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Abstract

We analyse the structure of filters which are space-time oriented. Basically, this paper consists of two parts. In the
first one, we present the cascade of space-time DOG as an energy filter, discuss its general properties and show how
to compute its energy. In the second part, we discuss the consequences of applying the sampling theorem to
uniformly translating patterns in the presence of motion uncertainty. It is shown that, for a given motion
uncertainty, there exists a bound on the maximum sampling interval, such that for larger values aliasing will occur.






1 INTRODUCTION 1
1 Introduction

The problem of the extraction of the optical flow has, in recent years, been treated from a new point
of view, that is, through the use of space-time filters [7,4,6,5]. The basic idea behind this method
is to extract the optical flow without having to perform any type of operation other than to use a
collection of filters which are tuned to different orientations in space-time (or equivalently in the
frequency domain). Also, given that the outputs of these filters have been computed, it is necessary
to establish a method by which we can determine the value of the estimated optical flow, because
the output of a filter tuned to a specific orientation (even if with maximal response) is not enough to
extract the optical flow and we have to use a complete set of filters (in the sense that it takes into
account all possible orientations). In space-time filtering, we convolve a sequence of images with a
(space-time) filter, such that the interval between sucessive images is small. The minimum temporal
interval between sucessive images is basically dictated by practical considerations, because if it is too
small we get little amount of information about the moving pattern from frame to frame. On the other
hand, we would like to know what the value of the maximum temporal interval between sucessive
images should be such that we continue to be able to use a filtering approach to the extraction of
optical flow

The answer to this question comes by considering the sampling issues involved in this filtering
process. As I will show in section 3, if there exists a certain degree of motion uncertainty, then
the maximum sampling interval, is fixed by this motion uncertainty. This means that there exists a

(non-lincar) relationship between the motion uncertainty and the maximum sampling interval.

The procedure of using a collection of filters to extract optical flow corresponds, in a general
sensc, to a signal processing approach, which is mainly concemed with the extraction of information
about the original signal, in the presence of noise. It involves the construction of filters, if possible

optimal ones, parameter estimation and the analysis of sampling issues.

On the other hand, in the feature based approach to the extraction of optical flow [3] it is necessary
to, previously to the actual computation of of the optical flow, extract edges (zero crossings) which
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have to be matched in sucessive frames. If the temporal interval between succesive images is large
and the number of edges to be matched between frames is not high, then a contour-based approach
can be sucessful in extracting the optical flow. But, on the other hand, if the number of edges is
large, the amount of mismatchings can lead to a high rate of error, and as a consequence of this to a

wrong estimation of the optical flow.

It is therefore important to be able to detect moving features and extract their optical flow in
the presence of noisy data and imprecise measurements. Depending on the spatial complexity of
information available at ecach image, in the temporal sequence of images, it can be more reliable to
use a filtering approach, especially for the case in which the interval between these images is small
and there exits a high spatial content of information (which makes a feature matching approach highly

unstable).

In this paper we discuss, in section 2, the issue of extracting the optical flow through feature
or intensity based approaches versus space-time filtering, and present the space-time DOG cascade
as an energy filter. In section 3 we analyse sampling issues which apply for uniformly translating
patterns in the presence of noise (motion uncertainty). Finally, we draw conclusions in section 4,
and make an analogy between the long and short-range processes of motion extraction in the human

visual system and the feature-based and space-time filtering methods in Computer Vision.

2 Space-time filtering

2.1 Extraction of the optical flow in intensity and feature-based approach

The extraction of the optical flow ficld from the intensity variations in the image plane has been treated
until very recently, in Computer Vision, as a feature or intensity-based problem. In the feature-based
approach we have to detect relevant features, such as edges, from a pair of sucessive images (in

a temporal sequence of images), and afterwards perform a matching of corresponding elements, 5o



2 SPACE-TIME FILTERING 3
that, as a result of this procedure, we assign a specific value of the optical flow to the corresponding

clements.

This method has to overcome two major problems:

1. The correspondence problem

2. The aperture problem.

The correspondence problem [1] addresses the question of how to assign the same identity for
elements which appear in temporal sucession of images. The correspondence, or matching, can be
computed in different ways, depending, in part, on the temporal interval between succesive images.
If this interval is small, the correspondence between features can be performed through a set of local
operations over elements which are spatially close to each other. One of these operations [1,17)]
consists in the minimization of the distance a set of elements takes to travel from one image to its
sucessive one. On the other hand, if this temporal interval is large, it is more likely that a more
global type of operation for the matching of features has to be implemented. In general, the matching
of corresponding elements in sucessive images can be unstable, due to noise in the image, and also

computationally expensive if the number of features to be matched is large.

In respect to the aperture problem, which states that it is not possible to measure both components
of the optical flow ficld given a small aperture in the image, we have to introduce additional contraints
into the model describing the extraction of optical flow, so as to make it possible to obtain the
full optical flow field. Actually, given a small aperture, we are only able to measure the normal
component (to the gradient of the intensity) of optical flow ficld, while its tangential component
remains undetermined. As one example of the solution to the aperture problem, we can mention the
area-based (2] formulation which assumes the use of a smoothness term, in addition to the intensity
continuity equation, represented by the sum of the squares of the spatial derivatives of the optical flow
field components. Another example is given by the contour-based [3] approach, where the contraint
is represented by the gradient in respect to the arc length along the intensity gradient of the optical
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flow field, in addition to the difference between the normal component of the optical flow and its
measured value.

Both, the correspondence and the aperture problem, involve in practice a certain amount of
arbitrariness in terms of having to choose a set of constraints which enable us to extract the full
optical flow. It is therefore desirable to be able to eliminate the necessity of having to cope with both
of these problems. The method of space-time filtering does this, in part, by eliminating altogether the
necessity of the use of the correspondence problem. In respect to the aperture problem the solution
given by Heeger [5] consists in modeling the image flow as (locally) purely translational, so that
the optical flow is extracted by fitting a plane to the energy of the filter. This is equivalent to the
computation of both components of the optical flow field, because for translational motion the support
in the frequency domain is given by a plane whose orientation is a function of the velocity vector.

2.2 Space-time oriented filters

Space-time filtering consists, basically, in the convolution of a temporal sequence of images (closely
displaced) with a (space-time) filter. The most important aspect of space-time filtering lies in the fact
that, if we consider an uniformly translating pattern, we are able to select a specific velocity by using
(space-time) oriented filters [6].

Let us take the example of one-dimensional motion (in the x direction). If we analyse the picture
which is generated in space-time by an uniformly translating pattern (through a cross-section parallel
the x-t plane), then we can conclude that the orientation of the individual elements (like lines or
stripes) is intrinsically determined by the velocity of the pattern (the slope of a line in the EPI plane
is equal to the velocity of the feature associated to it). A very interesting example of this kind of
relationship between (space-time) orientation and velocity is described by the epipolar plane images
(EPIs) created by Bolles and Baker [8] for the case of a camera moving (perpendicularly to the
direction of motion) in a static environment. There, at a given EPI, we are able to track the temporal
evolution of each image element (at a fixed height), and this is described by a straight line.
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Once we know that, for uniform translation, the space-time evolution of image elements is given
by straight lines, in order to select a specific velocity (optical flow), we can use (space-time) oriented
filters [6,7]. A particularly important aspect of this analysis comes from the fact that, for an uniformly
translating pattern, the support of the contrast function in the frequency domain is given by a plane
(or a line for the case of one-dimensional motion) [7,10] passing through the origin of the coordinate
system. In terms of space-time filtering, this means that, in order to select a specific velocity of an
uniformly translating pattern, we have to tune the filter to the orientation in the frequency domain
which gives the highest response.

The use of directionally selective (space-time) filters pose a limitation in the sense that they are
phase seasitive [6]. This means that, depending on the alignment between the space-time configuration
of moving patterns and the filter shape, we can get different results: the filtered output may oscillate
or vary between positive and negative values. A solution to this problem is given by computing the
energy (power spectrum) of the filter output. The energy of a convolved signal is independent of any
phase problem, and for the case of an uniformly translating pattem its output is constant.

If, for example, we compute the energy associated to a space-time Gabor filter [5] convolved with
an arbitrary function, then the final result will not oscilate or depend on any phase factor. This leads
to the concept of space-time oriented filters as energy filters, which, with the assumption of random
textured images and Parseval’s theorem made it possible for Heeger [5] to, analytically, predict the
energy associated to a particular space-time oriented pattern.

2.3 Space-time Difference-of-Gaussian (DOG) cascade as an energy filter

Space-time filtering, either through energy filters or cascades, is primarily concerned with the pro-
cessing of a temporal sequence of images, such that the interval between successive images is small.
On one hand, the work of Heeger [5] showed us that it is possible to obtain a dense image flow
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map by using a collection of twelve space-time Gabor filters, each tuned to a different direction in
space-time. The space-time Gabor filter is parametrized by three (gaussian) filter sizes (o4, oy and
o,), in addition to the (three) sine or cosine space-time frequencies (whose relative ratios correspond
to different orientations in space-time). It would be desirable to have a broader space-time tuning
capability, as, for example, in the case of the cascaded filters proposed by Fleet and Jepson [9]). They
proposed the construction of space-time oriented filters in terms of cascades of the CS filter. The CS
filter is defined as the difference of spatial gaussians which are each multiplied by a temporal expo-
nentially decaying function, corresponding to a temporal center (C)-surround (S) model, in analogy to
biological systems, plus, a temporal delay term emboddied in the S part. The space-time orientation
is obtained by convolving the CS filter with a sum of (space-time) Dirac distributions, each centered
at a specific location in space-time so that the result is a oriented pattemn. The use of layered cascades
of the CS filter improves the orientation specificity of the filters, as shown by Fleet and Jepson [9].
In respect to its tuning capabilities, these layered cascades of the CS filter, are able, in addition to
their specific orientation, to select features moving at high or low speed by adjusting the ratio of the
spatial or temporal filter sizes to one, respectively.

We would like to use a filter which exibits a wide range of space-time tuning and can also be used
to extract the image flow as an energy filter. The simplest fusion of these two aspects is exibited by
the space-time DOG filter, used in cascade. In fact, if we substitute the temporal exponential decay
term in the CS filter by a temporal gaussian, and climinate the temporal delay, we get a space-time
DOG. The number of parameters of this filter is equal 9, where 4 correspond to the center and
surround filter sizes (the spatial filter sizes arc assumed to be equal), spatial and temporal offsets
make up 3 parameters, plus the center and surround multiplicative constants. The only reason for
not using the CS cascade filter of Fleet and Jepson directly as an energy filter comes from the fact
that the energy expression turns out to be more complex than that of the space-time DOG cascade
because it has a linear temporal exponential decay, whereas for the DOG filter the temporal decay is
gaussian, thus making it easier to perform the temporal integral in order to get the energy expression.

We should remind ourselves that the space-time DOG and Gabor filters are non-causal, as a
consequence of the Paley-Wiener theorem [12] which states that, if a temporal filter £(¢) has a square
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integrable Fourier transform f (w) and satisfies the relation

° |In|fw)|
/ S dw < o, @1

then f(¢) is causal. The CS filter, on the contrary, due to its lincar exponential temporal decay, is a

causal filter.

The space-time DOG filter is given by the following expression

D(x,y,0 = Acexp(—(2 +y)/Q02%) - #/2u?))

- Asap(— (2 +y)/Qa?) - £/Q2ud)), 22)
where o, (0,) and u. (u,) are the center (surround) spatial and temporal filter sizes respectively, while
A, and A, arc adjustable parameters (used in the discrete version of the filter to tune the sum of all
clements of the mask to zero). Its Fourier transform is given by

Dk,w) = Acep(—(Bo2[2+wpl[2))
- Acep(~ (Bo[2+w2[2)), (2.3)

where the spatial and temporal frequencies are respectively given by k(&= (ko ky)) and w.

A cascade of filters corresponds to applying, in sucession, a set of linear filters, to a collection of
signals [9], such that the interval between their sucessive positions of highest magnitude is measured
by the offset. In the case of space-time filtering these offsets have a spatial as well as a temporal
part. Also, they can occur in a set of layers, where each layer corresponds to a different collection

of space-time offsets.
Let us define, analogously to Fleet and Jepson [9], the one-layer cascade by the expression

C(x,y,t) = D(x,y,t) » E(x,y,?), 2.9

where
1 1
E(x7y) t) = '2'6(x’y7 t) + zﬁ(x*'fx’)""fya t+ T) + %6(1 - &9}' - Eya - T) ’ (25)
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8(-) is the Dirac delta (distribution), D(x, y,?) the space-time DOG as given by formula (2.2) and =
the convolution operation. In the frequency domain this cascade is given by

Ck,w) = D(k,w) E&,w) (2.6)
where
Eliw) = 3+ zLop(i®-E + wr) + ep(~ik- € + wr)]
= %[1+cos(i£-f+wf)], @2.7)
and D(k, w) is given by (2.3).

By increasing (decreasing) the offset values of, for example, the one-layer cascade we get more
(less) specificity to velocity. This can be observed by comparing Figures 1 and 2, or their respective
Fourier transform, Figures 3 and 4. We fix U, = 1.0, U, = 3.0, M. = 1.0, M; = 3.0, A. = 1.0 and
A, = 1.0.

For Figure 1 we have §{; = 0.77,§, = 0 and 7 = 2.89, whereas for Figure 2, £ = 0.52,§, = 0
and 7 = 1.93, which correspond to a slope of 15 deg in the x-t plane (or 0.26 pixels per frame). If
we inspect Figures 3 and 4 it becomes clear that for larger offsets (Figure 3) we get more tuning to
velocity, although more ringing [9] (due to aliasing of adjacent pattems), for small velocities. A way
by which we get less ringing and more velocity specificity, as described by Fleet and Jepson [9], is
1o build cascades out of more than one layer. For example, a two layered cascade is constructed by
convolving two one-layer cascades, cach with a different collection of offset values, that is

Cix,y,t) = Ci(x,y,t) * Ca(x,y,1), 2.8)
where
Ci(x,y,t) = D(x,y,1) * Ei(x,y,1), 2.9
Ca(x,y,9) = D(x,y,0 * Eax,y,1), (2.10)
Ei(x,y,8) = %G(x,y, H+ 416(x+£;,y+5,‘,t+ )+ %6(1:— & y~€e—1h), (2.11)
and

1 1 1
Exxy, ) = 580,30 + 266+ &, y+ G4 7) + 2ba-y-Got-1). Q12
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For this two-layer cascade, Figure 5, and its Fourier transform Figure 6, we can observe (we
use the same space-time scale as for the one-layer cascade Figures) that there occurs much less
ringing (Figure 6) and its space-time shape exibits a broader (also narrower), support at the particular

orientation for which it is tuned.

In general, irrespective of the set of parameters that we choose for the filter, there always exits a
specific amount of directional uncertainty which is a consequence of the fact that the filter response is
not perfectly tuned to a particular orientation. This is a consequence of the fact that, in addition to the
response of the filter to the particular orientation for which is tuned, there exists a non-zero respense
to a restricted range of orientations in its neighborhood. For example, in the case of one-dimensional
motion (parallel to the x axis) of a given image pattern, in order to filter the specific direction (in the
x-t plane or, equivalently, in the frequency domain) associated to its velocity, we should use a filter
which exibits its support at a given orientation and is zero otherwise. In practice, we will only be
able 1o select a given orientation inside a cone, such that its aperture is proportional to the motion
uncertainty. This is a consequence of the fact that any (real) filter will not only select the particular
direction for which it was designed, but also adjacent directions inside a fixed aperture. As a result
of this, there will always result a motion uncertainty, and consequently, this will affect (space-time)
the sampling properties of the filter. This issue will be discussed in detail in the next section.

The energy (power spectrum) associated to the one-layer cascade is given by
& [ avie@mwr
= /°<> “/w dw{D?(k,w)[ 1+ 2cos(k- & + wr) + cos’(k-E + wr)]}. (2.13)

Since we assume only translational motion, in which case it holds that
w=k-V (2.14)
where ¥ is the velocity field, we can rewrite the previous energy expression in the following form
X AT T2
[ aeci-»)
-0

= [T @{BEE-DS + 1epliE- € + 7)) + ep(~iF- € + #))]

©0
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+ 3 Lep(2E- E + 7))+ ep(~2iF- € + 9 )11} @15)

As a next step we want to develop the expression of the energy (2.15), by performing the integral
over k. In this respect, it is useful to notice that formula (2.15) contains the following algebraic

expression

I ra" = f°° dE{D*E k- D exp(iak- € + ¥r)) + ep(—iak- € + ¥r))1},(2.16)

—00
where a can be any positive integer number. If we use the definition of D(k, w) and the constraint
(2.14), then

D&k-v) = Alep(-E(0? + ) — B (02 + 2pul) — 2kkyvevyu?)
+AL exp(~ (0 + Viul) — (07 + Viu7) — Dckyvevyns )
—2AcAsexp(- B (a2 + 07 + Vi(uZ + 13)) — B (02 + oF +Vi(uE + u})))
X exp(— 2kzkyvavy(p2 + p3)). @.17)

Now, by inserting (2.17) into expression (2.16), we get

IE, 7,0,9) = F1(a,€,7,7) + F2(a,€,9,7) + F3(a,E,9,7), (2.18)
where
Fiaésn = & [ d{leptiak- € + ¥)) + ep(~iak- € + ¥r)]
X exp(— K (o2 + Viu?) — B (0F + Vi) — 2kyvevyud)},  (2.19)
F@€sr) = & [* d{leptiak-E +¥)) + ep(=iak- €+ ¥r)))
x exp(— k2 (o2 + V2pu?) — B (0 + V2u2) — 2kekyvevyp?)},  (2.20)
and
Fs@ &%) = ~24:A, [ di{leptiak-E + 7)) + ep(~iak- & + ¥7))]

X exp(= K (07 + oF + Vi(u? + p2)) = B (07 + of + Vy(ul + ul)))

X exp(— 2bkzkyvevy(pl + p2))} . ‘ 221)



2 SPACE-TIME FILTERING 11

Finally, if we use the (gaussian) integral formula

oo g N kx l -1 kx
[ diepticos ey + =3 (keky) A )
—oo k, k

y

= [4n? dﬂA]iW(—%(‘Px‘Py)A ( v ) ), (2.22)
Py

for an arbitrary (2 x 2) matrix A, then Fy will be given by
= 2r -
Fi@E%n) = Z51(a7 + X0t + uDi) — et P17

xexp(— 3 @ [(o2 + WBENG2 + W) — (varpad P11

2,22 2
X (€ + Vi) (& + v,r»( O T HeVs Vel ) ( St ))(2.23)

—vavyu? o} + plvy § + T
Analogously, F2 and F3 arc given by a similar expression, if we substitute 02, u2 by 02, 2 and
o2 + o2, u? + p2, respectively.
The complete expression for the energy is given by

/_: &\ EEE- D

2
A2 + 2N + D) - o P

+ o= 3 [(o2 + WDEXGE + W) — (veuyp I

2 2 2
o2+ p2v:  —vvp + VT
X(&+wr) (G +wry| © T L,
—Vavyuz 07 + p2v? £y + vyT
1
+ 0= 1(0F + VX2 + 1) — (vawyd 17!
2 4+ 22 - 2
o, + u VeVylt + VT
X(&+wr) (G +mrp| T T SR
~Vowyu?  oF + piv? & + vy

+ A[(o + W2X0E + 1)~ O V1A 13

+ ep(= 2 1(o? + uBEX0E + uB) — (rand VI
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o + pv? vl x + WiT

x((fx"'vx"')(fy"'vy'r))( )

—voyyu? o2 + phv? &+ wr

b Sem(- 10} + X2 + i) - (e P

2 2 _ 2
X((Ex-l'v,‘r)(fy_,,v’r»( o2 + pv? VaVylly ) (&+v,r ))]

—vwyu? o+ p}v§ & + wr
~1.3
— 2A:A1(02 +0? + (uE + BENOE + 0F + (W2 + W) — (e + VRIS

1 —-—
+ cxp(—z[(af+a,2+(ﬂ3+#3)V3)(03+a}+(”3+“3)V3) — (avy(? + 2N

X((& + va) (& + Wy7))
ol +ol+(u2+ 202 vl + ) R
—vanyi+p))  ol+oi+ () |\ &+
+ %cxp(— (o2 + 02 + (u? + W2 W2 Kok + o + (u2 + 2 )2) — (vavy(pi2 + 2 17!
X((& + iT) (& + W)
y 02402+ (p2+ 202 —vav(u? + ) Ex + Vi ). 2.24)
—vevy(p2 +p?) R+ aR+(uE+ 20 )\ &+ wyT

If we want 1o extract the optical flow field by using a set of energy filters, each tuned to a different
orientation in space-time, then we are confronted with another source of motion uncertainty. This
comes from the fact that we have to determine the optical flow field, given the output of a number
of energy filters (with different orientations). For example, in Heeger’s approach the estimated field
(Vx, vy) minimizes a cost function, which consists in the sum of the difference between the measured
(motion) energy and its predicted value, over all twelve filters. This means that there will always
exist a non-zero contribution from filters which do not correspond to the right orientation, due to an
overlap in the shape of neighboring filters. If we wish to reduce the uncertainty in the motion estimate
because of neighboring interaction among filters, we have to enhance the orientation specificity of
each filter (thus leading to less lateral overlap). But this has the consequence that, for a fixed number
of filters, some orientation (mainly comresponding to the orientations between that of neighboring
filters) will not be able to be selected any more. So we are faced with a trade-off between being

able 10 select a specific orientation in space-time, with a minimum of uncertainty, and the minimum



3 SPACE-TIME SAMPLING 13

numbers of filters necessary to span all orientations.

The method of optical flow extraction used by Heeger [5], although it is able to determine the
optical flow for a collection of different types of moving patterns, contains some limitations which
should be mentioned, that is:

1. It assumes that all images can be modeled as (locally) random patterns

2. In order to be able to use Parseval’s theorem, it is necessary to approximate the expression of
the energy

3. The optimization procedure, which has to be performed at each image pixel, is computationally

very expensive,

In particular, the issue of approximating the integral in Parseval’s theorem, leads to errors in the
estimated value of the optical flow in regions where it is discontinuous, thus making it difficult to
use the estimated value as input for the operation of region segmentation. This and other questions
will be discussed in another paper [11].

3 Space-time sampling

In the previous section I discussed the question of extracting the optical flow by using space-time
filters, considered as energy filters. Also, I proposed the use of cascades of space-time filters like the
ones constructed by Fleet and Jepson as energy filters, which can be accomplished by substituting the
temporal exponential by a gaussian. A consequence of adopting a filtering approach to the extraction
of the optical flow is the fact that it is necessary to sample the filter, or more specifically, to perform
a space-time sampling of the filter. The temporal sampling issue is very clearly determined by the
fact that the temporal interval between sucessive images used in space-time ﬁltcting." although small,
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is finite. A question which is naturally raised in this context is in respect t0 how much can we
(temporally) undersample the filter, or in a more complete statement, the convolution of the image
sequence with the space-time filter, so that we are still able to reconstruct the original signal. For
uniformly translating patterns, the spatial and temporal sampling ratios are not independent, and, as
it is shown next, if there exists a certain amount of motion uncertainty, then there exists a maximum
sampling interval, in either space or time, such that aliasing does not occur. This maximum sampling

interval is shown to be a (non-linear) function of the motion uncertainty.

Initially, I will describe very succintly, for one-dimensional functions, the sampling theorem and
generalize it to three-dimensions (two spatial and one temporal). Next, I show that for an uniformly
translating pattern it is only necessary to sample in either the spatial or temporal variables. Finally,

I relate motion uncertainty with the maximum sampling interval such that there is no aliasing.

The sampling theorem [12] gives us a mathematical formulation for the reconstruction of a con-
tinuous function in terms of a collection of samples of this function, over a specific domain. If we
deal with real signals, on the other hand, there is always a certain amount of under or oversampling
depending on the specific architecture of the filters being used. In particular, for the case of undersam-
pling (where the spatial or temporal sampling rate is larger than the one established by the sampling
theorem - the Nyquist rate), we have to deal with the aliasing problem. The degree of aliasing which
is permitted (so that it still is possible to reconstruct the original function, modulo small distortions)
depends not only on the filter characteristics but also on the type of data being filtered.

Let us start with one-dimensional signals, represented by the function f(x). We obtain a sample
of f(x), fs(x), by multiplying it by a (infinite) sum of (Dirac) delta distributions, such that the sample
points are equidistant (by p,). The sample function f;(x) is given by

fi(x) = fG) X (x,p1),s 3.1
where

E@p)= Y 6 - nepy). 3.2)

Ry=—00
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In the frequency domain, (3.1) is represented by the convolution
o t) = f k) * Elhay ), (33)

with
Blhpd =+ 3 60— ). (3.4)
px Px
If we assume that f (k,) is band-limited (f (k) is zero for |k;| > L;), then it is easy to check
that, unless p, < 2%;' there will exist a region where the adjacent lobes overlap, which is a signal of
undersampling, and as a consequence of this we have the aliasing phenomenon. In order to avoid this
from happening, we multiply formula (3.3) by a function H(k;), as for example the ideal low-pass
filter (which is 1 for |k] < L,, and 0 otherwise), as a result of which (3.3) reduces to f (k). This has
the consequence that f(x) can be exactly recovered from its samples. We can synthesize this result,
by stating that, if f (k,) is band-limited and has no singularities at its extremeties (k,=+L,), then

R N R s
f@ = _E_)wf(%)smc(zmx 5.0 3.5)
where
sinc(x) = s“:r;”‘, (.6)

which is a version of the sampling theorem [13].

We can generalize the sampling theorem to three-dimensional functions. So, given that f(x, y, ¢)
is a (space-time) function and f (k;, ky, w) its Fourier transform (&, &y and w are the Fourier variables
associated to x, y and 1), f is zero for |k > L, |k > Ly and |w| > L, and it does not have
singularities at |ky| = Ly, |ky| = Ly and |w| = L,, then, by the sampling theorem

= 3 3 S D P ot (x - T2y
RINRIRPIRL i -
x sinc(2Ly (y — %))sinc(u,(z- ). G

The case of translational motion [14,15], in which case it holds that

Flabyw) = Flha,by)(w ~ k-9), : (3.8)
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(which is equivalent to say that w is different from zero only on the plane determined by k- V), the

sampling theorem reads

o0 (o

_ - - B My, oy
fx — vty — wyb) .,g_:w "g_jw For 21,,)“"‘( 2 (x = vat = 57-))
X sinc(2Ly (y — vyt — 22-)). 3.9

2L,

This means that we only need to sample f(x, y), at the Nyquist rate, in terms of its spatial variables.
Another way to understand this issue is given in terms of a fourier analysis, which, as a matter of
simplicity, we apply for the two-dimensional case (x-t space). We know that for pure translation,
because of formula (3.8), the sampled function f; (kx, w) (analogously to (3.3)) is given by

fl'(kxow) = f(kx)‘s(w — kyvx)
ol D0 2LebCks — 2mLy) Y 2L6(w — 2nlLy)), (3.10)

Rgx=—00 Ry =—00

which can be rewriten in the form

00

Flaw = 2 % [a [a/Faso - Km)

Ax=—00 R=—00

X 2Ly 6(ke — k; — 2mLy ) 2L 6(w — W — 2niLy). (3.11)
By using that
/dxa(x - a)6(x - b) = 6(a - b), (.12)
in the integral over w', and
/dxf(x)6(x - 8)6(x - b) = f@)é(a — b), (3.13)

in the k, integral, we have that (3.11) results in

felw) = 3 k= 2ml)ALL Y., 6(w — kvy — 2(nagvels ~— nly))]1.3.14)

Ax=—00 R =—00

We can conclude that, if we start by assuming that f(x— v,t) is sampled independently in its spatial
and temporal variables, then, due to the constraint of uniform translation, we are led to conclude that



3 SPACE-TIME SAMPLING 17
we only need to sample in the spatial (temporal) variable. So, we can simplify equation (3.10) to the

following form
Jo ey w) = F (k) 8(w — Kyve) + [ f: 2Ly 6Cks — 2m:lx)], (3.15)
n=—00
or, by expanding the convolution we get
foles,w) = i Flhs = 2m:L:)2 L 6(w = vy (s = 2m:Lx)), (3.16)
Ax=—00
which leads us to the two-dimensional version of equation (3.9). The expression (3.16) is identical to
the one discribing the Burr’s experiment [15] which consists in sampling in space, at a fixed temporal

interval, a pattern which moves at constant rate.

For illustration, if we consider a (space-time) band-limited function which describes an uniformly
translational motion, then, by the constraint (3.8) its support (in frequency domain) is given by a line
segment, as it is shown in Figure 7. Its sampled version, satisfying equation (3.16) with M, = 2L,,
consists of a collection of replicas of the original line segment, which are uniformly sampled at
intervals of M, (see Figure 8).

From this we can deduce that, once the support of f (k) is defined by the straight lines whose
slope is given by vy, its sampling rate is equal to the spatial sampling rate (or equivalently to the
temporal sampling). The function f(x, £) (which is identical to f(x + v;#)) can be reconstructed from
fs (kx, w) by applying a filter which has a support parallel to the line w = k,v;, and more than this,
as it is shown by Crick ez al. [14], this support can be reduced to an infinitesimally narrow strip,
as long as there is no motion uncertainty. This means that, for the case of translational motion, we
can increase the sampling rate p, as much as we wish, given that we are able to exactly measure
the velocity v,. On the other hand, if we deal with real images, there is always a certain degree of
uncertainty in the motion measurement, so that the previous considerations do not hold. This leads
us to the issue of considering the sampling theorem in the presence of noisy data (thus generating
motion uncertainty). As a consequence of this, we have to know in what way the sampling theorem (as
previously described) has to be modified in order be able to deal with motion uncertainty. Specifically,

in the presence of motion uncertainty, it is no longer possible to arbitrarily increase the sampling
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interval, without getting aliasing. This establishes a relationship between the maximum sampling

interval (in space) (or minimal in the frequency domain) and motion uncertainty.

We know that under the conditions of translational motion (let consider only one-dimensional
motion), the Fourier transform of a space-time function has support at the lines passing through the
origin, and whose slope is proportional to the velocity of the moving pattern. If we introduce a
specific degree of uncertainty for the velocity, then this support will be given by a (one-dimensional)
cone, whose aperture is proportional to the uncertainty in the velocity (See Figures 9 and 10).

Considering the case of a band-limited function (with finite support in the frequency domain), we
can use polar coordinates to describe its (two-dimensional) variables.

For the angular variable # we have § = arctanv, and the radial variable r is the maximum
of \/w? + 2. The motion uncertainty Av; is given by Av; = (1an(9 + Af) — tan8), where Af
corresponds to the angular aperture of the cone, centered at #. For small values of Aé, §0, Av, can
be approximated to v, = sec?666.

If we sample f(x + vxt) along the x direction in intervals of p, (or M, in the frequency domain)
(Figure 10), then it is easy to show that, for a fixed motion uncertainty, there exists a minimum value
of My, MT“*, such that the adjacent patterns do not overlap.

If we decrease M; beyond this threshold, aliasing occurs. This establishes a relationship between
M7" and Avy,, as shown by the following theorem.

Theorem: If we have a band-limited function f(x,1) describing an uniformly translating
pattern, given that its velocity vy, which is assumed to be different from zero, is measured within
an uncertainty range of Avx, then there exists a minimum value for the spatial frequency sampling
interval MT™" such that no aliasing occurs. M is related to Av, by

MR = 2rsin(A0/2)V1 + tan26
* 7 tané + un(Ad/2)
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where
A
Af = arctan( v, + %) — arctan(vy — 2v‘),
r = max\/w? + &2,
tanf = v,
Proof:

19

We can observe, from Figure 11 (or Figure 12), that there exists a point P, in the (r,8) plane,

where the adjacent patterns, corresponding to replicas of a (one-dimensional) cone, intersect without

overlapping. This point is the solution to the following equations
rcosf, = m‘" + dcos b,

and

rsinf; = dsind,,
where 8, = § — A0/2 and 6; = 6 + A6/2.
By substituting d, given by (3.19), into (3.18) we get
M™" = rsinf; (cotf; — cotfy),
or

1 1
(0 - 40/2)  1an(6 + AG)2) I

M™* = psin(@ — A6/ —

Expanding the sine and tangent in (3.21) we get the following expression

1 +tanftanAf/2 1 - tanftanA4/2
tanf — tan Af/2 tan @ + tan A6/2

M7 = p(sinf cos AB/2 — cosfsinAf/2)[ 1,

which, after some algebra leads to

_ 2rsin(A8/2)V71 + tan2d
" tanf + an(4A8/2) °

M:"

3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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with Af = 6; — 6,, 62 = arctan(v, + 4%2) and 6; = arctan(v, — 55).
This concludes the proof.

The theorem shows us that the minimum interval, in the frequency domain, between adjacent
sampling points (on the &, axis) is bound, nonlinearly, by the degree of motion uncertainty. Conse-
quently, the spatial sampling rate p, cannot be arbitrarily increased, but depends on the amount of
motion uncertainty. Since the spatial sampling rate p, is the inverse of My (px = x};), and M, is
bound, by motion uncertainty, to a minimum value M7, p, has a maximum value equal to p*. If

Px > PP, we have aliasing of adjacent patterns (cones).

4 Conclusion

The extraction of optic flow, via space-time filtering, is given in terms of a collection of filters which
are tuned to different orientations in space-time. The space-time Gabor and Cascades of the CS or
DOG filters are specially suited for this task because they constitute (space-time) oriented filters. 1
show that it is possible, in particular, to use the cascaded filter approach of Fleet and Jepson [9] as an
energy filter, given that the exponential temporal part of the CS filter is substituted by a (temporal)

gaussian.

The space-time filtering approach to the extraction of optical flow is implemented on a sequence
of images which are closely displaced in time. The temporal interval between sucessive images in this
sequence corresponds to the (temporal) sampling rate, which as we saw before, is not independent of
the spatial sampling rate. In general, we want to use the sequence of images in such a way that we
are still able to extract the optical flow, but using the minimum number of images. This means that
we have to increase the temporal sampling ratio as much as possible, without getting any aliasing

effect. As a consequence of this, we have to ask ourselves what is the upper limit for the temporal
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(spatial) sampling rate such that:

1. We still are able to use a filtering approach to extract the optical flow

2. We do not get any aliasing effect.

As shown by the theorem of the previous section, for uniformly translating patterns, the maximum
spatial sampling interval is determined by the degree of motion uncertainty. The same can be shown
for the case of temporal sampling. If we sample at a lower rate than the minimum amount established

by the theorem of section 3, we get aliasing. This answers the second part of the question.

The first part of the question is more difficult to be answered. Just as an illustration, we can
mention a problem which bears similarities to the use of a filtering or feature matching approaches to
the extraction of optical flow. It is the hypothesis of the existence of two, distinct, processes to detect
or extract optic flow in humans [18,19], called short and long range processes. They are studied, in
psychophysics, as a phenomenon of apparent motion, which is the capability of the human visual
system to be able to interpolate the (spatial) position of moving objects between discrete presentations
of sucessive snapshots of the motion. We can establish a general relationship between short-range
and the filtering approach to optical flow, and between long-range and the feature matching approach.
The short-range process operates in short temporal intervals (between sucessive frames - also called
inter-stimulus interval ISI, ranging from 50 and 100ms) and angular intervals of 15° or less. The
long-range process, on the other hand, can take place even for ISI as long as 400 ms [1], and it works
mainly through the matching of features (edges, blobs, etc.), thus operating through the identification

of elements in sucessive frames,

If short and long-range processes in humans are really independent and operate through different
mechanisms, it can point out to the possibility that if the filtering and feature matching approaches
should bear some resemblance with them, then there should exist a definite borderline between both
approaches. In this sense we can say that (space-time) aliasing is one criteria by which we can decide

upon this problem.
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Igure 2 One-layer of a cascade of space-time DOG filter with & = 0.52, §, = 0, 7 = 1.93.
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Figure 3 Fourier transform of the one-layer cascade of space-time DOG filter with & = 0.77,
fy = 0, T = 2.89.
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Figure 4 Fourier transform of the one-layer cascade of space-time DOG filter with & = 0.52,
& =0, 7 =193
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Figure 6 Fourier transform of the one-layer cascade of space-time DOG filter
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Figure 7 The support, in the frequency domain, for a pattem moving, in one dimension, at an
uniform rate. The slope of the segment (band-limited function) of the line is equal to the velocity of
the pattern, that is w = k.v,.
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Figure 8 The sampled version of the support of an uniformly translating pattern, as represented
by Figure 7. The sampling interval is equal M,.
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Figure 9 The suppon, in the frequency domain, of an uniformly translating patten whose velocity
is measured with a certain uncertainty. The aperture of this cone is equal to this uncertainty.
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Figure 10 The sampled version of the support represented in Figure 9. The sampling interval
M, is such that the adjacent cones don’t overlap.
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Figure 11 The sampled version of Figure 9 in the case where the sampling rate is such that
the adjacent cones touch each other, but without overlapping. The sampling rate M, = M™" is the

mimimal one such that there doesn’t occur aliasing.



Figure 12 The diagram showing the relavant parameters involved in the proof of the theorem

of section 3.



