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Abstract

Structure from Motion (SFM), which is recovering camera motion and scene structure from image
sequences, has various applications, such as scene modeling, robot navigation and object recognition
Most of previous research on SFM requires simplifying assumptions on the camera or the scene. Com-
mon assumptions are a) the camera intrinsic parameters, such as focal lengths, are known or unchange
throughout the sequence, and/or b) the scene does not contain moving objects. In practice, these are
unrealistic assumptions. In this thesis we present a collection of reconstruction methods for dealing
with image sequences taken with uncalibrated cameras and/or of multiple motion scenes.

The methods produce Euclidean reconstruction directly from feature point locations and are based
on the bilinear relationship of camera motion and scene structure. For uncalibrated image sequences,
we embed the camera intrinsic parameters within the camera motion representation. For image se-
guences of multiple motion scenes, we incorporate multiple motions into the scene structure represen-
tation. In this way, we derive linear and bilinear subspace constraints on the large amount of information
integrated over the entire image sequences. By taking advantage of this redundant information we can
achieve accurate and reliable reconstruction.

Firstly, we propose a uncalibrated Euclidean reconstruction method from multiple uncalibrated
views. This method first performs a projective reconstruction using a bilinear factorization algorithm,
and then converts the projective solution to a Euclidean one by enforcing metric constraints. We present
three normalization algorithms to generate the Euclidean reconstruction and the intrinsic parameters.
The first two algorithms are linear, one for dealing with the case that only the focal lengths are unknown,
and another for the case that the focal lengths and the constant principal point are unknown. The third
algorithm is bilinear, dealing with the case that the focal lengths, the principal points and the aspect
ratios are all unknown.

Secondly, we present a linear method to reconstruct a scene containing multiple moving objects
together with the camera motion. The number of the moving objects is automatically detected without
prior motion segmentation. Assuming that the objects are moving linearly with constant speeds, we
propose a unified geometrical representation of the static scene and the moving objects. This represen-
tation enables the embedding of the linear motion constraints into the scene structure, which naturally



leads to a factorization-based method.

Thirdly, we describe a method for multiple motion scene reconstruction from uncalibrated views.
The method recovers the scene structure, the trajectories of the moving objects and the camera in-
trinsic (except skews) and extrinsic parameters simultaneously assuming that the objects are moving
with constant velocities. We embed the assumptions within the scene representation and therefore pro-
pose a bilinear factorization algorithm to generate a projective reconstruction, and then impose metric
constraints to compute the Euclidean reconstruction and the camera intrinsic parameters.

We also discuss other issues related to the accuracy and reliability of these reconstruction methods,
such as minimum data requirement and gauge selection. The reconstruction methods have been tested
on a series of synthetic sequences to evaluate the quality of the methods, and real image sequences to
demonstrate their applicability.
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Chapter 1

Introduction

1.1 Problem definition

When a camera moves around in a scene, the images taken contain information about the scene
structure, the camera motion and the camera intrinsic parameters. Structure from Motion (SFM), which
is recovering camera motion and scene structure from image sequences, has various applications, sucl
as scene modeling, robot navigation, object recognition and virtual reality. Most of previous research
on SFM requires simplifying assumptions on the camera or the scene. Common assumptions are a) the
camera intrinsic parameters, such as focal lengths, are known or unchanged throughout the sequence
and/or b) the scene does not contain moving objects. In practice, these are unrealistic assumptions. In
this thesis we present a collection of reconstruction methods for dealing with image sequences taken
with uncalibrated cameras and/or of scenes rich with independently moving objects. We refer to such
scenes as multiple motion scenes.

The methods produce Euclidean reconstruction directly from feature point locations and are based
on the bilinear relationship of camera motion and scene structure. For uncalibrated image sequences,
we embed the camera intrinsic parameters within the camera motion representation. For image se-
guences of multiple motion scenes, we incorporate multiple motions into the scene structure represen-
tation. In this way, we derive linear and bilinear subspace constraints on the large amount of information
integrated over the entire image sequences. By taking advantage of this redundant information we can
achieve accurate and reliable reconstruction.

Firstly, we are interested in image sequences taken with uncalibrated cameras. Given tracked fea-
ture points under perspective projections, we simultaneously reconstruct the Euclidean shape, the cam-
era motion and the camera intrinsic parameters assuming zero skews. The reconstruction process is
decoupled into two steps: projective reconstruction and Euclidean reconstruction. The reconstruction
steps are linear or bilinear depending on the number of unknown intrinsic parameters.

1



2 CHAPTER 1. INTRODUCTION

Secondly, we work on image sequences of multiple motion scenes taken from a moving airborne
platform. In aerial video sequences the moving objects are often far from the camera. It is therefore
difficult to get multiple feature points from every moving object. It is a good approximation to abstract
the moving objects as points. As pointed oufAwidan and Shashua, 20)@ecovering the locations
of the moving point from a monocular image sequence is impossible without assumptions about its
trajectory. We assume that the objects are moving linearly with constant speeds. This assumption is
reasonable for most moving objects, such as cars, planes and people, especially for short time intervals.
Our goal is to recover the scene structure, the trajectories of the moving objects and the camera motion.
The number of the moving objects is automatically detected without prior motion segmentation. The
reconstruction method is built on linear subspace constraints.

Thirdly, we discuss the problem of multiple motion scene reconstruction taken with uncalibrated
cameras. We assume that the cameras have zero skews and the objects are moving with constant
velocities, therefore, we can combine the basic ideas behind the first two cases to get the linear and
bilinear reconstruction methods which recover the scene structure, the motion trajectories of the objects,
the camera motion together with the camera intrinsic parameters simultaneously.

1.2 Related work

Whether cameras are intrinsically pre-calibrateduncalibrated differentiates various Structure
from Motion methods. When nothing is known about the camera intrinsic parameters, the extrinsic
parameters or the scene, it is only possible to compute a reconstruction up to an unknown projective
transformation[Faugeras, 1992 There has been considerable progress on projective reconstruction
([Faugeras, 1992, Molet al, 1995, Triggs, 1995, Quan, 1995, Quan, 1996, Beard=iey., 1996,
Carlsson and Weinshall, 1998 Some methods use only two, three or four images to obtain a projective
reconstruction by a linear least squares methgdrtley, 1997, Hartley, 1998 On the other hand,
some projective reconstruction methods take advantage of the large amount of information from image
sequencefShashua and Avidan, 1996, Sturm and Triggs, 1996, Triggs, 1996, Heyden, T888s
proposed a projective factorization method[riggs, 19986 which recovered projective depths by
estimating a set of fundamental matrices to chain all the images together. Sturm and[Stiggs
and Triggs, 199bused epipoles and fundamental matrices estimated from the image points to get the
scaled image measurements based on which a projective factorization is performed. Htsyobm,
1997, Heyden, 199%resented methods of using multilinear subspace constraints to perform projective
structure from motion. Mahamud and Hebfvtahamud and Hebert, 20D@roposed an iterative
method which simultaneously recovered both the projective depths as well as the structure and motion.
They determined the projective depths by solving a generalized eigenvalue problem and proved the
monotonic convergence of the iterative scheme to a local maximum.
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In order to obtain a Euclidean reconstruction from the projective reconstruction, some additional in-
formation about either the camera or the scene is needed . Hartley recovered the Euclidean shape using
a global optimization technique assuming that the intrinsic parameters were cdhisetey, 1994.

Heyden and Astrém used a bundle adjustment algorithm to estimate the focal lengths, the principal
points, the camera motion and the object shape togftteden and Astrom, 1997Triggs calibrated

the cameras by recovering the absolute quadric which was computed by translating the constraints on
the camera intrinsic parameters to the constraints on the absolute qlidygs, 1997. Pollefeys

et al. assumed that the focal length was the only varying intrinsic parameter and presented a linear
algorithm which was based on recovering the absolute ddtatlefeyset al, 1999. Agapito et al.
proposed a linear self-calibration algorithm for rotating and zooming carb&gapitoet al., 1999.

Assuming zero skews, we decouple the uncalibrated reconstruction process into two steps: pro-
jective reconstruction and Euclidean reconstruction. We present a projective factorization algorithm to
compute the projective motion and shape based on the bilinear relationship of projective depths and
affine reconstruction. This algorithm uniformly considers all the data in all the images. We then im-
pose metric constraints on the projective reconstruction to recovery the Euclidean motion and shape
as well as the camera intrinsic parameters based on linear and bilinear subspace constraints. Table 1.:
summarizes some of the related work in this area.

The linear and bilinear subspace reconstruction methods presented in this thesis fastothe
ization technique as the basis of solution. The factorization method, first developed by Tomasi and
Kanade[Tomasi and Kanade, 19P%or orthographic views and extended by Poelman and Kanade
[Poelman and Kanade, 199 weak and para perspective views, achieved its robustness and accu-
racy by applying the singular value decomposition (SVD) to a large number of images and feature
points. Yu[Yu et al, 1994 presented a new approach based on a higher-order approximation of per-
spective projection by using Taylor expansion of depth. The accuracy of the approximation depended
on the order of Taylor expansion and the computation increased exponentially as the order increased.
Christy and HoraudiChristy and Horaud, 1996a, Christy and Horaud, 19@&iscribed a method for
perspective camera model by incrementally performing reconstructions with either a weak or a para
perspective camera model. Recently, some work has been done to extend the factorization methods
from feature-based methods to plane-based methods. Ma and [Mwaijand Ahuja, 199Brecovered
a dense shape, which is composed of the recovered plane positions and normals, from region corre-
spondences by factorization. Stuf@turm, 2000 presented a factorization-based method to estimate
poses of multiple planes. Table 1.2 lists some of the factorization methods. One major limitation with
most factorization methods, however, is that they require the use of intrinsically calibrated cameras. In
this thesis, we present uncalibrated reconstruction methods for both static scenes, which are the scene:
without moving objects, and multiple motion scenes, which are the scenes containing multiple moving
objects.



4 CHAPTER 1. INTRODUCTION

Projective Reconstruction

Mohr et al. Triggs Hartley Heyden Mahamud and Hebert Han and Kanade
1995 1996 1997 1998 1997 1998 2000 2000
nonlinear least | estimation of a sef| linear least squares| multilinear method | iterative method recovering bilinear factorization
squares solution of fundamental method o2, 3 or4 | based on constraint$ the projective depths and | algorithm for static and
matrices views in shape space structure simultaneously | multiple motion scenes
Euclidean Reconstruction
Hartley Heyden and Astrém| Pollefeys et al. Agapito et al. Han and Kanade
1994 1997 1998 1999 2000
global optimization | bundle adjustment | linear algorithm | linear algorithm linear and bilinear algorithm
(constant intrinsic | (focal lengths and | (focal lengths (rotating and (all intrinsic parameters
parameters) principal points) only) zooming cameras) except skews)

Table 1.1:Related work: Reconstruction with uncalibrated cameras

Calibrated Cameras Uncalibrated Cameras|
Tomasi and Kanade| Poelman and Kanad¢ Yu et al. Christy and Horaud Han and Kanade
1991 1995 1996 1996 2000

orthographic cameras weak and para perspective cameras perspective cameras perspective cameras based on

perspective cameras| by Taylor expansion| by affine iteration linear and bilinear constraints

Table 1.2:Related work: Factorization methods

Many interesting problems have been discussed on image sequenoedtipfe motion scenes
including: scene reconstructidiKumar et al, 1994, Anandaret al, 1994, Poelman and Kanade,
1997, Han and Kanade, 1998, Iratial, 1999, motion segmentatiofirani et al, 1992, Torr and
Murray, 1993, Sawhnest al., 1999, reconstruction of motion trajectori8vidan and Shashua, 2000
camera motion recoveryrani et al,, 1997, Costeira and Kanade, 192d scene synthesisvexler
and Shashua, 20D0OMost of these methods deal with the above problems separately. However, the
temporal integration of information over sequences provides constraints on the scene reconstruction.
We are therefore motivated to seek a one step reconstruction algorithm.

Zelnik-Manor and Iran[Zelnik-Manor and Irani, 1999, Irani, 1999roposed using subspace con-
straints on multi-frame information to compute homography and optical flows. Their work demon-
strated that the use of geometric constraints provided a good way to integrate information over se-
guences. The multibody factorization method proposed by Costeira and Kgbasteira and Kanade,

1999 reconstructed the motions and shapes of independently moving objects, but required that each
object had multiple feature points. Avidan and ShadiAwadan and Shashua, 20P@ecovered the lin-

ear trajectory of a 3D point by line fitting. They assumed that the object was moving along a line, but
they did not require that the object was moving with constant speed. They assumed the camera motion
was given as well as the prior motion segmentation, and did not recover the scene structure. They ex-
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Multiple Motion Scene Reconstruction

Anandan et al. Irani et al. Irani et al. Avidan and Shashua  Wexler and Shashua Han and Kanade
1994 1992 1997 1999 2000 2000
Kumar et al. Torr and Murray Shashua et al.
1994 1993 1999
Han and Kanadel Sawhney et al.
1998 1999

Output: static Output: motion | Output: camera | Output: trajectories | Output: scene synthesis Output: scene structure,

scene structure | segmentation motion recovery| of moving objects camera motion, trajectories

of moving objects

Multiple Motion Scene Reconstruction based on Subspace Constraints
Costeira and Kanade| Zelnik-Manor and Irani
1995 1999

Output: scene structure Output: multiple

Han and Kanade
2000

Output: scene structure,

Irani
1999
Output: multiple

Bregler et al.
2000
Output: non-rigid shape

and camera motion homographies frame optical flow camera motion, trajectories

of moving objects

Requirement: multiple Requirement: 3D object Requirement: tracked

feature points on each represented by a basis | feature points

object of shapes

Table 1.3:Related work: Multiple motion scene reconstruction

tended this work to conic shape trajectorie§Smashuat al., 1999. Shashua and Wolf proposed the
concept oHomography Tensdp represent three views of static and moving planar poiniShashua

and Wolf, 2000. Bregler et al.[Bregleret al., 200qQ described a technique to recover non-rigid 3D
model based on the representation of 3D shape as a linear combination of a set of basis shapes. The
complexity of their solution increased with the number of basis shapes. Table 1.3 lists some of the
related work to multiple motion scene reconstruction methods.

1.3 Thesis overview

In this thesis we present a collection of reconstruction methods dealing with image sequences taken
with uncalibrated cameras and/or of multiple motion scenes. The input to the reconstruction methods
are the tracked image measurements as shown in Figure 1.1. Each feature point is represented by
(ui; wv;j) which is generated by the product of the camera projecitpand the 3D feature point
positionx;;,
~ Pixij or >\ij
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Figure 1.1:lmage measurementsthe feature points are overlaid on the image.

i
=

wherei = 1---n, n is the number of views anfl= 1---m, m is the number of feature point;; is
a non-zero scale factor, commonly called projective depth.3Thel projection matrixp; is,

P; ~ K; [ R; t; ] (1.2)

The3 x 3 matrix K; encodes the intrinsic parameters of fkie camera.R; is theith rotation matrix

andt; is thesith translation vector. Thereford; is a combination of the camera calibratiéf) and the

camera motionR; t;]. Since thet x 1 vectorx;; is the homogeneous representation of the feature

position, we have,

Pij
1

Xij ~

(1.3)

When the scenes do not contain moving objepis,= s; ands; = [z; y; z;]", that is, the feature
positions are not dependent on when the images are taken. On the other hand, the feature pgsitions
are related to both of the feature numbpend the image numbeérfor multiple motion scenes.

Most research on SFM deals with the situations when the cameras are intrinsically calibrated, that
is, all of K;'s are known, and/or the situations without moving objects, thapis,= s;. The un-
calibrated reconstruction methods presented in the thesis work on image sequenceskwitvn
matricesK;, i = 1---n. The methods decouple the reconstruction process into two steps: projec-
tive reconstruction and Euclidean reconstruction. First, the projective reconstruction is performed to
get the projective depthk;; from which the scaled image measurements are computed. According to
Equation (1.1), factorization of the scaled measurements generates the motion and shape. However, the



1.3. THESIS OVERVIEW 7

Image measurements

Projective
reconstruction
Profective depth. 1 FEuclidean
Tojective dept] »” . ; :
Pro‘]'ect iz eI') if reconstruction Linear transformation H
J pe: = | Euclidean shape:

W om H

Figure 1.2:Uncalibrated reconstruction process:the reconstruction process is decoupled into two
steps: projective reconstruction and Euclidean reconstruction.

factorization is not unique. Itis up to a linear transformatién The Euclidean reconstruction is then
performed on the projection reconstruction to calculate the transform&timom which the Euclidean

motion and shape as well as the camera intrinsic parameters are generated. The reconstruction proces
is summarized in Figure 1.2.

The multiple motion scene reconstruction methods presented in the thesis are based on a unified
representation of the static scene and the moving objects. Assuming that the feature points are moving
linearly with constant speeds, we regard every feature point as a moving point with constant velocity:
the static points simply have zero velocity. Any pomt is represented by,

Pij =8 +1iv; (1.4)

in a world coordinate system, whesg is the point position at frame (i.e., when theOth frame is
taken) andv; is its motion velocity. Based on this representation, we present the factorization-based
reconstruction methods for multiple motion scenes.

We start Chapter 2 with a review of Tomasi and Kanade’s factorization mdffmmasi and
Kanade, 199R then we describe the uncalibrated Euclidean reconstruction method which recovers
motion and shape from multiple uncalibrated views. Given tracked feature points, this method recov-
ers the camera motion, the scene structure and the camera intrinsic parameters (assuming zero skews
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We first present a bilinear factorization algorithm to get a projective reconstruction, then propose three
normalization algorithms which impose metric constraints on the projective reconstruction with dif-
ferent assumptions about the intrinsic parameters. The normalization algorithms recover the unknown
intrinsic parameters and convert the projective solution to a Euclidean one simultaneously. The first
algorithm deals with the case that the focal lengths are the only unknown parameters. The second one
deals with the case that the focal lengths and the principal point are unknown, while the principal point
is fixed. These two algorithms are linear. The third algorithm, which is bilinear, works in the case
that the focal lengths, the principal points and the aspect ratios are all unknown. We also describe the
experimental results on real image sequences including building reconstruction, terrain recovery and
multi-camera calibration.

Chapter 3 introduces the multiple motion scene reconstruction method with calibrated cameras.
Assuming that the objects are moving linearly with constant speeds, we propose a unified representation
of the static scene and the moving objects in which each point has an initial position and a constant
velocity. Points on the static scene are defined to have zero velocity. This representation embeds
the linear motion constraints within the scene structure, which naturally leads to a factorization-based
method. The method reconstructs the scene structure, the trajectories of the moving objects and the
camera motion simultaneously. The number of the moving objects is automatically detected without
prior motion segmentation. We also discuss solutions to degenerate cases and extensions of the multiple
motion scene reconstruction method to weak perspective projection and perspective projection. We
apply this method to indoor and outdoor image sequences. The results are presented and discussed in
this chapter.

Chapter 4 presents a factorization-based method for multiple motion scene reconstruction from
uncalibrated views. The method decouples the reconstruction process into projective reconstruction
and Euclidean reconstruction assuming that the objects are moving with constant velocities. Given
tracked feature points without prior motion segmentation, the method recovers the scene structure, the
trajectories of the moving objects, the camera motion together with the camera intrinsic parameters
(assuming zero skews). The number of the moving objects is automatically detected. Experiments on
synthetic and real images are described.

In Chapter 5 we discuss two important issues about reconstruction methods: minimum data require-
ment and gauge selection. We first describe the theoretical analysis about minimum number of views
and features required by the subspace reconstruction methods presented in the thesis, then we give our
empirical results. Gauge selection is the process of specifying the coordinate frame and representing
the recovered geometry in the chosen frame. We analyze the gauge selection techniques used in the
reconstruction methods described in this thesis and show that the techniques make the reconstruction
methods reliable.

Chapter 6 summarizes the contributions of this thesis. We also identify the directions of extending
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this research.

Appendix A proposes a method to recover scene depth and camera motion based on image ho-
mographies. It also discusses the applications of the method to motion detection and 3D mosaicking.
This method takes advantage of the large amount of redundant information stored as the temporal con-
sistency in video sequences to refine the reconstruction results. Different from the linear and bilinear
subspace methods which are feature-based batch methods, the homography-based method directly re
covers the dense scene structure in a sequential way. We include this work here to demonstrate that
information integration over image sequences provides a reliable way for scene reconstruction.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Euclidean Reconstruction with
Uncalibrated Cameras

We first give a review of Tomasi and Kanade’s factorization method which provides a technique
basis for the reconstruction methods proposed in this thesis. Then we present a uncalibrated Euclidean
reconstruction methoHan and Kanade, 200DaJnlike Tomasi and Kanade’s method, it can work on
image sequences taken with uncalibrated cameras. Given tracked feature points, the method recover:
the scene structure, the camera extrinsic parameters and the intrinsic parameters simultaneously. Thret
normalization algorithms for Euclidean reconstruction are described, each of which handles different
assumptions about the camera intrinsic parameters. The first algorithm deals with the case that the focal
lengths are the only unknown parameters. The second one deals with the case that the focal lengths
and the principal point are unknown, while the principal point is fixed. These two algorithms are linear.
The third algorithm, which is bilinear, works in the case that the focal lengths, the principal points
and the aspect ratios are all unknown. Synthetic experiments are conducted to evaluate the quality of
the reconstruction method. Experimental results on real image sequences show the applications of the
method to building reconstruction, terrain recovery and multi-camera calibration.

2.1 Review of Tomasi and Kanade'’s factorization method

The factorization method was first developed by Tomasi and Kalmeasi and Kanade, 19p2
for orthographic projections. The cameras are intrinsically calibrated. The core of the method is a
process based on Singular Value Decomposition (SVD) which factors a matrix of image measurements
into the product of the camera motion matrix and the scene structure matrix. The method does not need
any prior assumptions about either the camera motion or the scene structure. In this section we give a
brief review of the factorization method and introduce the geometry and notation used in this thesis.

11
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2.1.1 Orthographic projection

Assuming a camera moves around in a scéhg; represents the world coordinate system attached
to the scene and...,,; represents the camera coordinate system at different locations, ivadre- - n
andn is the number of frames. Suppose thererargeature pointgp;, j = 1--- m, in the scene whose
3D locations are,

pP; = [ Tj Yj Zj ]T (2.1)

which we want to recover by observing how they move in the projected image sequences. The position
of p; represented in th&h camera coordinate system is given by the transformation,

p;j = R;p; + t;. (2.2)
where
il ti
Ri=| j} ti= | ty (2.3)
k' tyi

R; is theith rotation matrix whose rowls = [iz; iyi izi] »Ji = [ui Jyi Jzi] andk; = [kei kyi Ezi]"

are the axes of the camera coordinate sysigm,; expressed in the world coordinate system. The vec-
tor t; represents the position of the world coordinate system aitlheamera coordinate system. The
representation (2.2) can be simplified using homogeneous coordinates,

P R, t; pj
1 Oixg 1 1
- l i ti] X; (2.5)
O1x3 1
where
Tj
. Pj]: Y (2.6)
1 Z]'
1

Under orthographic projection, the image coordinates of ppinat theith frame, denoted by

(uij vij), are given by the first two elements xf;,

[ ij ] _ [ .:m .yz .zz xi ] X; (27)
Jri  Jyi  Jzi ty'i
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The projection process is shown in Figure 2.1.

y
A Lig mj) 1'/

C cami —————#—_t_i——__ﬁ—e;bj
ks

/

1

Figure 2.1:Orthographic projection: Projection of feature poinp; represented in the world coordi-
nate systent,; to the image coordinatg:;; v;;). Ccami denotes théth camera coordinate system.

Imaginem feature points are tracked overframes and all the image coordinates are put into a
single2n x m matrix,

U1l U192 e Ulm
V11 V12 . VUim
W = : : (2.8)
Upl Up2 ... Upm
L Unl Un2 ... Umn |

Each row ofW lists the image coordinates or v of all the feature points in each frame, and each
column represents the image trajectory of one feature point over the entire image sequence. The matrix
W is called themeasurement matriAccording to Equation (2.7),

W=MS+T[1 1 - 1] (2.9)
with the rotation matrix\/ composed of the rotation axes,
T
M=|m; my mgp mp -+ mg, my, ] (2.10)

where
my; = i; my; = Ji (2-11)
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and the translation vectar,
T
T = [ ter ty tes tyy o ten tym ] (2.12)
S is the shape matrix containing the feature points positions,

S=[pi P2 - Pa| (2.13)

2.1.2 World coordinate system location

Without loss of generality, we place the origin of the world coordinate system at the center of
gravity of all the feature points, so that,

> pj=0 (2.14)
j=1
From Equation (2.7), we get,
Suy = (i Py +ta) =i Y pj + mtai = mita;
j=1 j=1 j=1
Jj=1 Jj=1 j=1

Therefore, the camera translation vector can be directly computed from Equation (2.15),
1 & 1 &
tm' = — Zuij tyi = — ZUU (2.16)
m j=1 m j=1

2.1.3 Decomposition

The translation vectdF is subtracted froni’, leaving a "registered" measurement matfix
W=W-T[11 - 1 (2.17)

We have derived the relationship @& and pair of M and S by modeling the imaging process in
Equation (2.9). The reconstruction problem is simplified by starting with the “registered" niitrix
and obtaining a factorization into the motion matfik and the shape matri¥. SinceM and.S can be
at most rani3, W will be at most rank. In real life situations the rank ¥ can be higher due to image
noise. Singular Value Decomposition (SVD) is performed/Brto get the best rank approximation,

Ww=vuzv" (2.18)
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where matrix¥s is a diagonal matrix composed of the three biggest singular values which reveal the
most important components in the daté,,«3 and V,,«3 are the left and right singular matrices,
respectively.

Defining,

~

M = Ux:
$ = »ayT (2.19)
we have the two matrices whose product represents the "registered” measurementiinatri} S.

However, this decomposition is not unique since for any non-singuta matrix A, M = M A and
S = A1S are also a possible solution,

MS = (MA)(A™'S)=MS =W (2.20)

In other words, the singular value decomposition (Equation (2.18)) provides a solution of motion and
shape up to an affine transformation.

2.1.4 Normalization

The Euclidean solution can be obtained by finding the approm@iate matrix A. The correctd
is determined using the fact that the rows of the motion malfixepresent the camera rotation axes.
This process is calledormalization

Matrix A is constrained by orthogonality of the mattdiX. Each row ofM = M A is a unit norm
vector and the rows are pairwisely perpendicular. This yields a set of constraints,

g AATm,), = 1
ty,; AA Tm,; = 1
th, AA Ty, = 0 (2.21)

wherei = 1---n, m,; andi,,; are the corresponding rows of the matfix. This is an over con-
strained system for thé elements of the symmetric matr@@ = AAT, which can be solved by linear
least squares techniques. The transformatida then computed from the matr{y by rank3 matrix
decomposition. This decomposition is up to a three dimensional rotation because the(matsixm-
metric. We can fix the rotation by aligning the world coordinate system with any orientation, such as
the first camera orientation.
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2.1.5 Motion and shape recovery

Once the matrix4 is computed, the camera motion is recovered as,
M=MA (2.22)

and the scene structure as,
S=A"1S (2.23)

2.2 Projective reconstruction

Tomasi and Kanade'’s factorization method requires the intrinsically calibrated cameras. Given fea-
ture correspondences from uncalibrated views, we cannot perform SVD directly on the measurement
matrix W as in Tomasi and Kanade’s method because the perspective projection is involved. We decou-
ple the uncalibrated reconstruction process into projective reconstruction and Euclidean reconstruction.
In this section we describe the bilinear projective reconstruction algorithm.

Suppose there ane perspective cameras?;, ¢« = 1---n andm feature points;, j = 1---m
represented by homogeneous coordinates. The image coordinates are repres@nted;hy. Using
the symbol~ to denote equality up to a scale, the following hold,

ij Ui
vig | ~ Pixyoor Ay | vy | = Pixg (2.24)
1 1

where);; is a non-zero scale factor, commonly called projective depth. Eacha3 x 4 matrix and
each feature point; is a4 x 1 vector. The equivalent matrix form is,

U11 Ulm
A1 | vn o Am | vim
1 1] P
W, = : : : =l i |[x - xa|=PX (225
[ 1 - P,
Anl Unl o Anm Unm
L 1 L 1 .

whereW; is a3n x m matrix, calledscaled measurement matriCompared with the measurement
matrix W which is2n x m in Tomasi and Kanade’s method, the scaled measurement fiatexcodes
the projected image information I and the projective depths. Since edghs a3 x 4 matrix, Wy is
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at most rankt. We therefore apply the following projective factorization algorithm which is similar to
Triggs’s bilinear approachTriggs, 199%. The algorithm iteratively applies rankfactorization to the
current scaled measurement matrix.

Bilinear Projective Factorization Algorithm

1. Set\;; =1,fori=1---nandj =1---m;

N

. Compute the current scaled measurement méttidoy Equation (2.25);
3. Perform ranki factorization oni¥,, generate the projective motion and shape;

4. Reset\;; = P.(?’)xj, wherePi(?’) denotes the third row of the projection matiy,

)

5. If \;;'s are the same as the previous iteration, stop; else go to step 2.

The goal of the projective reconstruction process is to estimate the values of the projective depths
(Ai;'s) which make Equation (2.25) consistent. Figure 2.2 shows the reconstruction process. The
reconstruction results are iteratively improved by back projecting the current projective reconstruction
to refine the depth estimates.

Set 4 =1 | | Perform rank 4 VD on W, |

initial 157 O '

[Reftne 1 (=7

current W

ank 4 subspace

final W,

Figure 2.2:Projective reconstruction process
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2.3 Euclidean reconstruction

The factorization of Equation (2.25) recovers the motion and shape up to4linear projective
transformationH,
W,=PX =PHH 'X = PX (2.26)

whereP = PH andX = H~'X. P andX are referred to as the projective motion and the projective
shape. Any non-singulaf x 4 matrix could be inserted betwedhand X to get another motion and
shape pair.

Let us assume zero skews. We impose metric constraints to the projective motion and shape in
order to simultaneously reconstruct the intrinsic parameters (i.e., the focal lengths, the principal points
and the aspect ratios) and the linear transformafigrfrom which we can get the Euclidean motion
and shape. We call this processrmalization We classify the situations into three cases as shown in
Figure 2.3:

Case 1: Only the focal lengths are unknown.
This case includes the situations that the camera undergoes zooming infout during the sequence.
The focal lengths are therefore the main concerns of the reconstruction process.

Case 2: The focal lengths and the principal point are unknown, and the principal point is fixed.

In this case we are interested in the situations in which the camera focal length changes only a
little, so that there is no obvious zooming effect and the principal point is very close to being
constant. Aerial image sequences taken by a flying platform are examples of this case.

Case 3: The focal lengths, the principal points and the aspect ratios are all unknown and varying.

This case covers the situations that multiple cameras are included. The focal lengths, the principal
points and the aspect ratios all vary from image to image.

We present three factorization-based normalization algorithms to deal with these three cases re-
spectively. The algorithms are linear for the first two cases and bilinear for the third case.

2.3.1 Normalization algorithm outline

The projection matrix?; is,

P ~ K; [ R t; ] (2.27)
where
fi 0 ug; i toi
Ki=| 0 aifi wvo R = | j} ti = | ty

0 0 1 k' tai
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Assumption Focal Principal Aspect
Case lengths peints ratios

Case 1 unknown known known
varying

Case 2 unknown unknown known
varying fixed

Case 3 unknown unknown unknown
varying varying varying

Figure 2.3:Normalization cases
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The upper triangular calibration matri; encodes the intrinsic parameters of ttie camera:f; rep-
resents the focal lengtlwo; vo;) is the principal point andy; is the aspect ratioR; is theith rotation
matrix withi;, j; andk; denoting the rotation axes; is thesth translation vector. Combining Equation

(2.27) fori = 1---n into one matrix equation, we get,

P=[Mm 7]
where
T
M = [mxl my; mg; -+ Mgy My, mzn}
T = [T Ty Ta -~ Ton Ty Tzn}T
and

my; = i fil; + piuok; My = pio fiji + pivoiks  my; = pik;
Tyi = pifitei + pivoitzi Ty = picy fityi + pivoitzs  Toi = pity

1]

S:[sl So --- sm]

The shape matrix is represented by,

where

(2.28)

(2.29)

(2.30)
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and
T
Sj = [ Tj Yj %y }
T
Xj = { V]'SJT I/j ]

p; andy; are the scale factors of the homogeneous representations in Equations (2.27) and (2.30).

World coordinate system location

We place the origin of the world coordinate system at the center of gravity of all the scaled feature
points to enforce,

m
> visi=0 (2.31)
j=1
we get,
m m m m m
> Nijuig = (Mg - vjs; + v Ty) = my; -y vis;+Toi y vy =Toi ) v (2.32)
j=1 j=1 j=1 j=1 j=1
Similarly,
m m m m
Z Aijvij = Ty Z vj Z Aij =Ty Z Vj (2.33)
J=1 j=1 j=1 j=1
Define thed x 4 projective transformatioit/ as,
H=[A B] (2.34)
whereAd is4 x 3andBis4 x 1.
SinceP = PH,
(M T|=P[A B (2.35)
we have,
Tyi = PiB T, =P,;B T, =P,B (2.36)

From Equations (2.32) and (2.33), we know,

m m
Tyi _ 2jmi Migwig Ty 2o Xigij

Y 2.37
T N T PPV (2.37)

We set un linear equations of thé unknown elements of the matriX. Linear least squares solutions
are then computed.
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Normalization

Asm,;, m,; andm_; are the sum of the scaled rotation axes, we get the following constraints from
Equation (2.29),

g = pdfE+ g,

lmy | = piaff? + pivg,

mail = (2.38)
my; - My,; = M%UOiUOi
my; -m;; = ,UJ%UOi
my; - My = M%UOi

Based on the three different assumptions of the intrinsic parameters (three cases), we translate the above
constraints to linear or bilinear constraints 8/ T (see Section 2.3.2, 2.3.3 and 2.3.4 for details).
According to Equation (2.35),

M = PA (2.39)
therefore,
MM" = PAATPT (2.40)
Define
Q=AAT (2.41)

we can translate the constraints i/ to the constraints on the) unknown elements of the sym-
metric4 x 4 matrix (). Least squares solutions are computed. Then we get the mafrom @ by
rank3 matrix decomposition.

Motion and shape recovery

Once the matricegl and B have been found, the projective transformatiortlis= [A B]. The
shape is computed @& = H ' X and the motion matrix a8 = PH. We first compute the scales,

i = @242

We then compute the principal points (if applied),

wo; = M voi = w (2.43)
i i
and the focal lengths as,
2,,2
mg;|° — W;ug;
fz' _ | xz| 7 20 (2.44)
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The aspect ratios (if applied) are,

|myi|2 - N?Ugi

;= (2.45)
' i fi
Therefore, the motion parameters are,
K = Mai L Mai — pivok; . g — pivgk;
i = v=—">-"" )= — " —
i i fi 1ici fi
b= L2 b= xi — MiU0oilz; ty’i _ Zyi HiVoil 25 (246)
i pifi pici fi

Algorithm outline
The normalization process is summarized by the following algorithm.
Normalization Algorithm
1. Perform SVD ori¥; and get the projective motioft and the projective shap¥;
2. Sum up each row diVy and compute the ratios between them as in Equation (2.37);

3. Set upn linear equations of thé unknown elements of the matri® based on the
ratios and computé;

4. Set up linear equations of ti® unknown elements of the symmetric matéxand
getq;

5. Perform rank matrix decomposition o) to getA fromQ = AAT;
6. Put matricesA and B together and get the projective transformatidn= [A B|;
7. Recover the shape usidg= H !X and the motion matrix using = PH;

8. Recover the intrinsic parameters, the rotation axes and the translation vector accord-
ing to Equations (2.43)—(2.46).

2.3.2 Case 1: Unknown focal lengths
Assume that the focal lengths are the only unknown intrinsic parameters. Then we have,

Up; — 0 Vo; = 0 a; = 1 (2.47)
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We combine the constraints in Equation (2.38) to impose the following linear constraints on the un-
known elements of the matri@ [Han and Kanade, 1998b

Imy? = |my,[?
my;-my; = 0
mg;-m,; = 0
my; -m, = 0

We can add one more equation assuming= 1,

m, 2 =1 (2.48)

Totally we havedn + 1 linear equations of th&0 unknown elements aj.
The only intrinsic parameters to be recovered in this case are the focal lengths. As the aspect ratios
arel, the focal lengths are computed by the average of Equations (2.44) and (2.45),

f; = Imail + Jmyil |2:|myi| (2.49)
7

2.3.3 Case 2: Unknown focal lengths and constant principal point
In case 2, we assume that the focal lengths are unknown and the principal point is constant. Then,
Uy = Uy Vo =vy ;=1 (2.50)

We translate the constraints in Equation (2.38) to the following constriites and Kanade, 2000c

my; - My, _ my; - my;
(Imgi* — [my;?) (my; - my;) = (Mg -my)® — (my,; - my;)? (2.51)
and
my; - My; _ |In:lcl|2 — |Inyl|2
m;; - m; lmy;|? — [my;|?
|m$’i|2 - |m i|2 My - My,
Y _ y
lmg;|? — [my;|? my;j - My;
my; - My, _ my; - My
My - My; Myj - Mg
mgy; - m,; my; - My;
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Y = (2.52)
myj . mzj mzj . mzj

wherej =i+ 1,if i # n;j = 1,if i = n. We also have the following constraint assuming= 1,
m|' =1 (2.53)

The above constraints can be represented as linear equations of the unknown elements of the symmetric
matrix Q' = qq’, whereq is a10 x 1 vector composed of the) unknown elements of the matri@.
In total, we can havé3n + 1 linear equations of the5 unknown elements of the matr@y'.
Once(@’ has been computed,is generated by rankmatrix decomposition of)’. We then put the
10 elements ofy into a symmetrict x 4 matrix Q which is factored agtAT.
We compute the principal point as the average of Equation (2.43),

n =1 /'1'22
= Ly i M (2.54)
n& ol

and the focal lengths as the average of Equations (2.44) and (2.45),

my;|? — plud 4+ \/|my; |2 — pivd
fi _ \/| CBZ| 1 OQM\/| ?jl| 170 (255)
(2

2.3.4 Case 3: Unknown focal lengths, principal points and aspect ratios

Case 3 includes the situations that the focal lengths, the principal points and the aspect ratios are
all unknown and varying. We then represent the constraints in Equation (2.38) as bilinear equations
on the focal lengths and the principal points plus the aspect ratios. Starting with the rough values of
the principal points and the aspect ratio of the first camerd, (ve impose linear constraints on the
unknown elements of the matr@ [Han and Kanade, 2000c

my; - My; = Up;Vo; My - My
My -M,; = v My My, (2.56)

We add two more equations assumpng= 1,

a%(|mx1|2—u%1) = |my1|2—v§1
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m,, 2 = 1 (2.57)

Once the matrix¥ has been found, the current shap&is= H ! X and the current motion matrix
is P = PH. We compute the refined principal points, the currently recovered focal lengths and the
refined aspect ratios according to Equations (2.43), (2.44) and (2.45) respectively. The current motion
parameters are then computed as in Equation (2.46).

Taking the refined principal points and the first aspect ratio, the normalization steps are performed
again to generate the mattX, then the focal lengths, the current shape and motion, the refined princi-
pal points and aspect ratios. The above steps are repeated until the principal points and the first aspec
ratio do not change.

The normalization process is computationally equivalent to recovering the absolute quadric which
is computed by translating the constraints on the intrinsic camera parameters to the constraints on the
absolute quadri¢Triggs, 1997, Pollefeyst al, 1999. Our representation is explicit in the motion
parameters (rotation axes and translation vectors) and enables the geometric constraints to be naturally
enforced. The representation also deals with the similarity ambiguity problem directly by putting the
world coordinate system at the center of gravity of the object and aligning its orientation with the first
camera. Compared with the method presented by Pollefeys ef Roliefeyset al., 1999, the normal-
ization algorithm described in Section 2.3.2 is based on the same constraints as their method, but our
framework enables natural extensions to the reconstruction of other intrinsic parameters (normalization
algorithms of Section 2.3.3 and 2.3.4) while they used nonlinear bundle adjustment.

2.4 Experiments

In this section we demonstrate experimental results of the uncalibrated Euclidean reconstruction
method. Given tracked feature points, we first generate the projective reconstruction as described
in Section 2.2, then recover the Euclidean reconstruction and the camera intrinsic parameters using
one of the three normalization algorithms described in Section 2.3 . First, synthetic experiments are
conducted to evaluate the quality of the reconstruction method. Then, results for real image sequences
corresponding to each of the three cases are shown as well. Experimental results on synthetic and real
data show that this method is reliable under noise.

2.4.1 Synthetic examples

We synthesizé0 sequences di0 frames with8 feature points representing a cube in the scene.
The camera undergoes non-critical random motions. The distance between the camera and the cube i
betweend to 15 times the cube size. The camera rotation is thrad@to 65 degrees around the cube.
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We add?2 pixels standard noise to the feature locations. The image si2é is 480. The experimental

results show that the method converges reliably. The errors of the recovered feature points positions
are less thaf.8% of the object size. The recovered focal lengths are always withinl .8% of the

true values. The errors of the principal points are less thab’% of the image size and the errors of

the aspect ratios are less thaf% of the true values. The maximum distance between the recovered
camera locations and the corresponding ground truth val@e&isof the object size and the maximum
difference between the recovered camera orientations and the true valusss is

2.4.2 Real example 1: Building sequence

The building sequence was taken by a hand-held camera in front of a building. The camera was
very far from the building at first, then moved toward the building, and away again. The camera was
zoomed in when it was far from the building and zoomed out when it was close so that the building
appeared to be almost the same size in every image of the sequence. The longest focal length was
about3 times the shortest one according to the rough readings on the camera. The sequence includes
14 frames, of which three are shown in Figure 2.5(a)-(®).feature points were manually selected
along the building windows and the corners as shown in Figure 2.5(d). In this example we assume
the focal lengths are unknown while the principal points are given (the middle of the images) and the
aspect ratios aré. We apply the projective algorithm described in Section 2.2 and the normalization
algorithm described in Section 2.3.2 to this example.

4000 -

3500

3000

th

2500

focal leng

1000

500 -

frame

Figure 2.4:Building sequence:Focal lengths of the building sequence recovered by the uncalibrated
reconstruction method. The recovered values are changing with the camera motion as expected.

Figure 2.6(a) shows the reconstructed building and camera trajectories. The top view shows that the
recovered camera moves toward the building and then away again as expected. The recovered camera
positions and orientations shown in the side view demonstrate that all the cameras have the almost
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Figure 2.5: Building sequence input: (a) 1st image, (b) 4th image, (c) 9th image of the building
sequence. (d) 1stimage of the building sequence with the feature points overlaid.
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(b)

Figure 2.6:Building sequence results:(a)Top and side view of the reconstruction, the 3-axis figures
denote the recovered cameras. The top view shows that the recovered camera moves toward the build-
ing, then away again as expected. The side view shows that the recovered locations of the cameras are
at the same height and the orientations are tilted upward. (b)Bottom and side view of the reconstructed

building with texture mapping.
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same height and tilt upward a little bit, which are the expected values that the same person took the
sequence while walking in front of the building. Figure 2.6(b) shows the reconstructed building with
texture mapping. To quantify the results, we measure the orthogonality and parallelism of the lines
composed of the recovered feature points. The average angle between pairs of expected parallel lines
is0.89° and the average angle between pairs of expected perpendicular Ineslis Figure 2.4 plots

the recovered focal lengths, which shows that the focal lengths are changing with the camera motion as
we expected.

2.4.3 Real example 2: Grand Canyon sequence

The second example is an aerial image sequence taken from a small airplane flying over the Grand
Canyon. The plane changed its altitude as well as its roll, pitch and yaw angles during the sequence.
The sequence consists @if images, and6 feature points were tracked through the sequence. Three
frames from the sequence are shown in Figure 2.7(a)-(c), and the tracked feature points are shown
in Figure 2.7(d). We assume that the focal lengths and the principal point are unknown, but that the
principal point is fixed over the sequence. The normalization algorithm of Section 2.3.3 is used here.
Figures 2.8(a) and (b) show the reconstructed camera trajectories and terrain map. The camera focal
lengths changed little when taking the sequence. Figure 2.9 is a plot of the recovered focal lengths, and
shows that the focal lengths are relatively constant. The principal point recovered by the reconstruction
method is(159, 119) (with the image size a$20 x 240).

2.4.4 Real example 3: Calibration setup

In this experiment we test our method on a setup for multi-camera calibration. In this’getup
cameras are placed in a dome, and a bar of LEDs is moved around under the dome. The bar is imagec
by each camera as it is moved through a series of known positions. Since the intrinsic parameters
of each camera do not change as the bar is moved, the images taken by one camera are combinet
into one image containing multiple bars. This composite image incl@d@2deature points (LED
positions). Therefore, the setup generditegmages, each contair2s2 features, which are to be used
as calibration data for the cameras. Tsai’s calibration algor{fiisai, 1987 is used on this setup to
calibrate thes1 cameras. The calibration results of Tsai's algorithm are compared with the results of
the uncalibrated reconstruction method.

In this example we assume that all the intrinsic parameters (except the skews) are unknown, and
may differ from camera to camera. The normalization algorithm described in Section 2.3.4 is applied.
We initialize the aspect ratios fioand initialize the principal points to the middle of the images. Figure
2.10 shows the reconstructed LED positions and the reconstructed camera orientations and locations.
The reconstructed LED positions are compared with their known positions. The maximum distance
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(@) o (b)

()

Figure 2.7:Grand Canyon sequence inputi(a) 1stimage, (b) 46th image, (c) 91st image of the Grand
Canyon sequence. (d) 1st image of the Grand Canyon sequence with the feature points overlaid.
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(@)
(b)

Figure 2.8:Grand Canyon sequence results{(a)Top and side view of the reconstruction, the 3-axis
figures denote the recovered cameras. (b)Top and side view of the reconstructed Grand Canyon with
texture mapping.
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Figure 2.9:Grand Canyon sequencefocal lengths of the Grand Canyon sequence recovered by the
uncalibrated reconstruction method. The recovered values are relatively constant as expected.

is 20mm which is about).61% of the bar length. The recovered camera locations and orientations
are compared with Tsai’'s calibration results. The maximum distance between the recovered camera
locations by the two methods mm which is about).98% of the bar length, the maximum angle
between the recovered camera orientatioris3s.

Figure 2.11 are plots of the differences of the focal lengths, the principal points and the aspect
ratios recovered by the uncalibrated reconstruction method and by Tsai’s calibration algorithm. The
plots show that the calibration results of these two methods are very close.

Figure 2.10:Calibration setup results: Top and side view of the reconstruction of the calibration
setup, the points denote the recovered LED positions, the 3-axis figures are the recovered cameras.
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Figure 2.11Calibration setup: Differences of (a)the focal lengths (b) the principal poifntg, vy) (c)
the aspect ratios of the calibration setup data recovered by the uncalibrated reconstruction method and
by Tsai’s calibration algorithm.
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Chapter 3

Multiple Motion Scene Reconstruction

In this chapter we describe a methiddian and Kanade, 200Dfor reconstruction of scenes con-
taining an unknown number of moving objects. We refer to such scemasliple motion scened he
multiple motion scene reconstruction method recovers the scene structure, the trajectories of the mov-
ing objects and the camera motion simultaneously from monocular image sequences. The number of
the moving objects is automatically detected without prior motion segmentation. We also discuss solu-
tions to the degenerate cases when the scene structure or the motion space is degenerate. Extensions
the multiple motion scene reconstruction method to weak perspective and perspective projections are
presented as well. Experiments on synthetic and real image sequences show that the multiple motion
scene reconstruction method is reliable under noise.

3.1 Feature points representation

We propose a unified representation of the static scene and the moving objects. Assuming that
m feature points are tracked overimages, some of them static and the others moving linearly with
constant speeds, we regard every feature point as a moving point with constant velocity: the static
points simply have zero velocity. Any poipt; is represented by,

Pij = 8j +1iv; (3.1)

in a world coordinate system, wheie=1---n andj = 1---m. n is the number of frames and is
the number of feature points, is the point position at frame (i.e., when theth frame is taken) and
v; is its motion velocity.
We first use the orthographic camera model for the derivations. We describe its extensions to weak
perspective and perspective camera models in Section 3.4. If gmgistobserved in framéat image

35
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coordinategu;; v;;), then,

Uij = 1 Pij t ity

Vij = Ji*Pij Tty (3.2)
i; andj; are the rotation axes of thth cameraz,; andt,; are its translations. Therefore,
Ujj = ii-Sj—f—iiZ'-Vj-i-tm'

vy = Ji - S; +14ji- v+ tyi (3.3)

We put all the feature points coordinates; v;;) in a2n x m measurement matri¥’,

Uilp U2 Ulm
U1 V12 Vim
- (3.4)
Unpl Up2 Unm
L Unl Un2 Umn |

Each column ofi#/ contains the observations for a single point, and each row contains the observed
u-coordinates op-coordinates for a single frame. We have,

W=MS+T[1 1 - 1] (3.5)
with the rotation matrix,
T
M = [ my; Iy Myy My .-+ Mgy, My, ] (36)
Nyip Ny Np2 Iy - Ngp Iy
where
my; = iz Ng = 11 (37)
my; = J; Ny, = 1)
and the shape matrix,
S S PR S
S = l b m ] (3.8)
vl v2 PECEY vm
The translation vectdrF is,
T
T = |: te1 tyl teo ty? ten tyn ] (39)
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The constraints of the objects moving linearly with constant speeds enable the unified representa-
tion of the motion matrix\/, composed of the rotation axasi(; andm,;) and the scaled rotation axes
(ng; andn,;), and of the shape matrix, composed of the scene struatgrar{d the motion velocities

(vj)-

3.2 Scene reconstruction

In this section we describe the multiple motion scene reconstruction méttedand Kanade,
19994 based on the unified representation of the static scene and the moving objects. The method
factors the measurement matrix into the product of the unified motion matrix, which is a combination
of the rotation and the scaled rotation axes, and the unified shape matrix, which is a combination of the
initial positions of the feature points and their velocities.

3.2.1 Moving world coordinate system location

As a set of points are either static or moving linearly at constant speeds, the center of gravity of all
the points is moving linearly at a constant speed as well. The velocity of the center of gravity is equal to
the average of all the velocities (). We transform the 3D representation tmaving world coordinate
system whose origin is at the center of gravity of all the feature points and with a fixed orientation (such
as being aligned with the first camera). Therefore,

m
> pij=0 (3.10)
j=1
From Equation (3.2), we have,

m m m

> wij = (- Pij +tei) =1 Y Pij + mtai = miy

j=1 j=1 j=1

m m m

> v = (i Pij + tyi) =Ji Y Pij + mity; = mity, (3.11)

Jj=1 Jj=1 j=1

We can compute the translation vector directly from Equation (3.11),
1 m
bai = — Z Ujj
J=1

1 m
tyi = Ejzlvij (3.12)
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3.2.2 Decomposition

Once the translation vectdr is known, we subtract it froni” in Equation (3.5),
W=w-T[11 - 1]=MS§=MAA"S=MS (3.13)

whereM = MA andS = A~1S. According to the representations df and S in Equations (3.6)
and (3.8), we know that the rank of the matfiX is at mosts no matter how many moving objects are
there. We perform a SVD of” and get the best possible raflapproximation ofi’ asM S, where
M is a2n x 6 matrix andS is a6 x m matrix. This decomposition is not unique. Any non-singular
6 x 6 matrix A could be inserted betweedf andS to get another motion and shape pair.

3.2.3 Normalization

Metric constraints are imposed to translate the current pair of mofithand shaped) to the
Euclidean solutions through recovering the linear transformatioihis process is calledormaliza-
tion. We recover thi$ x 6 matrix A by observing that the rows of the motion matfik consist of the
rotation axes and the scaled ones (Equation (3.6)),

Im,;[° =1 |my[* =1 m, - -my =0 (3.14)
gl =% |nyi|* =i ngony =0 (3.15)
my; - Ny = 0 my; - Ng; = 0 (316)

The above equations impose linear constraints on the elemeMs\6f . Since
MMT = MAATMT (3.17)

these constraints are linear on the elements of the symmetric niatex4 AT,

Define
A=[4 4] (3.18)

whereA is 6 x 6 matrix andA;, A- are bothé x 3 matrices. Sincé/ = M A,

~ T
MAl = |: my; mMy; -+ Mgy Dy, ]
MAQ = |: Ny ng -+ Ngp nyn :|T
= N[ma my o me, my | (3.19)
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where
1 0 0 0 0 O 0 0 |
o 1 0 0 0 0 0 0
0o 0 2 0 0 0 0 O
0 0 0 2 0 0 0 0
N=|0 0 0 0 3 0 0 0 (3.20)
o 0 o 0 0 3 0 0
0 0 0o 0 0 0
L 0 0 0 n |
according to Equation (3.7). Therefore,
MAy = NMA; (3.21)
The matrixA, is over constrained gived; and! by,
Ay = KA (3.22)
where
K=M"'NM (3.23)

andM ! is the pseudo inverse matrix whichdsx< 2n and uniquely defined whem > 3.

From Equation (3.19), we see that Equation (3.14) imposes constraints 2huhknown elements
of the 6 x 6 symmetric matrixQ; = A; A, while Equation (3.15) imposes constraints on #ie
elements ofY, = A, AJ. From the relation off; and A, (Equation (3.22)), we have,

Qo = ApAY = KA ATK' = KQ K™ (3.24)

which translates the constraints @3 to the constraints ofy; .

Equation (3.16) imposes constraints @a = A, Al which can also be translated into constraints

onQy,
Qs = A AT = KA AT = KQ, (3.25)

Therefore, each frame contribut@sonstraints (Equations (3.14) to (3.16))@n. In total, we have
8n equations on thel unknown elements of the symmetric maté€)x. Linear least squares solutions
are computed. We then compute the mattixfrom ¢); by rank3 matrix decomposition and, by
Equation (3.22), so we recover the linear transformatios [4; As].
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3.2.4 Motion and shape reconstruction

Once the matrix4 has been found, the shape matrix is computed uSirgA 1S and the motion
matrix isM = MA. We compute the camera rotation axes as,

The shape matrix consists of the scene structure and the velocities (represented in the moving world
coordinate system). We need to transform the representation back to a fixed world coordinate system
with the origin at the center of gravity of all the points at fraine

First we compute the velocity of the moving coordinate system. Since the system is moving at the
average velocity of all the moving points, the static points must have the same velocity which is the
negative value of the average velocity. It is often the case that there are more static points than moving
points from each moving object, so we let every point vote for a “common” velocity (denoteg).as
The velocity with the most votes is taken as the negative velocity of the moving coordinate system.
The points with the “common” velocity are automatically classified as static and the scene structure is
computed as:

sc; =s; + V. (3.27)

wheresc; denotes the scene point position represented in the fixed coordinate system. According to
Equation (3.1)s; is the point position at frame.

The points which do not have the “common” velocity are the moving points. The number of the
moving objects is therefore detected. Their starting positions represented in the fixed coordinate system
are:

sm; =s; + V. (3.28)

and their velocities are;:
vm; =Vv; — V. (3.29)

3.2.5 Summary of algorithm
We summarize the reconstruction method as follows:

1. Compute the camera translatidiigrom the matrixiW according to Equation (3.12);
2. Subtractl’ from W to generatdV according to Equation (3.13);

3. Perform SVD or¥ and getM andS;
4

. Set up linear equations of tBé& unknown elements of the symmetric maté)x by impos-
ing constraints in Equations (3.14) to (3.16);
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. FactorQ, to getA; from Q; = A; AT;
. Computed, from Ay = K Ay,
. CombineA; and A; to generate the linear transformation matfix= [A; As];

. Recover the shape matrix usiig= A~'$ and motion matrix using/ = M A;

© 00 N O O

. Recover the camera rotation axes as in Equation (3.26);

10. Detect the moving objects, reconstruct the scene structure and the trajectories of the moving
objects according to Equations (3.27) to (3.29).

3.3 Degenerate cases

The method described in Section 3.2 solves the case where the "registered" measurement matrix
(the matrix generated by subtraction of translations from the original measurement matrix) has the
full rank 6, that is, where the static structure and the motion space of the objects are both rank
Equivalently, this is the case that the scene is three dimensional and the velocities of the moving objects
span a three dimensional space. In this section we discuss degenerate cases.

If the scene has a degenerate shape, such as all the points lie in a plane, the plane plus parallax
method[lrani et al,, 1994 can detect the situation and solve for the scene structure (plane position),
the camera motion and the motion segmentafmandanet al., 1994, Iraniet al., 1997. The motion
trajectories can be recovered using the method proposed by Avidan and Shastiaa and Shashua,

1999, given the reconstruction of the camera motion. Therefore, in this section we only discuss the
solutions to the degenerate motion space of the objects.

We classify the degenerate situations into three classes:

1. Rank3 case: The matrid¥ has rank3. This corresponds to the situation where there is no
moving object in the scene. The one-object factorization meffiochasi and Kanade, 19p%
used to recover the scene structure and the camera motion.

2. Rank4 case: The matri%/ has rankt. This corresponds to the situation where there is one mov-
ing object or multiple objects moving in the same and/or the opposite direction (not necessarily
the same 3D line). Section 3.3.2 describes a linear algorithm for this case.

3. Rankb case: The matri¥¥ has ranks. This corresponds to the situation where the velocities
of the objects lie in a two dimensional space (not necessarily the same 3D plane). Section 3.3.3
gives a nonlinear solution to this case.
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3.3.1 Rank approximation

Given tracked feature points, we first need to decide which case (full rank or one of the above three
degenerate cases) is the best approximation. The rank of the Matsione important clue. However,
finding the rank o/’ is not straightforward. Both inaccuracies in feature locations and approximation
of perspective projection using orthographic or weak perspective projections induce noises in the rank
computation.

We use an algorithm similar tiBoult and Brown, 199land[Irani, 1999 to detect the rank of
W. We first estimate the noise level of the input images and approximate the rank using the singular
values ofi¥ and the noise level. We refer to this methodiasct rank approximationin [Gear, 1998
Gear proposed a maximum likelihood method to estimate the grouping of points in the presence of
noise. One of the core techniques of the method is rank approximation. He evaluated the grouping
errors of all the possible rank values based on the statistical noise model. The rank value with the
minimum error is chosen as the best rank approximation. We applied Gear’s idea to the multiple
motion scene reconstruction method where the raniafan only be any value if3,4,5,6}, which
is determined by the motion space of the objects and is not dependent on the number of moving objects.
Compared with Gear’s methd@Gear, 1998and Costeira and Kanade’s metH@bsteira and Kanade,
1994, in which the rank value is used to detect the number of moving objects and is affected by
degenerate shapes, this rank estimation has much less computation. For each rank{3alué.i6},
we perform the multiple motion scene reconstruction and measure the error in orthogonality of the
recovered camera rotation matrices as well as the discrepancies of the feature points back projections.
The best rank approximation is the one with the minimum error. The results show that the direct rank
approximation method gives reliable estimations of the rank at most times.

3.3.2 Rank4 case

When only one moving object is in the scene, or when all the moving objects travel in the same
or the opposite direction, the motion space is one dimensional and the rank of the "registered" mea-
surement matrix ig. In this case we align th& direction of the world coordinate system with the
motion direction. The system is still moving with the constant velocity. Therefore, the motion and
shape matrices are (compare with Equations (3.6) and (3.8)),

T
M = my; MmMy; Mgy Myy - Mgy My,
izl Jz1 2iz2 2Jz2 cc Mign NJzn
S1 S9 Sm
S = (3.30)
Vg1l Uz2 - Ugm
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wherei,; andj,; represent the-elements of théth rotation axesy,; denotes thes-element of the
velocity of thejth feature point. We apply similar derivations as in the full rank case to the computation
of T' (Equation (3.12)) and the decompositionl&f (Equation(3.13)). In this case the rankidf is 4.

We perform a ranki matrix decomposition ofi’ and get &n x 4 matrix M and a4 x m matrix S.

Now the linear transformation matrit is 4 x 4. Similarly, we define

A=[4 4] (3.31)
whereA; is4 x 3, Ay is4 x 1 and we have,
As = K (A1) (3.32)

where(A;); is the first column ofd; andK is defined in Equation(3.23). Since the matkikconsists
of the rotation axes and only theelements of the scaled rotation axes, the constraints in Equations
(3.15) and (3.16) cannot be represented as linear constraints on the eleménfd bf However,
the constraints in Equation (3.14) still hold and provide full rank linear equations crdtheknown
elements of the symmetrit x 4 matrix Q; = A; AT. Least squares solutions are computed. We then
computeA; by rank3 matrix decomposition of);. This decomposition is up to a three dimensional
rotation R since the matrix?; is symmetric. When the motion space is full rank, any rotation marix
provides a valid reconstruction with a different orientation of the world coordinate system. We usually
fix the matrix R by aligning the world coordinate system with the first camera orientation. However,
when the motion space is degenerate, the alignment is constrained to make the orientation of the world
coordinate system consistent with the motion direction(s).

In rank4 case, we need to align the direction of the world coordinate system as the motion
direction before we computé, according to Equation (3.32). The matiikis determined by aligning
the matrixM K A; with the matrix NM A;.

Therefore, the linear transformatiohis,

A=[ AR K(A4R) | (3.33)
where(); denotes the first column of the matrix. We apply a derivation similar to the one in Section

3.2.4 to recover the motion and shape.

3.3.3 Rank5b case

When the velocities of all the moving objects lie in a two dimensional space, we assume that the
x — y plane of the world coordinate system is aligned with the two dimensional motion space. The
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system is still moving with constant velocity. Therefore, the motion and shape matrices are,

my) My Mgy Myy - Mgy My !
L 7;y1 jyl 27;y2 2jy2 Tt niyn njyn
[ Sl 52 “ e Sm
S = Vgl Vg2t Uzm (3.34)
L Uyt Uy2 tt Uym

wherei,; andj,; represent the-elements of théth rotation axes;,; andyj,; represent theiy-elements,
vy; denotes the-element of the velocity of thgth feature point ana,; is its y-element. Therefore,
the rank of W is 5. Similar derivations apply to the computation Bf (Equation (3.12)) and the
decomposition of¥’ (Equation(3.13)). In this case we perform a rdninatrix decomposition ofi’
and get &n x 5 matrix M and a5 x m matrix 5. The linear transformation matrif is 5 x 5. Similarly,
we define

A=[4 4] (3.35)

whereA; is5 x 3andA4,isb x 2,
As = K(A1)12 (3.36)

where(A;)12 denotes the first two columns df; and K is defined in Equation (3.23). Here only the
constraints in Equation (3.14) can be represented as linear constraints on the elerggnts 4f AT .

In this case the constraints are not sufficient to solve forltheanknown elements of the symmetric
5 x 5 matrix Q4 linearly.

The constraints in Equations (3.15) and (3.16) can be represented as constraints on the elements of
Q1 and the five elements of the third columnf, which is a5 x 1 vector denoted by. According
to Equation (3.36),
[ 4, Ke|=K4A (3.37)

we have,
AyA] = KAJATKY — KecTKT = KQ KT — KeeTK™ (3.38)

and
|: A2 iC :|Ar1r = AQ(Al)rlI‘Q +’iCCT
= KA AT — Keet +icc?
= KQ;— Kcc' +icct (3.39)
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Since, . | |
m!”, = w74, n. = { T4, i m®Tc ] a0
mgi = mél)TAl ngi _ [ rhéi)TAg irhéi)Tc ] .

according to Equation (3.19)31&” and m§j> represent théth z andy rows of the matrixAZ. They
are both x 1 vectors. We translate the constraints in Equation (3.15) to the constraiils andc
according to Equation (3.38),

Ingi? = mdTA,ATml + im0 e m?
= ﬁ’lg(EZ)TKQIKTﬁ,Iml) _ ﬁ'lg(L-Z)TKCCTKTﬁ’l(Z) + ing)TCCTﬁ’lg) _ ’],2 (341)
and,
Ing|? = m:gi)TKQlKng(j) _ mg(/i)TchTKTm?(j) " iQﬁl?(f)chTrh?(j) _ 2
n,;-n,; = mPTKQK MY —m{TKec"K () + *m{ ec"'m{) =0 (3.42)

Similarly, we translate the constraints in Equation (3.16) to the constrain€$;@ndc according to
Equation (3.39),

= m(TKQm{) - m{)TKeecTm{?) + im{)TecTm{) = 0 (3.43)
and
my; - n,; = WPTKQm{) — (T KeeTm() + im{Tec () =0 (3.44)

Therefore, we get linear equations of ttieunknown elements @, and thel5 unknown elements
of cc’. Since these equations cannot provide full rank constraints dftlieknowns, there is no linear
solutions of@; andcc™ directly. However, the constraints are full rank on the element30f cc’
is given. That is, ifc can be computed, we can get a linear solutio®ef In this way we change the
problem to a small scale nonlinear optimization ondfeements ot. Once the vectoe is computed,
the matrix@; is computed by least squares solutiods.is then calculated frony);.

Same to the rank-case, we need to align the— y plane of the world coordinate system with
the two dimensional motion space before we complteccording to Equation (3.36). The matifik
is also determined by aligning the matdg K A; with the matrix N M A;. The alignment problem is
solved by the least eigenvalue method.
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Therefore, the linear transformatiohis,
A=[ AR K(4R) | (3.45)

We apply a derivation similar to the one in Section 3.2.4 to recover the motion and shape.

3.4 Extensions to weak perspective and perspective projections

3.4.1 Scene reconstruction under weak perspective projection

Based on the unified representation of the static scene and the moving objects proposed in Section
3.1, any poinip;; is defined as,
Pij =8 +1iv; (3.46)
in a world coordinate system, wheie=1---n andj = 1---m. n is the number of frames and is
the number of feature points, is the point position at framéandv; is its motion velocity.

The image coordinates:;; v;;) of a pointp;; in frames under weak perspective projection are,

i py e
U5 = T
j. -p~-+t .

vij = %zw (3.47)

i; andj; are the rotation axes of thith camera.t,; andt,; are the translationsz; is the distance
between théth camera optical center and the center of gravity of all the feature points. Therefore,

ii lz tm'
Uy = —-8;+1— -Vvj+—
" Z; I Z; ! 2
. 0

v = %-sj—i—z%-vj-{—% (3.48)
2 1 2

We put all the feature points coordinat@s; v;;) in a2n x m measurement matri¥’,

U1l U192 oo Ulm
V11 V12 oo Uim
W = : : (3.49)
Unpl Up2 ... Upm
L Un1 Un2 ... Umn |
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We have,
W=MS+T[1 1 - 1] (3.50)
with the rotation matrix,
T
M = [ mgy; Iy Mgy My -+ Mgy, Dy, ] (351)
Ny Ny ;2 Nyo - Ngp nyn
where _ )
my; = ;_Zz ng = 7»;_2
.k o i (3.52)
Yyt Z; Yy Zj
and the shape matrix,
S S PR S
S = l Lo=2 m ] (3.53)
vl v2 PECEY vm
The translation vectdrf' is,
T
T:[tz_l bn oty b2 ten ty_n} (3.54)
21 21 29 29 Zn Zn

Now the unified representation of the rotation matkikis composed of the rotation axes scaled
by the object depth; (m,; andm,;) and their scaled versions by the frame numbgi,; andn,;).
The unified representation of the shape matrix is composed of the scene stragtared(the motion
velocities §;), which is same as that under orthographic projection.

Moving world coordinate system location

As in Section 3.2.1, we transform the 3D representation to a moving world coordinate system with
fixed orientation and the origin at the center of gravity of all the feature points. Therefore,

m

> pij =0 (3.55)

From Equation (3.47), we have,

ti i — tai ti
* Pij z) % 'E_ Pij 2

m m
]z:: Z:: 2 Zg
m m i ; - m . .
Z Z “Pij + yl) ‘]Z_ Z pij + mﬂ = mﬂ (3.56)
j=1 i=1 2 Zj =1 Zj 24
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We get the vectol” from Equation (3.56),

2 m = "
L= =Ny 3.57
Zi m j=1 o ( )

Decomposition

We subtract the translation vectdrfrom W in Equation (3.50),
W=w-T[11 - 1]=MS=MAA"'S=MS (3.58)

whereM = MA andS = A~'S. According to the representations bf and.S in Equations (3.51)
and (3.53), we know that the rank of the matix is at mosts. We perform a rani6 SVD onW and
get the best possible raskapproximation ofii’ asM S, wherelM is a2n x 6 matrix andS is a6 x m
matrix. This decomposition is not unique since any non-singéilar6 matrix A could be inserted
between)! andS$ to get another motion and shape pair.

Normalization

Metric constraints are imposed to translate the current pair of mofithand shaped) to the
Euclidean solutions through recovering the linear transformationWe recover this x 6 matrix
A by observing that the rows of the motion mattif consist of the scaled rotation axes and their
corresponding scaled versions (Equation (3.51)),

|mm'|2 = |myz'|2 my; - my; =0 (3.59)
Ing|* = i}jmy>  |ny,> = ?jmy, > ng oy, =0 (3.60)
My - Ny = 0 my; - Ng; = 0 (361)

The above equations impose linear constraints on the elemeMs\6f . Since
MMT = MAATMT (3.62)

these constraints are linear on the elements of the symmetric ngatsx4A™.
The derivations to get the linear transformatidmmre same as described in Section 3.2.3. The same
steps are also followed to solve for the degenerate cases under weak perspective projection.
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Motion and shape reconstruction

Once the matrix4 has been found, the shape matrix is computed uSirg A~ 1S and the motion
matrix isM = M A. We compute the depth first,

1
Zi = —— (3.63)
then the camera rotation axes as,
i, =2zmy;  ji=zmy k=i X (3.64)
and the translations are,
Z i Z m
tm' = — Zuij tyi = — Z’Uij (365)
m =1 m =1

The shape matrix consists of the scene structure and the velocities represented in the moving world
coordinate system. We need to transform the representation back to a fixed coordinate system with
the origin at the center of gravity of all the points at fratheThe moving objects are automatically
detected at the same time. This process is same as described in Section 3.2.4.

3.4.2 Scene reconstruction under perspective projection

Based on the same unified representation of feature points, the image coorginates;) of a
point p;; in frames under perspective projection are,

wo — i Pij ttai
" k; - pij +tz
.. .. t .

vy = JPUThi (3.66)
ki - pij + 1z

i;, j; andk; are the rotation axes of théh camerat,;, t,; andt,; are the translations. We divide both
the numerators and the denominators of the above equatiohg, by

LiDij | tei
Ui s — tyi tei
K 1+ €ij

Ji'Pij | lyi

t.; [
o= —=—2x 3.67
wo= (3.67)

where N

€ij =~ Pil (3.68)

tzi
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Iterations of weak perspective reconstruction

Given tracked feature points, the perspective reconstruction can be regarded as non-linear parame-
ter fitting of Equation (3.67) with camera motion and scene structure as parameters. The numerators in
Equation (3.67) are the weak perspective projections. Christy and HpZwidty and Horaud, 1996a
presented the perspective factorization method by incremental weak perspective reconstructions. Their
method worked on the scenes without moving objects. We applied their idea to the perspective re-
construction of multiple motion scenes. Whenever the objects are at some reasonable distance from
the camera, the;;’s are far less than. We compute the parameter fitting by iterations of the weak
perspective approximations starting with = 0, that is, we perform the multiple motion scene weak
perspective reconstruction method described in Section 3.4.1 on the measuremeniimatrix

Uil Uiz e Ul
V11 V12 . Uim
W=1| ... ... ... .. (3.69)
Upl Up2 " Upm
L Unl Un2 -°° Unm |

wheren is the number of cameras amd is the number of feature points. The recovered motion
parameters are denoted By j';, k'; andt);, ,;, ;. The recovered feature points are denoteghy.

ze Yy Yzt

We then use these current parameters to generate a new measuremeritithatrix

! ! !
Uy Urg o Uy
! ! !
V11 V12 ot Uim
w'

(3.70)

Upr Upz ~°° Upy

where

’ i - Py + 1
1) kli . plz] + tlzz
oy = JrPuth (3.71)

(/N kli'p,ij +tlzi .
The process of generating the new measurement matrix is equivalent to the back projection process
of other non-linear optimization methods. The new measurement nidtfiprovides a criterion to
choose between the two ambiguous reconstructions which are up to a mirror-symmetry transformation.
The difference ofi#’’ from the original measurement matriX also gives the convergence error. A
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new iteration of the weak perspective reconstruction is performed on the current measurement matrix
W'. The goal of the parameter fitting is to iteratively find the reconstructions which make the back
projections consistent with the image measurements.

Choice between mirror-symmetric shapes

It is well known that there is an inherent ambiguity problem with any affine reconstruction method,
that is, after any affine reconstruction we can get two mirror-symmetric shapes and the corresponding
“mirror-symmetric” camera motions. Define

e = @ 1=1,2 (3.72)
2i
and
k:}:z = _k:%i k?}z = _kzi k;z = kiz (3.73)
piz'j = pgij pglﬂj = pZij piij = —pi—j
According to Equation (3.72),
€ = —¢€; (3.74)

For objects at reasonable distance from the camera, suttoa¥) times the object size, the weak
perspective reconstruction method generates relatively correct reconstruction without considering the
perspective effects. In the two new measurement matrices computed by Equations (3.70) and (3.71) for
the two symmetric reconstructions, the perspective effects are taken care;gébyhe ratio between
the corresponding items of twid"’s is }f—ij which is large enough to distinguish the right shape from
its mirror one. Based on this analysis, we keep only one set of the motion and shape parameters in eact
iteration, which is computation efficient.

Error measurement

We use the Frobenius norm of the difference matrix of the selected new measurement matrix and
the original one as errdr,
E=|W -W IS (3.75)

Perspective reconstruction method outline

The multiple motion scene perspective reconstruction method is summarized as follows:
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. Seteij:0,fori:1---nandj:1...m;

. Generate the original measurement malvixoy equation (3.69) and start the itera-
tions withiWW’' = W;

. Perform the multiple motion scene weak perspective reconstruction methidd on
and generate two pairs of motion and shape which are mirror symmetric;

. Calculate the two new measurement matrices with the sign reversal motions and
shapes by Equations (3.70) and (3.71);

. Compute the erraE/ between the new measurement matrices and the originak
in Equation (3.75);

. Choose the set of parameters with smaller error as the refined motion and shape, and
define the corresponding measurement matril/as

. If this error is close to zero, stop; else go to step 3.

3.5 Experiments

A number of experiments have been performed to test the effectiveness of the multiple motion scene
reconstruction method presented in this chapter. First some synthetic images are used to evaluate the
quality of the method. Then two experiments are conducted on real image sequences. The first sequence
was taken by a hand-held camera of an indoor scene, and the reconstruction results are compared with
the ground truth. The second sequence was taken by a small plane flying over the buildings. The weak
perspective reconstruction method is used in the experiments described in this section because weak
perspective projection is a better approximation to perspective projection than orthographic, and it is

more reliable and efficient than the iterative perspective method.

3.5.1 Synthetic examples

We generate sequenceslof) frames with49 feature points from the static scene @n 9 objects
moving in random directions. The shape of the static scene is a sweep of the sin curve in the space.
The camera rotates randomly 3t to 50 degrees around the scene. The distance between the camera

and the scene iB5 to 50 times the static scene size. We adplixels noise to the feature locations (the
size of the image 640 x 480).

Figure 3.1 illustrates the case wherebjects are moving randomly in 3D space. The method
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automatically detects the number of the moving object asconstructs the static scene and the initial
positions of thel moving objects, as shown in Figure 3.1(a). Figure 3.1(b) shows the trajectories of the
moving objects as well as the static scene.

(b)

Figure 3.1:Full rank case: A scene with a three dimensional motion space. (a) The reconstructed
scene structure and the initial positions of the moving objects. (b) The reconstructed scene and the
motion trajectories.

We perform experiments on the case that there are two moving objects whose directions are on
a plane. The method detects that the rank asd recovers the scene structure and the two motion
trajectories correctly. We also try the case that there are three moving objects but their motion directions
lie in a two dimensional space. The method gets the right rank approximaliand the accurate
reconstructions (shown in Figure 3.2).

We also conduct experiments on rafilkcases that there is only one moving object, and that there
are multiple moving objects which are moving in the same or the opposite direction. The method
detects the rank asin both cases. For the case that there is no moving object, the method correctly
detects the rank a@sand recovers the scene structure.

In all cases, we measure the reconstruction error by comparison with the ground truth. Since the
reconstruction from monocular image sequences is up to a scale, we assume that the size of the static
shape isl. With 2 pixel standard noise, the maximum distance between the recovered static points and
their known positions i4.0%, the maximum error of the reconstructed initial positions of the moving
objects is1.2% and the velocity error is less than1%. We also assess the quality of the camera
motion reconstruction. The maximum distance between the recovered camera locations and the ground
truth values id.4% and the maximum angle between the recovered camera orientations and the known
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(b)

Figure 3.2: Rank-5 case: A scene with three motion trajectories which lie in a two dimensional
space. (a) The reconstructed scene structure and the initial positions of the moving objects. (b) The
reconstructed scene and the motion trajectories.

values i9).1°.

3.5.2 Real example 1: Toy sequence

This sequence was taken of an indoor scene by a hand-held camera. Three objects, a car, a plane
and a toy person, were moving linearly with constant speeds. The car and the person were moving on
the floor, and the speed of the car was three times of the speed of the person. Their motion directions
were perpendicular with each other. The plane was taking off on a slope and moved two times as fast
as the car. The boxes represented the static s@driemages were taken. Three of them are shown in
Figure 3.3(a)-(c)23 feature points were manually selected and tracked, which are overlaid on the first
image shown in Figure 3.3(d). We use the fir8tframes to perform the reconstruction. The shapes
of the boxes, the starting positions of the moving objects and the motion velocities are recovered and
demonstrated in Figure 3.4(a) (with texture mapping) and (b) (with wireframe), the motion trajectories
are overlaid in the images. Figure 3.4 (c) show the recovered camera locations and orientations.

We assess the quality of the reconstruction by comparison with the ground truth. The angle between
the motion direction of the car and that of the persofid5°, the ratio between the speeds3i§5
which is close to the expected valdi®. The ratio of the speed of the plane to that of the c&rdg. The
maximum distance between the positions of the recovered static points and the ground truth positions
is 2mm. The recovered motion direction of the plan&as tilted upward from the floor, which is close
to the expected value.
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Figure 3.3:Toy sequence input:(a) 1st image, (b) 7th image, (c) 18th image of the indoor sequence,
the moving objects are circled in the 1st image. (d) 1st image of the indoor sequence with the feature
points overlaid.

We project the motion trajectories back to the images and measure the discrepancies of the tracked
objects and the back projections in the ladtames. The maximum discrepancy2ipixels.

3.5.3 Real example 2: Smith Hall sequence

This sequence was taken by a small airplane flying over a scene with multiple moving cars. The
first 80 frames of &0 frame sequence are used, three of these frames are shown in Figure 3.5(a)-(c).
35 feature points were manually selected in the first frame corresponding to the buildings and the two
moving cars as shown in Figure 3.5(d). These points were automatically tracked in the remaining
frames. The method estimates the rankiéfas 4 because the two cars were moving in opposite
directions. Figures 3.6(a) and (b) show the recovered buildings as well as the motion trajectories. Since
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the resolution of the input images is very low, the texture mapping is not very clear. Similar to the
experiment in Section 3.5.2, we measure the discrepancies of the back projections of the cars and the
tracked cars for the findl0 frames. The maximum discrepancies angixels for the white car and

pixels for the black car.
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(b)

r\(‘ﬁ‘lffﬁf oL » rﬁﬁi’r !
~

()

Figure 3.4:Toy sequence results(a) Two views of the reconstruction with texture mapping, the black
lines denote the recovered motion trajectories, the arrows show the motion directions. (b) Two views
of the reconstruction with wireframe, the black lines denote the recovered motion trajectories. (c) Two
views of the reconstruction, the 3-axis figures are the recovered cameras.
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(d)

Figure 3.5:Smith Hall sequence input:(a) 1st image, (b) 33th image, (c) 80th image from the outdoor
sequence, the moving objects are circled in the 1st image. (d) 1st image of the outdoor sequence with
the feature points overlaid.



3.5. EXPERIMENTS 59

(@)

(b)

Figure 3.6:Smith Hall sequence results:(a) Two views of the reconstruction with texture mapping,
the black lines denote the recovered motion trajectories, the arrows show the motion directions. (b) Two
views of the reconstruction with wireframe, the black lines denote the recovered motion trajectories.
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Chapter 4

Multiple Motion Scene Reconstruction
with Uncalibrated Cameras

Chapter 3 presents a reconstruction method for multiple motion scenes under affine projections.
It requires the cameras be intrinsically calibrated. In practice, many image sequences are taken with
uncalibrated cameras. In this chapter we present the multiple motion scene reconstruction method
from uncalibrated viewgHan and Kanade, 2001Assuming that the objects are moving linearly with
constant speeds, the method recovers the scene structure, the trajectories of the moving objects, the
camera motion together with the camera intrinsic parameters. The method detects the moving objects
automatically without prior motion segmentation.

4.1 Projective reconstruction

Given tracked feature points from uncalibrated views, we first perform a projective reconstruction.
Perspective projectiof;, s = 1---n andn is the number of frames, is represented [3y:a4 matrix,

Pi~ K[ R t | (4.1)
where
fi 0 ug il tai
Ki=| 0 aifi voi Ri=| jf ti= | tyi
0 0 1 kf tyi

The upper triangular calibration matriX; encodes the intrinsic parameters of itiecamera:f; rep-
resents the focal lengtly;, vo;) is the principal point and; is the aspect ratio. We assume that the
cameras have zero skewg; is theith rotation matrix withi;, j; andk; denoting the rotation axes.

61
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t; is thesth translation vector.n feature points;;, j = 1---m, are represented by homogeneous
coordinates,

wherep;; is defined as the unified representation of point (Chapter 3),
pPij =8 +1V; 4.3)
wheres; is the point position at framéandv; is its motion velocity.

The image coordinates are representeduyy v;;) and the following hold,

uij uij
'Uij NBXi]' or >\ij 'Uij = PZ'XZ'j (4.4)
1 1

where);; is a non-zero scale factor called projective depth. According to Equations (4.1) to (4.3),

Pxij ~ K;(Ripij+t;)
= Ki(RiSj—{—iRiVj—{—ti)
T
:Ki{Ri ’iRi ti][SJT Vr]rl]
~ Px; .
Pix; (4.5)

where

PimEKi [ R iR t] %~ [sT v 1] (4.6)

P; is a3 x 7 matrix which is the product of théh calibration matrix and the unified motion matrix
composed of the camera rotation, the scaled camera rotation by the frame number and the camera
translation.x; is a7 x 1 vector which is the homogeneous representation of the unified scene structure
including the initial point position and its velocity. The equivalent matrix form is,

[ uip [ Ui |
A1 | v o AMm | Vim
L 1 L 1 J
W, = : : : (4.7)
o e
Anl | Upi Anm | Unm
L 1 L 1 .
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= | ¢ | & - %] = PX (4.8)

3’"01.

whereW, is the scaled measurement matri¥Ve call the3n x 7 matrix P as motion matrix and the
7 x m matrix X as shape matrix. The constraint of the objects moving with constant velocities enables
the unified representation of the motion matfband the shape matriX. They are both at most rank
7, therefore, the rank of the scaled measurement métgixs at most7 (instead ofrank 4 when the
scene does not contain moving objects).

We apply the following bilinear factorization algorithm to get the projective reconstruction. The
algorithm is similar to the iterative algorithm presented in Section 2.2 with the difference thak a
7 matrix factorization is performed at step 3. It iteratively applies factorization to the current scaled
measurement matrix.

Iterative Projective Factorization Algorithm
1. Set\;; =1,fori=1---nandj =1---m;
2. Compute the current scaled measurement méttioy Equation (4.7);

3. Performrank 7 factorization ori¥,, generate the projective motidhand shapeX;

4. Resety;; = P®x;, whereP® denotes the third row of the projection mati

)

5. If \;;'s are the same as the previous iteration, stop; else go to step 2.

4.2 Euclidean reconstruction

The factorization of Equation (4.8) recovers the motion and shape ufj to @linear projective
transformationH ,
W,=PX =PHH 'X = PX (4.9)

whereP = PH andX = H~'X. P and X are referred to as the projective motion and the projective
shape. Any non-singulaf x 7 matrix could be inserted betwedh and X to get another motion

and shape pair. For the multiple motion scene reconstruction method presented in Chapter 3, the size
of the linear transformation matrix 6 x 6 which works on calibrated cameras and therefore does

not encode the camera translation information. The goal of the Euclidean reconstruction is to impose
metric constraints on the projective motion and shape in order to recover the linear transforfhation
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from which we can simultaneously reconstruct the intrinsic parameters and the Euclidean motion and
shape. This is theormalizationprocess.

In this section we present the normalization algorithm for the case that only the focal lengths are
unknown and varying. It is straightforward to derive the normalization algorithms for the other cases
where more or all of the intrinsic parameters are unknown (except skews) following the same line of
work presented in this chapter. However, due to the increased size of the transformation matrix, the
normalization processes are less stable and practical (such as solving a linear system of nddfe than
unknowns) to solve for the other intrinsic parameters as in Chapter 2. The normalization algorithm for
the case with unknown focal lengths is linear.

When the focal lengths are the only unknown intrinsic parameters, we have,
Up; = 0 Vo; = 0 a; = 1 (4.10)

Therefore, according to Equation (4.6),

P=[M T] (4.11)
where
T
M= [ Mg My My - Mgy My, mzn] (4.12)
Ny ny; Ny -+ Ngp nyn Ny
T
T = [ T Tyl Ty - Tip Tyn T ] (413)
and

my; = pifili g =ipifili Toi = pifite
my; = pifiji Dy = ipifidi Ty = pifityi (4.14)
m,; = pik; n,; = ipk; Tyi = pitzi

The shape matrix is represented by,

X ~ l s ] (4.15)
1
where
52[51 S2 Sm] (4.16)
Vi V9 A 27"
and

T
X; = [ yjsT I/jVT vj } (4.17)
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w; andy; are the scale factors for the homogeneous representations in Equation (4.6). The normaliza-
tion process follows the same line of work as in Section 2.3. However, we are now working on a higher
dimensional space of motion (4.12) and shape (4.16) because the scene contains multiple independently
moving objects.

4.2.1 Moving world coordinate system location

As the points are either static or moving linearly with constant speeds, the center of gravity of all
the feature points is also moving linearly with constant speed. So is the center of gravity of all the
scaledpoints ¢;p;;). Here we transform the 3D representations to a moving world coordinate system
with fixed orientation (such as being aligned with the first camera) and the origin at the center of gravity
of all the scaled feature points. Therefore,

m
> vjpij =0 (4.18)
j=1
We get,
m m
Z )\i]'uij = Z(mm FVSj + Ngy - ViV + V]'Tm')
j=1 j=1
m
= Z(mm ‘Vj8; + iy - Vv + Vij)
=1
m m
= g Y (s +ivy) + Tei D v
J=1 j=1
m m
= IMy;- Z vipij + Tii Z vj
j=1 j=1
m
= Tu) v (4.19)
j=1
Similarly,
m m m m
Z Aijvij = Ty Z vj Z Aij =Ty Z Vj (4.20)
J=1 j=1 j=1 j=1

Define the7 x 7 projective transformatiod as,
H=[A B] (4.21)

whered is7 x 6 andBis7 x 1.
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SinceP = PH,
(M T|=P[4 B] (4.22)

according to Equation (4.11). We have,
Tm' = Pm'B Tyi = PyiB Tzi = PziB (423)
From Equations (4.19) and (4.20),

Toi _ 21 Xigtiy Ty _ 2501 Aigig (4.24)
T Ty Aij T Ty Nij

we set u2n linear equations of thé unknown elements of the matri. Linear least squares solutions
are then computed.

4.2.2 Normalization

We recover th@ x 6 matrix A by observing that the rows of the mati{ consist ofm;, which are
the scaled rotation axes Iy and focal lengthyf;, andn;, which are the scaleth; by frame numbeg
(Equation (4.14)),

orthogonality ofm;:

mg|* = |my,[?

(4.25)
orthogonality ofn;:
2 2
ng|° = |ny
n:m"nyi:O ng -n, =0 nyi'nzizo
relation ofm; andn;:
Ing|? = i |my;|* |nyi|2 = Z.2|1rnyi|2 > = i*|m,[?
My - Ny = 0 mg-ny,;=0 (4.27)

myznmzo myi'nzi:O

my -ng =0 m,-ny, =0

The above equations impose linear constraints on the elements\éf . We add one more equation
assumingu; =1,
m, 2 =1 (4.28)
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SinceM = PA,
MMT = PAATPT (4.29)

these constraints are linear on the elements of the symmetric mateEx4A™. From Equations (4.25)
to (4.27) we can see that these constraints are different from those under calibrated cameras (Equations
(3.14) to (3.16)) since the motion matrix used here is composed of camera moticaraarh intrinsic
parameters.
Define,
A=[4 4] (4.30)

whereA is 7 x 6 matrix andA;, Ay are both7 x 3 matrices. We get,

. T
PA, = |: my; MMy My - Mgy, Myy Mgy ]
. T
PAy = |: Ny Ny Ny - Ngp Dy Ny ]
T
where ) ;
1 0 0 O 0 O 0 0 O
0 1 0 0 0 0 0 0 0
0O 0 1 0 0 O 0 0 O
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
N = (4.32)
o 0 0 0O 0 2 0 0 O
0 0 0 0 0
0 0
0 0o 0o 0 0 O -~ 0 0 n |
according to Equation (4.14). Therefore,
PAy = NPA, (4.33)
A, is over constrained giveA; andP,
Ay = KA, (4.34)
where
K =P 'NP (4.35)

and P~ is the generalized inverse matrix which7is< 3n and uniquely defined whem > 3.
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Using similar derivations of Section 3.2, we see that Equation (4.25) imposes linear constraints on
the 28 unknown elements of the x 7 symmetric matrixQ; = A; A], while Equation (4.26) imposes
constraints on th@s unknown elements af)s = A, AJ. From Equation (4.34) we have,

Q2 = AyAT = KA ATK'" = KQ K™

(4.36)

which translates the constraints @3 to constraints orf);. Equation (4.27) imposes constraints on
Q3 = A2 AT which can also be translated into constraintsan

Qs = AyAT = KA AT = KQy (4.37)

Therefore, each frame contribut€sconstraints (Equations (4.25) to (4.27))@n. In total, we get
17n+1 linear equations on th&8 unknown elements of the symmetric mat€)x. Linear least squares

solutions are computed. We then compute the matgixrom @ by rank3 matrix decomposition and
A, by Equation (4.34), so we recover the linear transformation

4.2.3 Camera calibration and scene reconstruction

Once the matrix4 has been found, the projective transformatiofdsB]. The shape matrix is
computed ast = H~'X and the motion matrix a® = PH. We first compute the scale factqrsg

Mi = |mzi|

(4.38)
We then compute the focal lengths as,

f; = el + my|
=

(4.39)
24
Therefore, the camera motion parameters are,
1. my; s My; . mg;
Vi=run T 1 fi k; Wi (4.40)
toi = 8k by = gl ta=
l"zfz Y l‘zfz Hi

The shape matrix consists of the scene structure and the velocities represented in the moving world
coordinate system. We need to transform the representation back to a fixed coordinate system with the

origin at the center of gravity of all the points at frarh@nd detect the moving objects automatically.
This process is same as described in Section 3.2.4.
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4.2.4 Algorithm outline

We summarize the reconstruction method as follows:

. Perform SVD ori¥;, get the projective motio# and the projective shap¥;

N

. Sum up each row dV; and compute the ratios between them as in Equation (4.24);

3. Set u®n linear equations of th& unknown elements of the matri® based on the ratios
from step 2 and computB;

4. Set upl7n + 1 linear equations of the8 unknown elements of the symmetric matépx
by imposing constraints in Equations (4.25) to (4.27);

. FactorQ, to get4, from Q, = A, A7;
. Computed, from A; = K Ay,
. CombineA; and A, to generate the linear transformation matix= [A; As];

. Put the matricesl and B together and get the projective transformatién= [A B];

© 00 N o O

. Recover the shape matrix usifg= H~' X and motion matrix using® = PH;

10. Recover the focal lengths, the camera rotation axes and the translation vectors according to
Equations (4.39) and (4.40).

11. Detect the moving objects, reconstruct the scene structure and the trajectories of the moving
objects as presented in Section 3.2.4.

4.3 Experiments

In this section we present the experimental results on synthetic and real images. The first set of
experiments use synthetic images to evaluate the method quantitatively. The second experiment is con-
ducted on a real image sequence taken by a hand-held camera of an indoor scene, and the reconstructio
results are compared with the ground truth values.

4.3.1 Synthetic examples

We generatd 00 image sequences of the scene witto 49 static feature points arglto 8 points
moving in random directions. The frame numbet i® 60. The shape of the static scene is a sweep of
the sin curve in 3D space. The camera is rotating randomly thrdQigh60 degrees for each or any of
roll, pitch and yaw. The distance between the camera and the center of gravity of all the static points is
varied from4 to 20 times the object size. We addpixel standard noise to the feature locations from
640 x 480 images.
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Figure 4.1 illustrates the case wherebjects are moving randomly in 3D space. The method
automatically detects the number of the moving objects esconstructs the static scene and the initial
positions of thet moving objects, as shown in Figure 4.1(a). Figure 4.1(b) shows the trajectories of the
moving objects with the static scene. There4r@oints from the static scene afd frames are taken.

Figure 4.2 plots the focal lengths recovered by the method and their ground truth values. The
maximum error is7.2% of the true value.

We also apply the multiple motion scene reconstruction method for weak perspective cameras to
the same sequence using the true values of the focal lengths. The results are shown in Figure 4.3. It
is easy to see that the reconstruction results have distortions which are caused by the approximation of
perspective cameras with weak perspective cameras.

(@) (b)

Figure 4.1: Synthetic sequence:Reconstruction of a scene with four moving objects by the uncal-
ibrated multiple motion scene reconstruction method. (a) The reconstructed scene structure and the
initial positions of the moving objects. (b) The reconstructed scene and the motion trajectories.

To evaluate the quality of the reconstruction method, we measure the reconstruction error by com-
parison with the ground truth. Since the reconstruction from monocular image sequences is up to a
scale, we assume that the size of the static shapeTfie maximum distance between the recovered
static points and their true values32%, the maximum error of the reconstructed initial positions of
the moving objects id.1% and the velocity error is less thdm%. The maximum distance between
the recovered camera locations and the ground truth value$%sand the maximum angle between
the recovered camera orientations and the known valu@$2s. The maximum reconstruction error
of the focal lengths i8.11% of the ground truth values.
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Figure 4.2: Synthetic sequence: Comparison of the focal lengths recovered by the uncalibrated
multiple motion scene reconstruction method and their ground truth values for the synthetic sequence.
The maximum error i8.2% of the true value.

(@) (b)

Figure 4.3:Synthetic sequence Reconstruction of a scene with four moving objects by the multiple
motion scene weak perspective method. (a) The reconstructed scene structure and the initial positions
of the moving objects. (b) The reconstructed scene and the motion trajectories. The distortions are
caused by the approximation of perspective cameras with weak perspective cameras.
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4.3.2 Real example

This sequence was taken by a hand-held camera. There were three objects moving in the scene,
including a toy car, a toy bird and a toy person. The objects were moving linearly with constant speeds.
The car and the person were moving on the table. The speed of the carbaasper frame and the
speed of the person was$cm per frame. The bird was climbing the pole and mo8ditm per frame.

The books and the box represented the static scene. The camera was zoomed out at the beginning and
gradually zoomed in as it moved around the scene. The focal length was changed every two frames.
10 images were taken. Three of them are shown in Figure 4.4(ap{deature points were manually
selected and tracked as shown in Figure 4.4(d). Each moving object had one feature point selected.

The shapes of the books and the box, the starting positions of the toys and the motion velocities are
recovered and demonstrated in Figure 4.5(a), the motion trajectories are overlaid in the images. Figure
4.5 (b) shows the recovered camera locations and orientations with the scene reconstruction. Figure
4.6 plots the recovered focal lengths, which shows that the focal lengths are changing with the camera
motion as we expected. The largest focal length almost doubles the smallest one, which is correct for
the2x optical lens.

We assess the quality of the reconstruction by comparison with the ground truth. The ratio between
the speeds of the moving toys & : 3.77 : 2.91 which are close to the expected valué : 3.5 :

3.0. The maximum distance between the positions of the recovered static points and the ground truth
positions issmm. The angle between the recovered motion direction of the bird and the flwbRts
which is close to the expected value.

4.4 Degenerate cases

The method described in Sections 4.1 and 4.2 solves the full rank case where the static structure
and the motion space of the objects are both rankn other words, the scene is three dimensional
and the velocities of the moving objects span a three dimensional space. Degenerate cases, however,
exist because either or both of shape and motion spaces are degenerate. The shape space is degenerate,
for example, when all the points lie in a plane. The motion space of the moving objects is degenerate,
when:

1. There is no moving object in the scene.

2. There is one moving object or multiple objects moving in the same and/or the opposite direction
(not necessarily the same 3D line).

3. The velocities of the objects lie in a two dimensional space (not necessarily the same 3D plane).
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()

Figure 4.4:Real sequence input(a) 1st image, (b) 5th image, (c) 10th image of the indoor sequence.
The white circles in the 1stimage show the feature points selected on the moving objects. (d) 1stimage
of the sequence with the feature points overlaid.
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(b)

Figure 4.5:Real sequence results(a) Two views of the scene reconstruction with texture mapping,
the black lines denote the recovered motion trajectories. (b) Two views of the scene reconstruction and
the camera positions/orientations, the 3-axis figures are the recovered cameras.
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Figure 4.6:Real sequencefocal lengths of the real sequence recovered by the uncalibrated multiple
motion scene reconstruction method. The recovered values change every two frames as expected.

When cameras are intrinsically calibrated, there are solutions to these degenerate cases as shown il
Section 3.3. Following the same line of work, we design the reconstruction algorithms for the degen-
erate cases with uncalibrated cameras. However, the rank of the measurement matrix can not be usec
as a clue about which case is the best approximation under perspective projections. The measuremen
matrix is always full rank. Therefore, we assume that the rank approximation information is given
though there is no requirement for prior motion segmentation and the rank does not depend on how
many objects are moving. In this section we describe the reconstruction algorithms for the case 2 and
case 3 mentioned above. They are referred to as4¢ardse and rank-case, respectively, as in Section

3.3.

4.4.1 Rank4 case

When only one moving object is in the scene, or when all the moving objects travel in the same or
the opposite direction, the motion space is one dimensional. We refer to this case asamek-

Projective reconstruction

We align thex direction of the world coordinate system with the motion direction. Therefore, the
motion and shape matrices are,

my) MMy My - Mgy My Mgy

M =
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g — lsl Sz o Sm] (4.41)

Vg1l Uz2 - Ugm

whereng;,, ny;  andn,;, represent the-elements of the vectors,;, n,; andn,; respectively,;
denotes the:-element of the velocity of th¢th feature pointm andn vectors are defined in Equation
(4.14). We have,

P:[M T] XNH] (4.42)

andT is defined as in Equation (4.13). Therefof,is a3n x 5 matrix andX is a5 x m matrix.
Following the same derivation as in Section 4.1, the rank of the scaled measurement niathiteis
apply a similar bilinear factorization algorithm with the only difference that we perfomana 5
matrix factorization ori¥; instead of rank as in Section 4.1.

Euclidean reconstruction

Define theb x 5 projective transformatioif as,
H=[A B] (4.43)

whereA is 5 x 4 and B is 5 x 1. Similar derivations apply to the computation of theinknown
elements of the matri® as in Equation (4.24). Similarly, we have

A=[4 4] (4.44)

whereA; isb x 3, Ay isb x 1 and,
Ay = K(A1 ) (4.45)

where(A;); is the first column ofd; and K is defined in Equation(4.35). Since the matkikconsists
of the rotation axes and only theelements of the scaled rotation axes, the constraints in Equations
(4.26) and (4.27) cannot be represented as linear constraints on the eleménfg bf However,
the constraints in Equation (4.25) still hold and provide full rank linear equations arbtheknown
elements of the symmetrie x 5 matrix Q; = A; AT. Least squares solutions are computed. We then
computeA; by rank3 matrix decomposition of);. This decomposition is up to a three dimensional
rotation R which is constrained to make thedirection of the world coordinate system as the motion
direction. The matrixz is determined by aligning the matriX K A; with the matrix N M A .

Therefore, the linear transformatiohis,

A=[ 4R K(AR), ] (4.46)
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where(); denotes the first column of the matrix. We apply a derivation similar to the one in Section
4.2.3 to recover the camera focal lengths, the camera motion and the scene structure.

4.4.2 Rankb case
When the velocities of all the moving objects lie in a two dimensional space, the motion space is
two dimensional. We refer to this case as rantase.

Projective reconstruction

We assume that the— y plane of the world coordinate system is aligned with the two dimensional
motion space. Therefore, the motion and shape matrices are,

my) MMy My - Mgy My Mg, '
M = Ngl, Ny1, N1, - Nan, Nyn, Nzn,
L a1y My1, M1, 0 Nany,  Myn,  Ten,
[ St So -- S,
S = Upl Vg2 " Upm (4.47)
L Uyt Uy2 "t Uym

whereng;,, ny;  andn.;, represent the-elements of the vectons,;, n,; andn,; respectivelyy;,,
Nyi, andn,;, are theiry-elementsy,; denotes ther-element of the velocity of thgth feature point
andv,; is its y-element.m andn vectors are defined in Equation (4.14). We have,

P:[M T] XNH] (4.48)

andT is defined as in Equation (4.13). Therefof,is a3n x 6 matrix andX is a6 x m matrix.
Following the same derivation as in Section 4.1, the rank of the scaled measurement natiiXeis
apply a similar bilinear factorization algorithm with the only difference that we perfoman& 6
matrix factorization ori¥;.

Euclidean reconstruction

Define the6 x 6 projective transformatioi/ as,

H=[A B] (4.49)



78CHAPTER 4. MULTIPLE MOTION SCENE RECONSTRUCTION WITH UNCALIBRATED CAMERAS

where A is 6 x 5 and B is 6 x 1. Similar derivations apply to the computation of theinknown
elements of the matri® as in Equation (4.24). Define,

A=[ 4 4] (4.50)

whereA; is6 x 3, A> is6 x 2 and,
Az = K(A1)12 (4.51)

where(A;)12 denotes the first two columns df; and K is defined in Equation (4.35). Here only the
constraints in Equation (4.25) can be represented as linear constraints on the eler@ents 4f A7 .
In this case the constraints are not sufficient to solve forthanknown elements of the symmetric
6 x 6 matrix ), linearly.

The constraints in Equations (4.26) and (4.27) can be represented as constraints on the elements of
(21 and the six elements of the third columnA{, which is a6 x 1 vector denoted by, as in Section
3.3.3. Therefore, we get linear equations of fieunknown elements of); and the21 unknown
elements otc™. Since these equations cannot provide full rank constraints of2thaknowns, there
is no linear solutions of); andcc™’ directly. However, the constraints are full rank on the elements of
Q; if ccT is given. That is, ifc can be computed, we can get a linear solutiod)ef In this way we
change the problem to a small scale nonlinear optimization ofi dements ot. Once the vectoe
is computed, the matrig); is computed by least squares solutioAs.is then calculated frony; .

Same to the rank-case, we need to align thke— y plane of the world coordinate system with the
two dimensional motion space. The matfiis also determined by aligning the matd¥ K A, with
the matrix VM A;. The alignment problem is solved by the least eigenvalue method.

Therefore, the linear transformatiohis,

A=[ 4R K(AR): | (4.52)

We apply a derivation similar to the one in Section 4.2.3 to recover the camera intrinsic parameters, the
camera motion and the scene structure.



Chapter 5

Reconstruction Analysis

In this chapter we address two important issues of reconstruction methods: minimum data require-
ment and gauge selection. Reconstruction reliability is related to the minimum number of views and
features required for reconstruction. We describe the theoretical analysis and the empirical results of
the minimum data requirement of the reconstruction methods presented in this thesis. Gauge selection
is the process of specifying the coordinate frame and representing the recovered geometry in the choser
frame. We analyze the gauge selection technigues used in the reconstruction methods described in this
thesis and show that the techniques make the reconstruction methods reliable.

5.1 Minimum data requirement

The main advantage of the factorization-based methods is using the heavily redundant information
from multiple image features and views. However, it is equally important to compute the minimum data
requirement of these methods in order to analyze the practicality and reliability of the methods. In this
section we discuss the minimum number of views and image features required by the reconstruction
methods presented in Chapters 2, 3 and 4.

The low bound of data requirement is determined by the number of degrees of freedom of the
reconstruction and the number of constraints given by each feature in each view, which is presented
in Section 5.1.1. The minimum number of views and/or features is also constrained by the solution
process. Section 5.1.2 lists the number of variables and the number of corresponding equations used
in the reconstruction processes. These two computations of the minimum data only provide necessary
conditions to carry out the reconstruction. There is no guarantee that the reconstruction results are
reasonably accurate and stable with the theoretical results of the minimum data, especially for the non-
linear optimization methods. In Section 5.1.3 we describe the empirical results of the minimum data
required by the reconstruction methods.

79
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5.1.1 Counting the arguments

In this section we specify the number of views and image features required to carry out the recon-
struction. This analysis is related to counting the number of degrees of freedom of the reconstruction
and the number of constraints give by each feature in each view. Hence comes the title "counting the
arguments”. Hartley and Zisserman’s discussion about the minimum data required for tensor compu-
tation [Hartley and Zisserman, 20p@nd Long Quan’s analysis about the minimum number of line
segments for the factorization method from line correspondel@ean and Kanade, 19P@re two
examples of this line of work.

Number of constraints

The input for the reconstruction methods presented in this thesis are the feature correspondences.
Each feature point has two image coordinates in each view. Therefore, the number of constraints given
by all the correspondencesdam, wheren is the number of views (or frames) and is the number
of feature points. Table 5.1.1 describes the analysis results about the minimum data requirement by
counting the arguments. The column with the tif@mown #" lists the numbers of constraints provided
by the feature points for different reconstruction methods, all of whicRare.

Number of degrees of freedom

The number of degrees of freedom of reconstruction depends on the size of the space composed
of all the possible reconstructions. The output of the reconstruction methods consists of the scene
structure, which includes the trajectories of the moving objects for multiple motion scenes, the camera
motion and the camera intrinsic parameters for uncalibrated views. The number of degrees of freedom
of each of the reconstruction output is summarized as follows. Reconstruction from monocular image
sequences is up to a rigidity transformation, therefore, the total number of degrees of freedom should
be subtracted by the number of ambiguities caused by the transformation. In Table 5.1.1, the column
of "Unknown #" presents the number of degrees of freedom for each reconstruction method.

e Scene structure

We refer the scenes without moving objects as static scenes and the scenes containing moving
objects as multiple motion scenes. The number of degrees of freedom for static scemnes is
wherem is the number of feature points, since each feature point has three coordinaies:)

to represent its 3D position. For multiple motion scenes each feature point has three coordinates
(z, y, z) to represent its 3D position (the initial position) and three coordingigs v,, v,)

to denote its velocity (static points have zero velocities). We use the velocities of the feature
points to distinguish moving features from static ones because we do not require prior motion
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segmentation. Therefore, the number of degrees of freedom for multiple motion scémes is
for full rank case. Following the similar derivation, the number of degrees of freeddm or

rank4 case (three coordinates for the initial position and one coordinate for the velocity since
the motion space is one-dimensional) dnd for rank®H case (three coordinates for the initial
position and two for the velocity as the motion space is two-dimensional), respectively.

e Camera motion

The camera motion is determined by its rotation and translation. Weak perspective and per-
spective cameras hawedegrees of freedom3 for rotation and3 for translation. There is no
information about the translations of orthographic cameras along their optical axes, therefore,
the number of degrees of freedom for orthographic camerasiigor rotation and for transla-

tion. In total, the number of degrees of freedom for orthographic camebas 8heren is the
number of views, and the number of degrees of freedom for weak perspective and perspective
(calibrated or uncalibrated) camera$is

e Camera intrinsic calibration

When the cameras are not intrinsically calibrated, the number of degrees of freedom of the re-
construction is increased by the number of the unknown intrinsic parameters. For the static scene
reconstruction method dealing with casewhere the focal lengths are unknown and varying,

the number of degrees of freedom for the intrinsic parameteis ior case2, where the focal
lengths and the constant principal point are unknown, the number of degrees of freede. is

For case3, where the focal lengths, the principal points and the aspect ratios are all unknown and
varying, the number of degrees of freedom for the camera intrinsic parametersTisie uncal-

ibrated Euclidean reconstruction method for multiple motion scenes handles the case where the
focal lengths are the only unknown intrinsic parameters, therefore, it ltegrees of freedom

for the camera intrinsic parameters.

e Ambiguity

Euclidean reconstruction from monocular image sequences is up to a rigidity transformation
which has6 degrees of freedom3 for rotation and3 for translation. This number should be
subtracted from the total number of degrees of freedom of the reconstruction. There is one more
ambiguity for the reconstructions under weak perspective and perspective (calibrated or uncali-
brated) cameras: the scale of the reconstruction. Therefategrees of freedom is subtracted
from the total number of degrees of freedom for orthographic camerag andubtracted for

weak perspective and perspective cameras.
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Methods Known# | Unknown# | Minimum data
Static scene Orthographic 2nm on+3m —6 n=2 m=4
Weak perspective 2nm 6n+3m —7 n=3 m=4
Uncalibrated perspective Case 1 2nm ™m+3m—7 n=3 m=>5
Case 2 2nm ™m+3m—>5 n=3 m==6
Case 3 2nm 10n+3m -7 n=3 m=38
Multiple motion | Orthographic Full rank 2nm on +6m —6 n=4 m=7
scene Rank-4 2nm on+4m —4 n=4 m=+4
Rank-5 2nm 5n+5m —5 n=4 m=>5
Weak perspective Full rank 2nm 6n +6m —7 n=5 m==6
Rank-4 2nm 6n+4m —5 n=4 m=>5
Rank-5 2nm 6n +o5m —6 n=4 m==6
Perspective Full rank 2nm 6n +6m —7 n=>5 m==6
Rank-4 2nm 6n +4m —5 n=4 m=25
Rank-5 2nm 6n + 5m — 6 n=4 m==6
Uncalibrated perspective Full rank 2nm ™+ 6m—7 n=5 m=717
Rank-4 2nm ™m+4m —5 n=4 m==6
Rank-5 2nm ™m+5m —6 n=3 m=15

Table 5.1:Minimum data requirement. Counting the arguments. denotes the number of views and
m denotes the number of feature points.

Minimum number of views and features

We list the minimum number of views and feature points required by the reconstruction methods
through counting the arguments in the colufiinimum data" of Table 5.1.1. We take the uncali-
brated reconstruction method dealing with case 1 for static scenes as an example to illustrate how we
compute the minimum data requirement.

The constraint is,

2nm >'m+3m —7 (5.1)

wheren is the number of views andh is the number of feature points. Compute the positive integer
solutions ofn andm,
n=2 m=7 OR n=3 m=>5 (5.2)

In most cases the solutions are not unique. We choose the solution to be listed in the table according to
two principles. The first one is that we prefer the solution which is comparable with the constraints of
"analyzing the solution” (refer to Section 5.1.2). These two constraints both give the necessary require-
ment of the minimum data. Their intersection provides the low bound of the requirement. Therefore,
we choose the comparable solution for easier computation of the intersection. The second principle is
that we are in favor of less views. In practice, it is easier to get more feature points than to get more
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views.

Another thing to point out is that this table only gives the low bound of the requirement. There is no
guarantee that the reconstruction exits with the minimum data. For example, by counting the arguments,
2 views and4 features are the minimum data required for orthographic reconstruction. However, there
is actually thebas reliefambiguity that we cannot get a unique Euclidean reconstruction from any two
orthographic view$Kahl and Triggs, 1990

5.1.2 Analyzing the solution

The minimum data requirement is also determined by the solution process. The reconstruction
methods presented in the thesis are based on linear and bilinear subspace constraints, that is, the solutio
process includes solving linear and bilinear equations. Therefore, the solution process requires the
number of equations be larger than the number of variables. This is the constraint given by analyzing
the solution. In Table 5.1.2 the numbers of equations for different reconstruction methods are listed
in the column of'Equation #' and the numbers of variables are in the columi\afriable #". The
last column'Minimum data" presents the minimum data required by analyzing the solution process.
We take the orthographic reconstruction method for multiple motion scenes (full rank case) and the
uncalibrated reconstruction method for static scenes (case 2) as examples of the reconstruction method:
with calibrated and uncalibrated cameras, respectively, to illustrate how we set up Table 5.1.2.

Reconstruction with calibrated cameras

The reconstruction process with calibrated cameras is composed of matrix decomposition (SVD),
normalization and recovery of shape and motion. The first two steps, decomposition and normalization,
provide constraints on the minimum data requirement while the last step is directly derived as long as
the first two steps succeed.

Take the full rank case of the orthographic reconstruction method for multiple motion scenes as
example. We first fix the moving world coordinate system and compute the translation vector as the
mean of the measurement matiix. Then we perform a ran SVD on the new measurement matrix
W which is generated by subtracting the translation vector ffBmThe ranké SVD decomposes the
matrix I into the product of » x 6 matrix and & x m matrix. The decomposition is up totax 6
linear transformation. Therefore, the total number of variables for SMRsis+ 6m — 35. Since the
size of W is 2n x m, we get constraints,

2nm > 12n + 6m — 35 (5.3)
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Methods Equation# | Variable # Minimum data
Static scene Orthographic SVvD 2nm 6n+3m —8 n=2 m=4
Normalization 3n 6
Weak perspective SVD 2nm 6n+3m —8 n=3 m=4
Normalization 2n+1 6
Uncalibrated Case 1 | Projective 2nm 11In+3m — 15 n=3 m==6
perspective Euclidean dn+1 10
Case 2 | Projective 2nm 11In+3m — 15 n=5 m==6
Euclidean 13n+1 55
Case 3 | Projective 2nm 1In+3m—-15| n=3 m==6
Euclidean 3n+2 10
Multiple motion | Orthographic Fullrank | SVD 2nm 12n+6m—-35| n=4 m="7
Normalization 8n 21
scene Rank-4 | SVD 2nm 8n +4m — 15 n=4 m=>5
Normalization 3n 10
Rank-5 | SVD 2nm 1on+5m—-24| n=3 m==6
Normalization 8n 20
Weak perspective Full rank | SVD 2nm 12n+6m—-35| n=4 m="7
Normalization m+1 21
Rank-4 | SVD 2nm 8n +4m — 15 n=5 m=>5
Normalization 2n+1 10
Rank-5 | SVD 2nm 1on+5m—-24| n=3 m==6
Normalization ™m+1 20
Perspective Full rank | SVD 2nm 12n+6m—-35| n=4 m=7
Normalization ™m+1 21
Rank-4 | SVD 2nm 8n +4m — 15 n=5 m=>5
Normalization 2n+1 10
Rank-5 | SVD 2nm 10n + 5m — 24 n=3 m==~6
Normalization ™m+1 20
Uncalibrated Full rank | Projective 2nm 20n+6m—48 | n=4 m=16
perspective Euclidean 1 +1 28
Rank-4 | Projective 2nm 14n+4m—-24 | n=4 m=2_8
Euclidean dn+1 15
Rank-5 | Projective 2nm 17n +5m — 35 n=3 m=16
Euclidean 1T +1 27

Table 5.2:Minimum data requirement: Analyzing the solutionn denotes the number of views and
m denotes the number of feature points.
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The minimum data requirement for SVD is,
n=4 m=7 (5.4)

The goal of the normalization process is to recovertthe6 affine transformatiom by imposing
metric constraints on the matrix decomposition result$s recovered by decomposingas,

A=[4 4] (5.5)
and solving the1 unknown elements of the symmetric matép,
Qi = A AT (5.6)

Therefore, the number of variables 4% and the number of equations & which are the metric
constraints. We get the constraint on the minimum data requirement for the normalization process,

n>3 (5.7)

Combining the above two constraints (Equation (5.4) and Equation (5.7)), weshavé m = 7
as the minimum data required by the full rank orthographic reconstruction method for multiple motion
scenes.

Reconstruction with uncalibrated cameras

The reconstruction with uncalibrated cameras consists of projective reconstruction and Euclidean
reconstruction. Taking the uncalibrated Euclidean reconstruction method for static scenes (case 2) as
example, a total dnm measurements are available to estimate the projective motion and shape. Each
camera projection is represented bya4 matrix which had 1 variables because of the homogeneous
representation. Each feature point is represented by d vector which has variables. Since the
projective reconstruction is up to an unknownx 4 projective transformation, the total number of
variables isl 1n + 3m — 15. The constraint of the projective reconstruction is,

2nm > 11n + 3m — 15 (5.8)
Therefore, the minimum data requirement is,
n=3 m==~6 (5.9)

Since we get the decomposition results from the projective reconstruction, the normalization pro-
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cess is the only step having constraints on the minimum data requirement in the Euclidean reconstruc-
tion. In order to recover thé¢ x 4 projective transformatiortZ linearly, we set ud3n + 1 equations
of the 55 unknown elements of the matrigq™, where eachy is a10 x 1 vector composed of the
unknown elements of the symmetric matfikd *. Therefore, the number of equationd #8: + 1 and
the number of variables &5, we get,

n>5 (5.10)

Combining the above two constraints, the minimum data required by the2camethod isn =
5 m = 6. This constraint is a low bound of the minimum data requirement because we do not analyze
if the equations are independent.

5.1.3 Empirical results

We conduct a number of synthetic experiments to determine the minimum number of views and
feature points required by the reconstruction methods presented in the thesis. We synthesize a cube
as the static scene from which the feature points are chosen at generic locations, that isoity
are not co-planar. The camera undergoes random motions whose rotation goes through atatal of
50 degrees. The distance between the moving camera and the cube idab@ad times the cube
size for orthographic projectiondf to 15 times for weak perspective projections ahtb 10 times
for perspective projections. The image sizé48 x 480. The focal lengths are random numbers from
1000 to 2000 pixels. The principal points are shifted from the center of the imagds toy8 pixels.

The aspect ratios are randomly set as any value betiu8emd1.2.

We try different values of. (number of views) anan (number of features) from the low bound
generated by counting the arguments (Section 5.1.1) and analyzing the solution (Section 5.1.2), and
choose the pair aof andm with the smallest value of and its corresponding smallest valuenof We
test the chosen pair of values by generatifigsequences with different locations of the feature points
and random camera motions. We confirm the pair of values and list them in Table 5.1.3 as the empirical
results only ifl0 sequences all generate reasonable results, which means,

e The maximum reconstruction error of the feature locations is lessitanf the cube size;

e The maximum distance between the recovered camera positions and the ground truth values is
less tharl0% of the cube size;

The recovered camera orientations are witifirof the true orientations;

The recovered focal lengths are withid% of the ground truth values;

The maximum reconstruction error of the principal points is less Pairels;
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Methods Minimum data
Static scene Orthographic n=3 m=4
Weak perspective n=3 m=4

Uncalibrated perspective Casel | n=3 m=6
Case2 | n=5 m=6
Case 3 n=8 m=10

Multiple motion | Orthographic Fullrank| n=5 m=7

scene Rank-4 | n=4 m=5
Rank-5 n=8 m=10

Weak perspective Fullrank| n=5 m=7

Rank-4 | n=5 m=35
Rank-5 n=8 m=10
Perspective Fullrank| n=5 m=7
Rank-4 | n=5 m=35
Rank-5 n=8 m=10
Uncalibrated perspective Fullrank | n=4 m =16
Rank-4 n=4 m=2~8
Rank-5 n=8 m=10

Table 5.3: Minimum data requirement: Empirical results.n denotes the number of views and
denotes the number of feature points.

e The recovered aspect ratios are withd¥ of the true values.

One interesting thing about the minimum data requirement for multiple motion scenes is that the
minimum number of features is not dependent on how many of them are moving as long as the rank of
the measurement matrix is same. Taking the full rank orthographic reconstruction for multiple motion
scenes as an example, the minimum data requirementiss m = 7. Synthetic experiments show
that theser feature points can be composeddo$tatic points and moving points, o3 static and4
moving ones, oR static and5 moving points, orl static andé moving ones, or evef static and7?
moving points. As long as the static points and the initial positions of the moving points aibin a
space and the motion velocities span iBlaspace as well, the full rank reconstruction method works
on any7 points from5 views. We have same results for the degenerate cases. For example, the rank-
orthographic reconstruction method worksowiews ands points no matter what the number of the
static points is. It can be any value frobnto 4 as long as the moving points are all moving in the
same (or the opposite) direction. Wexler and Shashua’s scene synthesis fiéghta and Shashua,

2004 can work on the scene where all the feature points are moving, so can the multiple motion scene
reconstruction methods presented in this thesis.
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5.2 Gauge selection

Scene reconstruction from monocular image sequences is up to a similarity transform. For the linear
and bilinear subspace methods presented in this thesis, we place the origin of the world coordinate
system at the center of gravity of all the feature points, which is actually a moving origin when some of
the feature points are moving, and align the orientation of the coordinate system with the first camera.
The process is calledauge selectiodHeyden, 1997, Morriet al, 1999. Recently, gauge theory
[McLauchlan, 1999, Morrigt al., 1999, Triggset al,, 2000, McLauchlan, 2000, Kanatani and Morris,

2000, Morriset al, 20004 has been developed to deal with the reconstruction ambiguities. In this
section, we focus on analyzing the gauge selection process of the reconstruction methods presented
in the thesis and demonstrate that fixing the gauge for the calibrated reconstruction methods saves
computation cost and improves reliability of the reconstruction results.

5.2.1 Gauge selection in static scene reconstruction

Gauge selection is to determine the similarity transform whichthdegrees of freedom3 for
translation ana for rotation. The translation is decided when we fix the origin of the world coordinate
system and the rotation is determined when we align the orientation of the world coordinate system.

Orthographic and weak perspective projections

We first use Tomasi and Kanade’s orthographic factorization mdffmdasi and Kanade, 19pas
an example to demonstrate that fixing the origin of the world coordinate system decreases the number of
variables and improves reliability of the reconstruction. We outline Tomasi and Kanade’s factorization
method as follows and illustrate the gauge selection techniques used in their method.

1. The world coordinate system location

The method first places the origin of the world coordinate system at the center of gravity of all the
feature points, based on which it calculates the camera translations. At this potraniation
ambiguity is solved.

2. Decomposition

Subtract the translations from the measurement matrix and get the "registered" measurement
matrix. A rank3 SVD is performed on the "registered" matrix to generate the pair of motion and
shape up to 8 x 3 affine transformatior.

3. Normalization
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Set up3n linear equations to solve tleunknown elements of th& x 3 symmetric matrix) =
AA". OnceQ is computed, we get by rank3 matrix decomposition of). This decomposition

is up to a three dimensional rotation because the mépris symmetric. We can solve the
rotation ambiguity by aligning the world coordinate system with any orientation, such as the
first camera orientation.

4. Motion and shape recovery

OnceA has been found, we can recover the Euclidean motion and shape.

In Tomasi and Kanade’s method, the translation ambiguity is solved at the beginning by fixing the
origin of the world coordinate system. However, it is not necessary to perform the above four steps in
this order. We reformulate the method to solve the translation ambiguity at the same time as computing
the linear transformation. Costeira and Kanf@esteira and Kanade, 1998sed a similar process for
easier incorporation of multiple moving objects. The outline of the reformulated method is as follows:

1. Decomposition

We perform a rankt SVD on the measurement matiiX and generate the pair of motidd and
shapeS up to a4 x 4 linear transformatiorf{.

2. Rotation constraints

We decompose the transformatiéh according toH = [A B], whereA is 4 x 3 and B is

4 x 1. Imposing the same metric constraints as in Tomasi and Kanade’s method, we3set up
equations to solve th#0 unknown elements of thé x 4 symmetric matrixQ = AAT. A

is computed from) by matrix decomposition. Same as in Tomasi and Kanade’s method, this
decomposition is up to 3D rotation. Therotation ambiguity is therefore solved in this step by
fixing the orientation of the world coordinate system.

3. Translation constraints

We can place the origin of the world coordinate system at arbitrary locations by sBttmgny
values which make the matrif = [A B] non-singular. Therefore, titeanslation ambiguity
is solved without extra computation. We can also place the origin at the center of gravity by
computingB as,

w=MB (5.11)

wherew is the mean vector of the measurement mdiix B is overconstrained when there are
two or more than two views,
B=M"'w (5.12)

whereM ! is the general inverse of the matly.
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4. Motion and shape recovery

OnceA andB have been found, we can recover the Euclidean motion and shaffebyA B].

Comparing these two formulations of the orthographic factorization method, it is clear that Tomasi
and Kanade’s method has less variables to solve. The number of variablesTliemasi and Kanade's
method while it isL0 in the other formulation. Tomasi and Kanade’s method deals with a smaller space
which is rank3 instead of rankdi. Same analysis applies to the weak perspective factorization method.
We perform a set of synthetic experiments to compare the reliability of these two formulations. We
synthesize&0 sequences with increased noise at feature locations. Each sequenoé frames and
50 feature points. The feature noise is frorto 3 pixels. The image size 10 x 480. We measure the
shape error as the average of the distances between the recovered feature points and their corresponding
true values. The value of the average shape error shown in Figure 5.1 is the ratio between the average
error and the object size. Figure 5.1 shows that the shape errors reconstructed by the two orthographic
formulations increase with the feature noise and Tomasi and Kanade’s formulation is more reliable.
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Figure 5.1:Gauge selection for orthographic projection: Average shape errors recovered by the two
formulations for orthographic reconstruction. It shows that the shape errors increase with the feature
noise and the formulation which fixes the gauge at the beginning (Tomasi and Kanade’s method) is
more reliable.

Uncalibrated perspective projections

The uncalibrated Euclidean reconstruction method described in Chapter 2 places the origin of the
world coordinate system at the center of gravity of the feature points, therefore, it solves the translation
ambiguity at the beginning of the Euclidean reconstruction process. However, the camera translation
vector cannot be computed directly from the scaled measurement matrix generated by projective re-
construction. Therefore, it is impossible to decrease the number of variables by fixing the origin as
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for affine projections. The conclusion is that we can either fix the origin at the center of gravity and
computeB vector of the linear transformatiod = [A B] as presented in Chapter 2, or éeto any

value which corresponds to an arbitr&fy location of the origin. The computation cost for normaliza-

tion and reliability of the results are same. Figure 5.2 shows the reconstructed shape errors by the two
formulations for the cask normalization algorithm, which are almost same.
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Figure 5.2:Gauge selection for uncalibrated perspective projection:Average shape errors recov-
ered by the two formulations for uncalibrated Euclidean reconstruction. It shows that the shape errors
increase with the feature noise and the results from the two formulations are very close.

5.2.2 Gauge selection in multiple motion scene reconstruction

The reconstruction methods for multiple motion scenes are based on the unified representation of
feature points no matter if they are moving or not. This representation induces the difficulty of fixing
the gauge because the center of gravity of all the feature points is moving. It is interesting to notice that
the center of gravity is moving linearly with constant speed because we assume that the moving points
have constant velocities. Therefore, we define the world coordinate system as a moving system with its
origin at the moving center of gravity and its orientation fixed. In this section we demonstrate that the
design of themoving world coordinate system enables the reconstruction process work on a smaller
space so that the results are more stable.

Table 5.4 compares the orthographic reconstruction processes for multiple motion scenes with and
without solving the translation ambiguity at the first step. We can see that the method fixing the origin
at the first step, which is the method presented in Chapter 3, has less computation. Figure 5.3 shows the
reconstruction errors of the two formulations under orthographic projections. The average shape error
evaluates the reconstruction errors of the static feature points and the initial positions of the moving
feature points. We can see that the formulation which fixes the moving origin at the center of gravity at
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With gauge fixing at the first step
1. World coordinate system location

Without gauge fixing at the first step
1. Decomposition

Fix the origin of the moving world coordinate
system at the center of gravity of all the featu
points and compute the camera translations,
This step solves theanslation ambiguity .

Perform a rankr SVD on the measurement
renatrix and get the pair of motion and shape
up to a7 x 7 linear transformatiort = [A B].

2. Decomposition

Subtract the camera translations from the
measurement matrix and perform a raghk
SVD on the "registered" measurement matri
to generate the pair of motion and shape up
a6 x 6 linear transformatior .

2. Rotation constraints
Set up8n linear equations of th28 unknown
elements of th& x 7 symmetric matrix@.

X A is computed from@) by rank3 matrix
talecomposition which is up toD rotation.

We solve thaotation ambiguity by aligning
the world coordinate system with first camera
(or any) orientation.

3. Normalization

Set up8n linear equations of th21 unknown
elements of th& x 6 symmetric matrix).

H is computed fron() by rank3 matrix
decomposition which is up toD rotation.
We solve theotation ambiguity by aligning
the world coordinate system with first camer
(or any) orientation.

3. Translation constraints

SetB to any values which mak& non-singular.
It solves thetranslation ambiguity by placing
the origin of the world coordinate system at
arbitrary locations. Or we can solg by

B = M~ to place the origin at the center

a of gravity of all the feature points.

4. Motion and shape recovery
OnceH has been recovered, the motion and
shape are computed froff and the moving

features are automatically detected.

4. Motion and shape recovery

OnceA andB are recovered, we géf = [A B].
The motion and shape are computed fréfn
and the moving features are detected.

Table 5.4: Gauge selection:Comparison of two orthographic reconstruction processes for multiple

motion scenes with and without gauge fixing at the first step of reconstruction.
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Figure 5.3:Gauge selection for multiple motion scenes under orthographic projection/Average

shape errors recovered by the two formulations for multiple motion scenes orthographic reconstruction.

It shows that the shape errors increase with the feature noise and the formulation which fixes the gauge
at the beginning (the multiple motion scene orthographic reconstruction method presented in Chapter
3) is more reliable.
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Figure 5.4: Gauge selection for multiple motion scenes under uncalibrated perspective projec-

tion: Average shape errors recovered by the two formulations for multiple motion scenes uncalibrated
reconstruction. It shows that the shape errors increase with the feature noise and the results from the
two formulations are very close.
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the beginning is more reliable. We demonstrate the full rank case only though the analysis applies to
the degenerate cases as well.

Following the same analysis for static scenes, the uncalibrated reconstruction methods for multiple
motion scenes have the similar computation cost and reliability for the two formulations. Figure 5.4
shows the results.



Chapter 6

Conclusion

When a camera moves around in a scene, the images taken contain information about the camera
and the scene structure. We address two interesting problems in the area of Structure from Motion.
One is about the camera. We work on the image sequences taken with uncalibrated cameras. The othe
is about the scene. We deal with the scenes rich with moving objects.

We present three linear and bilinear subspace methods in this thesis. The uncalibrated Euclidean
reconstruction method works on image sequences of static scenes taken with uncalibrated cameras. Th
multiple motion scene reconstruction method with calibrated cameras and the multiple motion scene
reconstruction method with uncalibrated cameras both deal with image sequences of scenes rich with
moving objects.

We also discuss two important issues of the reconstruction methods: minimum data requirement
and gauge selection. The theoretical analysis and the empirical results are presented.

In this chapter we first summarize the contributions of this thesis in terms of theoretical work,
system work and potential applications. Then we identify the directions for future work to continue
this line of research.

6.1 Contributions

6.1.1 Theories
1. Decouple the uncalibrated reconstruction process into projective reconstruction and Euclidean
reconstruction.

Given tracked feature points from multiple uncalibrated views, we first perform a bilinear pro-
jective reconstruction process to generate the scaled image measurements from which we get the
projective motion and shape. The Euclidean reconstruction then converts the projective results

95
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into the Euclidean ones by enforcing metric constraints. These two steps are relatively indepen-
dent, that is, the Euclidean reconstruction method can work on the output from any projective
reconstruction method while the projective results can be fed into any self-calibration method.

2. Embed the camera intrinsic parameters recovery within the Euclidean reconstruction.

Image measurements are generated by the projection of 3D scene structure to 2D images. The
projection is determined by the camera motion and the camera intrinsic parameters. We embed
the unknown camera intrinsic parameters within the camera motion representation for uncali-
brated cases, based on which we present the Euclidean reconstruction method.

3. Recover the multiple motion scenes with the assumption that the objects are moving linearly with
constant speeds.

Assuming the objects are moving linearly with constant speeds, we proposed a unified geomet-
rical representation of the static scene and the moving objects. The representation incorporates
the motion information within the scene representation, which naturally leads to a factorization-
based method.

6.1.2 Systems

1. A uncalibrated reconstruction method which recovers the Euclidean shape, the camera motion
and the camera intrinsic parameters from multiple uncalibrated perspective views.

2. A multiple motion scene reconstruction method which reconstructs a scene containing multiple
moving objects together with the camera motion from monocular image sequences.

3. Auncalibrated multiple motion scene reconstruction method which recovers the scene structure,
the trajectories of the moving objects, the camera motion and the camera intrinsic parameters
simultaneously.

We build three reconstruction systems based on the above three methods respectively. A series
of experiments on synthetic and real image sequences are conducted. We also address the issues of
minimum data requirement and gauge selection of the reconstruction methods with the theoretical
analysis and the empirical results.

6.1.3 Applications

1. Multi-camera calibration.

Obtaining the ground truth is difficult and time-consuming in camera calibration. The uncali-
brated reconstruction method provides a good way to calibrate multi-camera systems. Instead of
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carefully putting objects at accurate positions, a person can wave a stick with LEDs randomly in
the room. The LEDs enable fast and easy computation of correspondences. Given these tracked
feature points, the reconstruction method can be applied to recover the camera extrinsic and
intrinsic parameters simultaneously.

2. Video analysis.

Scene modeling can be regarded as an efficient way of representing the large amount of infor-
mation in image sequences, especially the feature-based modeling presented in this thesis. It
can be applied to video editing, image based rendering, video compression, video retrieval and
summarization.

6.2 Future work

6.2.1 Critical motion sequences

Sequences of camera motions that lead to inherent ambiguities in uncalibrated Euclidean recon-
struction or self-calibration are referred toagical motion sequencdsturm, 1997a, Sturm, 199Fb
that is, there are situations in which any uncalibrated reconstruction method fails or is exceptionally
weak. The critical situations are often independent of the specific camera intrinsic parameters. They
are related to certain types of camera motions which prevent unique Euclidean reconstruction.

In this thesis we present a collection of reconstruction methods and conduct the experiments under
generic camera motions. In practice, it is important to analyze the critical motion sequences for the
methods so that we can detect and avoid the critical and "close to critical” situations.

e Static scene reconstruction with uncalibrated cameras

Kahl et al. [Kahl et al, 2004 applied subgroup approach to self-calibration constraints when
some of the intrinsic parameters can vary. They proved ghagn the plane at infinity and
known skew, aspect ratio and principal point, then a motion is critical if and only if there is only
one viewing directionThe explicit geometric descriptions of the corresponding critical motion
sequences are: (i) arbitrary rotations about the optical axis and translations, (ii) arbitrary rotations
about at most two centers, (iii) forward-looking motions along an ellipse and/or a corresponding
hyperbola in an orthogonal plane. These are the critical motion sequences for chdee
uncalibrated Euclidean reconstruction method presented in Chapter 2. They also analyze the
case with zero skew and unit aspect ratio which covers Za$¢he uncalibrated reconstruction
method. The critical motion sequences for this caselaee are at most two viewing directians
Sturm [Sturm, 1999 described the critical motion sequences for stereo systems with varying
focal lengths. We have not seen any work done for the case when all of the intrinsic parameters
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are unknown and varying except skews (ca®é the uncalibrated reconstruction method). It is
necessary to analyze the critical motion sequences for this case in order to determine if a multi-
camera set up is possible to be self-calibrated. We can start with extensions of the subgroup
approach presented by Kahl et fKahl et al, 2004 to the case where the intrinsic parameters

are varying.

Multiple motion scene reconstruction with calibrated cameras

Kahl and TriggdKahl and Triggs, 1999investigated the critical motion sequences for intrinsi-
cally calibrated orthographic and perspective cameras. Their conclusions included: (i) for any
two orthographic and weak perspective cameras, there is a one parameter family of possible
structures corresponding to the bas relief (“flattening”) ambiguity, (ii) for any two calibrated per-
spective cameras, there is always a two-fold ambiguity corresponding to a "twisted pair". The
twisted pair duality is caused by the rotation of one of the camerdsfyaround the axis join-

ing the two optical centers. These conclusions are based on the assumption that the scenes are
static. The minimum number of views required for multiple motion scene reconstruction is larger
than2, however, we are dealing with a much larger reconstruction space than static scenes. For
example, the affine transformation spacéisfor multiple motion scenes (full rank case) while

it is 3D for static scenes. We need to explore if there are ambiguities for more than two views due
to the moving objects, and if the critical motions depend on the directions of the moving objects.

Multiple motion scene reconstruction with uncalibrated cameras

Some research has been done on the analysis about the critical motion sequences of systems
with varying focal lengthd Sturm, 1999, Kahkt al, 2004d. Most work is limited to static
scenes. ltis interesting to apply the static scene results to the uncalibrated multiple motion scene
reconstruction in order to figure out if the critical motion sequences for static scenes are still
critical for multiple motion scenes. As mentioned above, we also want to work on if there are
critical motion sequences caused by the moving objects, and if the critical motion sequences
are related to the directions of the moving objects. The important thing is not only to study the
critical motion problem in theory, but also to design a system which can detect if the recovered
camera motion is critical so as to avoid the critical and "close to critical" situations.

6.2.2 Uncertainty modeling

The reconstruction methods presented in this thesis are based on linear and bilinear subspace con-

straints. Singular Value Decomposition (SVD) is used to get the best low-rank approximation of the
given measurement matrix. However, SVD is powerful at getting the global minimum only when the
feature errors are directional uncorrelated and identically distributed. This is rarely the case in real
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data. It is necessary to model the directional uncertainty of features and perform a minimization on a
covariance-weighted error measurement.

When the feature uncertainty is isotropic, but not identical, Aguiar and Moura described the rank-
factorization algorithm to perform a scalar-weighted SVD for motion and shape recvgwar and
Moura, 1999. Morris and KanadéMorris and Kanade, 199&resented a unified orthographic factor-
ization algorithm for points, line segments and planes using directional uncertainty model of features.
They solved motion and shape by a quasi-linear algorithm. More interestingly, they can evaluate the re-
constructed shape based on the statistical uncertainty model. They discussed their work on perspective
cameras ifMorris et al,, 20008. Irani and Anandafirani and Anandan, 20Q0@escribed an approach
to transform the raw noisy data into a covariance-weighted data space where the noises are directional
uncorrelated and identically distributed. In this way they could apply SVD to the transformed data
to factor noisy feature correspondences with high degree of directional uncertainty into motion and
shape. Not limited to directional uncertainty models, Sun diSinet al,, 1999 discussed error char-
acterization of the factorization methods using results from matrix perturbation theory and covariance
propagation for linear models.

There are two reasons why we want to include feature uncertainty models into the reconstruction
methods presented in the thesis. One is to improve the accuracy and reliability of the reconstruction
results since the directional uncertainty is modeled. Another is to evaluate the reconstruction results
guantitatively based on the statistical models.

There is not much work done on uncertainty modeling of uncalibrated reconstruction methods. We
are interested in extending Morris and Kanade’s apprddtdrris and Kanade, 199&nd Irani and
Anandan’s approacHrani and Anandan, 20000 the uncalibrated Euclidean reconstruction method
for static scenes. There is no doubt the reconstruction results can be improved given correct directional
uncertainty. More importantly, we want to compute the covariance of the recovered camera intrinsic
parameters, the camera motion and the scene structure so that we can evaluate the accuracy of th
self-calibration results.

It is interesting to analyze the reliability of the reconstruction methods for multiple motion scenes.
Assuming that the objects are moving linearly with constant speeds, we propose a unified geometrical
representation incorporating the static scene and the moving objects. This representation enables the
embedding of the motion constraints into the scene structure, that is, the current shape matrix is com-
posed of two spaces: one is the scene structure space and another is the motion space. The methoc
make use of the constraints between the camera motion and the current shape matrix to perform the
reconstruction. Experiments show that the reconstruction is reliable in the presence of noise. However,
theoretical analysis is necessary about the sensitivity to noise of the two spaces (the scene space an
the motion space) because each feature point, either static or moving, contributes to the scene space
and only the moving points contribute to the motion space. We applied Morris and Kanade’s approach
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[Morris and Kanade, 19980 the multiple motion scene orthographic reconstruction method and got
some preliminary results.

Supposé;; is the inverse covariance of thith feature location at thith image,w;; = [ui; ;)"
denote the tracked feature location, the error function with uncertainty feature models is,

1
Err = Z 5 (Wij — M;d))" Gij (wij — M;d;) (6.1)
Z’]
where M; represents the "rotation" matrix of thth camera for multiple motion scenes composed of
the rotation axes;, j; and the scaled rotation axés, zj;, d; is thejth "shape" vector composed of the
initial positions; of the feature and its velocity;,

Mi:liiT ii?] djzlsf ] (6.2)
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The maximum likelihood solution for motion and shape is obtained by minimiZingvith respect to
the shape and motion parameters. We perform a bilinear minimization process similar to the algorithm
described ifMorris and Kanade, 1998vith the difference that we are dealing witt6alimensional
motion and shape space while Morris and Kanade were workirgydimensions.

It is interesting to analyze the shape uncertainty. Since every feature is representédxby a
vector, the inverse covariance of each feature is the Hessi@mraf the shape parameters,
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Focusing on the diagonal blocks Hf;, the upper left corner (denoted a8 & 3 matrix H;) approxi-
mates the inverse covariance of the initial position ofjtefeature and the lower right corner (denoted
as a3 x 3 matrix H;,) approximates the inverse covariance of its velocity. We have,

Hys = Y[ L-}Gwﬁ]
i Ji

Hjy = Y[ z’ji]Gz—j[?i]:ZiQ[ii ji]GU[ﬂ (6.4)

i
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Therefore, we can approximate the inverse covariance of velocitie&d3 times the inverse covari-
ance of positions. We can prove geometrically that this relationship is correct.

At momentt, the position of a feature point is represented By>al vectors;,
st =sp +tv (6.5)

wheresy is its initial position andv is its velocity. We have,

ASO
Asy = Asg+tAv =] 1 t]lm ] (6.6)
therefore,
1
V(Asy) = [ 1t ]VSOU [ . ] ~ V(Asg) + t2V(Av) (6.7)

where A represents perturbation and(A) is its variance. This equation shows that the scale be-
tween the variance of the initial position and that of its velocity(is?), which demonstrates that the
relationship between the inverse covariances (Equation (6.4)) is correct.

6.2.3 Sequences with missing data

The reconstruction methods described in this thesis do not work for the image sequences with
missing data, that is, they require that each feature point is visible in each frame. However, practically,
there are many image sequences in which the camera views several distinct parts of the scenes due tc
the camera motion and occlusion. It is desirable to incorporate the information of missing data into the
reconstruction framework.

Shum et al[Shumet al, 1999 proposed an iterative method which minimized the sum of square
differences between the fitted low rank matrix and the elements that are not missing in the data matrix.
This method can always converge to a locally optimal solution, however, it is not guaranteed to find the
global minimum. Urban et alUrbanet al,, 1999 presented a linear projective reconstruction method
from image sequences with missing data. It requires the images share a common reference view. Jacob:
[Jacobs, 1997it a low rank matrix to a matrix with missing elements by combining constraints on the
solution derived from small submatrices of the full matrix. He also presented the application of the
linear fitting method to structure from motion problem. The basic idea is to regard the missing data
estimation and recovery problem as a EM process in order to find maximum likelihood estimates for
unknown values. We are interested in exploring the possibilities of incorporating the linear fitting idea
into the reconstruction methods presented in this thesis.
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6.2.4 Dense shape recovery

The linear and bilinear subspace methods presented in this thesis are feature-based methods. How-
ever, it is important to notice that the subspace constraints used throughout the thesis are not limited to
the finite space composed of feature points. It is the computation and representation cost which prevent
direct application of the methods to dense shape recovery.

We have been working on a system which is a combination of the feature-based uncalibrated re-
construction method and the dense stereo algorithm using level set methods proposed by Faugeras
and KerivenFaugeras and Keriven, 1996, Faugeras and Keriven, 1997, Faugeras and Keriven, 1998a,
Faugeras and Keriven, 1998I65iven calibrated image sequences, the level set stereo algorithm recon-
structs the dense shape with the assumptions:

e Camera projections are perspective.
e Object surface is locally smooth.
¢ Images of the same 3D point share the same intensity.

We are interested in the level set algorithm because its advantages can nicely compensate for the dis-
advantages of the linear and bilinear subspace methods:

e There is no need to determine the correspondences beforehand for the level set algorithm, while
the subspace methods require tracked feature points.

¢ Visibility and occlusion problems are handled naturally by surface evolution in the level set
algorithm, while the subspace methods cannot deal with the sequences with missing data.

e Dense shape is recovered and textureless part is dealt with by surface smoothing, while the
subspace methods recover sparse feature positions.

The level set algorithm starts with an initial surface which covers (or stays inside of) the real object.
The goal is to move this surface along its normal directions to fit the real object surface by minimizing
the intensity errors between the projections of the s3impoint. The Euler-Lagrange equations of the
error functional, which are a set of Partial Differential Equations (PDES), are solved as a time evolution
process by level set methods.

Faugeras and Keriven’s technical repdfgugeras and Keriven, 199&lescribed details of the
derivation and provided nicZD results. Their conference paper on ECCV'#8gugeras and Keriven,
19983) gave3D results while the journal versiodRaugeras and Keriven, 1993lpresented several
implementation hints. We implemented the level set stereo algorithm and built a combination system
based on the subspace reconstruction methods and the level set algorithm, which works on uncalibrated
views. We summarize the system as follows:
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1. Track feature points (initialized by clicking or automatically selecting feature points on the first
frame) by Lucas-Kanade methdducas and Kanade, 19¢ta

2. Apply the uncalibrated Euclidean reconstruction method to get the camera calibrations and the
3D locations of the feature points;

3. Initialize one 3D surface (currently we are using semi-sphere) which covers the feature points;

4. Repeat the following steps for each point on the surface (parameterized«by) and for each
pair of images where this point is visible;
(a) Compute the surface poifitv, w) and the normal vectdN (v, w);
(b) Compute the mean curvatufeé and the curvature gradiediN;
(c) ProjectS(v,w) to the pair of images and get the image coordinatesandms;
(d) Compute the homography from which we can get the affine matrik;

(e) Integrate over the image patches (weiuseb windows) and compute the change ratef
the normal;

() Move the surfaceS = S + SN.
We would like to explore the following questions based on this system:

e Can this algorithm be regarded as a good way to get dense correspondences? How good is it

comparing with Lucas-Kanade methddticas and Kanade, 198}and Irani’s rank constrained
method [Irani, 1999)?

e How can the idea of this algorithm be extended to the subspace methods in order to get a dense
shape (even with correspondenceless and missing data)?



104 CHAPTER 6. CONCLUSION



Appendix A

Homography-Based Scene Analysis from
Image Sequences

In this appendix we describe a framework to recover scene depth based on image homography and
discuss its application to scene analysis from image sequences. We propose a robust homography algo
rithm which incorporates contrast/brightness adjustment and robust estimation into image registration.
We then present a camera motion solver to obtain the ego-motion and the real/virtual dominant plane
position from the image homography, and apply the Levenberg-Marquardt method to generate a dense
depth map. We also discuss temporal integration of information over image sequences. Finally we
present the results of applying the homography-based method to motion detection problem.

A.1 Introduction

Approaches handling 3D scene analysis from monocular image sequences can be classified into
two categories: algorithms which use 2D transformation or model fitting, and algorithms which use
3D geometry analysis. The first category works for the situations where the scene is flat or the camera
undergoes pure panning and zooming. The second one deals with the situations where the scene is clos
to cameras. Image sequences of our interest are taken from a moving airborne platform where the ego-
motion is complex and the scene is relatively distant but not necessarily flat, therefore, an integration
of 2D and 3D algorithms is more appropriate.

Most approaches of structure from motion were feature-based and could not provide dense depth
maps. Xiong and Shafer presented a flow-based mdtkimhg and Shafer, 19950 recover dense
shape via the Kalman Filter. They assumed that the feature correspondences were given. Baker et al.
[Bakeret al., 1994 proposed a method to deal with multi-layer scenes, however, layer segmentation
remained a problem. Incorporating 3D geometry into 2D constraints was widely used in motion detec-
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tion and segmentatioiShashua and Werman, 1995, Irani and Anandan,]199& plane plus parallax
method contributes a great deal to ego-motion computéliani et al., 1997, parallax geometry anal-
ysis[Kumaret al,, 1994, Irani and Anandan, 1996, Iragtial, 1999 and video indexinglrani et al.,
1999.

Temporal information redundancy of image sequences allows us to use efficient, incremental meth-
ods which perform temporal integration of information for gradual refinement. We first calculate im-
age homography between consecutive images since the camera-to-scene distance is relatively large and
therefore we can use the first-order approximation of the scene as being planar. Section A.2 describes
the three components to achieve robust homography including contrast/brightness adjustment, progres-
sive complexity of transformation and robust estimation. Based on the image homography, a camera
motion solver is presented in Section A.3 to compute the camera ego-motion and the plane equation,
then the Levenberg-Marquardt optimization is used to recover the dense depth map of the scene. Tem-
poral integration is performed over image sequences to refine the scene depth. The results of applying
the homography-based method to motion detection are discussed in Section A.4.

A.2 Robust homography

Monocular image sequences taken from a moving airborne platform usually include lighting and
environmental changes. Contrast and brightness adjustment is therefore very critical in image registra-
tion. Registration by image homography is based on the assumption that either the scene is planar or the
camera is only undergoing rotation and/or zooms. However, many image sequences are taken with no
restriction of the camera motion and the scenes do not have dominant planes. Therefore, it is necessary
to use statistical techniques to obtain robust homography. We incorporate contrast/brightness adjust-
ment and robust estimation into image registration to genelat@nant homography for complex
environments.

A.2.1 Image intensity adjustment

Homography defines the relationship between two images by an eight-parameter perspective trans-
formation,

x' ~ Px (A.1)
where
u' Py Py Pi3 u
XI = U, P = P21 PQQ P23 X = v (AZ)

P31 P3y Ps3 1
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wherex andx’ are the homogeneous representations of the corresponding image coordinates and
denotes equality up to a scale. Szeliski and Sh8eeliski and Shum, 199gave a simple solution for
the transformation based on which we design the robust homography algorithm.

Due to the difference of viewpoints and change of lighting, image sequences may have different
intensity levels from frame to frame. We model the change between images as a linear transformation
[Lucas and Kanade, 198}th

Ip(x) = oy (x') + (A.3)

where« stands for the contrast change for the brightness changd, and I; are the two images.
Combining this with Szeliski and Shum’s homography computakt®reliski and Shum, 1997we
obtain the error functio,

~ 2
E(D, a, B) =Y [Iy(x;) — afi(x's) - f] (A4)
i
whereI; is the warped image aof; by the current homograph# which is initialized as the x 3
identity matrix, D is the incremental update fat,

(I+D)P =P (A.5)

and eachx’; is calculated as,
x';~ (I + D)x; (A.6)

We minimize the error metric using a symmetric positive definite (SPD) solver such as Cholesky de-
composition which is time efficient.

A.2.2 Progressive transformation complexity

The image homography is computed hierarchically on Laplacian image pyramids where estimates
from coarser levels of the pyramids are used to initialize the registration at finer [Amdsdan,
1989, Bergeret al, 1994. To decrease the likelihood of the minimization process converging into
local minima and to improve the registration speed, we use different transformations with progressive
complexity at different pyramid levels, that is, we use translation (2 parameters) at the coarsest level,
then scaled rotation plus translation (4 parameters), affine transformation (6 parameters), and finally
perspective transformation (8 parameters) at the finest level. The progressive method improves the
reliability of the homography computation.



108 APPENDIXA. HOMOGRAPHY-BASED SCENE ANALYSIS FROM IMAGE SEQUENCES

A.2.3 Robust estimation

To deal with scenes without dominant planes, we use robust estimation to compute image homog-
raphy. The random sample consensus paradigm (RAN$RGEhler and Bolles, 1981is an early
example of robust estimation. Similar geometric statistics were also explored in motion analysis ap-
proachegTorr and Murray, 1997, Kanatani, 199FVe apply the RANSAC scheme to the homography
computation by randomly choosing a small subset of the images to obtain an initial homography solu-
tion where the subset defines a real/virtual plane, and then identifying the outliers which are the points
not lying on the plane. The process is repeated enough times on different subsets and the best solution
is the homography which maximizes the number of points lying on the plane. Points which are not
identified as outliers are used to obtain the dominant homography as the final step.

The three components (image intensity adjustment, progressive transformation complexity and ro-
bust estimation) are used in combination to achieve the robust homography. Figure A.1(a) and (b)
show two aerial images of buildings taken under different lighting conditions. The robust estimation
randomly choose80 subsets, each of which is equali@ of the whole image. Each subset generates
a homography. The best homography has the largest support area in the image. This area is used to
compute the final homography. In this example, the support area for the final homography consists of
the tops of several short buildings rather than the real ground because the ground is not actually flat.
White dots in Figure A.1(c) are the outliers of the final homography which correspond to the tops of
the tall buildings (closer to the camera than the dominant plane) and part of the ground (farther than the
dominant plane).

A.3 Recovery of scene depth

A.3.1 Scene depth and homography

Let x andx’ denote the homogeneous coordinates of the corresponding pixels in two images. The
corresponding scene point can be represented by the homogeneous coo[dinatﬁSw]T in the 3D
coordinate system of the first image, therefore,

i i]T (A7)
w w w

wherew denotes the depth to be recovered, which is called projective depth of pamnfSzeliski,
1994. p’ denotes the same scene point with respect to the second image coordinate system,

p=Rp+T (A.8)
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where R represents the rotation between the two image coordinate systen1s agptesents the 3D
translation between the two views expressed in the second image coordinate system.
Assuming that the cameras are intrinsically calibrated except the focal lengths, we use,

f 00 f0 0
V=0 f 0 Vi=1l 0 f o0 (A.9)
0 0 1 0 0 1

to represent the perspective projections of the two images and obtain,

XI ~ lel
— V'Rp+V'T

~ V'RV x4+ V’T’% (A.10)

Each 3D planar surface can be represented bya vector[a b ], which is the scaled normal
direction whose size denotes the inverse of the distance to the plane from the origiiis d¢h the
plane,

[a b c]p=1 (A.11)

we get,

[a b c]V_l)c:% (A.12)

According to Equations (A.10) and (A.11), we get,

X ~ V’RV’lx—i—V’T’%
- V’RV—1x+V’T’[a b c]V_lx
= V(R+T'[a b ¢ |V 'x
~ Px (A.13)

whereP is the homography between the two images. Therefore,

P~V(R+T [a b ¢V (A.14)

A.3.2 Camera motion solver

The robust image registration gives an accurate estimation of the dominant homography between
two images. The support region (non-outliers of RANSAC output) corresponds to a real or virtual
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planar surface in the scene. Given the camera focal lengths (refer to Section A.4.3 for the recovery of
the unknown focal lengths), the camera motion and the plane equation can be solved directly according
to Equation (A.14). The camera rotation matfis expressed by Euler angles which hawariables,

the camera translatio’” and the plane distance are up to scale, therefore, they hemeables in
combination. Since the Euler representationfofs non-linear, the Levenberg-Marquardt method is
used to solve the above equation. As the number of variaBlpar@meters) is small, the optimization
process is rapid and stable.

A.3.3 Scene depth solver

The camera motion solver provides the rotation and the translation between the two image coordi-
nate systems. According to Equation (A.10), we have,

x' ~ Mx + wt (A.15)

whereM = V'RV ! andt = %V’T’ are known. The Levenberg-Marquardt method is used here to
minimize:

B(w) =Y [To(xi) — aly(Mx; + wit) — B (A.16)
Assuming that the depths of different pixels are independent, we get the diagonal Hessian matrix which
makes the optimization process more efficient.

The hierarchical framework used in the homography computation is also applied here. To decrease
the possibility of converging to local minima and to improve the efficiency, we use patch-based depth
recovery and local search. The image is divided into small patches. Each patch shares the same depth
while the patch Jacobian is the sum of the Jacobian of each pixel in the patch. When the patch dis-
placement exceeds a certain scale, even the multilevel depth recovery fails. To overcome this problem,
local search is performed at each patch for subpixel displacement. This displacement is used to solve
w; directly and the solution is incorporated into the optimization as initial values.

Figure A.1(d) demonstrates the depth map recovered from the two images in Figure A.1(a) and (b).
The darker parts denote the scenes farther from the camera. The image25izexi240. We use the
patch size o2 x 2 pixels and the local search arearok 7 pixels.

A.4 Temporal integration over image sequences

An image sequence stores a large amount of redundant information of scenes as the temporal con-
sistency. We use the information integrated over image sequences to refine the recovered scene depth
and take advantage of the depth map to get a better image registration for motion detection.
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A.4.1 Depth integration

From each pair of consecutive images, we recover the scene depth represented in the first image
coordinate system. Itis necessary to propagate this depth representation to the second image coordinat
system so that temporal integration can be performed on the recovered depth.

Symmetric to Equation (A.10), we get,

wl

x~ VR W= + 7V(—R—lT’) (A.17)
Take care of the scales in the homogeneous representatiansnaifx’,
Kx = V'RV 'x+ %V’T’
!/
kx = VR W'+ %V(—R*T’) (A.18)
We obtain,
1 !/
Fx' = VRV (VR K 4 %V(—R*T’)) + %V’T’
1 ! w, el w el
= —x —-——VT'+=V'T A.l
kx kf’V + fV (A.19)
that is, /
Wk —1)x = (Y _ v (A.20)
f 7
where the3 x 1 vectorV'T" is the camera motion which is same for all the pixels. Therefore,
!/ !
Fk=1 and o' = f7kw — ;;’f (A.21)

In this way we transform the depthrepresented in the first image coordinate systeny tepresented
in the second coordinate system. We can then refine this depth by the next pair of images consisting of
the second and the third images. This process is repeated over the entire image sequence.

A.4.2 Plane integration

The first pair of images gives a plane equation from the dominant homography. The plane equation
is actually up to scale with the translation parameters. This is the reason why the same scale must
be maintained for the same plane in the succeeding pairs in order to refine the current depth. Similar
to the depth integration, we need to propagate the plane equation representation from the first image



112 APPENDIXA. HOMOGRAPHY-BASED SCENE ANALYSIS FROM IMAGE SEQUENCES

coordinate system to the second one for temporal integration.
Letn =[a b c]andn’ = [d' b’ ] denote the equations of the same plane represented in the two
image coordinate systems respectively. Since they are the scaled normal directions,

n'" = ARnT (A.22)

whereR is the rotation between the two coordinate systems)aadhe scale between these two normal
directions which is going to be calculated. For pgint= [z y z]T expressed in the first coordinate
system, we have,

np=1 and n'(Rp+7T')=1

nRp—1=-n'T'
Anp — 1 = - nR'T’

Ll

1
1-— 1= —nRTT’
1

- A= —
1+ nRTT

(A.23)

Therefore, the scalg and the rotatiorR propagate the plane position from the first image coordinate
system to the second one (Equation (A.22)) so that we can adjust the scale of the camera motion solver
for the succeeding pair of images to maintain the plane at the same position.

A.4.3 Focal length recovery

Mohr and TriggsIlMohr and Triggs, 1996summarized the projective reconstruction approaches
and concluded that when the camera intrinsic parameters are constant, three images are enough to
recover the Euclidean shape. Pollefeys et[&ollefeyset al, 1999 demonstrated that if the skew
parameter equals zero, even with varying intrinsic parameters three images are sufficient to recover the
Euclidean shape. We assume that all the intrinsic parameters are known except the focal lengths.

Each homography hasparameters which include the information of the rotatiBrparameters)
and the translation3(parameters) between the consecutive images. Given the initial values of the first
two focal lengths, we can obtain the dominant plane equation from the camera motion solver. The
plane equation is propagated to the following images and can then be used to solve the focal lengths
from the image homography in the same way as solving the camera motion.

A.4.4 Application to motion detection

In this section we discuss the application of the homography-based method to motion detection.
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Detecting moving objects in image sequences taken from moving cameras is an important task in
scene analysis. Some algorithms work well in 2D situations when the scene can be approximated by
a flat surface and/or when the camera is undergoing only rotations and zooms, and some algorithms
can only apply to the scenes when large depth variations are present. Our goal is to perform motion
detection in aerial image sequences while the cameras experience complex ego-motion and the scene:
can neither be classified as flat surface nor provide significant depth variations.

Figure A.2(a) shows three images of the bridge sequence provided by the Video Surveillance and
Monitoring (VSAM) project of CMU. The sequence was taken from an airplane flying above a bridge.
Two cars were moving on the bridge and one car was moving on the road which was far below the
bridge. We first obtained the image homographies to register the consecutive images in the sequence.
Figure A.2(b) demonstrates the difference images between the consecutive registered images. White
dots indicate the differences which are actually the outliers of the homographies. We can observe
that the ground below the bridge was selected as the dominant plane by the robust estimation process.
We can also see that both motion (the moving cars) and parallax (the bridge which was closer to the
camera than the ground) appear in the difference images. Based on the homographies we recovered the
scene depth map by temporal integration dvénages and used that to register the consecutive images
again. Figure A.2(c) shows the recovered depth. It can be seen that the depth map is improved through
integration. The recovered depth map of the seventh image shows the scene structure including the
bridge in the front and the road along the gully. New difference images (Figure A.2(d)) were generated
between the registered images with depth compensation. They show that the differences due to the
depth are cleaned up and white dots represent the motion only. Cars on the bridge and on the road
below are detected and tracked correctly. However, in the situation where the motion of the object
always satisfies the epipolar constraints, the object is classified as a stationary rigid object.

A.5 Discussion

We present a framework for homography-based depth recovery. We first describe a robust homog-
raphy algorithm which incorporates image contrast/brightness adjustment and robust estimation into
image registration. Based on the homography between two images, the camera motion solver gives the
solution of the ego-motion and the plane equation, and the solution is refined to generate a dense depth
map by the Levenberg-Marquardt method. We also propose the temporal integration of depth recovery
and its application to motion detection.

The encouraging temporal integration results motivate us to expand this work to include spatial
integration as well. Image homography can be used to generate 2D m&aatiski and Shum, 1997
and 3D reconstruction from panoramic images always works as the nextSttamet al, 1998a,

Shumet al., 19981. The framework described in this appendix presents a way of building 3D mosaics
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directly from image registration, which makes other application tasks, such as image based rendering
and video editing, promising areas to explore. Figure A.3 and Figure A.4 show the 3D mosaics we
build for the building sequence and the bridge sequence. The first one is built from the image sequence
of 21 images and the second one is frémimages.
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(b)

(d)

Figure A.1: Robust homography and scene depth.(a) 1st image, (b) 2nd image of the building
sequence. (c) White dots denote the outliers of the robust estimation including the tops of the tall
buildings and part of the ground. (d) Recovered depth map (darker denotes farther from the camera).
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Figure A.2:Application to motion detection: (a) 1st, 7th and 11th images of the bridge sequence. (b)

1st and 7th difference images between the registered images. White dots show the differences which
are actually the outliers of the homographies. (c) 1st and 7th depth images, darker denotes farther.
The depth image is improved through integration. (d) 1st and 7th difference images after the depth

compensation. White dots show the differences which correspond to the moving objects while the

differences due to the depth are cleaned up.
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Figure A.3:3D mosaic for the building sequenceThis mosaic is built fron21 images.

Figure A.4:3D mosaic for the bridge sequenceThis mosaic is built froni4 images.
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