given the output of a number 

of energy filters (with different orientations). For example, in Hecger’s approach the estimated field 

( v ~ ,  v,,) minimha a cost function, which consists in the sum of the difference between the mtaSufed 

(motion) energy and its predicted value, over all twelve filters. This mcaus that there will always 

exist a non-zero contribution from filters which do not correspond to the right orientation, due to an 

overlap in the shape of neighboring filters. If wc wish to reduce the uncertainty in the motion estimate 

btcause of neighboring mteraction among filters, we have to enhance the orientation specificity of 

each filter (thus leading to less lateral overlap). But this has the consequence that, for a fixed number 

of filters, some orientation (mainly comsponding to the orientations between that of neighboring 

filters) will not be able to be selected any more. So we are faced with a trade-off betwten being 

able to select a specific orientation in s p a - h e ,  with a minimum of uncertainty, and the minimum 
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numbers of filters necessary to span all orientations. 

13 

The method of optical flow extraction used by Heeger [Z], although it is able to determine the 

optical flow for a co l ldon  of differtnt types of moving patterns, contains some limitations which 

should be mentioned, that is: 

1. It assumes that all images can be modeled as (locally) random pattern 

2. In order to be able to use ParseVal’s theorem, it is necessary to approximate the expression of 

the energy 

3. The optimization proctdurt, which has to be perfoxmed at each image pixel, is computationally 

very expensive. 

In particular, the issue of approximating the integral in parstval’s thtorcm, leads to errors in the 

estimated value of the optical flow in regions when it is discontinuous, thus making it difficult to 

use the estimated value as input for the operation of region segmentation. This and other questions 

will be discussed in another paper [ 111. 

3 Space-time sampling 

In the previous section I discussed the qucstion of extracting the optical flow by using space-time 

filters, considertd as energy filters. Also, I proposed the use of cascades of space-time filters like the 

ones constructed by Flea and Jcpson as energy filters, which can be accomplished by substituting the 

temporal exponential by a gaussian. A c~nsequence of adopting a filtering approach to the extraction 

of the optical flow is the fact that it is necessary to sample the filter, or more specifically, to perform 

a space-time sampling of the filter. The temporal sampling issue is very cleariy determined by the 

fact that the temporal interval bttween sucessive images used in space-time filtering, although mall, 
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is finite. A question which is naturally raised in this context is in respect to how much can we 

(temporally) undersample the filter, or in a more complete statement, the convolution of the image 

sequence With the space-time filter, so that we arc still able to reconsvUct the original signal. For 

uniformly translating patterns, the spatial and temporal sampling ratios are not independent, and, as 

it is shown next, ifthere exists a certain amount of motion unceItainty, then there exists a maximum 

sampling interval, in either space or time, such that aliasing does not occur. This maximum sampling 

interval is shown to be a (non-linear) function of the motion uncertainty. 

Initially, I will describe very succintly, for one-dimcnsional functions, the sampling theorem and 

generalize it to thrtc-dimcnsions (two spatial and one temporal). Next, I show that for an uniformly 

translating pattcm it is only xmxsaq to sample in either the spatial or temporal variables. Fiially, 

I relate motion uncertainty with the maximum sampling interval such that there is no aliasing. 

The sampling t h e o m  [12] gives us a mathematical formulation for the nconstruction of a con- 

tinuous function in terms of a collection of samples of this function, over a specific domain. If we 

deal with real signals, on tbc other hand, them is always a certain amount of under or oversampling 

depending on the specific archittctun of the filters being used. In particular, for the case of undersam- 

pling (where the spatial or temporal sampling rate is larger than the one established by the sampling 

theorem - the Nyquist rate), we have to dcal with the aliasing problem. The degree of aliasing which 

is permitted (so that it still is possiMc to mxmmuct the original function, modulo small distortions) 

depends not only on the filter charsctcristics but also on the type of data being filtered. 

Let us start with onedimensional signals, rcprtscnttd by the functionf(x). We obtain a sample 

off(x),&(x), by multiplying it by a (infinite) sum of (Dirac) delta distributions, such that the sample 

points are equidistant (by px). 'Ihc sample funaionfs(x) is given by 

where 
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In the frequency domain, (3.1) is reprcsenttd by the convolution 

5 (kx )  = P W  * m x ,  P x )  9 

with 

15 

(3.3) 

If we assume thatf(kx)  is band-limited ( f (k , )  is zero for lkxl > ;), then it is easy to check 

that, unless px 5 &, there will exist a region where the adjacent lobes overlap, which is a signal of 

undersampling, and as a c<mstqucnce of this we have the aliasing phenomenon. In order to avoid this 

from happening, we multiply formula (3.3) by a function If(&), as for example the ideal low-pass 

filter (which is 1 for Ikxl 5 L, and 0 otherwise), as a d t  of which (3.3) reduces tor(&). ' Ihis has 

the consequcncc thatf(x) can be exactly recovered from its samples. We can synthesize this result, 

by stating that, iff&) is band-limited and has no singularitits at its extremeties (kx = j&), then 

where 
sin T X  

sinc(x) = -, 
AX 

which is a version of the sampling theom [131. 

we can generalize thc sampling thtortm to thFtcdimensimal functions. so, given thatf(x,y, 2) 

is a (space-he) function andf(k., A,, w) its Fourier transform (kx, A, and w arc the Fourier variables 

associated to X,  y and 0, f is zero for lkxl > Lz, 141 > 4 and Iwl > & and it does not have 

singularitits at fkl = L 141 = & and IwI = 4, then, by the sampling theorem 

The case of translational motion [14,15], in which case it holds that 
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(which is equivalent to say that w is different from zero only on the plane determined by k'- 3), the 

sampling theorem reads 

This means that we only need to samplef(x,y), at the Nyquist rate, in terms of its spatial variables. 

Another way to understand this issue is given in terms of a fourier analysis, which, as a matter of 

simplicity, we apply for the two-dimensional case (x-t space.). We know that for pure translation, 

because of formula (3.8). the sampled function$ (kx, w)  (analogously to (3.3)) is given by 

00 0 0 -  

By using that 

/&d(x - u ) b ( x  - 6 )  = 6(u - 6 ) ,  

(3.10) 

(3.1 1) 

(3.12) 

(3.13) 

We can conclude that, if we start by assuming thatf(x- vxt) is sampled independently in its spatial 

and temporal variables, then, due to the constmint of uniform translation, we IVC led to conclude that 
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we only need to sample in the spatial (temporal) variable. So, we can simplify equation (3.10) to the 

following form 
00 

L(k,,w) = f ( k , ) w J  - kxv,) * r c G N k ,  - 2 n x L ) l ,  (3.15) 
nx=-00 

or, by expanding the convolution we get 

L(kx,w)  = E f ( k ~  - 2nXL)2L,6(w - v x ( k x -  2 n , L ) ) ,  (3.16) 

which leads us to the two-dimensional version of equation (3.9). The expression (3.16) is identical to 

the one &scribing the Burr’s exptximent [ 151 which consists in sampling in space, at a hed temporal 

imwal, a pattern which moves at umstant rate. 

&=-a0 

For illustration, if we consider a (space-time) band-limited function which describes an uniformly 

translational motion, then, by the constraint (3.8) its support (im frequency domain) is given by a line 

segment, as it is shown in Figwe 7. Its sampled version, satisfying equation (3.16) with M, = &, 
consists of a collection of nplicas of the original line segment, which are unifomly sampled at 

intewals of M, (see Figure 8). 

From this we can deduce that, once the support of f (k , )  is defined by the straight lines whose 

slope is given by v,, its sampling ratc is equal to the spatial sampling rate (or equivalently to the 

temporal sampling). The fimctionf(x, t) (which is identical t o f ( x +  vxz)) cau be reconstructed from 

$ (k,, w) by applying a filter which has a support parallel to the lint w = kv,, and more than this, 

as it is shown by Crick et d. [14], this support cau be dud to an infinitesimally n m w  strip, 

as long as there is no motion uncertainty. This means that, for the case of translational motion, we 

can increase the sampling mte p, as much as we wish, given that we arc able to exactly measure 

the velocity v,. On the other hand, if we deal with real images, there is always a certain degree of 

unccxtainty in the motion mc8suTcmcnt, so that the previous considerations do not hold. This leads 

us to the issue of considering the sampling theorem in the presence of noisy data (thus generating 

motion uncertainty). As a consequence of this, we have to know in what way the sampling themrem (as 

previously described) has to be modified in order be able to deal with motion uncertainty. Specifically, 

in the presence of motion uncertainty, it is no longer possible to arbitrarily increase the sampling 
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interval, without getting aliasing. This establishes a relationship between the maximum sampling 

internal (in space) (or minimal in the fresuency dmain) and motion uncertainty. 

We know that under the umditians of translational motion (let consider only onedimensional 

motion), the Fourier transform of a space-time function has support at the lines passing through the 

origin, and whose slope is proportional to the velocity of the moving pattern. If we introduce a 

specific d e p  of uncertainty for the velocity, then this support will be given by a (onedimensional) 

cone, whose aperture is proportional to the uncertainty in the velocity (See Figurts 9 and 10). 

Considering the case of a band-limited function (with finite support in the frequency domain), we 

can usc polar coordinatts to d d b e  its (two-dimensional) variables. 

For the angular variable 8 we have 8 = arctanv, and the radial variable r is the maximum 

of $2 +e. me motion llDctRainty AV, is given by AV, = (-(e +A@) - tanel, where Ae 

comspomls to the angular apeme of the cone, ccntertd at 8. For small v d ~ e s  of Ad, 68, Av, can 

be approximattd to 6v, = d e a e .  

If we sample f ( x  + v,t) dong the x direction in intends of p, (or M, in the fr-equency domain) 

Figun lo), then it is easy to show that, for a fixed motion uncertainty, there exists a minimum value 

of M,, e, such that the adjacent patterns do not overlap. 

If we decrease MI beyond this thrcshold, aliasing occurs. This establishes a relationship between 

e and Av,, as shown by the following theorem. 

Theorem: If we have a bta&limitcd firnction f (x ,  t) describing M unjfonnly translating 

pattern, given that its velocity v,, which is assumed to be &~erentfrom zero, is measured within 

an uncertainty range of Av,, then &re &ts a minimMI value for the spatial frequency sampling 

interval e such thm no a l h i n g  occurs. e is related to Av, by 

2 r s i n ( A 8 / 2 ) m  e= 
tan8 + tan(A8/2) ’ 
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where 

r = -4~2 + e ,  
tane = vx .  

proof: 

We can observe, from Figure 11 (or Figun 12), that there exists a point P, in the (r@) plane, 

where the adjacent pattcms, cOrrtSpOnding to replicas of a (one-dimcnsional) cone, interstct without 

overlapping. This point is the solution to the following equations 

By substituting d, given by (3.19), into (3.18) we get 

or 

(3.18) 

(3.19) 

(3.20) 

Expanding the sine and tangeat in (3.21) wc get the following expression 

which, after some algebra leads to 

2r sin(A4/2)- M y =  
tan8 + tan(A8/2) ’ (3.22) 
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This concludes the proof. 

The thtorem shows us that the minimum interval, in the fiquency domain, between adjacent 

sampling points (on the Ax axis) is bound, nonlinearly, by the de- of motion uncertainty. Conse- 

quently, the spatial sampling rate px cannot be arbitrarily increased, but depends on the amount of 

motion uncertainty. Since the spatial sampling rate px is the inverse of iUx (px = k), and Mz is 
bound, by motion uncertainty, to a minimum value e, px has a maximum value equal to c. If 

px > p, we have aliasing of adjacent patterns (cones). 

4 Conclusion 

The extraction of optic flow, via space-time filming, is given in terms of a collection of filters which 

are tuned to different orientations in space-time. The space-time Gabor and Cascades of the CS or 

DOG filters ae specially suited for this task because they amstitutc (space-time) oriented filters. 1 

show that it is possible, in particular, to use the cascaded filter approach of Fleet and Jepson [9] as an 

energy filter, given that the exponential temporal part of the CS filter is substituted by a (temporal) 

gaussian. 

The space-time filtering approach to the extraction of optical flow is implemented on a sequence 

of images which are closely displaced in time. The temporal interval bctwexm suctssive images in this 

sequence corresponds to the (temporal) sampling rate, which as we saw before, is not independent of 

the spatial sampling rate. In general, we want to use the sequence of images in such a way that we 

are still able to extract the optical flow, but using the minimum number of images. This means that 

we have to increase the temporal sampliig ratio as much as possible, without getting any aliasing 

effect. As a collscqufncf of this, we have to ask ourselves what is the upper b i t  for the temporal 
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(spatial) sampling rate such that: 

1. We still are able to use a filtering approach to extract the optical flow 

2. We do not get any aliasing effect. 

As shown by the theorem of the previous Section, for Uniformly translating pattern, the maximum 

spatial sampling interval is determined by the de- of motion uncertainty. The same can be shown 

for the case of temporal sampling. If we sample at a lower rate than the minimum amount established 

by the theorem of &on 3, we get aliasing. This answers the second part of the question. 

The first part of the question is more difficult to be answered. Just as an illustration, we can 

mention a problem which bcars similarities to the use of a filtering or feature matching approaches to 

the extraction of optical flow. It is the hypothesis of the existence of two, distinct, proctssts to detect 

or extract optic flow in humans [18,19], called short and long range processes. They arc studied, in 

psychophysics, as a phtnommon of apparent motion, which is the capability of the human visual 

systcm to be able to hterpolate the (spatial) position of moving objects between discrete presentations 

of sucessive snapshots of the motion. We can establish a general nlationship bctwtcn short-range 

and the filtering approach to optical flow, and between long-range and the ftaturt matching approach. 

The short-range process opcratcs in short temporal mtervals (between sucessive m e s  - also called 

inter-stimulus interval S I ,  rauging fiwn 50 and 1oomS) and angular intervals of 15’ or less. The 

long-range proctss, 011 the ather hand, can rake place even for IS1 as long as 400 ms [l J, and it works 

mainly through the matching of features (edges, blobs, etc.), thus operating through the identification 

of elements in sucessive frames. 

If short and lang-range proccssts in humans ~IE really independent and operate through diffetent 

mechanisms, it can point out to the possibility that if the filtering and ftaturt matching approaches 

should bear some rcscmblanct with them, then there should exist a definite borderhe between both 

approaches. In this sense we can say that (space-time) aliasing is one criteria by which we can decide 

upon this problem. 
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Figure 1 One-layer cascade of space-time DOG filter with & = 0.77.(,, = 0, t = 2.83. 





Figure 3 Fourier transform of the one-layer cascade of space-time DOG filter with & = 0.77, 

= 0, T = 2.89. 



.. 

Figure 4 Fourier transform of the one-layer cascade of space-time DOG filter with & = 0.52, 

6 = 0, t = 1.93. 



Figure 5 Twdayer cascade of space-time DOG filter with = 0.52, (’ = 0, r1 = 1.93, 

.fi = 1.04, .f; = 0, 9 = 3.86. 



Figure 6 Fourier tnrnsfom of the one-layer cascade of space-time DOG filter with 6: = 0.52, 

,$ = 0, T~ = 1.93, = 1.04, i$ = 0, ;L = 3.86. 



Figure 7 The support, in the frequency domain, for a pattern moving, in one dimension, at an 

uniform rate. The slope of the segment (band-limited function) of the line is qual to the velocity of 

thc pattern, that is w = &v,. 
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Figure 8 The sampled version of the support of an uniformly traaslating pattern, as rcprtsented 

by Figure 7. The sampling interval is equal Mx. 



Figure 9 The support, in the fmpency domain, of an uniformly translating pattern whose velocity 

is measured with a certain uncertainty. The ape- of this cone is equal to this uncertainty. 



Figure 10 Thc sampled version of the support xeprescmd in Figun 9. 'Ihc sampling interval 

Mx is such that the adjacent cones don't overiap. 



Figure ll The sampled version of Figure 9 in the case when the sampling rate is such that 

is the the adjacent cants touch each other, but without overlapping. "he sampling rate Mx = 

rntmlmal one such that then doesn't occur aliasing. . .  
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Figure 12 The diagram showing the relavant parameters involved in the p m f  of the theorem 

of d o n  3. 


