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Abstract

Structure from Motion (SFM), which is recovering camera motion and scene structure from image

sequences, has various applications, such as scene modeling, robot navigation and object recognition.

Most of previous research on SFM requires simplifying assumptions on the camera or the scene. Com-

mon assumptions are a) the camera intrinsic parameters, such as focal lengths, are known or unchanged

throughout the sequence, and/or b) the scene does not contain moving objects. In practice, these are

unrealistic assumptions. In this thesis we present a collection of reconstruction methods for dealing

with image sequences taken with uncalibrated cameras and/or of multiple motion scenes.

The methods produce Euclidean reconstruction directly from feature point locations and are based

on the bilinear relationship of camera motion and scene structure. For uncalibrated image sequences,

we embed the camera intrinsic parameters within the camera motion representation. For image se-

quences of multiple motion scenes, we incorporate multiple motions into the scene structure represen-

tation. In this way, we derive linear and bilinear subspace constraints on the large amount of information

integrated over the entire image sequences. By taking advantage of this redundant information we can

achieve accurate and reliable reconstruction.

Firstly, we propose a uncalibrated Euclidean reconstruction method from multiple uncalibrated

views. This method first performs a projective reconstruction using a bilinear factorization algorithm,

and then converts the projective solution to a Euclidean one by enforcing metric constraints. We present

three normalization algorithms to generate the Euclidean reconstruction and the intrinsic parameters.

The first two algorithms are linear, one for dealing with the case that only the focal lengths are unknown,

and another for the case that the focal lengths and the constant principal point are unknown. The third

algorithm is bilinear, dealing with the case that the focal lengths, the principal points and the aspect

ratios are all unknown.

Secondly, we present a linear method to reconstruct a scene containing multiple moving objects

together with the camera motion. The number of the moving objects is automatically detected without

prior motion segmentation. Assuming that the objects are moving linearly with constant speeds, we

propose a unified geometrical representation of the static scene and the moving objects. This represen-

tation enables the embedding of the linear motion constraints into the scene structure, which naturally
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leads to a factorization-based method.

Thirdly, we describe a method for multiple motion scene reconstruction from uncalibrated views.

The method recovers the scene structure, the trajectories of the moving objects and the camera in-

trinsic (except skews) and extrinsic parameters simultaneously assuming that the objects are moving

with constant velocities. We embed the assumptions within the scene representation and therefore pro-

pose a bilinear factorization algorithm to generate a projective reconstruction, and then impose metric

constraints to compute the Euclidean reconstruction and the camera intrinsic parameters.

We also discuss other issues related to the accuracy and reliability of these reconstruction methods,

such as minimum data requirement and gauge selection. The reconstruction methods have been tested

on a series of synthetic sequences to evaluate the quality of the methods, and real image sequences to

demonstrate their applicability.
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Chapter 1

Introduction

1.1 Problem definition

When a camera moves around in a scene, the images taken contain information about the scene

structure, the camera motion and the camera intrinsic parameters. Structure from Motion (SFM), which

is recovering camera motion and scene structure from image sequences, has various applications, such

as scene modeling, robot navigation, object recognition and virtual reality. Most of previous research

on SFM requires simplifying assumptions on the camera or the scene. Common assumptions are a) the

camera intrinsic parameters, such as focal lengths, are known or unchanged throughout the sequence,

and/or b) the scene does not contain moving objects. In practice, these are unrealistic assumptions. In

this thesis we present a collection of reconstruction methods for dealing with image sequences taken

with uncalibrated cameras and/or of scenes rich with independently moving objects. We refer to such

scenes as multiple motion scenes.

The methods produce Euclidean reconstruction directly from feature point locations and are based

on the bilinear relationship of camera motion and scene structure. For uncalibrated image sequences,

we embed the camera intrinsic parameters within the camera motion representation. For image se-

quences of multiple motion scenes, we incorporate multiple motions into the scene structure represen-

tation. In this way, we derive linear and bilinear subspace constraints on the large amount of information

integrated over the entire image sequences. By taking advantage of this redundant information we can

achieve accurate and reliable reconstruction.

Firstly, we are interested in image sequences taken with uncalibrated cameras. Given tracked fea-

ture points under perspective projections, we simultaneously reconstruct the Euclidean shape, the cam-

era motion and the camera intrinsic parameters assuming zero skews. The reconstruction process is

decoupled into two steps: projective reconstruction and Euclidean reconstruction. The reconstruction

steps are linear or bilinear depending on the number of unknown intrinsic parameters.

1



2 CHAPTER 1. INTRODUCTION

Secondly, we work on image sequences of multiple motion scenes taken from a moving airborne

platform. In aerial video sequences the moving objects are often far from the camera. It is therefore

difficult to get multiple feature points from every moving object. It is a good approximation to abstract

the moving objects as points. As pointed out in[Avidan and Shashua, 2000], recovering the locations

of the moving point from a monocular image sequence is impossible without assumptions about its

trajectory. We assume that the objects are moving linearly with constant speeds. This assumption is

reasonable for most moving objects, such as cars, planes and people, especially for short time intervals.

Our goal is to recover the scene structure, the trajectories of the moving objects and the camera motion.

The number of the moving objects is automatically detected without prior motion segmentation. The

reconstruction method is built on linear subspace constraints.

Thirdly, we discuss the problem of multiple motion scene reconstruction taken with uncalibrated

cameras. We assume that the cameras have zero skews and the objects are moving with constant

velocities, therefore, we can combine the basic ideas behind the first two cases to get the linear and

bilinear reconstruction methods which recover the scene structure, the motion trajectories of the objects,

the camera motion together with the camera intrinsic parameters simultaneously.

1.2 Related work

Whether cameras are intrinsically pre-calibrated oruncalibrated differentiates various Structure

from Motion methods. When nothing is known about the camera intrinsic parameters, the extrinsic

parameters or the scene, it is only possible to compute a reconstruction up to an unknown projective

transformation[Faugeras, 1992]. There has been considerable progress on projective reconstruction

([Faugeras, 1992, Mohret al., 1995, Triggs, 1995, Quan, 1995, Quan, 1996, Beardsleyet al., 1996,

Carlsson and Weinshall, 1998]). Some methods use only two, three or four images to obtain a projective

reconstruction by a linear least squares method[Hartley, 1997, Hartley, 1998]. On the other hand,

some projective reconstruction methods take advantage of the large amount of information from image

sequences[Shashua and Avidan, 1996, Sturm and Triggs, 1996, Triggs, 1996, Heyden, 1998]. Triggs

proposed a projective factorization method in[Triggs, 1996] which recovered projective depths by

estimating a set of fundamental matrices to chain all the images together. Sturm and Triggs[Sturm

and Triggs, 1996] used epipoles and fundamental matrices estimated from the image points to get the

scaled image measurements based on which a projective factorization is performed. Heyden[Heyden,

1997, Heyden, 1998] presented methods of using multilinear subspace constraints to perform projective

structure from motion. Mahamud and Hebert[Mahamud and Hebert, 2000] proposed an iterative

method which simultaneously recovered both the projective depths as well as the structure and motion.

They determined the projective depths by solving a generalized eigenvalue problem and proved the

monotonic convergence of the iterative scheme to a local maximum.
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In order to obtain a Euclidean reconstruction from the projective reconstruction, some additional in-

formation about either the camera or the scene is needed . Hartley recovered the Euclidean shape using

a global optimization technique assuming that the intrinsic parameters were constant[Hartley, 1994].

Heyden and Åström used a bundle adjustment algorithm to estimate the focal lengths, the principal

points, the camera motion and the object shape together[Heyden and Astrom, 1997]. Triggs calibrated

the cameras by recovering the absolute quadric which was computed by translating the constraints on

the camera intrinsic parameters to the constraints on the absolute quadric[Triggs, 1997]. Pollefeys

et al. assumed that the focal length was the only varying intrinsic parameter and presented a linear

algorithm which was based on recovering the absolute conic[Pollefeyset al., 1999]. Agapito et al.

proposed a linear self-calibration algorithm for rotating and zooming cameras[Agapitoet al., 1999].

Assuming zero skews, we decouple the uncalibrated reconstruction process into two steps: pro-

jective reconstruction and Euclidean reconstruction. We present a projective factorization algorithm to

compute the projective motion and shape based on the bilinear relationship of projective depths and

affine reconstruction. This algorithm uniformly considers all the data in all the images. We then im-

pose metric constraints on the projective reconstruction to recovery the Euclidean motion and shape

as well as the camera intrinsic parameters based on linear and bilinear subspace constraints. Table 1.1

summarizes some of the related work in this area.

The linear and bilinear subspace reconstruction methods presented in this thesis use thefactor-

ization technique as the basis of solution. The factorization method, first developed by Tomasi and

Kanade[Tomasi and Kanade, 1992] for orthographic views and extended by Poelman and Kanade

[Poelman and Kanade, 1997] to weak and para perspective views, achieved its robustness and accu-

racy by applying the singular value decomposition (SVD) to a large number of images and feature

points. Yu[Yu et al., 1996] presented a new approach based on a higher-order approximation of per-

spective projection by using Taylor expansion of depth. The accuracy of the approximation depended

on the order of Taylor expansion and the computation increased exponentially as the order increased.

Christy and Horaud[Christy and Horaud, 1996a, Christy and Horaud, 1996b] described a method for

perspective camera model by incrementally performing reconstructions with either a weak or a para

perspective camera model. Recently, some work has been done to extend the factorization methods

from feature-based methods to plane-based methods. Ma and Ahuja[Ma and Ahuja, 1998] recovered

a dense shape, which is composed of the recovered plane positions and normals, from region corre-

spondences by factorization. Sturm[Sturm, 2000] presented a factorization-based method to estimate

poses of multiple planes. Table 1.2 lists some of the factorization methods. One major limitation with

most factorization methods, however, is that they require the use of intrinsically calibrated cameras. In

this thesis, we present uncalibrated reconstruction methods for both static scenes, which are the scenes

without moving objects, and multiple motion scenes, which are the scenes containing multiple moving

objects.
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Projective Reconstruction

Mohr et al. Triggs Hartley Heyden Mahamud and Hebert Han and Kanade

1995 1996 1997 1998 1997 1998 2000 2000

nonlinear least estimation of a set linear least squares multilinear method iterative method recovering bilinear factorization

squares solution of fundamental method on2, 3 or 4 based on constraints the projective depths and algorithm for static and

matrices views in shape space structure simultaneously multiple motion scenes

Euclidean Reconstruction

Hartley Heyden and Åström Pollefeys et al. Agapito et al. Han and Kanade

1994 1997 1998 1999 2000

global optimization bundle adjustment linear algorithm linear algorithm linear and bilinear algorithm

(constant intrinsic (focal lengths and (focal lengths (rotating and (all intrinsic parameters

parameters) principal points) only) zooming cameras) except skews)

Table 1.1:Related work: Reconstruction with uncalibrated cameras

Calibrated Cameras Uncalibrated Cameras

Tomasi and Kanade Poelman and Kanade Yu et al. Christy and Horaud Han and Kanade

1991 1995 1996 1996 2000

orthographic cameras weak and para perspective cameras perspective cameras perspective cameras based on

perspective cameras by Taylor expansion by affine iteration linear and bilinear constraints

Table 1.2:Related work: Factorization methods

Many interesting problems have been discussed on image sequences ofmultiple motion scenes

including: scene reconstruction[Kumar et al., 1994, Anandanet al., 1994, Poelman and Kanade,

1997, Han and Kanade, 1998, Iraniet al., 1999], motion segmentation[Irani et al., 1992, Torr and

Murray, 1993, Sawhneyet al., 1999], reconstruction of motion trajectories[Avidan and Shashua, 2000],

camera motion recovery[Irani et al., 1997, Costeira and Kanade, 1998] and scene synthesis[Wexler

and Shashua, 2000]. Most of these methods deal with the above problems separately. However, the

temporal integration of information over sequences provides constraints on the scene reconstruction.

We are therefore motivated to seek a one step reconstruction algorithm.

Zelnik-Manor and Irani[Zelnik-Manor and Irani, 1999, Irani, 1999] proposed using subspace con-

straints on multi-frame information to compute homography and optical flows. Their work demon-

strated that the use of geometric constraints provided a good way to integrate information over se-

quences. The multibody factorization method proposed by Costeira and Kanade[Costeira and Kanade,

1998] reconstructed the motions and shapes of independently moving objects, but required that each

object had multiple feature points. Avidan and Shashua[Avidan and Shashua, 2000] recovered the lin-

ear trajectory of a 3D point by line fitting. They assumed that the object was moving along a line, but

they did not require that the object was moving with constant speed. They assumed the camera motion

was given as well as the prior motion segmentation, and did not recover the scene structure. They ex-
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Multiple Motion Scene Reconstruction

Anandan et al. Irani et al. Irani et al. Avidan and Shashua Wexler and Shashua Han and Kanade

1994 1992 1997 1999 2000 2000

Kumar et al. Torr and Murray Shashua et al.

1994 1993 1999

Han and Kanade Sawhney et al.

1998 1999

Output: static Output: motion Output: camera Output: trajectories Output: scene synthesis Output: scene structure,

scene structure segmentation motion recovery of moving objects camera motion, trajectories

of moving objects

Multiple Motion Scene Reconstruction based on Subspace Constraints

Costeira and Kanade Zelnik-Manor and Irani Irani Bregler et al. Han and Kanade

1995 1999 1999 2000 2000

Output: scene structure Output: multiple Output: multiple Output: non-rigid shape Output: scene structure,

and camera motion homographies frame optical flow camera motion, trajectories

of moving objects

Requirement: multiple Requirement: 3D object Requirement: tracked

feature points on each represented by a basis feature points

object of shapes

Table 1.3:Related work: Multiple motion scene reconstruction

tended this work to conic shape trajectories in[Shashuaet al., 1999]. Shashua and Wolf proposed the

concept ofHomography Tensorto represent three views of static and moving planar points in[Shashua

and Wolf, 2000]. Bregler et al.[Bregleret al., 2000] described a technique to recover non-rigid 3D

model based on the representation of 3D shape as a linear combination of a set of basis shapes. The

complexity of their solution increased with the number of basis shapes. Table 1.3 lists some of the

related work to multiple motion scene reconstruction methods.

1.3 Thesis overview

In this thesis we present a collection of reconstruction methods dealing with image sequences taken

with uncalibrated cameras and/or of multiple motion scenes. The input to the reconstruction methods

are the tracked image measurements as shown in Figure 1.1. Each feature point is represented by

(uij vij) which is generated by the product of the camera projectionPi and the 3D feature point

positionxij, 2
664
uij

vij

1

3
775 � Pixij or �ij

2
664
uij

vij

1

3
775 = Pixij (1.1)
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Figure 1.1:Image measurements:the feature points are overlaid on the image.

wherei = 1 � � � n, n is the number of views andj = 1 � � �m, m is the number of feature points,�ij is

a non-zero scale factor, commonly called projective depth. The3� 4 projection matrixPi is,

Pi � Ki

h
Ri ti

i
(1.2)

The3 � 3 matrixKi encodes the intrinsic parameters of theith camera.Ri is theith rotation matrix

andti is theith translation vector. Therefore,Pi is a combination of the camera calibrationKi and the

camera motion[Ri ti]. Since the4 � 1 vectorxij is the homogeneous representation of the feature

position, we have,

xij �

"
pij

1

#
(1.3)

When the scenes do not contain moving objects,pij = sj andsj = [xj yj zj ]
T, that is, the feature

positions are not dependent on when the images are taken. On the other hand, the feature positionspij

are related to both of the feature numberj and the image numberi for multiple motion scenes.

Most research on SFM deals with the situations when the cameras are intrinsically calibrated, that

is, all of Ki’s are known, and/or the situations without moving objects, that is,pij = sj. The un-

calibrated reconstruction methods presented in the thesis work on image sequences withunknown

matricesKi, i = 1 � � � n. The methods decouple the reconstruction process into two steps: projec-

tive reconstruction and Euclidean reconstruction. First, the projective reconstruction is performed to

get the projective depths�ij from which the scaled image measurements are computed. According to

Equation (1.1), factorization of the scaled measurements generates the motion and shape. However, the
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Figure 1.2:Uncalibrated reconstruction process: the reconstruction process is decoupled into two
steps: projective reconstruction and Euclidean reconstruction.

factorization is not unique. It is up to a linear transformationH. The Euclidean reconstruction is then

performed on the projection reconstruction to calculate the transformationH from which the Euclidean

motion and shape as well as the camera intrinsic parameters are generated. The reconstruction process

is summarized in Figure 1.2.

The multiple motion scene reconstruction methods presented in the thesis are based on a unified

representation of the static scene and the moving objects. Assuming that the feature points are moving

linearly with constant speeds, we regard every feature point as a moving point with constant velocity:

the static points simply have zero velocity. Any pointpij is represented by,

pij = sj + ivj (1.4)

in a world coordinate system, wheresj is the point position at frame0 (i.e., when the0th frame is

taken) andvj is its motion velocity. Based on this representation, we present the factorization-based

reconstruction methods for multiple motion scenes.

We start Chapter 2 with a review of Tomasi and Kanade’s factorization method[Tomasi and

Kanade, 1992], then we describe the uncalibrated Euclidean reconstruction method which recovers

motion and shape from multiple uncalibrated views. Given tracked feature points, this method recov-

ers the camera motion, the scene structure and the camera intrinsic parameters (assuming zero skews).
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We first present a bilinear factorization algorithm to get a projective reconstruction, then propose three

normalization algorithms which impose metric constraints on the projective reconstruction with dif-

ferent assumptions about the intrinsic parameters. The normalization algorithms recover the unknown

intrinsic parameters and convert the projective solution to a Euclidean one simultaneously. The first

algorithm deals with the case that the focal lengths are the only unknown parameters. The second one

deals with the case that the focal lengths and the principal point are unknown, while the principal point

is fixed. These two algorithms are linear. The third algorithm, which is bilinear, works in the case

that the focal lengths, the principal points and the aspect ratios are all unknown. We also describe the

experimental results on real image sequences including building reconstruction, terrain recovery and

multi-camera calibration.

Chapter 3 introduces the multiple motion scene reconstruction method with calibrated cameras.

Assuming that the objects are moving linearly with constant speeds, we propose a unified representation

of the static scene and the moving objects in which each point has an initial position and a constant

velocity. Points on the static scene are defined to have zero velocity. This representation embeds

the linear motion constraints within the scene structure, which naturally leads to a factorization-based

method. The method reconstructs the scene structure, the trajectories of the moving objects and the

camera motion simultaneously. The number of the moving objects is automatically detected without

prior motion segmentation. We also discuss solutions to degenerate cases and extensions of the multiple

motion scene reconstruction method to weak perspective projection and perspective projection. We

apply this method to indoor and outdoor image sequences. The results are presented and discussed in

this chapter.

Chapter 4 presents a factorization-based method for multiple motion scene reconstruction from

uncalibrated views. The method decouples the reconstruction process into projective reconstruction

and Euclidean reconstruction assuming that the objects are moving with constant velocities. Given

tracked feature points without prior motion segmentation, the method recovers the scene structure, the

trajectories of the moving objects, the camera motion together with the camera intrinsic parameters

(assuming zero skews). The number of the moving objects is automatically detected. Experiments on

synthetic and real images are described.

In Chapter 5 we discuss two important issues about reconstruction methods: minimum data require-

ment and gauge selection. We first describe the theoretical analysis about minimum number of views

and features required by the subspace reconstruction methods presented in the thesis, then we give our

empirical results. Gauge selection is the process of specifying the coordinate frame and representing

the recovered geometry in the chosen frame. We analyze the gauge selection techniques used in the

reconstruction methods described in this thesis and show that the techniques make the reconstruction

methods reliable.

Chapter 6 summarizes the contributions of this thesis. We also identify the directions of extending
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this research.

Appendix A proposes a method to recover scene depth and camera motion based on image ho-

mographies. It also discusses the applications of the method to motion detection and 3D mosaicking.

This method takes advantage of the large amount of redundant information stored as the temporal con-

sistency in video sequences to refine the reconstruction results. Different from the linear and bilinear

subspace methods which are feature-based batch methods, the homography-based method directly re-

covers the dense scene structure in a sequential way. We include this work here to demonstrate that

information integration over image sequences provides a reliable way for scene reconstruction.
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Chapter 2

Euclidean Reconstruction with

Uncalibrated Cameras

We first give a review of Tomasi and Kanade’s factorization method which provides a technique

basis for the reconstruction methods proposed in this thesis. Then we present a uncalibrated Euclidean

reconstruction method[Han and Kanade, 2000a]. Unlike Tomasi and Kanade’s method, it can work on

image sequences taken with uncalibrated cameras. Given tracked feature points, the method recovers

the scene structure, the camera extrinsic parameters and the intrinsic parameters simultaneously. Three

normalization algorithms for Euclidean reconstruction are described, each of which handles different

assumptions about the camera intrinsic parameters. The first algorithm deals with the case that the focal

lengths are the only unknown parameters. The second one deals with the case that the focal lengths

and the principal point are unknown, while the principal point is fixed. These two algorithms are linear.

The third algorithm, which is bilinear, works in the case that the focal lengths, the principal points

and the aspect ratios are all unknown. Synthetic experiments are conducted to evaluate the quality of

the reconstruction method. Experimental results on real image sequences show the applications of the

method to building reconstruction, terrain recovery and multi-camera calibration.

2.1 Review of Tomasi and Kanade’s factorization method

The factorization method was first developed by Tomasi and Kanade[Tomasi and Kanade, 1992]

for orthographic projections. The cameras are intrinsically calibrated. The core of the method is a

process based on Singular Value Decomposition (SVD) which factors a matrix of image measurements

into the product of the camera motion matrix and the scene structure matrix. The method does not need

any prior assumptions about either the camera motion or the scene structure. In this section we give a

brief review of the factorization method and introduce the geometry and notation used in this thesis.

11
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2.1.1 Orthographic projection

Assuming a camera moves around in a scene,Cobj represents the world coordinate system attached

to the scene andCcami represents the camera coordinate system at different locations, wherei = 1 � � �n

andn is the number of frames. Suppose there arem feature pointspj , j = 1 � � �m, in the scene whose

3D locations are,

pj =
h
xj yj zj

iT
(2.1)

which we want to recover by observing how they move in the projected image sequences. The position

of pj represented in theith camera coordinate system is given by the transformation,

p0ij = Ripj + ti: (2.2)

where

Ri =

2
664

iTi

jTi

kTi

3
775 ti =

2
664
txi

tyi

tzi

3
775 (2.3)

Ri is theith rotation matrix whose rowsii = [ixi iyi izi]
T, ji = [jxi jyi jzi]

T andki = [kxi kyi kzi]
T

are the axes of the camera coordinate systemCcami expressed in the world coordinate system. The vec-

tor ti represents the position of the world coordinate system at theith camera coordinate system. The

representation (2.2) can be simplified using homogeneous coordinates,

x0ij =

"
p0ij

1

#
=

"
Ri ti

01�3 1

# "
pj

1

#
(2.4)

=

"
Ri ti

01�3 1

#
xj (2.5)

where

xj =

"
pj

1

#
=

2
666664
xj

yj

zj

1

3
777775 (2.6)

Under orthographic projection, the image coordinates of pointpj at the ith frame, denoted by

(uij vij), are given by the first two elements ofx0ij,

"
uij

vij

#
=

"
ixi iyi izi txi

jxi jyi jzi tyi

#
xj (2.7)
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The projection process is shown in Figure 2.1.

Figure 2.1:Orthographic projection: Projection of feature pointpj represented in the world coordi-
nate systemCobj to the image coordinates(uij vij). Ccami denotes theith camera coordinate system.

Imaginem feature points are tracked overn frames and all the image coordinates are put into a

single2n�m matrix,

W =

2
666666664

u11 u12 : : : u1m

v11 v12 : : : v1m
...

...

un1 un2 : : : unm

vn1 vn2 : : : vmn

3
777777775

(2.8)

Each row ofW lists the image coordinatesu or v of all the feature points in each frame, and each

column represents the image trajectory of one feature point over the entire image sequence. The matrix

W is called themeasurement matrix. According to Equation (2.7),

W =MS + T
h
1 1 � � � 1

i
(2.9)

with the rotation matrixM composed of the rotation axes,

M =
h
mx1 my1 mx2 my2 � � � mxn myn

iT
(2.10)

where

mxi = ii myi = ji (2.11)
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and the translation vectorT ,

T =
h
tx1 ty1 tx2 ty2 � � � txn tyn

iT
(2.12)

S is the shape matrix containing the feature points positions,

S =
h
p1 p2 � � � pm

i
(2.13)

2.1.2 World coordinate system location

Without loss of generality, we place the origin of the world coordinate system at the center of

gravity of all the feature points, so that,
mX
j=1

pj = 0 (2.14)

From Equation (2.7), we get,

mX
j=1

uij =
mX
j=1

(ii � pj + txi) = ii

mX
j=1

pj +mtxi = mtxi

mX
j=1

vij =
mX
j=1

(ji � pj + tyi) = ji

mX
j=1

pj +mtyi = mtyi (2.15)

Therefore, the camera translation vector can be directly computed from Equation (2.15),

txi =
1

m

mX
j=1

uij tyi =
1

m

mX
j=1

vij (2.16)

2.1.3 Decomposition

The translation vectorT is subtracted fromW , leaving a "registered" measurement matrixŴ ,

Ŵ =W � T
h
1 1 � � � 1

i
(2.17)

We have derived the relationship ofW and pair ofM andS by modeling the imaging process in

Equation (2.9). The reconstruction problem is simplified by starting with the "registered" matrixŴ

and obtaining a factorization into the motion matrixM and the shape matrixS. SinceM andS can be

at most rank3, Ŵ will be at most rank3. In real life situations the rank ofW can be higher due to image

noise. Singular Value Decomposition (SVD) is performed onŴ to get the best rank3 approximation,

Ŵ = U�V T (2.18)
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where matrix� is a diagonal matrix composed of the three biggest singular values which reveal the

most important components in the data,U2n�3 and Vm�3 are the left and right singular matrices,

respectively.

Defining,

M̂ = U�
1

2

Ŝ = �
1

2V T (2.19)

we have the two matrices whose product represents the "registered" measurement matrixŴ = M̂Ŝ.

However, this decomposition is not unique since for any non-singular3 � 3 matrixA, M = M̂A and

S = A�1Ŝ are also a possible solution,

MS = (M̂A)(A�1Ŝ) = M̂Ŝ = Ŵ (2.20)

In other words, the singular value decomposition (Equation (2.18)) provides a solution of motion and

shape up to an affine transformation.

2.1.4 Normalization

The Euclidean solution can be obtained by finding the appropriate3 � 3 matrixA. The correctA

is determined using the fact that the rows of the motion matrixM represent the camera rotation axes.

This process is callednormalization.

Matrix A is constrained by orthogonality of the matrixM . Each row ofM = M̂A is a unit norm

vector and the rows are pairwisely perpendicular. This yields a set of constraints,

m̂xiAA
Tm̂T

xi = 1

m̂yiAA
Tm̂T

yi = 1

m̂xiAA
Tm̂T

yi = 0 (2.21)

wherei = 1 � � � n, m̂xi andm̂yi are the corresponding rows of the matrix̂M . This is an over con-

strained system for the6 elements of the symmetric matrixQ = AAT, which can be solved by linear

least squares techniques. The transformationA is then computed from the matrixQ by rank3 matrix

decomposition. This decomposition is up to a three dimensional rotation because the matrixQ is sym-

metric. We can fix the rotation by aligning the world coordinate system with any orientation, such as

the first camera orientation.
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2.1.5 Motion and shape recovery

Once the matrixA is computed, the camera motion is recovered as,

M = M̂A (2.22)

and the scene structure as,

S = A�1Ŝ (2.23)

2.2 Projective reconstruction

Tomasi and Kanade’s factorization method requires the intrinsically calibrated cameras. Given fea-

ture correspondences from uncalibrated views, we cannot perform SVD directly on the measurement

matrixW as in Tomasi and Kanade’s method because the perspective projection is involved. We decou-

ple the uncalibrated reconstruction process into projective reconstruction and Euclidean reconstruction.

In this section we describe the bilinear projective reconstruction algorithm.

Suppose there aren perspective cameras:Pi, i = 1 � � � n andm feature pointsxj , j = 1 � � �m

represented by homogeneous coordinates. The image coordinates are represented by(uij vij). Using

the symbol� to denote equality up to a scale, the following hold,

2
664
uij

vij

1

3
775 � Pixj or �ij

2
664
uij

vij

1

3
775 = Pixj (2.24)

where�ij is a non-zero scale factor, commonly called projective depth. EachPi is a3 � 4 matrix and

each feature pointxj is a4� 1 vector. The equivalent matrix form is,

Ws =

2
666666666666664

�11

2
664
u11

v11

1

3
775 � � � �1m

2
664
u1m

v1m

1

3
775

...
...

...

�n1

2
664
un1

vn1

1

3
775 � � � �nm

2
664
unm

vnm

1

3
775

3
777777777777775

=

2
6664
P1
...

Pn

3
7775
h
x1 � � � xm

i
= PX (2.25)

whereWs is a3n �m matrix, calledscaled measurement matrix. Compared with the measurement

matrixW which is2n�m in Tomasi and Kanade’s method, the scaled measurement matrixWs encodes

the projected image information inW and the projective depths. Since eachPi is a3� 4 matrix,Ws is



2.2. PROJECTIVE RECONSTRUCTION 17

at most rank4. We therefore apply the following projective factorization algorithm which is similar to

Triggs’s bilinear approach[Triggs, 1995]. The algorithm iteratively applies rank4 factorization to the

current scaled measurement matrix.

Bilinear Projective Factorization Algorithm

1. Set�ij = 1, for i = 1 � � � n andj = 1 � � �m;

2. Compute the current scaled measurement matrixWs by Equation (2.25);

3. Perform rank4 factorization onWs, generate the projective motion and shape;

4. Reset�ij = P
(3)
i xj , whereP (3)

i denotes the third row of the projection matrixPi;

5. If �ij ’s are the same as the previous iteration, stop; else go to step 2.

The goal of the projective reconstruction process is to estimate the values of the projective depths

(�ij ’s) which make Equation (2.25) consistent. Figure 2.2 shows the reconstruction process. The

reconstruction results are iteratively improved by back projecting the current projective reconstruction

to refine the depth estimates.

Figure 2.2:Projective reconstruction process
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2.3 Euclidean reconstruction

The factorization of Equation (2.25) recovers the motion and shape up to a4 � 4 linear projective

transformationH,

Ws = P̂ X̂ = P̂HH�1X̂ = PX (2.26)

whereP = P̂H andX = H�1X̂ . P̂ andX̂ are referred to as the projective motion and the projective

shape. Any non-singular4 � 4 matrix could be inserted between̂P andX̂ to get another motion and

shape pair.

Let us assume zero skews. We impose metric constraints to the projective motion and shape in

order to simultaneously reconstruct the intrinsic parameters (i.e., the focal lengths, the principal points

and the aspect ratios) and the linear transformationH, from which we can get the Euclidean motion

and shape. We call this processnormalization. We classify the situations into three cases as shown in

Figure 2.3:

Case 1: Only the focal lengths are unknown.

This case includes the situations that the camera undergoes zooming in/out during the sequence.

The focal lengths are therefore the main concerns of the reconstruction process.

Case 2: The focal lengths and the principal point are unknown, and the principal point is fixed.

In this case we are interested in the situations in which the camera focal length changes only a

little, so that there is no obvious zooming effect and the principal point is very close to being

constant. Aerial image sequences taken by a flying platform are examples of this case.

Case 3: The focal lengths, the principal points and the aspect ratios are all unknown and varying.

This case covers the situations that multiple cameras are included. The focal lengths, the principal

points and the aspect ratios all vary from image to image.

We present three factorization-based normalization algorithms to deal with these three cases re-

spectively. The algorithms are linear for the first two cases and bilinear for the third case.

2.3.1 Normalization algorithm outline

The projection matrixPi is,

Pi � Ki

h
Ri ti

i
(2.27)

where

Ki =

2
664
fi 0 u0i

0 �ifi v0i

0 0 1

3
775 Ri =

2
664

iTi

jTi

kTi

3
775 ti =

2
664
txi

tyi

tzi

3
775
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Figure 2.3:Normalization cases

The upper triangular calibration matrixKi encodes the intrinsic parameters of theith camera:fi rep-

resents the focal length,(u0i v0i) is the principal point and�i is the aspect ratio.Ri is theith rotation

matrix with ii, ji andki denoting the rotation axes.ti is theith translation vector. Combining Equation

(2.27) fori = 1 � � �n into one matrix equation, we get,

P =
h
M T

i
(2.28)

where

M =
h
mx1 my1 mz1 � � � mxn myn mzn

iT
T =

h
Tx1 Ty1 Tz1 � � � Txn Tyn Tzn

iT

and

mxi = �ifiii + �iu0iki myi = �i�ifiji + �iv0iki mzi = �iki

Txi = �ifitxi + �iu0itzi Tyi = �i�ifityi + �iv0itzi Tzi = �itzi (2.29)

The shape matrix is represented by,

X �

"
S

1

#
(2.30)

where

S =
h
s1 s2 � � � sm

i
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and

sj =
h
xj yj zj

iT
xj =

h
�js

T
j �j

iT

�i and�j are the scale factors of the homogeneous representations in Equations (2.27) and (2.30).

World coordinate system location

We place the origin of the world coordinate system at the center of gravity of all the scaled feature

points to enforce,
mX
j=1

�jsj = 0 (2.31)

we get,

mX
j=1

�ijuij =
mX
j=1

(mxi � �jsj + �jTxi) =mxi �

mX
j=1

�jsj + Txi

mX
j=1

�j = Txi

mX
j=1

�j (2.32)

Similarly,
mX
j=1

�ijvij = Tyi

mX
j=1

�j

mX
j=1

�ij = Tzi

mX
j=1

�j (2.33)

Define the4� 4 projective transformationH as,

H =
h
A B

i
(2.34)

whereA is 4� 3 andB is 4� 1.

SinceP = P̂H, h
M T

i
= P̂

h
A B

i
(2.35)

we have,

Txi = P̂xiB Tyi = P̂yiB Tzi = P̂ziB (2.36)

From Equations (2.32) and (2.33), we know,

Txi

Tzi
=

Pm
j=1 �ijuijPm

j=1 �j

Tyi

Tzi
=

Pm
j=1 �ijvijPm
j=1 �j

(2.37)

We set up2n linear equations of the4 unknown elements of the matrixB. Linear least squares solutions

are then computed.
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Normalization

Asmxi,myi andmzi are the sum of the scaled rotation axes, we get the following constraints from

Equation (2.29),
jmxij

2 = �2i f
2
i + �2iu

2
0i

jmyij
2 = �2i�

2
i f

2
i + �2i v

2
0i

jmzij
2 = �2i

mxi �myi = �2iu0iv0i

mxi �mzi = �2iu0i

myi �mzi = �2i v0i

(2.38)

Based on the three different assumptions of the intrinsic parameters (three cases), we translate the above

constraints to linear or bilinear constraints onMMT (see Section 2.3.2, 2.3.3 and 2.3.4 for details).

According to Equation (2.35),

M = P̂A (2.39)

therefore,

MMT = P̂AATP̂T (2.40)

Define

Q = AAT (2.41)

we can translate the constraints onMMT to the constraints on the10 unknown elements of the sym-

metric4 � 4 matrixQ. Least squares solutions are computed. Then we get the matrixA from Q by

rank3 matrix decomposition.

Motion and shape recovery

Once the matricesA andB have been found, the projective transformation isH = [A B]. The

shape is computed asX = H�1X̂ and the motion matrix asP = P̂H. We first compute the scales�i,

�i = jmzij (2.42)

We then compute the principal points (if applied),

u0i =
mxi �mzi

�2i
v0i =

myi �mzi

�2i
(2.43)

and the focal lengths as,

fi =

q
jmxij

2 � �2iu
2
0i

�i
(2.44)
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The aspect ratios (if applied) are,

�i =

q
jmyij

2 � �2i v
2
0i

�ifi
(2.45)

Therefore, the motion parameters are,

ki =
mzi

�i
ii =

mxi � �iu0iki

�ifi
ji =

myi � �iv0iki

�i�ifi

tzi =
Tzi

�i
txi =

Txi � �iu0itzi

�ifi
tyi =

Tyi � �iv0itzi

�i�ifi
(2.46)

Algorithm outline

The normalization process is summarized by the following algorithm.

Normalization Algorithm

1. Perform SVD onWs and get the projective motion̂P and the projective shapêX ;

2. Sum up each row ofWs and compute the ratios between them as in Equation (2.37);

3. Set up2n linear equations of the4 unknown elements of the matrixB based on the

ratios and computeB;

4. Set up linear equations of the10 unknown elements of the symmetric matrixQ and

getQ;

5. Perform rank3 matrix decomposition onQ to getA fromQ = AAT;

6. Put matricesA andB together and get the projective transformationH = [A B];

7. Recover the shape usingX = H�1X̂ and the motion matrix usingP = P̂H;

8. Recover the intrinsic parameters, the rotation axes and the translation vector accord-

ing to Equations (2.43)–(2.46).

2.3.2 Case 1: Unknown focal lengths

Assume that the focal lengths are the only unknown intrinsic parameters. Then we have,

u0i = 0 v0i = 0 �i = 1 (2.47)
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We combine the constraints in Equation (2.38) to impose the following linear constraints on the un-

known elements of the matrixQ [Han and Kanade, 1999b],

jmxij
2 = jmyij

2

mxi �myi = 0

mxi �mzi = 0

myi �mzi = 0

We can add one more equation assuming�1 = 1,

jmz1j
2 = 1 (2.48)

Totally we have4n+ 1 linear equations of the10 unknown elements ofQ.

The only intrinsic parameters to be recovered in this case are the focal lengths. As the aspect ratios

are1, the focal lengths are computed by the average of Equations (2.44) and (2.45),

fi =
jmxij+ jmyij

2�i
(2.49)

2.3.3 Case 2: Unknown focal lengths and constant principal point

In case 2, we assume that the focal lengths are unknown and the principal point is constant. Then,

u0i = u0 v0i = v0 �i = 1 (2.50)

We translate the constraints in Equation (2.38) to the following constraints[Han and Kanade, 2000c],

mxi �myi

mxi �mzi

=
myi �mzi

mzi �mzi

(jmxij
2
� jmyij

2)(mzi �mzi) = (mxi �mzi)
2
� (myi �mzi)

2 (2.51)

and

mzi �mzi

mzj �mzj

=
jmxij

2 � jmyij
2

jmxjj
2 � jmyjj

2

jmxij
2 � jmyij

2

jmxjj
2 � jmyjj

2
=

mxi �myi

mxj �myj

mxi �myi

mxj �myj

=
mxi �mzi

mxj �mzj

mxi �mzi

mxj �mzj

=
myi �mzi

myj �mzj
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myi �mzi

myj �mzj

=
mzi �mzi

mzj �mzj

(2.52)

wherej = i+ 1; if i 6= n; j = 1; if i = n. We also have the following constraint assuming�1 = 1,

jmz1j
4 = 1 (2.53)

The above constraints can be represented as linear equations of the unknown elements of the symmetric

matrixQ0 = qqT, whereq is a10� 1 vector composed of the10 unknown elements of the matrixQ.

In total, we can have13n+ 1 linear equations of the55 unknown elements of the matrixQ0.

OnceQ0 has been computed,q is generated by rank1 matrix decomposition ofQ0. We then put the

10 elements ofq into a symmetric4� 4 matrixQ which is factored asAAT.

We compute the principal point as the average of Equation (2.43),

u0 =
1

n

nX
i=1

mxi �mzi

�2i

v0 =
1

n

nX
i=1

myi �mzi

�2i
(2.54)

and the focal lengths as the average of Equations (2.44) and (2.45),

fi =

q
jmxij

2 � �2iu
2
0 +

q
jmyij

2 � �2i v
2
0

2�i
(2.55)

2.3.4 Case 3: Unknown focal lengths, principal points and aspect ratios

Case 3 includes the situations that the focal lengths, the principal points and the aspect ratios are

all unknown and varying. We then represent the constraints in Equation (2.38) as bilinear equations

on the focal lengths and the principal points plus the aspect ratios. Starting with the rough values of

the principal points and the aspect ratio of the first camera (�1), we impose linear constraints on the

unknown elements of the matrixQ [Han and Kanade, 2000c],

mxi �myi = u0iv0i mzi �mzi

mxi �mzi = u0i mzi �mzi

myi �mzi = v0i mzi �mzi (2.56)

We add two more equations assuming�1 = 1,

�21(jmx1j
2
� u201) = jmy1j

2
� v201
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jmz1j
2 = 1 (2.57)

Once the matrixH has been found, the current shape isX = H�1X̂ and the current motion matrix

is P = P̂H. We compute the refined principal points, the currently recovered focal lengths and the

refined aspect ratios according to Equations (2.43), (2.44) and (2.45) respectively. The current motion

parameters are then computed as in Equation (2.46).

Taking the refined principal points and the first aspect ratio, the normalization steps are performed

again to generate the matrixH, then the focal lengths, the current shape and motion, the refined princi-

pal points and aspect ratios. The above steps are repeated until the principal points and the first aspect

ratio do not change.

The normalization process is computationally equivalent to recovering the absolute quadric which

is computed by translating the constraints on the intrinsic camera parameters to the constraints on the

absolute quadric[Triggs, 1997, Pollefeyset al., 1999]. Our representation is explicit in the motion

parameters (rotation axes and translation vectors) and enables the geometric constraints to be naturally

enforced. The representation also deals with the similarity ambiguity problem directly by putting the

world coordinate system at the center of gravity of the object and aligning its orientation with the first

camera. Compared with the method presented by Pollefeys et al. in[Pollefeyset al., 1999], the normal-

ization algorithm described in Section 2.3.2 is based on the same constraints as their method, but our

framework enables natural extensions to the reconstruction of other intrinsic parameters (normalization

algorithms of Section 2.3.3 and 2.3.4) while they used nonlinear bundle adjustment.

2.4 Experiments

In this section we demonstrate experimental results of the uncalibrated Euclidean reconstruction

method. Given tracked feature points, we first generate the projective reconstruction as described

in Section 2.2, then recover the Euclidean reconstruction and the camera intrinsic parameters using

one of the three normalization algorithms described in Section 2.3 . First, synthetic experiments are

conducted to evaluate the quality of the reconstruction method. Then, results for real image sequences

corresponding to each of the three cases are shown as well. Experimental results on synthetic and real

data show that this method is reliable under noise.

2.4.1 Synthetic examples

We synthesize50 sequences of20 frames with8 feature points representing a cube in the scene.

The camera undergoes non-critical random motions. The distance between the camera and the cube is

between4 to 15 times the cube size. The camera rotation is through30 to 65 degrees around the cube.
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We add2 pixels standard noise to the feature locations. The image size is640� 480. The experimental

results show that the method converges reliably. The errors of the recovered feature points positions

are less than0:8% of the object size. The recovered focal lengths are always within1 � 1:8% of the

true values. The errors of the principal points are less than0:25% of the image size and the errors of

the aspect ratios are less than0:5% of the true values. The maximum distance between the recovered

camera locations and the corresponding ground truth values is2:4% of the object size and the maximum

difference between the recovered camera orientations and the true values is0:33Æ.

2.4.2 Real example 1: Building sequence

The building sequence was taken by a hand-held camera in front of a building. The camera was

very far from the building at first, then moved toward the building, and away again. The camera was

zoomed in when it was far from the building and zoomed out when it was close so that the building

appeared to be almost the same size in every image of the sequence. The longest focal length was

about3 times the shortest one according to the rough readings on the camera. The sequence includes

14 frames, of which three are shown in Figure 2.5(a)-(c).50 feature points were manually selected

along the building windows and the corners as shown in Figure 2.5(d). In this example we assume

the focal lengths are unknown while the principal points are given (the middle of the images) and the

aspect ratios are1. We apply the projective algorithm described in Section 2.2 and the normalization

algorithm described in Section 2.3.2 to this example.
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Figure 2.4:Building sequence:Focal lengths of the building sequence recovered by the uncalibrated
reconstruction method. The recovered values are changing with the camera motion as expected.

Figure 2.6(a) shows the reconstructed building and camera trajectories. The top view shows that the

recovered camera moves toward the building and then away again as expected. The recovered camera

positions and orientations shown in the side view demonstrate that all the cameras have the almost



2.4. EXPERIMENTS 27

(a) (b)

(c) (d)

Figure 2.5: Building sequence input: (a) 1st image, (b) 4th image, (c) 9th image of the building
sequence. (d) 1st image of the building sequence with the feature points overlaid.
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(a)

(b)

Figure 2.6:Building sequence results:(a)Top and side view of the reconstruction, the 3-axis figures
denote the recovered cameras. The top view shows that the recovered camera moves toward the build-
ing, then away again as expected. The side view shows that the recovered locations of the cameras are
at the same height and the orientations are tilted upward. (b)Bottom and side view of the reconstructed
building with texture mapping.



2.4. EXPERIMENTS 29

same height and tilt upward a little bit, which are the expected values that the same person took the

sequence while walking in front of the building. Figure 2.6(b) shows the reconstructed building with

texture mapping. To quantify the results, we measure the orthogonality and parallelism of the lines

composed of the recovered feature points. The average angle between pairs of expected parallel lines

is 0:89Æ and the average angle between pairs of expected perpendicular lines is91:74Æ. Figure 2.4 plots

the recovered focal lengths, which shows that the focal lengths are changing with the camera motion as

we expected.

2.4.3 Real example 2: Grand Canyon sequence

The second example is an aerial image sequence taken from a small airplane flying over the Grand

Canyon. The plane changed its altitude as well as its roll, pitch and yaw angles during the sequence.

The sequence consists of97 images, and86 feature points were tracked through the sequence. Three

frames from the sequence are shown in Figure 2.7(a)-(c), and the tracked feature points are shown

in Figure 2.7(d). We assume that the focal lengths and the principal point are unknown, but that the

principal point is fixed over the sequence. The normalization algorithm of Section 2.3.3 is used here.

Figures 2.8(a) and (b) show the reconstructed camera trajectories and terrain map. The camera focal

lengths changed little when taking the sequence. Figure 2.9 is a plot of the recovered focal lengths, and

shows that the focal lengths are relatively constant. The principal point recovered by the reconstruction

method is(159; 119) (with the image size of320 � 240).

2.4.4 Real example 3: Calibration setup

In this experiment we test our method on a setup for multi-camera calibration. In this setup51

cameras are placed in a dome, and a bar of LEDs is moved around under the dome. The bar is imaged

by each camera as it is moved through a series of known positions. Since the intrinsic parameters

of each camera do not change as the bar is moved, the images taken by one camera are combined

into one image containing multiple bars. This composite image includes232 feature points (LED

positions). Therefore, the setup generates51 images, each contains232 features, which are to be used

as calibration data for the cameras. Tsai’s calibration algorithm[Tsai, 1987] is used on this setup to

calibrate the51 cameras. The calibration results of Tsai’s algorithm are compared with the results of

the uncalibrated reconstruction method.

In this example we assume that all the intrinsic parameters (except the skews) are unknown, and

may differ from camera to camera. The normalization algorithm described in Section 2.3.4 is applied.

We initialize the aspect ratios to1 and initialize the principal points to the middle of the images. Figure

2.10 shows the reconstructed LED positions and the reconstructed camera orientations and locations.

The reconstructed LED positions are compared with their known positions. The maximum distance
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(a) (b)

(c) (d)

Figure 2.7:Grand Canyon sequence input:(a) 1st image, (b) 46th image, (c) 91st image of the Grand
Canyon sequence. (d) 1st image of the Grand Canyon sequence with the feature points overlaid.
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(a)

(b)

Figure 2.8:Grand Canyon sequence results:(a)Top and side view of the reconstruction, the 3-axis
figures denote the recovered cameras. (b)Top and side view of the reconstructed Grand Canyon with
texture mapping.
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Figure 2.9:Grand Canyon sequence:Focal lengths of the Grand Canyon sequence recovered by the
uncalibrated reconstruction method. The recovered values are relatively constant as expected.

is 20mm which is about0:61% of the bar length. The recovered camera locations and orientations

are compared with Tsai’s calibration results. The maximum distance between the recovered camera

locations by the two methods is32mm which is about0:98% of the bar length, the maximum angle

between the recovered camera orientations is0:3Æ.

Figure 2.11 are plots of the differences of the focal lengths, the principal points and the aspect

ratios recovered by the uncalibrated reconstruction method and by Tsai’s calibration algorithm. The

plots show that the calibration results of these two methods are very close.

Figure 2.10:Calibration setup results: Top and side view of the reconstruction of the calibration
setup, the points denote the recovered LED positions, the 3-axis figures are the recovered cameras.
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Figure 2.11:Calibration setup: Differences of (a)the focal lengths (b) the principal points(u0; v0) (c)
the aspect ratios of the calibration setup data recovered by the uncalibrated reconstruction method and
by Tsai’s calibration algorithm.
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Chapter 3

Multiple Motion Scene Reconstruction

In this chapter we describe a method[Han and Kanade, 2000b] for reconstruction of scenes con-

taining an unknown number of moving objects. We refer to such scenes asmultiple motion scenes. The

multiple motion scene reconstruction method recovers the scene structure, the trajectories of the mov-

ing objects and the camera motion simultaneously from monocular image sequences. The number of

the moving objects is automatically detected without prior motion segmentation. We also discuss solu-

tions to the degenerate cases when the scene structure or the motion space is degenerate. Extensions of

the multiple motion scene reconstruction method to weak perspective and perspective projections are

presented as well. Experiments on synthetic and real image sequences show that the multiple motion

scene reconstruction method is reliable under noise.

3.1 Feature points representation

We propose a unified representation of the static scene and the moving objects. Assuming that

m feature points are tracked overn images, some of them static and the others moving linearly with

constant speeds, we regard every feature point as a moving point with constant velocity: the static

points simply have zero velocity. Any pointpij is represented by,

pij = sj + ivj (3.1)

in a world coordinate system, wherei = 1 � � � n andj = 1 � � �m. n is the number of frames andm is

the number of feature points.sj is the point position at frame0 (i.e., when the0th frame is taken) and

vj is its motion velocity.

We first use the orthographic camera model for the derivations. We describe its extensions to weak

perspective and perspective camera models in Section 3.4. If a pointpij is observed in framei at image

35
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coordinates(uij vij), then,

uij = ii � pij + txi

vij = ji � pij + tyi (3.2)

ii andji are the rotation axes of theith camera.txi andtyi are its translations. Therefore,

uij = ii � sj + i ii � vj + txi

vij = ji � sj + i ji � vj + tyi (3.3)

We put all the feature points coordinates(uij vij) in a2n�m measurement matrixW ,

W =

2
666666664

u11 u12 : : : u1m

v11 v12 : : : v1m
...

...

un1 un2 : : : unm

vn1 vn2 : : : vmn

3
777777775

(3.4)

Each column ofW contains the observations for a single point, and each row contains the observed

u-coordinates orv-coordinates for a single frame. We have,

W =MS + T
h
1 1 � � � 1

i
(3.5)

with the rotation matrix,

M =

"
mx1 my1 mx2 my2 � � � mxn myn

nx1 ny1 nx2 ny2 � � � nxn nyn

#T
(3.6)

where
mxi = ii nxi = i ii

myi = ji nyi = i ji
(3.7)

and the shape matrix,

S =

"
s1 s2 � � � sm

v1 v2 � � � vm

#
(3.8)

The translation vectorT is,

T =
h
tx1 ty1 tx2 ty2 � � � txn tyn

iT
(3.9)
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The constraints of the objects moving linearly with constant speeds enable the unified representa-

tion of the motion matrixM , composed of the rotation axes (mxi andmyi) and the scaled rotation axes

(nxi andnyi), and of the shape matrix, composed of the scene structure (sj) and the motion velocities

(vj).

3.2 Scene reconstruction

In this section we describe the multiple motion scene reconstruction method[Han and Kanade,

1999a] based on the unified representation of the static scene and the moving objects. The method

factors the measurement matrix into the product of the unified motion matrix, which is a combination

of the rotation and the scaled rotation axes, and the unified shape matrix, which is a combination of the

initial positions of the feature points and their velocities.

3.2.1 Moving world coordinate system location

As a set of points are either static or moving linearly at constant speeds, the center of gravity of all

the points is moving linearly at a constant speed as well. The velocity of the center of gravity is equal to

the average of all the velocities (vj). We transform the 3D representation to amoving world coordinate

system whose origin is at the center of gravity of all the feature points and with a fixed orientation (such

as being aligned with the first camera). Therefore,

mX
j=1

pij = 0 (3.10)

From Equation (3.2), we have,

mX
j=1

uij =
mX
j=1

(ii � pij + txi) = ii

mX
j=1

pij +mtxi = mtxi

mX
j=1

vij =
mX
j=1

(ji � pij + tyi) = ji

mX
j=1

pij +mtyi = mtyi (3.11)

We can compute the translation vector directly from Equation (3.11),

txi =
1

m

mX
j=1

uij

tyi =
1

m

mX
j=1

vij (3.12)
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3.2.2 Decomposition

Once the translation vectorT is known, we subtract it fromW in Equation (3.5),

Ŵ =W � T
h
1 1 � � � 1

i
= M̂Ŝ = M̂AA�1Ŝ =MS (3.13)

whereM = M̂A andS = A�1Ŝ. According to the representations ofM andS in Equations (3.6)

and (3.8), we know that the rank of the matrix̂W is at most6 no matter how many moving objects are

there. We perform a SVD on̂W and get the best possible rank6 approximation ofŴ asM̂ Ŝ, where

M̂ is a2n � 6 matrix andŜ is a6 �m matrix. This decomposition is not unique. Any non-singular

6� 6 matrixA could be inserted between̂M andŜ to get another motion and shape pair.

3.2.3 Normalization

Metric constraints are imposed to translate the current pair of motion (M̂ ) and shape (̂S) to the

Euclidean solutions through recovering the linear transformationA. This process is callednormaliza-

tion. We recover this6� 6 matrixA by observing that the rows of the motion matrixM consist of the

rotation axes and the scaled ones (Equation (3.6)),

jmxij
2 = 1 jmyij

2 = 1 mxi �myi = 0 (3.14)

jnxij
2 = i2 jnyij

2 = i2 nxi � nyi = 0 (3.15)

mxi � nyi = 0 myi � nxi = 0 (3.16)

The above equations impose linear constraints on the elements ofMMT. Since

MMT = M̂AATM̂T (3.17)

these constraints are linear on the elements of the symmetric matrixQ = AAT.

Define

A =
h
A1 A2

i
(3.18)

whereA is 6� 6 matrix andA1, A2 are both6� 3 matrices. SinceM = M̂A,

M̂A1 =
h
mx1 my1 � � � mxn myn

iT
M̂A2 =

h
nx1 ny1 � � � nxn nyn

iT
= N

h
mx1 my1 � � � mxn myn

iT
(3.19)
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where

N =

2
6666666666666666664

1 0 0 0 0 0 � � � 0 0

0 1 0 0 0 0 � � � 0 0

0 0 2 0 0 0 � � � 0 0

0 0 0 2 0 0 � � � 0 0

0 0 0 0 3 0 � � � 0 0

0 0 0 0 0 3 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 0 0 0 0 � � � n 0

0 0 0 0 0 0 � � � 0 n

3
7777777777777777775

(3.20)

according to Equation (3.7). Therefore,

M̂A2 = NM̂A1 (3.21)

The matrixA2 is over constrained givenA1 andM̂ by,

A2 = KA1 (3.22)

where

K = M̂�1NM̂ (3.23)

andM̂�1 is the pseudo inverse matrix which is6� 2n and uniquely defined whenn � 3.

From Equation (3.19), we see that Equation (3.14) imposes constraints on the21 unknown elements

of the 6 � 6 symmetric matrixQ1 = A1A
T
1 , while Equation (3.15) imposes constraints on the21

elements ofQ2 = A2A
T
2 . From the relation ofA1 andA2 (Equation (3.22)), we have,

Q2 = A2A
T
2 = KA1A

T
1K

T = KQ1K
T (3.24)

which translates the constraints onQ2 to the constraints onQ1.

Equation (3.16) imposes constraints onQ3 = A2A
T
1 which can also be translated into constraints

onQ1,

Q3 = A2A
T
1 = KA1A

T
1 = KQ1 (3.25)

Therefore, each frame contributes8 constraints (Equations (3.14) to (3.16)) onQ1. In total, we have

8n equations on the21 unknown elements of the symmetric matrixQ1. Linear least squares solutions

are computed. We then compute the matrixA1 from Q1 by rank3 matrix decomposition andA2 by

Equation (3.22), so we recover the linear transformationA = [A1 A2].
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3.2.4 Motion and shape reconstruction

Once the matrixA has been found, the shape matrix is computed usingS = A�1Ŝ and the motion

matrix isM = M̂A. We compute the camera rotation axes as,

ii =mxi ji =myi ki =mxi �myi (3.26)

The shape matrix consists of the scene structure and the velocities (represented in the moving world

coordinate system). We need to transform the representation back to a fixed world coordinate system

with the origin at the center of gravity of all the points at frame1.

First we compute the velocity of the moving coordinate system. Since the system is moving at the

average velocity of all the moving points, the static points must have the same velocity which is the

negative value of the average velocity. It is often the case that there are more static points than moving

points from each moving object, so we let every point vote for a “common” velocity (denoted asvc).

The velocity with the most votes is taken as the negative velocity of the moving coordinate system.

The points with the “common” velocity are automatically classified as static and the scene structure is

computed as:

scj = sj + vc (3.27)

wherescj denotes the scene point position represented in the fixed coordinate system. According to

Equation (3.1),sj is the point position at frame0.

The points which do not have the “common” velocity are the moving points. The number of the

moving objects is therefore detected. Their starting positions represented in the fixed coordinate system

are:

smj = sj + vc (3.28)

and their velocities are:

vmj = vj � vc (3.29)

3.2.5 Summary of algorithm

We summarize the reconstruction method as follows:

1. Compute the camera translationsT from the matrixW according to Equation (3.12);

2. SubtractT fromW to generateŴ according to Equation (3.13);

3. Perform SVD onŴ and getM̂ andŜ;

4. Set up linear equations of the21 unknown elements of the symmetric matrixQ1 by impos-

ing constraints in Equations (3.14) to (3.16);
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5. FactorQ1 to getA1 fromQ1 = A1A
T
1 ;

6. ComputeA2 fromA2 = KA1;

7. CombineA1 andA2 to generate the linear transformation matrixA = [A1 A2];

8. Recover the shape matrix usingS = A�1Ŝ and motion matrix usingM = M̂A;

9. Recover the camera rotation axes as in Equation (3.26);

10. Detect the moving objects, reconstruct the scene structure and the trajectories of the moving

objects according to Equations (3.27) to (3.29).

3.3 Degenerate cases

The method described in Section 3.2 solves the case where the "registered" measurement matrix

(the matrix generated by subtraction of translations from the original measurement matrix) has the

full rank 6, that is, where the static structure and the motion space of the objects are both rank3.

Equivalently, this is the case that the scene is three dimensional and the velocities of the moving objects

span a three dimensional space. In this section we discuss degenerate cases.

If the scene has a degenerate shape, such as all the points lie in a plane, the plane plus parallax

method[Irani et al., 1998] can detect the situation and solve for the scene structure (plane position),

the camera motion and the motion segmentation[Anandanet al., 1994, Iraniet al., 1997]. The motion

trajectories can be recovered using the method proposed by Avidan and Shashua[Avidan and Shashua,

1999], given the reconstruction of the camera motion. Therefore, in this section we only discuss the

solutions to the degenerate motion space of the objects.

We classify the degenerate situations into three classes:

1. Rank-3 case: The matrixŴ has rank3. This corresponds to the situation where there is no

moving object in the scene. The one-object factorization method[Tomasi and Kanade, 1992] is

used to recover the scene structure and the camera motion.

2. Rank-4 case: The matrix̂W has rank4. This corresponds to the situation where there is one mov-

ing object or multiple objects moving in the same and/or the opposite direction (not necessarily

the same 3D line). Section 3.3.2 describes a linear algorithm for this case.

3. Rank-5 case: The matrixŴ has rank5. This corresponds to the situation where the velocities

of the objects lie in a two dimensional space (not necessarily the same 3D plane). Section 3.3.3

gives a nonlinear solution to this case.
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3.3.1 Rank approximation

Given tracked feature points, we first need to decide which case (full rank or one of the above three

degenerate cases) is the best approximation. The rank of the matrixŴ is one important clue. However,

finding the rank ofŴ is not straightforward. Both inaccuracies in feature locations and approximation

of perspective projection using orthographic or weak perspective projections induce noises in the rank

computation.

We use an algorithm similar to[Boult and Brown, 1991] and[Irani, 1999] to detect the rank of

Ŵ . We first estimate the noise level of the input images and approximate the rank using the singular

values ofŴ and the noise level. We refer to this method asdirect rank approximation. In [Gear, 1998],

Gear proposed a maximum likelihood method to estimate the grouping of points in the presence of

noise. One of the core techniques of the method is rank approximation. He evaluated the grouping

errors of all the possible rank values based on the statistical noise model. The rank value with the

minimum error is chosen as the best rank approximation. We applied Gear’s idea to the multiple

motion scene reconstruction method where the rank ofŴ can only be any value inf3; 4; 5; 6g, which

is determined by the motion space of the objects and is not dependent on the number of moving objects.

Compared with Gear’s method[Gear, 1998] and Costeira and Kanade’s method[Costeira and Kanade,

1998], in which the rank value is used to detect the number of moving objects and is affected by

degenerate shapes, this rank estimation has much less computation. For each rank value inf3; 4; 5; 6g,

we perform the multiple motion scene reconstruction and measure the error in orthogonality of the

recovered camera rotation matrices as well as the discrepancies of the feature points back projections.

The best rank approximation is the one with the minimum error. The results show that the direct rank

approximation method gives reliable estimations of the rank at most times.

3.3.2 Rank-4 case

When only one moving object is in the scene, or when all the moving objects travel in the same

or the opposite direction, the motion space is one dimensional and the rank of the "registered" mea-

surement matrix is4. In this case we align thex direction of the world coordinate system with the

motion direction. The system is still moving with the constant velocity. Therefore, the motion and

shape matrices are (compare with Equations (3.6) and (3.8)),

M =

"
mx1 my1 mx2 my2 � � � mxn myn

ix1 jx1 2ix2 2jx2 � � � nixn njxn

#T

S =

"
s1 s2 � � � sm

vx1 vx2 � � � vxm

#
(3.30)
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whereixi andjxi represent thex-elements of theith rotation axes,vxj denotes thex-element of the

velocity of thejth feature point. We apply similar derivations as in the full rank case to the computation

of T (Equation (3.12)) and the decomposition ofŴ (Equation(3.13)). In this case the rank ofŴ is 4.

We perform a rank4 matrix decomposition on̂W and get a2n � 4 matrix M̂ and a4 �m matrix Ŝ.

Now the linear transformation matrixA is 4� 4. Similarly, we define

A =
h
A1 A2

i
(3.31)

whereA1 is 4� 3, A2 is 4� 1 and we have,

A2 = K(A1)1 (3.32)

where(A1)1 is the first column ofA1 andK is defined in Equation(3.23). Since the matrixM consists

of the rotation axes and only thex-elements of the scaled rotation axes, the constraints in Equations

(3.15) and (3.16) cannot be represented as linear constraints on the elements ofMMT. However,

the constraints in Equation (3.14) still hold and provide full rank linear equations on the10 unknown

elements of the symmetric4 � 4 matrixQ1 = A1A
T
1 . Least squares solutions are computed. We then

computeA1 by rank3 matrix decomposition ofQ1. This decomposition is up to a three dimensional

rotationR since the matrixQ1 is symmetric. When the motion space is full rank, any rotation matrixR

provides a valid reconstruction with a different orientation of the world coordinate system. We usually

fix the matrixR by aligning the world coordinate system with the first camera orientation. However,

when the motion space is degenerate, the alignment is constrained to make the orientation of the world

coordinate system consistent with the motion direction(s).

In rank-4 case, we need to align thex direction of the world coordinate system as the motion

direction before we computeA2 according to Equation (3.32). The matrixR is determined by aligning

the matrixM̂KA1 with the matrixNM̂A1.

Therefore, the linear transformationA is,

A =
h
A1R K(A1R)1

i
(3.33)

where()1 denotes the first column of the matrix. We apply a derivation similar to the one in Section

3.2.4 to recover the motion and shape.

3.3.3 Rank-5 case

When the velocities of all the moving objects lie in a two dimensional space, we assume that the

x � y plane of the world coordinate system is aligned with the two dimensional motion space. The
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system is still moving with constant velocity. Therefore, the motion and shape matrices are,

M =

2
664
mx1 my1 mx2 my2 � � � mxn myn

ix1 jx1 2ix2 2jx2 � � � nixn njxn

iy1 jy1 2iy2 2jy2 � � � niyn njyn

3
775
T

S =

2
664

s1 s2 � � � sm

vx1 vx2 � � � vxm

vy1 vy2 � � � vym

3
775 (3.34)

whereixi andjxi represent thex-elements of theith rotation axes,iyi andjyi represent theiry-elements,

vxj denotes thex-element of the velocity of thejth feature point andvyj is its y-element. Therefore,

the rank ofŴ is 5. Similar derivations apply to the computation ofT (Equation (3.12)) and the

decomposition ofŴ (Equation(3.13)). In this case we perform a rank5 matrix decomposition on̂W

and get a2n�5 matrixM̂ and a5�m matrix Ŝ. The linear transformation matrixA is 5�5. Similarly,

we define

A =
h
A1 A2

i
(3.35)

whereA1 is 5� 3 andA2 is 5� 2,

A2 = K(A1)12 (3.36)

where(A1)12 denotes the first two columns ofA1 and K is defined in Equation (3.23). Here only the

constraints in Equation (3.14) can be represented as linear constraints on the elements ofQ1 = A1A
T
1 .

In this case the constraints are not sufficient to solve for the15 unknown elements of the symmetric

5� 5 matrixQ1 linearly.

The constraints in Equations (3.15) and (3.16) can be represented as constraints on the elements of

Q1 and the five elements of the third column ofA1, which is a5 � 1 vector denoted byc. According

to Equation (3.36), h
A2 Kc

i
= KA1 (3.37)

we have,

A2A
T
2 = KA1A

T
1K

T
�KccTKT = KQ1K

T
�KccTKT (3.38)

and

h
A2 ic

i
AT
1 = A2(A1)

T
12 + iccT

= KA1A
T
1 �KccT + iccT

= KQ1 �KccT + iccT (3.39)
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Since,
mT

xi = m̂
(i)T
x A1 nTxi =

h
m̂

(i)T
x A2 i m̂

(i)T
x c

i
mT

yi = m̂
(i)T
y A1 nTyi =

h
m̂

(i)T
y A2 i m̂

(i)T
y c

i (3.40)

according to Equation (3.19).̂m(i)
x andm̂(i)

y represent theith x andy rows of the matrixM̂ . They

are both5 � 1 vectors. We translate the constraints in Equation (3.15) to the constraints onQ1 andc

according to Equation (3.38),

jnxij
2 = m̂(i)T

x A2A
T
2 m̂

(i)
x + i2m̂(i)T

x ccTm̂(i)
x

= m̂(i)T
x KQ1K

Tm̂(i)
x � m̂(i)T

x KccTKTm̂(i)
x + i2m̂(i)T

x ccTm̂(i)
x = i2 (3.41)

and,

jnyij
2 = m̂(i)T

y KQ1K
Tm̂(i)

y � m̂(i)T
y KccTKTm̂(i)

y + i2m̂(i)T
y ccTm̂(i)

y = i2

nxi � nyi = m̂(i)T
x KQ1K

Tm̂(i)
y � m̂(i)T

x KccTKTm̂(i)
y + i2m̂(i)T

x ccTm̂(i)
y = 0 (3.42)

Similarly, we translate the constraints in Equation (3.16) to the constraints onQ1 andc according to

Equation (3.39),

mxi � nyi = m̂(i)T
y

h
A2 ic

i
AT
1 m̂

(i)
x

= m̂(i)T
y KQ1m̂

(i)
x � m̂(i)T

y KccTm̂(i)
x + im̂(i)T

y ccTm̂(i)
x = 0 (3.43)

and

myi � nxi = m̂(i)T
x KQ1m̂

(i)
y � m̂(i)T

x KccTm̂(i)
y + im̂(i)T

x ccTm̂(i)
y = 0 (3.44)

Therefore, we get linear equations of the15 unknown elements ofQ1 and the15 unknown elements

of ccT. Since these equations cannot provide full rank constraints on the30 unknowns, there is no linear

solutions ofQ1 andccT directly. However, the constraints are full rank on the elements ofQ1 if ccT

is given. That is, ifc can be computed, we can get a linear solution ofQ1. In this way we change the

problem to a small scale nonlinear optimization on the5 elements ofc. Once the vectorc is computed,

the matrixQ1 is computed by least squares solutions.A1 is then calculated fromQ1.

Same to the rank-4 case, we need to align thex � y plane of the world coordinate system with

the two dimensional motion space before we computeA2 according to Equation (3.36). The matrixR

is also determined by aligning the matrix̂MKA1 with the matrixNM̂A1. The alignment problem is

solved by the least eigenvalue method.
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Therefore, the linear transformationA is,

A =
h
A1R K(A1R)12

i
(3.45)

We apply a derivation similar to the one in Section 3.2.4 to recover the motion and shape.

3.4 Extensions to weak perspective and perspective projections

3.4.1 Scene reconstruction under weak perspective projection

Based on the unified representation of the static scene and the moving objects proposed in Section

3.1, any pointpij is defined as,

pij = sj + ivj (3.46)

in a world coordinate system, wherei = 1 � � � n andj = 1 � � �m. n is the number of frames andm is

the number of feature points.sj is the point position at frame0 andvj is its motion velocity.

The image coordinates(uij vij) of a pointpij in framei under weak perspective projection are,

uij =
ii � pij + txi

zi

vij =
ji � pij + tyi

zi
(3.47)

ii and ji are the rotation axes of theith camera. txi and tyi are the translations.zi is the distance

between theith camera optical center and the center of gravity of all the feature points. Therefore,

uij =
ii

zi
� sj + i

ii

zi
� vj +

txi

zi

vij =
ji

zi
� sj + i

ji

zi
� vj +

tyi

zi
(3.48)

We put all the feature points coordinates(uij vij) in a2n�m measurement matrixW ,

W =

2
666666664

u11 u12 : : : u1m

v11 v12 : : : v1m
...

...

un1 un2 : : : unm

vn1 vn2 : : : vmn

3
777777775

(3.49)
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We have,

W =MS + T
h
1 1 � � � 1

i
(3.50)

with the rotation matrix,

M =

"
mx1 my1 mx2 my2 � � � mxn myn

nx1 ny1 nx2 ny2 � � � nxn nyn

#T
(3.51)

where
mxi = ii

zi
nxi = i ii

zi

myi = ji

zi
nyi = i ji

zi

(3.52)

and the shape matrix,

S =

"
s1 s2 � � � sm

v1 v2 � � � vm

#
(3.53)

The translation vectorT is,

T =
h

tx1
z1

ty1
z1

tx2
z2

ty2
z2

� � �
txn
zn

tyn
zn

iT
(3.54)

Now the unified representation of the rotation matrixM is composed of the rotation axes scaled

by the object depthzi (mxi andmyi) and their scaled versions by the frame numberi (nxi andnyi).

The unified representation of the shape matrix is composed of the scene structure (sj) and the motion

velocities (vj), which is same as that under orthographic projection.

Moving world coordinate system location

As in Section 3.2.1, we transform the 3D representation to a moving world coordinate system with

fixed orientation and the origin at the center of gravity of all the feature points. Therefore,

mX
j=1

pij = 0 (3.55)

From Equation (3.47), we have,

mX
j=1

uij =
mX
j=1

(
ii

zi
� pij +

txi

zi
) =

ii

zi

mX
j=1

pij +m
txi

zi
= m

txi

zi

mX
j=1

vij =
mX
j=1

(
ji

zi
� pij +

tyi

zi
) =

ji

zi

mX
j=1

pij +m
tyi

zi
= m

tyi

zi
(3.56)
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We get the vectorT from Equation (3.56),

txi

zi
=

1

m

mX
j=1

uij

tyi

zi
=

1

m

mX
j=1

vij (3.57)

Decomposition

We subtract the translation vectorT fromW in Equation (3.50),

Ŵ =W � T
h
1 1 � � � 1

i
= M̂Ŝ = M̂AA�1Ŝ =MS (3.58)

whereM = M̂A andS = A�1Ŝ. According to the representations ofM andS in Equations (3.51)

and (3.53), we know that the rank of the matrix̂W is at most6. We perform a rank6 SVD onŴ and

get the best possible rank6 approximation ofŴ asM̂ Ŝ, whereM̂ is a2n� 6 matrix andŜ is a6�m

matrix. This decomposition is not unique since any non-singular6 � 6 matrix A could be inserted

betweenM̂ andŜ to get another motion and shape pair.

Normalization

Metric constraints are imposed to translate the current pair of motion (M̂ ) and shape (̂S) to the

Euclidean solutions through recovering the linear transformationA. We recover this6 � 6 matrix

A by observing that the rows of the motion matrixM consist of the scaled rotation axes and their

corresponding scaled versions (Equation (3.51)),

jmxij
2 = jmyij

2
mxi �myi = 0 (3.59)

jnxij
2 = i2jmxij

2
jnyij

2 = i2jmyij
2

nxi � nyi = 0 (3.60)

mxi � nyi = 0 myi � nxi = 0 (3.61)

The above equations impose linear constraints on the elements ofMMT. Since

MMT = M̂AATM̂T (3.62)

these constraints are linear on the elements of the symmetric matrixQ = AAT.

The derivations to get the linear transformationA are same as described in Section 3.2.3. The same

steps are also followed to solve for the degenerate cases under weak perspective projection.
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Motion and shape reconstruction

Once the matrixA has been found, the shape matrix is computed usingS = A�1Ŝ and the motion

matrix isM = M̂A. We compute the depthzi first,

zi =
1

jmxij
(3.63)

then the camera rotation axes as,

ii = zimxi ji = zimyi ki = ii � ji (3.64)

and the translations are,

txi =
zi

m

mX
j=1

uij tyi =
zi

m

mX
j=1

vij (3.65)

The shape matrix consists of the scene structure and the velocities represented in the moving world

coordinate system. We need to transform the representation back to a fixed coordinate system with

the origin at the center of gravity of all the points at frame1. The moving objects are automatically

detected at the same time. This process is same as described in Section 3.2.4.

3.4.2 Scene reconstruction under perspective projection

Based on the same unified representation of feature points, the image coordinates(uij vij) of a

pointpij in framei under perspective projection are,

uij =
ii � pij + txi

ki � pij + tzi

vij =
ji � pij + tyi

ki � pij + tzi
(3.66)

ii, ji andki are the rotation axes of theith camera.txi, tyi andtzi are the translations. We divide both

the numerators and the denominators of the above equations bytzi,

uij =

ii�pij

tzi
+ txi

tzi

1 + �ij

vij =

ji�pij

tzi
+

tyi
tzi

1 + �ij
(3.67)

where

�ij =
ki � pij

tzi
(3.68)



50 CHAPTER 3. MULTIPLE MOTION SCENE RECONSTRUCTION

Iterations of weak perspective reconstruction

Given tracked feature points, the perspective reconstruction can be regarded as non-linear parame-

ter fitting of Equation (3.67) with camera motion and scene structure as parameters. The numerators in

Equation (3.67) are the weak perspective projections. Christy and Horaud[Christy and Horaud, 1996a]

presented the perspective factorization method by incremental weak perspective reconstructions. Their

method worked on the scenes without moving objects. We applied their idea to the perspective re-

construction of multiple motion scenes. Whenever the objects are at some reasonable distance from

the camera, the�ij ’s are far less than1. We compute the parameter fitting by iterations of the weak

perspective approximations starting with�ij = 0, that is, we perform the multiple motion scene weak

perspective reconstruction method described in Section 3.4.1 on the measurement matrixW ,

W =

2
66666664

u11 u12 � � � u1m

v11 v12 � � � v1m

� � � � � � � � � � � �

un1 un2 � � � unm

vn1 vn2 � � � vnm

3
77777775

(3.69)

wheren is the number of cameras andm is the number of feature points. The recovered motion

parameters are denoted byi0i, j0i, k
0

i andt0xi, t
0

yi, t
0

zi. The recovered feature points are denoted byp0ij.

We then use these current parameters to generate a new measurement matrixW 0:

W 0 =

2
66666664

u011 u012 � � � u01m

v011 v012 � � � v01m

� � � � � � � � � � � �

u0n1 u0n2 � � � u0nm

v0n1 v0n2 � � � v0nm

3
77777775

(3.70)

where

u0ij =
i0i � p

0

ij + t0xi

k0i � p0ij + t0zi

v0ij =
j0i � p

0

ij + t0yi

k0i � p
0

ij + t0zi
(3.71)

The process of generating the new measurement matrix is equivalent to the back projection process

of other non-linear optimization methods. The new measurement matrixW 0 provides a criterion to

choose between the two ambiguous reconstructions which are up to a mirror-symmetry transformation.

The difference ofW 0 from the original measurement matrixW also gives the convergence error. A
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new iteration of the weak perspective reconstruction is performed on the current measurement matrix

W 0. The goal of the parameter fitting is to iteratively find the reconstructions which make the back

projections consistent with the image measurements.

Choice between mirror-symmetric shapes

It is well known that there is an inherent ambiguity problem with any affine reconstruction method,

that is, after any affine reconstruction we can get two mirror-symmetric shapes and the corresponding

“mirror-symmetric” camera motions. Define

�lij =
kli � p

l
ij

tzi
l = 1; 2 (3.72)

and
k1xi = �k2xi k1yi = �k2yi k1zi = k2zi

p1xij = p2xij p1yij = p2yij p1zij = �p2zij
(3.73)

According to Equation (3.72),

�1ij = ��2ij (3.74)

For objects at reasonable distance from the camera, such as5 to 20 times the object size, the weak

perspective reconstruction method generates relatively correct reconstruction without considering the

perspective effects. In the two new measurement matrices computed by Equations (3.70) and (3.71) for

the two symmetric reconstructions, the perspective effects are taken care of by�ij ’s. The ratio between

the corresponding items of twoW 0’s is 1+�ij
1��ij

which is large enough to distinguish the right shape from

its mirror one. Based on this analysis, we keep only one set of the motion and shape parameters in each

iteration, which is computation efficient.

Error measurement

We use the Frobenius norm of the difference matrix of the selected new measurement matrix and

the original one as errorE,

E = k W 0
�W kF (3.75)

Perspective reconstruction method outline

The multiple motion scene perspective reconstruction method is summarized as follows:
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1. Set�ij = 0, for i = 1 � � � n andj = 1 � � �m;

2. Generate the original measurement matrixW by equation (3.69) and start the itera-

tions withW 0 =W ;

3. Perform the multiple motion scene weak perspective reconstruction method onW 0

and generate two pairs of motion and shape which are mirror symmetric;

4. Calculate the two new measurement matrices with the sign reversal motions and

shapes by Equations (3.70) and (3.71);

5. Compute the errorE between the new measurement matrices and the originalW as

in Equation (3.75);

6. Choose the set of parameters with smaller error as the refined motion and shape, and

define the corresponding measurement matrix asW 0;

7. If this error is close to zero, stop; else go to step 3.

3.5 Experiments

A number of experiments have been performed to test the effectiveness of the multiple motion scene

reconstruction method presented in this chapter. First some synthetic images are used to evaluate the

quality of the method. Then two experiments are conducted on real image sequences. The first sequence

was taken by a hand-held camera of an indoor scene, and the reconstruction results are compared with

the ground truth. The second sequence was taken by a small plane flying over the buildings. The weak

perspective reconstruction method is used in the experiments described in this section because weak

perspective projection is a better approximation to perspective projection than orthographic, and it is

more reliable and efficient than the iterative perspective method.

3.5.1 Synthetic examples

We generate sequences of100 frames with49 feature points from the static scene and0 to 9 objects

moving in random directions. The shape of the static scene is a sweep of the sin curve in the space.

The camera rotates randomly at30 to 50 degrees around the scene. The distance between the camera

and the scene is15 to 50 times the static scene size. We add2 pixels noise to the feature locations (the

size of the image is640� 480).

Figure 3.1 illustrates the case where4 objects are moving randomly in 3D space. The method
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automatically detects the number of the moving objects as4, reconstructs the static scene and the initial

positions of the4 moving objects, as shown in Figure 3.1(a). Figure 3.1(b) shows the trajectories of the

moving objects as well as the static scene.

(a) (b)

Figure 3.1:Full rank case: A scene with a three dimensional motion space. (a) The reconstructed
scene structure and the initial positions of the moving objects. (b) The reconstructed scene and the
motion trajectories.

We perform experiments on the case that there are two moving objects whose directions are on

a plane. The method detects that the rank as5 and recovers the scene structure and the two motion

trajectories correctly. We also try the case that there are three moving objects but their motion directions

lie in a two dimensional space. The method gets the right rank approximation (5) and the accurate

reconstructions (shown in Figure 3.2).

We also conduct experiments on rank-4 cases that there is only one moving object, and that there

are multiple moving objects which are moving in the same or the opposite direction. The method

detects the rank as4 in both cases. For the case that there is no moving object, the method correctly

detects the rank as3 and recovers the scene structure.

In all cases, we measure the reconstruction error by comparison with the ground truth. Since the

reconstruction from monocular image sequences is up to a scale, we assume that the size of the static

shape is1. With 2 pixel standard noise, the maximum distance between the recovered static points and

their known positions is1:0%, the maximum error of the reconstructed initial positions of the moving

objects is1:2% and the velocity error is less than1:1%. We also assess the quality of the camera

motion reconstruction. The maximum distance between the recovered camera locations and the ground

truth values is1:4% and the maximum angle between the recovered camera orientations and the known
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(a) (b)

Figure 3.2: Rank-5 case: A scene with three motion trajectories which lie in a two dimensional
space. (a) The reconstructed scene structure and the initial positions of the moving objects. (b) The
reconstructed scene and the motion trajectories.

values is0:1Æ.

3.5.2 Real example 1: Toy sequence

This sequence was taken of an indoor scene by a hand-held camera. Three objects, a car, a plane

and a toy person, were moving linearly with constant speeds. The car and the person were moving on

the floor, and the speed of the car was three times of the speed of the person. Their motion directions

were perpendicular with each other. The plane was taking off on a slope and moved two times as fast

as the car. The boxes represented the static scene.24 images were taken. Three of them are shown in

Figure 3.3(a)-(c).23 feature points were manually selected and tracked, which are overlaid on the first

image shown in Figure 3.3(d). We use the first18 frames to perform the reconstruction. The shapes

of the boxes, the starting positions of the moving objects and the motion velocities are recovered and

demonstrated in Figure 3.4(a) (with texture mapping) and (b) (with wireframe), the motion trajectories

are overlaid in the images. Figure 3.4 (c) show the recovered camera locations and orientations.

We assess the quality of the reconstruction by comparison with the ground truth. The angle between

the motion direction of the car and that of the person is90:15Æ, the ratio between the speeds is3:05

which is close to the expected value3:0. The ratio of the speed of the plane to that of the car is1:97. The

maximum distance between the positions of the recovered static points and the ground truth positions

is 2mm. The recovered motion direction of the plane is20Æ tilted upward from the floor, which is close

to the expected value.
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(a) (b)

(c) (d)

Figure 3.3:Toy sequence input:(a) 1st image, (b) 7th image, (c) 18th image of the indoor sequence,
the moving objects are circled in the 1st image. (d) 1st image of the indoor sequence with the feature
points overlaid.

We project the motion trajectories back to the images and measure the discrepancies of the tracked

objects and the back projections in the last7 frames. The maximum discrepancy is2 pixels.

3.5.3 Real example 2: Smith Hall sequence

This sequence was taken by a small airplane flying over a scene with multiple moving cars. The

first 80 frames of a90 frame sequence are used, three of these frames are shown in Figure 3.5(a)-(c).

35 feature points were manually selected in the first frame corresponding to the buildings and the two

moving cars as shown in Figure 3.5(d). These points were automatically tracked in the remaining

frames. The method estimates the rank ofŴ as 4 because the two cars were moving in opposite

directions. Figures 3.6(a) and (b) show the recovered buildings as well as the motion trajectories. Since
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the resolution of the input images is very low, the texture mapping is not very clear. Similar to the

experiment in Section 3.5.2, we measure the discrepancies of the back projections of the cars and the

tracked cars for the final10 frames. The maximum discrepancies are4 pixels for the white car and5

pixels for the black car.
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(a)

(b)

(c)

Figure 3.4:Toy sequence results:(a) Two views of the reconstruction with texture mapping, the black
lines denote the recovered motion trajectories, the arrows show the motion directions. (b) Two views
of the reconstruction with wireframe, the black lines denote the recovered motion trajectories. (c) Two
views of the reconstruction, the 3-axis figures are the recovered cameras.



58 CHAPTER 3. MULTIPLE MOTION SCENE RECONSTRUCTION

(a) (b)

(c) (d)

Figure 3.5:Smith Hall sequence input:(a) 1st image, (b) 33th image, (c) 80th image from the outdoor
sequence, the moving objects are circled in the 1st image. (d) 1st image of the outdoor sequence with
the feature points overlaid.
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(a)

(b)

Figure 3.6:Smith Hall sequence results:(a) Two views of the reconstruction with texture mapping,
the black lines denote the recovered motion trajectories, the arrows show the motion directions. (b) Two
views of the reconstruction with wireframe, the black lines denote the recovered motion trajectories.
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Chapter 4

Multiple Motion Scene Reconstruction

with Uncalibrated Cameras

Chapter 3 presents a reconstruction method for multiple motion scenes under affine projections.

It requires the cameras be intrinsically calibrated. In practice, many image sequences are taken with

uncalibrated cameras. In this chapter we present the multiple motion scene reconstruction method

from uncalibrated views[Han and Kanade, 2001]. Assuming that the objects are moving linearly with

constant speeds, the method recovers the scene structure, the trajectories of the moving objects, the

camera motion together with the camera intrinsic parameters. The method detects the moving objects

automatically without prior motion segmentation.

4.1 Projective reconstruction

Given tracked feature points from uncalibrated views, we first perform a projective reconstruction.

Perspective projectionPi, i = 1 � � � n andn is the number of frames, is represented by a3� 4 matrix,

Pi � Ki

h
Ri ti

i
(4.1)

where

Ki =

2
664
fi 0 u0i

0 �ifi v0i

0 0 1

3
775 Ri =

2
664

iTi

jTi

kTi

3
775 ti =

2
664
txi

tyi

tzi

3
775

The upper triangular calibration matrixKi encodes the intrinsic parameters of theith camera:fi rep-

resents the focal length,(u0i; v0i) is the principal point and�i is the aspect ratio. We assume that the

cameras have zero skews.Ri is the ith rotation matrix withii, ji andki denoting the rotation axes.

61
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ti is the ith translation vector.m feature pointsxij , j = 1 � � �m, are represented by homogeneous

coordinates,

xij �
h
pTij 1

iT
(4.2)

wherepij is defined as the unified representation of point (Chapter 3),

pij = sj + ivj (4.3)

wheresj is the point position at frame0 andvj is its motion velocity.

The image coordinates are represented by(uij vij) and the following hold,

2
664
uij

vij

1

3
775�Pixij or �ij

2
664
uij

vij

1

3
775 = Pixij (4.4)

where�ij is a non-zero scale factor called projective depth. According to Equations (4.1) to (4.3),

Pixij � Ki ( Ri pij + ti )

= Ki ( Ri sj + i Ri vj + ti )

= Ki

h
Ri iRi ti

i h
sTj vTj 1

iT
� ~Pi~xj (4.5)

where
~Pi � Ki

h
Ri iRi ti

i
~xj �

h
sTj vTj 1

iT
(4.6)

~Pi is a3 � 7 matrix which is the product of theith calibration matrix and the unified motion matrix

composed of the camera rotation, the scaled camera rotation by the frame number and the camera

translation.~xj is a7� 1 vector which is the homogeneous representation of the unified scene structure

including the initial point position and its velocity. The equivalent matrix form is,

Ws =

2
666666666666664

�11

2
664
u11

v11

1

3
775 � � � �1m

2
664
u1m

v1m

1

3
775

...
...

...

�n1

2
664
un1

vn1

1

3
775 � � � �nm

2
664
unm

vnm

1

3
775

3
777777777777775

(4.7)
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=

2
6664

~P1
...
~Pn

3
7775 [~x1 � � � ~xm] = ~P ~X (4.8)

whereWs is thescaled measurement matrix. We call the3n � 7 matrix ~P as motion matrix and the

7�m matrix ~X as shape matrix. The constraint of the objects moving with constant velocities enables

the unified representation of the motion matrix~P and the shape matrix~X. They are both at most rank

7, therefore, the rank of the scaled measurement matrixWs is at most7 (instead ofrank 4 when the

scene does not contain moving objects).

We apply the following bilinear factorization algorithm to get the projective reconstruction. The

algorithm is similar to the iterative algorithm presented in Section 2.2 with the difference that arank

7 matrix factorization is performed at step 3. It iteratively applies factorization to the current scaled

measurement matrix.

Iterative Projective Factorization Algorithm

1. Set�ij = 1, for i = 1 � � � n andj = 1 � � �m;

2. Compute the current scaled measurement matrixWs by Equation (4.7);

3. Performrank 7 factorization onWs, generate the projective motion̂P and shapêX ;

4. Reset�ij = P̂
(3)
i x̂j , whereP̂ (3)

i denotes the third row of the projection matrix̂Pi;

5. If �ij ’s are the same as the previous iteration, stop; else go to step 2.

4.2 Euclidean reconstruction

The factorization of Equation (4.8) recovers the motion and shape up to a7 � 7 linear projective

transformationH,

Ws = P̂ X̂ = P̂HH�1X̂ = ~P ~X (4.9)

where ~P = P̂H and ~X = H�1X̂. P̂ andX̂ are referred to as the projective motion and the projective

shape. Any non-singular7� 7 matrix could be inserted between̂P and X̂ to get another motion

and shape pair. For the multiple motion scene reconstruction method presented in Chapter 3, the size

of the linear transformation matrix is6� 6 which works on calibrated cameras and therefore does

not encode the camera translation information. The goal of the Euclidean reconstruction is to impose

metric constraints on the projective motion and shape in order to recover the linear transformationH,
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from which we can simultaneously reconstruct the intrinsic parameters and the Euclidean motion and

shape. This is thenormalizationprocess.

In this section we present the normalization algorithm for the case that only the focal lengths are

unknown and varying. It is straightforward to derive the normalization algorithms for the other cases

where more or all of the intrinsic parameters are unknown (except skews) following the same line of

work presented in this chapter. However, due to the increased size of the transformation matrix, the

normalization processes are less stable and practical (such as solving a linear system of more than400

unknowns) to solve for the other intrinsic parameters as in Chapter 2. The normalization algorithm for

the case with unknown focal lengths is linear.

When the focal lengths are the only unknown intrinsic parameters, we have,

u0i = 0 v0i = 0 �i = 1 (4.10)

Therefore, according to Equation (4.6),

~P =
h
M T

i
(4.11)

where

M =

"
mx1 my1 mz1 � � � mxn myn mzn

nx1 ny1 nz1 � � � nxn nyn nzn

#T
(4.12)

T =
h
Tx1 Ty1 Tz1 � � � Txn Tyn Tzn

iT
(4.13)

and

mxi = �ifiii

myi = �ifiji

mzi = �iki

nxi = i�ifiii

nyi = i�ifiji

nzi = i�iki

Txi = �ifitxi

Tyi = �ifityi

Tzi = �itzi

(4.14)

The shape matrix is represented by,

~X �

"
S

1

#
(4.15)

where

S =

"
s1 s2 � � � sm

v1 v2 � � � vm

#
(4.16)

and

~xj =
h
�js

T
j �jv

T
j �j

iT
(4.17)
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�i and�i are the scale factors for the homogeneous representations in Equation (4.6). The normaliza-

tion process follows the same line of work as in Section 2.3. However, we are now working on a higher

dimensional space of motion (4.12) and shape (4.16) because the scene contains multiple independently

moving objects.

4.2.1 Moving world coordinate system location

As the points are either static or moving linearly with constant speeds, the center of gravity of all

the feature points is also moving linearly with constant speed. So is the center of gravity of all the

scaledpoints (�jpij). Here we transform the 3D representations to a moving world coordinate system

with fixed orientation (such as being aligned with the first camera) and the origin at the center of gravity

of all the scaled feature points. Therefore,

mX
j=1

�jpij = 0 (4.18)

We get,

mX
j=1

�ijuij =
mX
j=1

(mxi � �jsj + nxi � �jvj + �jTxi)

=
mX
j=1

(mxi � �jsj + imxi � �jvj + �jTxi)

= mxi �

mX
j=1

�j(sj + ivj) + Txi

mX
j=1

�j

= mxi �

mX
j=1

�jpij + Txi

mX
j=1

�j

= Txi

mX
j=1

�j (4.19)

Similarly,
mX
j=1

�ijvij = Tyi

mX
j=1

�j

mX
j=1

�ij = Tzi

mX
j=1

�j (4.20)

Define the7� 7 projective transformationH as,

H =
h
A B

i
(4.21)

whereA is 7� 6 andB is 7� 1.
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Since ~P = P̂H, h
M T

i
= P̂

h
A B

i
(4.22)

according to Equation (4.11). We have,

Txi = P̂xiB Tyi = P̂yiB Tzi = P̂ziB (4.23)

From Equations (4.19) and (4.20),

Txi

Tzi
=

Pm
j=1 �ijuijPm
j=1 �ij

Tyi

Tzi
=

Pm
j=1 �ijvijPm
j=1 �ij

(4.24)

we set up2n linear equations of the7 unknown elements of the matrixB. Linear least squares solutions

are then computed.

4.2.2 Normalization

We recover the7�6 matrixA by observing that the rows of the matrixM consist ofmi, which are

the scaled rotation axes by�i and focal lengthfi, andni, which are the scaledmi by frame numberi

(Equation (4.14)),

orthogonality ofmi:

jmxij
2 = jmyij

2

mxi �myi = 0 mxi �mzi = 0 myi �mzi = 0
(4.25)

orthogonality ofni:
jnxij

2 = jnyij
2

nxi � nyi = 0 nxi � nzi = 0 nyi � nzi = 0
(4.26)

relation ofmi andni:

jnxij
2 = i2jmxij

2 jnyij
2 = i2jmyij

2 jnzij
2 = i2jmzij

2

mxi � nyi = 0 mxi � nzi = 0

myi � nxi = 0 myi � nzi = 0

mzi � nxi = 0 mzi � nyi = 0

(4.27)

The above equations impose linear constraints on the elements ofMMT. We add one more equation

assuming�1 = 1,

jmz1j
2 = 1 (4.28)
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SinceM = P̂A,

MMT = P̂AATP̂T (4.29)

these constraints are linear on the elements of the symmetric matrixQ = AAT. From Equations (4.25)

to (4.27) we can see that these constraints are different from those under calibrated cameras (Equations

(3.14) to (3.16)) since the motion matrix used here is composed of camera motion andcamera intrinsic

parameters.

Define,

A =
h
A1 A2

i
(4.30)

whereA is 7� 6 matrix andA1,A2 are both7� 3 matrices. We get,

P̂A1 =
h
mx1 my1 mz1 � � � mxn myn mzn

iT
P̂A2 =

h
nx1 ny1 nz1 � � � nxn nyn nzn

iT
= N

h
mx1 my1 mz1 � � � mxn myn mzn

iT
(4.31)

where

N =

2
6666666666666666666664

1 0 0 0 0 0 � � � 0 0 0

0 1 0 0 0 0 � � � 0 0 0

0 0 1 0 0 0 � � � 0 0 0

0 0 0 2 0 0 � � � 0 0 0

0 0 0 0 2 0 � � � 0 0 0

0 0 0 0 0 2 � � � 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 0 0 0 0 � � � n 0 0

0 0 0 0 0 0 � � � 0 n 0

0 0 0 0 0 0 � � � 0 0 n

3
7777777777777777777775

(4.32)

according to Equation (4.14). Therefore,

P̂A2 = NP̂A1 (4.33)

A2 is over constrained givenA1 andP̂ ,

A2 = KA1 (4.34)

where

K = P̂�1NP̂ (4.35)

andP̂�1 is the generalized inverse matrix which is7� 3n and uniquely defined whenn � 3.
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Using similar derivations of Section 3.2, we see that Equation (4.25) imposes linear constraints on

the28 unknown elements of the7� 7 symmetric matrixQ1 = A1A
T
1 , while Equation (4.26) imposes

constraints on the28 unknown elements ofQ2 = A2A
T
2 . From Equation (4.34) we have,

Q2 = A2A
T
2 = KA1A

T
1K

T = KQ1K
T (4.36)

which translates the constraints onQ2 to constraints onQ1. Equation (4.27) imposes constraints on

Q3 = A2A
T
1 which can also be translated into constraints onQ1,

Q3 = A2A
T
1 = KA1A

T
1 = KQ1 (4.37)

Therefore, each frame contributes17 constraints (Equations (4.25) to (4.27)) onQ1. In total, we get

17n+1 linear equations on the28 unknown elements of the symmetric matrixQ1. Linear least squares

solutions are computed. We then compute the matrixA1 fromQ1 by rank3 matrix decomposition and

A2 by Equation (4.34), so we recover the linear transformationA.

4.2.3 Camera calibration and scene reconstruction

Once the matrixA has been found, the projective transformation is[A B]. The shape matrix is

computed as~X = H�1X̂ and the motion matrix as~P = P̂H. We first compute the scale factors�i,

�i = jmzij (4.38)

We then compute the focal lengths as,

fi =
jmxij+ jmyij

2�i
(4.39)

Therefore, the camera motion parameters are,

ii =
mxi

�ifi
ji =

myi

�ifi
ki =

mzi

�i

txi =
Txi
�ifi

tyi =
Tyi
�ifi

tzi =
Tzi
�i

(4.40)

The shape matrix consists of the scene structure and the velocities represented in the moving world

coordinate system. We need to transform the representation back to a fixed coordinate system with the

origin at the center of gravity of all the points at frame1 and detect the moving objects automatically.

This process is same as described in Section 3.2.4.
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4.2.4 Algorithm outline

We summarize the reconstruction method as follows:

1. Perform SVD onWs, get the projective motion̂P and the projective shapêX;

2. Sum up each row ofWs and compute the ratios between them as in Equation (4.24);

3. Set up2n linear equations of the7 unknown elements of the matrixB based on the ratios

from step 2 and computeB;

4. Set up17n + 1 linear equations of the28 unknown elements of the symmetric matrixQ1

by imposing constraints in Equations (4.25) to (4.27);

5. FactorQ1 to getA1 fromQ1 = A1A
T
1 ;

6. ComputeA2 fromA2 = KA1;

7. CombineA1 andA2 to generate the linear transformation matrixA = [A1 A2];

8. Put the matricesA andB together and get the projective transformationH = [A B];

9. Recover the shape matrix using~X = H�1X̂ and motion matrix using~P = P̂H;

10. Recover the focal lengths, the camera rotation axes and the translation vectors according to

Equations (4.39) and (4.40).

11. Detect the moving objects, reconstruct the scene structure and the trajectories of the moving

objects as presented in Section 3.2.4.

4.3 Experiments

In this section we present the experimental results on synthetic and real images. The first set of

experiments use synthetic images to evaluate the method quantitatively. The second experiment is con-

ducted on a real image sequence taken by a hand-held camera of an indoor scene, and the reconstruction

results are compared with the ground truth values.

4.3.1 Synthetic examples

We generate100 image sequences of the scene with8 to 49 static feature points and3 to 8 points

moving in random directions. The frame number is4 to 60. The shape of the static scene is a sweep of

the sin curve in 3D space. The camera is rotating randomly through30 to 60 degrees for each or any of

roll, pitch and yaw. The distance between the camera and the center of gravity of all the static points is

varied from4 to 20 times the object size. We add2 pixel standard noise to the feature locations from

640 � 480 images.
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Figure 4.1 illustrates the case where4 objects are moving randomly in 3D space. The method

automatically detects the number of the moving objects as4, reconstructs the static scene and the initial

positions of the4 moving objects, as shown in Figure 4.1(a). Figure 4.1(b) shows the trajectories of the

moving objects with the static scene. There are49 points from the static scene and60 frames are taken.

Figure 4.2 plots the focal lengths recovered by the method and their ground truth values. The

maximum error is7:2% of the true value.

We also apply the multiple motion scene reconstruction method for weak perspective cameras to

the same sequence using the true values of the focal lengths. The results are shown in Figure 4.3. It

is easy to see that the reconstruction results have distortions which are caused by the approximation of

perspective cameras with weak perspective cameras.

(a) (b)

Figure 4.1:Synthetic sequence:Reconstruction of a scene with four moving objects by the uncal-
ibrated multiple motion scene reconstruction method. (a) The reconstructed scene structure and the
initial positions of the moving objects. (b) The reconstructed scene and the motion trajectories.

To evaluate the quality of the reconstruction method, we measure the reconstruction error by com-

parison with the ground truth. Since the reconstruction from monocular image sequences is up to a

scale, we assume that the size of the static shape is1. The maximum distance between the recovered

static points and their true values is3:2%, the maximum error of the reconstructed initial positions of

the moving objects is4:1% and the velocity error is less than1:9%. The maximum distance between

the recovered camera locations and the ground truth values is5:4% and the maximum angle between

the recovered camera orientations and the known values is0:12Æ. The maximum reconstruction error

of the focal lengths is8:11% of the ground truth values.
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Figure 4.2: Synthetic sequence: Comparison of the focal lengths recovered by the uncalibrated
multiple motion scene reconstruction method and their ground truth values for the synthetic sequence.
The maximum error is7:2% of the true value.

(a) (b)

Figure 4.3:Synthetic sequence :Reconstruction of a scene with four moving objects by the multiple
motion scene weak perspective method. (a) The reconstructed scene structure and the initial positions
of the moving objects. (b) The reconstructed scene and the motion trajectories. The distortions are
caused by the approximation of perspective cameras with weak perspective cameras.
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4.3.2 Real example

This sequence was taken by a hand-held camera. There were three objects moving in the scene,

including a toy car, a toy bird and a toy person. The objects were moving linearly with constant speeds.

The car and the person were moving on the table. The speed of the car was3:5cm per frame and the

speed of the person was2:5cm per frame. The bird was climbing the pole and moved3:0cm per frame.

The books and the box represented the static scene. The camera was zoomed out at the beginning and

gradually zoomed in as it moved around the scene. The focal length was changed every two frames.

10 images were taken. Three of them are shown in Figure 4.4(a)-(c).29 feature points were manually

selected and tracked as shown in Figure 4.4(d). Each moving object had one feature point selected.

The shapes of the books and the box, the starting positions of the toys and the motion velocities are

recovered and demonstrated in Figure 4.5(a), the motion trajectories are overlaid in the images. Figure

4.5 (b) shows the recovered camera locations and orientations with the scene reconstruction. Figure

4.6 plots the recovered focal lengths, which shows that the focal lengths are changing with the camera

motion as we expected. The largest focal length almost doubles the smallest one, which is correct for

the2� optical lens.

We assess the quality of the reconstruction by comparison with the ground truth. The ratio between

the speeds of the moving toys are2:5 : 3:77 : 2:91 which are close to the expected value2:5 : 3:5 :

3:0. The maximum distance between the positions of the recovered static points and the ground truth

positions is5mm. The angle between the recovered motion direction of the bird and the floor is91:2Æ,

which is close to the expected value.

4.4 Degenerate cases

The method described in Sections 4.1 and 4.2 solves the full rank case where the static structure

and the motion space of the objects are both rank3. In other words, the scene is three dimensional

and the velocities of the moving objects span a three dimensional space. Degenerate cases, however,

exist because either or both of shape and motion spaces are degenerate. The shape space is degenerate,

for example, when all the points lie in a plane. The motion space of the moving objects is degenerate,

when:

1. There is no moving object in the scene.

2. There is one moving object or multiple objects moving in the same and/or the opposite direction

(not necessarily the same 3D line).

3. The velocities of the objects lie in a two dimensional space (not necessarily the same 3D plane).
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(a) (b)

(c) (d)

Figure 4.4:Real sequence input:(a) 1st image, (b) 5th image, (c) 10th image of the indoor sequence.
The white circles in the 1st image show the feature points selected on the moving objects. (d) 1st image
of the sequence with the feature points overlaid.
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(a)

(b)

Figure 4.5:Real sequence results:(a) Two views of the scene reconstruction with texture mapping,
the black lines denote the recovered motion trajectories. (b) Two views of the scene reconstruction and
the camera positions/orientations, the 3-axis figures are the recovered cameras.
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Figure 4.6:Real sequence:Focal lengths of the real sequence recovered by the uncalibrated multiple
motion scene reconstruction method. The recovered values change every two frames as expected.

When cameras are intrinsically calibrated, there are solutions to these degenerate cases as shown in

Section 3.3. Following the same line of work, we design the reconstruction algorithms for the degen-

erate cases with uncalibrated cameras. However, the rank of the measurement matrix can not be used

as a clue about which case is the best approximation under perspective projections. The measurement

matrix is always full rank. Therefore, we assume that the rank approximation information is given

though there is no requirement for prior motion segmentation and the rank does not depend on how

many objects are moving. In this section we describe the reconstruction algorithms for the case 2 and

case 3 mentioned above. They are referred to as rank-4 case and rank-5 case, respectively, as in Section

3.3.

4.4.1 Rank-4 case

When only one moving object is in the scene, or when all the moving objects travel in the same or

the opposite direction, the motion space is one dimensional. We refer to this case as rank-4 case.

Projective reconstruction

We align thex direction of the world coordinate system with the motion direction. Therefore, the

motion and shape matrices are,

M =

"
mx1 my1 mz1 � � � mxn myn mzn

nx1x ny1x nz1x � � � nxnx nynx nznx

#T
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S =

"
s1 s2 � � � sm

vx1 vx2 � � � vxm

#
(4.41)

wherenxix , nyix andnzix represent thex-elements of the vectorsnxi, nyi andnzi respectively,vxj
denotes thex-element of the velocity of thejth feature point.m andn vectors are defined in Equation

(4.14). We have,

~P =
h
M T

i
~X �

"
S

1

#
(4.42)

andT is defined as in Equation (4.13). Therefore,~P is a 3n � 5 matrix and ~X is a 5 � m matrix.

Following the same derivation as in Section 4.1, the rank of the scaled measurement matrix is5. We

apply a similar bilinear factorization algorithm with the only difference that we perform arank 5

matrix factorization onWs instead of rank7 as in Section 4.1.

Euclidean reconstruction

Define the5� 5 projective transformationH as,

H =
h
A B

i
(4.43)

whereA is 5 � 4 andB is 5 � 1. Similar derivations apply to the computation of the5 unknown

elements of the matrixB as in Equation (4.24). Similarly, we have

A =
h
A1 A2

i
(4.44)

whereA1 is 5� 3, A2 is 5� 1 and,

A2 = K(A1)1 (4.45)

where(A1)1 is the first column ofA1 andK is defined in Equation(4.35). Since the matrixM consists

of the rotation axes and only thex-elements of the scaled rotation axes, the constraints in Equations

(4.26) and (4.27) cannot be represented as linear constraints on the elements ofMMT. However,

the constraints in Equation (4.25) still hold and provide full rank linear equations on the15 unknown

elements of the symmetric5� 5 matrixQ1 = A1A
T
1 . Least squares solutions are computed. We then

computeA1 by rank3 matrix decomposition ofQ1. This decomposition is up to a three dimensional

rotationR which is constrained to make thex direction of the world coordinate system as the motion

direction. The matrixR is determined by aligning the matrix̂MKA1 with the matrixNM̂A1.

Therefore, the linear transformationA is,

A =
h
A1R K(A1R)1

i
(4.46)
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where()1 denotes the first column of the matrix. We apply a derivation similar to the one in Section

4.2.3 to recover the camera focal lengths, the camera motion and the scene structure.

4.4.2 Rank-5 case

When the velocities of all the moving objects lie in a two dimensional space, the motion space is

two dimensional. We refer to this case as rank-5 case.

Projective reconstruction

We assume that thex�y plane of the world coordinate system is aligned with the two dimensional

motion space. Therefore, the motion and shape matrices are,

M =

2
664
mx1 my1 mz1 � � � mxn myn mzn

nx1x ny1x nz1x � � � nxnx nynx nznx

nx1y ny1y nz1y � � � nxny nyny nzny

3
775
T

S =

2
664

s1 s2 � � � sm

vx1 vx2 � � � vxm

vy1 vy2 � � � vym

3
775 (4.47)

wherenxix , nyix andnzix represent thex-elements of the vectorsnxi, nyi andnzi respectively,nxiy ,

nyiy andnziy are theiry-elements,vxj denotes thex-element of the velocity of thejth feature point

andvyj is its y-element.m andn vectors are defined in Equation (4.14). We have,

~P =
h
M T

i
~X �

"
S

1

#
(4.48)

andT is defined as in Equation (4.13). Therefore,~P is a 3n � 6 matrix and ~X is a 6 � m matrix.

Following the same derivation as in Section 4.1, the rank of the scaled measurement matrix is6. We

apply a similar bilinear factorization algorithm with the only difference that we perform arank 6

matrix factorization onWs.

Euclidean reconstruction

Define the6� 6 projective transformationH as,

H =
h
A B

i
(4.49)



78CHAPTER 4. MULTIPLE MOTION SCENE RECONSTRUCTION WITH UNCALIBRATED CAMERAS

whereA is 6 � 5 andB is 6 � 1. Similar derivations apply to the computation of the6 unknown

elements of the matrixB as in Equation (4.24). Define,

A =
h
A1 A2

i
(4.50)

whereA1 is 6� 3, A2 is 6� 2 and,

A2 = K(A1)12 (4.51)

where(A1)12 denotes the first two columns ofA1 and K is defined in Equation (4.35). Here only the

constraints in Equation (4.25) can be represented as linear constraints on the elements ofQ1 = A1A
T
1 .

In this case the constraints are not sufficient to solve for the21 unknown elements of the symmetric

6� 6 matrixQ1 linearly.

The constraints in Equations (4.26) and (4.27) can be represented as constraints on the elements of

Q1 and the six elements of the third column ofA1, which is a6� 1 vector denoted byc, as in Section

3.3.3. Therefore, we get linear equations of the21 unknown elements ofQ1 and the21 unknown

elements ofccT. Since these equations cannot provide full rank constraints on the42 unknowns, there

is no linear solutions ofQ1 andccT directly. However, the constraints are full rank on the elements of

Q1 if ccT is given. That is, ifc can be computed, we can get a linear solution ofQ1. In this way we

change the problem to a small scale nonlinear optimization on the6 elements ofc. Once the vectorc

is computed, the matrixQ1 is computed by least squares solutions.A1 is then calculated fromQ1.

Same to the rank-4 case, we need to align thex� y plane of the world coordinate system with the

two dimensional motion space. The matrixR is also determined by aligning the matrix̂MKA1 with

the matrixNM̂A1. The alignment problem is solved by the least eigenvalue method.

Therefore, the linear transformationA is,

A =
h
A1R K(A1R)12

i
(4.52)

We apply a derivation similar to the one in Section 4.2.3 to recover the camera intrinsic parameters, the

camera motion and the scene structure.



Chapter 5

Reconstruction Analysis

In this chapter we address two important issues of reconstruction methods: minimum data require-

ment and gauge selection. Reconstruction reliability is related to the minimum number of views and

features required for reconstruction. We describe the theoretical analysis and the empirical results of

the minimum data requirement of the reconstruction methods presented in this thesis. Gauge selection

is the process of specifying the coordinate frame and representing the recovered geometry in the chosen

frame. We analyze the gauge selection techniques used in the reconstruction methods described in this

thesis and show that the techniques make the reconstruction methods reliable.

5.1 Minimum data requirement

The main advantage of the factorization-based methods is using the heavily redundant information

from multiple image features and views. However, it is equally important to compute the minimum data

requirement of these methods in order to analyze the practicality and reliability of the methods. In this

section we discuss the minimum number of views and image features required by the reconstruction

methods presented in Chapters 2, 3 and 4.

The low bound of data requirement is determined by the number of degrees of freedom of the

reconstruction and the number of constraints given by each feature in each view, which is presented

in Section 5.1.1. The minimum number of views and/or features is also constrained by the solution

process. Section 5.1.2 lists the number of variables and the number of corresponding equations used

in the reconstruction processes. These two computations of the minimum data only provide necessary

conditions to carry out the reconstruction. There is no guarantee that the reconstruction results are

reasonably accurate and stable with the theoretical results of the minimum data, especially for the non-

linear optimization methods. In Section 5.1.3 we describe the empirical results of the minimum data

required by the reconstruction methods.

79
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5.1.1 Counting the arguments

In this section we specify the number of views and image features required to carry out the recon-

struction. This analysis is related to counting the number of degrees of freedom of the reconstruction

and the number of constraints give by each feature in each view. Hence comes the title "counting the

arguments". Hartley and Zisserman’s discussion about the minimum data required for tensor compu-

tation [Hartley and Zisserman, 2000] and Long Quan’s analysis about the minimum number of line

segments for the factorization method from line correspondences[Quan and Kanade, 1997] are two

examples of this line of work.

Number of constraints

The input for the reconstruction methods presented in this thesis are the feature correspondences.

Each feature point has two image coordinates in each view. Therefore, the number of constraints given

by all the correspondences is2nm, wheren is the number of views (or frames) andm is the number

of feature points. Table 5.1.1 describes the analysis results about the minimum data requirement by

counting the arguments. The column with the title"Known #" lists the numbers of constraints provided

by the feature points for different reconstruction methods, all of which are2nm.

Number of degrees of freedom

The number of degrees of freedom of reconstruction depends on the size of the space composed

of all the possible reconstructions. The output of the reconstruction methods consists of the scene

structure, which includes the trajectories of the moving objects for multiple motion scenes, the camera

motion and the camera intrinsic parameters for uncalibrated views. The number of degrees of freedom

of each of the reconstruction output is summarized as follows. Reconstruction from monocular image

sequences is up to a rigidity transformation, therefore, the total number of degrees of freedom should

be subtracted by the number of ambiguities caused by the transformation. In Table 5.1.1, the column

of "Unknown #" presents the number of degrees of freedom for each reconstruction method.

� Scene structure

We refer the scenes without moving objects as static scenes and the scenes containing moving

objects as multiple motion scenes. The number of degrees of freedom for static scenes is3m,

wherem is the number of feature points, since each feature point has three coordinates(x; y; z)

to represent its 3D position. For multiple motion scenes each feature point has three coordinates

(x; y; z) to represent its 3D position (the initial position) and three coordinates(vx; vy; vz)

to denote its velocity (static points have zero velocities). We use the velocities of the feature

points to distinguish moving features from static ones because we do not require prior motion
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segmentation. Therefore, the number of degrees of freedom for multiple motion scenes is6m

for full rank case. Following the similar derivation, the number of degrees of freedom is4m for

rank-4 case (three coordinates for the initial position and one coordinate for the velocity since

the motion space is one-dimensional) and5m for rank-5 case (three coordinates for the initial

position and two for the velocity as the motion space is two-dimensional), respectively.

� Camera motion

The camera motion is determined by its rotation and translation. Weak perspective and per-

spective cameras have6 degrees of freedom:3 for rotation and3 for translation. There is no

information about the translations of orthographic cameras along their optical axes, therefore,

the number of degrees of freedom for orthographic cameras is5: 3 for rotation and2 for transla-

tion. In total, the number of degrees of freedom for orthographic cameras is5n, wheren is the

number of views, and the number of degrees of freedom for weak perspective and perspective

(calibrated or uncalibrated) cameras is6n.

� Camera intrinsic calibration

When the cameras are not intrinsically calibrated, the number of degrees of freedom of the re-

construction is increased by the number of the unknown intrinsic parameters. For the static scene

reconstruction method dealing with case1, where the focal lengths are unknown and varying,

the number of degrees of freedom for the intrinsic parameters isn. For case2, where the focal

lengths and the constant principal point are unknown, the number of degrees of freedom isn+2.

For case3, where the focal lengths, the principal points and the aspect ratios are all unknown and

varying, the number of degrees of freedom for the camera intrinsic parameters is4n. The uncal-

ibrated Euclidean reconstruction method for multiple motion scenes handles the case where the

focal lengths are the only unknown intrinsic parameters, therefore, it hasn degrees of freedom

for the camera intrinsic parameters.

� Ambiguity

Euclidean reconstruction from monocular image sequences is up to a rigidity transformation

which has6 degrees of freedom:3 for rotation and3 for translation. This number should be

subtracted from the total number of degrees of freedom of the reconstruction. There is one more

ambiguity for the reconstructions under weak perspective and perspective (calibrated or uncali-

brated) cameras: the scale of the reconstruction. Therefore,6 degrees of freedom is subtracted

from the total number of degrees of freedom for orthographic cameras and7 is subtracted for

weak perspective and perspective cameras.
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Methods Known # Unknown # Minimum data
Static scene Orthographic 2nm 5n+ 3m� 6 n = 2 m = 4

Weak perspective 2nm 6n+ 3m� 7 n = 3 m = 4

Uncalibrated perspective Case 1 2nm 7n+ 3m� 7 n = 3 m = 5

Case 2 2nm 7n+ 3m� 5 n = 3 m = 6

Case 3 2nm 10n+ 3m� 7 n = 3 m = 8

Multiple motion Orthographic Full rank 2nm 5n+ 6m� 6 n = 4 m = 7

scene Rank-4 2nm 5n+ 4m� 4 n = 4 m = 4

Rank-5 2nm 5n+ 5m� 5 n = 4 m = 5

Weak perspective Full rank 2nm 6n+ 6m� 7 n = 5 m = 6

Rank-4 2nm 6n+ 4m� 5 n = 4 m = 5

Rank-5 2nm 6n+ 5m� 6 n = 4 m = 6

Perspective Full rank 2nm 6n+ 6m� 7 n = 5 m = 6

Rank-4 2nm 6n+ 4m� 5 n = 4 m = 5

Rank-5 2nm 6n+ 5m� 6 n = 4 m = 6

Uncalibrated perspective Full rank 2nm 7n+ 6m� 7 n = 5 m = 7

Rank-4 2nm 7n+ 4m� 5 n = 4 m = 6

Rank-5 2nm 7n+ 5m� 6 n = 3 m = 15

Table 5.1:Minimum data requirement: Counting the arguments.n denotes the number of views and
m denotes the number of feature points.

Minimum number of views and features

We list the minimum number of views and feature points required by the reconstruction methods

through counting the arguments in the column"Minimum data" of Table 5.1.1. We take the uncali-

brated reconstruction method dealing with case 1 for static scenes as an example to illustrate how we

compute the minimum data requirement.

The constraint is,

2nm � 7n+ 3m� 7 (5.1)

wheren is the number of views andm is the number of feature points. Compute the positive integer

solutions ofn andm,

n = 2 m = 7 OR n = 3 m = 5 (5.2)

In most cases the solutions are not unique. We choose the solution to be listed in the table according to

two principles. The first one is that we prefer the solution which is comparable with the constraints of

"analyzing the solution" (refer to Section 5.1.2). These two constraints both give the necessary require-

ment of the minimum data. Their intersection provides the low bound of the requirement. Therefore,

we choose the comparable solution for easier computation of the intersection. The second principle is

that we are in favor of less views. In practice, it is easier to get more feature points than to get more
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views.

Another thing to point out is that this table only gives the low bound of the requirement. There is no

guarantee that the reconstruction exits with the minimum data. For example, by counting the arguments,

2 views and4 features are the minimum data required for orthographic reconstruction. However, there

is actually thebas reliefambiguity that we cannot get a unique Euclidean reconstruction from any two

orthographic views[Kahl and Triggs, 1999].

5.1.2 Analyzing the solution

The minimum data requirement is also determined by the solution process. The reconstruction

methods presented in the thesis are based on linear and bilinear subspace constraints, that is, the solution

process includes solving linear and bilinear equations. Therefore, the solution process requires the

number of equations be larger than the number of variables. This is the constraint given by analyzing

the solution. In Table 5.1.2 the numbers of equations for different reconstruction methods are listed

in the column of"Equation #" and the numbers of variables are in the column of"Variable # ". The

last column"Minimum data" presents the minimum data required by analyzing the solution process.

We take the orthographic reconstruction method for multiple motion scenes (full rank case) and the

uncalibrated reconstruction method for static scenes (case 2) as examples of the reconstruction methods

with calibrated and uncalibrated cameras, respectively, to illustrate how we set up Table 5.1.2.

Reconstruction with calibrated cameras

The reconstruction process with calibrated cameras is composed of matrix decomposition (SVD),

normalization and recovery of shape and motion. The first two steps, decomposition and normalization,

provide constraints on the minimum data requirement while the last step is directly derived as long as

the first two steps succeed.

Take the full rank case of the orthographic reconstruction method for multiple motion scenes as

example. We first fix the moving world coordinate system and compute the translation vector as the

mean of the measurement matrixW . Then we perform a rank6 SVD on the new measurement matrix

Ŵ which is generated by subtracting the translation vector fromW . The rank6 SVD decomposes the

matrix Ŵ into the product of a2n� 6 matrix and a6�m matrix. The decomposition is up to a6� 6

linear transformation. Therefore, the total number of variables for SVD is12n + 6m � 35. Since the

size ofŴ is 2n�m, we get constraints,

2nm � 12n+ 6m� 35 (5.3)
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Methods Equation # Variable # Minimum data
Static scene Orthographic SVD 2nm 6n+ 3m� 8 n = 2 m = 4

Normalization 3n 6

Weak perspective SVD 2nm 6n+ 3m� 8 n = 3 m = 4

Normalization 2n+ 1 6

Uncalibrated Case 1 Projective 2nm 11n+ 3m� 15 n = 3 m = 6

perspective Euclidean 4n+ 1 10

Case 2 Projective 2nm 11n+ 3m� 15 n = 5 m = 6

Euclidean 13n+ 1 55

Case 3 Projective 2nm 11n+ 3m� 15 n = 3 m = 6

Euclidean 3n+ 2 10

Multiple motion Orthographic Full rank SVD 2nm 12n+ 6m� 35 n = 4 m = 7

Normalization 8n 21

scene Rank-4 SVD 2nm 8n+ 4m� 15 n = 4 m = 5

Normalization 3n 10

Rank-5 SVD 2nm 10n+ 5m� 24 n = 3 m = 6

Normalization 8n 20

Weak perspective Full rank SVD 2nm 12n+ 6m� 35 n = 4 m = 7

Normalization 7n+ 1 21

Rank-4 SVD 2nm 8n+ 4m� 15 n = 5 m = 5

Normalization 2n+ 1 10

Rank-5 SVD 2nm 10n+ 5m� 24 n = 3 m = 6

Normalization 7n+ 1 20

Perspective Full rank SVD 2nm 12n+ 6m� 35 n = 4 m = 7

Normalization 7n+ 1 21

Rank-4 SVD 2nm 8n+ 4m� 15 n = 5 m = 5

Normalization 2n+ 1 10

Rank-5 SVD 2nm 10n+ 5m� 24 n = 3 m = 6

Normalization 7n+ 1 20

Uncalibrated Full rank Projective 2nm 20n+ 6m� 48 n = 4 m = 16

perspective Euclidean 17n+ 1 28

Rank-4 Projective 2nm 14n+ 4m� 24 n = 4 m = 8

Euclidean 4n+ 1 15

Rank-5 Projective 2nm 17n+ 5m� 35 n = 3 m = 16

Euclidean 17n+ 1 27

Table 5.2:Minimum data requirement: Analyzing the solution.n denotes the number of views and
m denotes the number of feature points.
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The minimum data requirement for SVD is,

n = 4 m = 7 (5.4)

The goal of the normalization process is to recover the6� 6 affine transformationA by imposing

metric constraints on the matrix decomposition results.A is recovered by decomposingA as,

A =
h
A1 A2

i
(5.5)

and solving the21 unknown elements of the symmetric matrixQ1,

Q1 = A1A
T
1 (5.6)

Therefore, the number of variables is21 and the number of equations is8n which are the metric

constraints. We get the constraint on the minimum data requirement for the normalization process,

n � 3 (5.7)

Combining the above two constraints (Equation (5.4) and Equation (5.7)), we haven = 4 m = 7

as the minimum data required by the full rank orthographic reconstruction method for multiple motion

scenes.

Reconstruction with uncalibrated cameras

The reconstruction with uncalibrated cameras consists of projective reconstruction and Euclidean

reconstruction. Taking the uncalibrated Euclidean reconstruction method for static scenes (case 2) as

example, a total of2nm measurements are available to estimate the projective motion and shape. Each

camera projection is represented by a3�4 matrix which has11 variables because of the homogeneous

representation. Each feature point is represented by a4 � 1 vector which has3 variables. Since the

projective reconstruction is up to an unknown4 � 4 projective transformation, the total number of

variables is11n+ 3m� 15. The constraint of the projective reconstruction is,

2nm � 11n+ 3m� 15 (5.8)

Therefore, the minimum data requirement is,

n = 3 m = 6 (5.9)

Since we get the decomposition results from the projective reconstruction, the normalization pro-



86 CHAPTER 5. RECONSTRUCTION ANALYSIS

cess is the only step having constraints on the minimum data requirement in the Euclidean reconstruc-

tion. In order to recover the4 � 4 projective transformationH linearly, we set up13n + 1 equations

of the 55 unknown elements of the matrixqqT, where eachq is a 10 � 1 vector composed of the

unknown elements of the symmetric matrixHHT. Therefore, the number of equations is13n+ 1 and

the number of variables is55, we get,

n � 5 (5.10)

Combining the above two constraints, the minimum data required by the case2 method isn =

5 m = 6. This constraint is a low bound of the minimum data requirement because we do not analyze

if the equations are independent.

5.1.3 Empirical results

We conduct a number of synthetic experiments to determine the minimum number of views and

feature points required by the reconstruction methods presented in the thesis. We synthesize a cube

as the static scene from which the feature points are chosen at generic locations, that is, any4 points

are not co-planar. The camera undergoes random motions whose rotation goes through a total of30 to

50 degrees. The distance between the moving camera and the cube is about15 to 20 times the cube

size for orthographic projections,10 to 15 times for weak perspective projections and4 to 10 times

for perspective projections. The image size is640 � 480. The focal lengths are random numbers from

1000 to 2000 pixels. The principal points are shifted from the center of the images by0 to 8 pixels.

The aspect ratios are randomly set as any value between0:8 and1:2.

We try different values ofn (number of views) andm (number of features) from the low bound

generated by counting the arguments (Section 5.1.1) and analyzing the solution (Section 5.1.2), and

choose the pair ofn andm with the smallest value ofn and its corresponding smallest value ofm. We

test the chosen pair of values by generating10 sequences with different locations of the feature points

and random camera motions. We confirm the pair of values and list them in Table 5.1.3 as the empirical

results only if10 sequences all generate reasonable results, which means,

� The maximum reconstruction error of the feature locations is less than5% of the cube size;

� The maximum distance between the recovered camera positions and the ground truth values is

less than10% of the cube size;

� The recovered camera orientations are within5Æ of the true orientations;

� The recovered focal lengths are within10% of the ground truth values;

� The maximum reconstruction error of the principal points is less than2 pixels;
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Methods Minimum data
Static scene Orthographic n = 3 m = 4

Weak perspective n = 3 m = 4

Uncalibrated perspective Case 1 n = 3 m = 6

Case 2 n = 5 m = 6

Case 3 n = 8 m = 10

Multiple motion Orthographic Full rank n = 5 m = 7

scene Rank-4 n = 4 m = 5

Rank-5 n = 8 m = 10

Weak perspective Full rank n = 5 m = 7

Rank-4 n = 5 m = 5

Rank-5 n = 8 m = 10

Perspective Full rank n = 5 m = 7

Rank-4 n = 5 m = 5

Rank-5 n = 8 m = 10

Uncalibrated perspective Full rank n = 4 m = 16

Rank-4 n = 4 m = 8

Rank-5 n = 8 m = 10

Table 5.3:Minimum data requirement: Empirical results.n denotes the number of views andm
denotes the number of feature points.

� The recovered aspect ratios are within10% of the true values.

One interesting thing about the minimum data requirement for multiple motion scenes is that the

minimum number of features is not dependent on how many of them are moving as long as the rank of

the measurement matrix is same. Taking the full rank orthographic reconstruction for multiple motion

scenes as an example, the minimum data requirement isn = 5 m = 7. Synthetic experiments show

that these7 feature points can be composed of4 static points and3 moving points, or3 static and4

moving ones, or2 static and5 moving points, or1 static and6 moving ones, or even0 static and7

moving points. As long as the static points and the initial positions of the moving points are in a3D

space and the motion velocities span in a3D space as well, the full rank reconstruction method works

on any7 points from5 views. We have same results for the degenerate cases. For example, the rank-4

orthographic reconstruction method works on4 views and5 points no matter what the number of the

static points is. It can be any value from0 to 4 as long as the moving points are all moving in the

same (or the opposite) direction. Wexler and Shashua’s scene synthesis method[Wexler and Shashua,

2000] can work on the scene where all the feature points are moving, so can the multiple motion scene

reconstruction methods presented in this thesis.
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5.2 Gauge selection

Scene reconstruction from monocular image sequences is up to a similarity transform. For the linear

and bilinear subspace methods presented in this thesis, we place the origin of the world coordinate

system at the center of gravity of all the feature points, which is actually a moving origin when some of

the feature points are moving, and align the orientation of the coordinate system with the first camera.

The process is calledgauge selection[Heyden, 1997, Morriset al., 1999]. Recently, gauge theory

[McLauchlan, 1999, Morriset al., 1999, Triggset al., 2000, McLauchlan, 2000, Kanatani and Morris,

2000, Morriset al., 2000a] has been developed to deal with the reconstruction ambiguities. In this

section, we focus on analyzing the gauge selection process of the reconstruction methods presented

in the thesis and demonstrate that fixing the gauge for the calibrated reconstruction methods saves

computation cost and improves reliability of the reconstruction results.

5.2.1 Gauge selection in static scene reconstruction

Gauge selection is to determine the similarity transform which has6 degrees of freedom:3 for

translation and3 for rotation. The translation is decided when we fix the origin of the world coordinate

system and the rotation is determined when we align the orientation of the world coordinate system.

Orthographic and weak perspective projections

We first use Tomasi and Kanade’s orthographic factorization method[Tomasi and Kanade, 1992] as

an example to demonstrate that fixing the origin of the world coordinate system decreases the number of

variables and improves reliability of the reconstruction. We outline Tomasi and Kanade’s factorization

method as follows and illustrate the gauge selection techniques used in their method.

1. The world coordinate system location

The method first places the origin of the world coordinate system at the center of gravity of all the

feature points, based on which it calculates the camera translations. At this point, thetranslation

ambiguity is solved.

2. Decomposition

Subtract the translations from the measurement matrix and get the "registered" measurement

matrix. A rank3 SVD is performed on the "registered" matrix to generate the pair of motion and

shape up to a3� 3 affine transformationA.

3. Normalization
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Set up3n linear equations to solve the6 unknown elements of the3� 3 symmetric matrixQ =

AAT. OnceQ is computed, we getA by rank3 matrix decomposition ofQ. This decomposition

is up to a three dimensional rotation because the matrixQ is symmetric. We can solve the

rotation ambiguity by aligning the world coordinate system with any orientation, such as the

first camera orientation.

4. Motion and shape recovery

OnceA has been found, we can recover the Euclidean motion and shape.

In Tomasi and Kanade’s method, the translation ambiguity is solved at the beginning by fixing the

origin of the world coordinate system. However, it is not necessary to perform the above four steps in

this order. We reformulate the method to solve the translation ambiguity at the same time as computing

the linear transformation. Costeira and Kanade[Costeira and Kanade, 1998] used a similar process for

easier incorporation of multiple moving objects. The outline of the reformulated method is as follows:

1. Decomposition

We perform a rank4 SVD on the measurement matrixW and generate the pair of motion̂M and

shapeŜ up to a4� 4 linear transformationH.

2. Rotation constraints

We decompose the transformationH according toH = [A B], whereA is 4� 3 andB is

4� 1. Imposing the same metric constraints as in Tomasi and Kanade’s method, we set up3n

equations to solve the10 unknown elements of the4� 4 symmetric matrixQ = AAT. A

is computed fromQ by matrix decomposition. Same as in Tomasi and Kanade’s method, this

decomposition is up to a3D rotation. Therotation ambiguity is therefore solved in this step by

fixing the orientation of the world coordinate system.

3. Translation constraints

We can place the origin of the world coordinate system at arbitrary locations by settingB to any

values which make the matrixH = [A B] non-singular. Therefore, thetranslation ambiguity

is solved without extra computation. We can also place the origin at the center of gravity by

computingB as,

w = M̂B (5.11)

wherew is the mean vector of the measurement matrixW . B is overconstrained when there are

two or more than two views,

B = M̂�1w (5.12)

whereM̂�1 is the general inverse of the matrix̂M .
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4. Motion and shape recovery

OnceA andB have been found, we can recover the Euclidean motion and shape byH = [A B].

Comparing these two formulations of the orthographic factorization method, it is clear that Tomasi

and Kanade’s method has less variables to solve. The number of variables is6 in Tomasi and Kanade’s

method while it is10 in the other formulation. Tomasi and Kanade’s method deals with a smaller space

which is rank3 instead of rank4. Same analysis applies to the weak perspective factorization method.

We perform a set of synthetic experiments to compare the reliability of these two formulations. We

synthesize60 sequences with increased noise at feature locations. Each sequence has100 frames and

50 feature points. The feature noise is from0 to 3 pixels. The image size is640�480. We measure the

shape error as the average of the distances between the recovered feature points and their corresponding

true values. The value of the average shape error shown in Figure 5.1 is the ratio between the average

error and the object size. Figure 5.1 shows that the shape errors reconstructed by the two orthographic

formulations increase with the feature noise and Tomasi and Kanade’s formulation is more reliable.
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Figure 5.1:Gauge selection for orthographic projection:Average shape errors recovered by the two
formulations for orthographic reconstruction. It shows that the shape errors increase with the feature
noise and the formulation which fixes the gauge at the beginning (Tomasi and Kanade’s method) is
more reliable.

Uncalibrated perspective projections

The uncalibrated Euclidean reconstruction method described in Chapter 2 places the origin of the

world coordinate system at the center of gravity of the feature points, therefore, it solves the translation

ambiguity at the beginning of the Euclidean reconstruction process. However, the camera translation

vector cannot be computed directly from the scaled measurement matrix generated by projective re-

construction. Therefore, it is impossible to decrease the number of variables by fixing the origin as
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for affine projections. The conclusion is that we can either fix the origin at the center of gravity and

computeB vector of the linear transformationH = [A B] as presented in Chapter 2, or setB to any

value which corresponds to an arbitrary3D location of the origin. The computation cost for normaliza-

tion and reliability of the results are same. Figure 5.2 shows the reconstructed shape errors by the two

formulations for the case1 normalization algorithm, which are almost same.
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Figure 5.2:Gauge selection for uncalibrated perspective projection:Average shape errors recov-
ered by the two formulations for uncalibrated Euclidean reconstruction. It shows that the shape errors
increase with the feature noise and the results from the two formulations are very close.

5.2.2 Gauge selection in multiple motion scene reconstruction

The reconstruction methods for multiple motion scenes are based on the unified representation of

feature points no matter if they are moving or not. This representation induces the difficulty of fixing

the gauge because the center of gravity of all the feature points is moving. It is interesting to notice that

the center of gravity is moving linearly with constant speed because we assume that the moving points

have constant velocities. Therefore, we define the world coordinate system as a moving system with its

origin at the moving center of gravity and its orientation fixed. In this section we demonstrate that the

design of themoving world coordinate system enables the reconstruction process work on a smaller

space so that the results are more stable.

Table 5.4 compares the orthographic reconstruction processes for multiple motion scenes with and

without solving the translation ambiguity at the first step. We can see that the method fixing the origin

at the first step, which is the method presented in Chapter 3, has less computation. Figure 5.3 shows the

reconstruction errors of the two formulations under orthographic projections. The average shape error

evaluates the reconstruction errors of the static feature points and the initial positions of the moving

feature points. We can see that the formulation which fixes the moving origin at the center of gravity at
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With gauge fixing at the first step Without gauge fixing at the first step
1. World coordinate system location 1. Decomposition
Fix the origin of the moving world coordinate Perform a rank7 SVD on the measurement
system at the center of gravity of all the featurematrix and get the pair of motion and shape
points and compute the camera translations. up to a7� 7 linear transformationH = [A B].
This step solves thetranslation ambiguity .
2. Decomposition 2. Rotation constraints
Subtract the camera translations from the Set up8n linear equations of the28 unknown
measurement matrix and perform a rank6 elements of the7� 7 symmetric matrixQ.
SVD on the "registered" measurement matrix A is computed fromQ by rank3 matrix
to generate the pair of motion and shape up todecomposition which is up to a3D rotation.
a6� 6 linear transformationH. We solve therotation ambiguity by aligning

the world coordinate system with first camera
(or any) orientation.

3. Normalization 3. Translation constraints
Set up8n linear equations of the21 unknown SetB to any values which makeH non-singular.
elements of the6� 6 symmetric matrixQ. It solves thetranslation ambiguity by placing
H is computed fromQ by rank3 matrix the origin of the world coordinate system at
decomposition which is up to a3D rotation. arbitrary locations. Or we can solveB by
We solve therotation ambiguity by aligning B = M̂�1w to place the origin at the center
the world coordinate system with first camera of gravity of all the feature points.
(or any) orientation.
4. Motion and shape recovery 4. Motion and shape recovery
OnceH has been recovered, the motion and OnceA andB are recovered, we getH = [A B].
shape are computed fromH and the moving The motion and shape are computed fromH
features are automatically detected. and the moving features are detected.

Table 5.4:Gauge selection:Comparison of two orthographic reconstruction processes for multiple
motion scenes with and without gauge fixing at the first step of reconstruction.
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Figure 5.3:Gauge selection for multiple motion scenes under orthographic projection:Average
shape errors recovered by the two formulations for multiple motion scenes orthographic reconstruction.
It shows that the shape errors increase with the feature noise and the formulation which fixes the gauge
at the beginning (the multiple motion scene orthographic reconstruction method presented in Chapter
3) is more reliable.
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Figure 5.4: Gauge selection for multiple motion scenes under uncalibrated perspective projec-
tion: Average shape errors recovered by the two formulations for multiple motion scenes uncalibrated
reconstruction. It shows that the shape errors increase with the feature noise and the results from the
two formulations are very close.



94 CHAPTER 5. RECONSTRUCTION ANALYSIS

the beginning is more reliable. We demonstrate the full rank case only though the analysis applies to

the degenerate cases as well.

Following the same analysis for static scenes, the uncalibrated reconstruction methods for multiple

motion scenes have the similar computation cost and reliability for the two formulations. Figure 5.4

shows the results.



Chapter 6

Conclusion

When a camera moves around in a scene, the images taken contain information about the camera

and the scene structure. We address two interesting problems in the area of Structure from Motion.

One is about the camera. We work on the image sequences taken with uncalibrated cameras. The other

is about the scene. We deal with the scenes rich with moving objects.

We present three linear and bilinear subspace methods in this thesis. The uncalibrated Euclidean

reconstruction method works on image sequences of static scenes taken with uncalibrated cameras. The

multiple motion scene reconstruction method with calibrated cameras and the multiple motion scene

reconstruction method with uncalibrated cameras both deal with image sequences of scenes rich with

moving objects.

We also discuss two important issues of the reconstruction methods: minimum data requirement

and gauge selection. The theoretical analysis and the empirical results are presented.

In this chapter we first summarize the contributions of this thesis in terms of theoretical work,

system work and potential applications. Then we identify the directions for future work to continue

this line of research.

6.1 Contributions

6.1.1 Theories

1. Decouple the uncalibrated reconstruction process into projective reconstruction and Euclidean

reconstruction.

Given tracked feature points from multiple uncalibrated views, we first perform a bilinear pro-

jective reconstruction process to generate the scaled image measurements from which we get the

projective motion and shape. The Euclidean reconstruction then converts the projective results

95
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into the Euclidean ones by enforcing metric constraints. These two steps are relatively indepen-

dent, that is, the Euclidean reconstruction method can work on the output from any projective

reconstruction method while the projective results can be fed into any self-calibration method.

2. Embed the camera intrinsic parameters recovery within the Euclidean reconstruction.

Image measurements are generated by the projection of 3D scene structure to 2D images. The

projection is determined by the camera motion and the camera intrinsic parameters. We embed

the unknown camera intrinsic parameters within the camera motion representation for uncali-

brated cases, based on which we present the Euclidean reconstruction method.

3. Recover the multiple motion scenes with the assumption that the objects are moving linearly with

constant speeds.

Assuming the objects are moving linearly with constant speeds, we proposed a unified geomet-

rical representation of the static scene and the moving objects. The representation incorporates

the motion information within the scene representation, which naturally leads to a factorization-

based method.

6.1.2 Systems

1. A uncalibrated reconstruction method which recovers the Euclidean shape, the camera motion

and the camera intrinsic parameters from multiple uncalibrated perspective views.

2. A multiple motion scene reconstruction method which reconstructs a scene containing multiple

moving objects together with the camera motion from monocular image sequences.

3. A uncalibrated multiple motion scene reconstruction method which recovers the scene structure,

the trajectories of the moving objects, the camera motion and the camera intrinsic parameters

simultaneously.

We build three reconstruction systems based on the above three methods respectively. A series

of experiments on synthetic and real image sequences are conducted. We also address the issues of

minimum data requirement and gauge selection of the reconstruction methods with the theoretical

analysis and the empirical results.

6.1.3 Applications

1. Multi-camera calibration.

Obtaining the ground truth is difficult and time-consuming in camera calibration. The uncali-

brated reconstruction method provides a good way to calibrate multi-camera systems. Instead of
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carefully putting objects at accurate positions, a person can wave a stick with LEDs randomly in

the room. The LEDs enable fast and easy computation of correspondences. Given these tracked

feature points, the reconstruction method can be applied to recover the camera extrinsic and

intrinsic parameters simultaneously.

2. Video analysis.

Scene modeling can be regarded as an efficient way of representing the large amount of infor-

mation in image sequences, especially the feature-based modeling presented in this thesis. It

can be applied to video editing, image based rendering, video compression, video retrieval and

summarization.

6.2 Future work

6.2.1 Critical motion sequences

Sequences of camera motions that lead to inherent ambiguities in uncalibrated Euclidean recon-

struction or self-calibration are referred to ascritical motion sequences[Sturm, 1997a, Sturm, 1997b],

that is, there are situations in which any uncalibrated reconstruction method fails or is exceptionally

weak. The critical situations are often independent of the specific camera intrinsic parameters. They

are related to certain types of camera motions which prevent unique Euclidean reconstruction.

In this thesis we present a collection of reconstruction methods and conduct the experiments under

generic camera motions. In practice, it is important to analyze the critical motion sequences for the

methods so that we can detect and avoid the critical and "close to critical" situations.

� Static scene reconstruction with uncalibrated cameras

Kahl et al. [Kahl et al., 2000] applied subgroup approach to self-calibration constraints when

some of the intrinsic parameters can vary. They proved thatgiven the plane at infinity and

known skew, aspect ratio and principal point, then a motion is critical if and only if there is only

one viewing direction.The explicit geometric descriptions of the corresponding critical motion

sequences are: (i) arbitrary rotations about the optical axis and translations, (ii) arbitrary rotations

about at most two centers, (iii) forward-looking motions along an ellipse and/or a corresponding

hyperbola in an orthogonal plane. These are the critical motion sequences for case1 of the

uncalibrated Euclidean reconstruction method presented in Chapter 2. They also analyze the

case with zero skew and unit aspect ratio which covers case2 of the uncalibrated reconstruction

method. The critical motion sequences for this case arethere are at most two viewing directions.

Sturm [Sturm, 1999] described the critical motion sequences for stereo systems with varying

focal lengths. We have not seen any work done for the case when all of the intrinsic parameters
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are unknown and varying except skews (case3 of the uncalibrated reconstruction method). It is

necessary to analyze the critical motion sequences for this case in order to determine if a multi-

camera set up is possible to be self-calibrated. We can start with extensions of the subgroup

approach presented by Kahl et al.[Kahl et al., 2000] to the case where the intrinsic parameters

are varying.

� Multiple motion scene reconstruction with calibrated cameras

Kahl and Triggs[Kahl and Triggs, 1999] investigated the critical motion sequences for intrinsi-

cally calibrated orthographic and perspective cameras. Their conclusions included: (i) for any

two orthographic and weak perspective cameras, there is a one parameter family of possible

structures corresponding to the bas relief ("flattening") ambiguity, (ii) for any two calibrated per-

spective cameras, there is always a two-fold ambiguity corresponding to a "twisted pair". The

twisted pair duality is caused by the rotation of one of the cameras by180Æ around the axis join-

ing the two optical centers. These conclusions are based on the assumption that the scenes are

static. The minimum number of views required for multiple motion scene reconstruction is larger

than2, however, we are dealing with a much larger reconstruction space than static scenes. For

example, the affine transformation space is6D for multiple motion scenes (full rank case) while

it is 3D for static scenes. We need to explore if there are ambiguities for more than two views due

to the moving objects, and if the critical motions depend on the directions of the moving objects.

� Multiple motion scene reconstruction with uncalibrated cameras

Some research has been done on the analysis about the critical motion sequences of systems

with varying focal lengths[Sturm, 1999, Kahlet al., 2000]. Most work is limited to static

scenes. It is interesting to apply the static scene results to the uncalibrated multiple motion scene

reconstruction in order to figure out if the critical motion sequences for static scenes are still

critical for multiple motion scenes. As mentioned above, we also want to work on if there are

critical motion sequences caused by the moving objects, and if the critical motion sequences

are related to the directions of the moving objects. The important thing is not only to study the

critical motion problem in theory, but also to design a system which can detect if the recovered

camera motion is critical so as to avoid the critical and "close to critical" situations.

6.2.2 Uncertainty modeling

The reconstruction methods presented in this thesis are based on linear and bilinear subspace con-

straints. Singular Value Decomposition (SVD) is used to get the best low-rank approximation of the

given measurement matrix. However, SVD is powerful at getting the global minimum only when the

feature errors are directional uncorrelated and identically distributed. This is rarely the case in real
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data. It is necessary to model the directional uncertainty of features and perform a minimization on a

covariance-weighted error measurement.

When the feature uncertainty is isotropic, but not identical, Aguiar and Moura described the rank-1

factorization algorithm to perform a scalar-weighted SVD for motion and shape recovery[Aguiar and

Moura, 1999]. Morris and Kanade[Morris and Kanade, 1998] presented a unified orthographic factor-

ization algorithm for points, line segments and planes using directional uncertainty model of features.

They solved motion and shape by a quasi-linear algorithm. More interestingly, they can evaluate the re-

constructed shape based on the statistical uncertainty model. They discussed their work on perspective

cameras in[Morris et al., 2000b]. Irani and Anandan[Irani and Anandan, 2000] described an approach

to transform the raw noisy data into a covariance-weighted data space where the noises are directional

uncorrelated and identically distributed. In this way they could apply SVD to the transformed data

to factor noisy feature correspondences with high degree of directional uncertainty into motion and

shape. Not limited to directional uncertainty models, Sun et el.[Sunet al., 1999] discussed error char-

acterization of the factorization methods using results from matrix perturbation theory and covariance

propagation for linear models.

There are two reasons why we want to include feature uncertainty models into the reconstruction

methods presented in the thesis. One is to improve the accuracy and reliability of the reconstruction

results since the directional uncertainty is modeled. Another is to evaluate the reconstruction results

quantitatively based on the statistical models.

There is not much work done on uncertainty modeling of uncalibrated reconstruction methods. We

are interested in extending Morris and Kanade’s approach[Morris and Kanade, 1998] and Irani and

Anandan’s approach[Irani and Anandan, 2000] to the uncalibrated Euclidean reconstruction method

for static scenes. There is no doubt the reconstruction results can be improved given correct directional

uncertainty. More importantly, we want to compute the covariance of the recovered camera intrinsic

parameters, the camera motion and the scene structure so that we can evaluate the accuracy of the

self-calibration results.

It is interesting to analyze the reliability of the reconstruction methods for multiple motion scenes.

Assuming that the objects are moving linearly with constant speeds, we propose a unified geometrical

representation incorporating the static scene and the moving objects. This representation enables the

embedding of the motion constraints into the scene structure, that is, the current shape matrix is com-

posed of two spaces: one is the scene structure space and another is the motion space. The methods

make use of the constraints between the camera motion and the current shape matrix to perform the

reconstruction. Experiments show that the reconstruction is reliable in the presence of noise. However,

theoretical analysis is necessary about the sensitivity to noise of the two spaces (the scene space and

the motion space) because each feature point, either static or moving, contributes to the scene space

and only the moving points contribute to the motion space. We applied Morris and Kanade’s approach
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[Morris and Kanade, 1998] to the multiple motion scene orthographic reconstruction method and got

some preliminary results.

SupposeGij is the inverse covariance of thejth feature location at theith image,wij = [uij vij ]
T

denote the tracked feature location, the error function with uncertainty feature models is,

Err =
X
i;j

1

2
(wij �Midj)

T
Gij (wij �Midj) (6.1)

whereMi represents the "rotation" matrix of theith camera for multiple motion scenes composed of

the rotation axesii, ji and the scaled rotation axesiii, iji, dj is thejth "shape" vector composed of the

initial positionsj of the feature and its velocityvj ,
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The maximum likelihood solution for motion and shape is obtained by minimizingErr with respect to

the shape and motion parameters. We perform a bilinear minimization process similar to the algorithm

described in[Morris and Kanade, 1998] with the difference that we are dealing with a6 dimensional

motion and shape space while Morris and Kanade were working on3 dimensions.

It is interesting to analyze the shape uncertainty. Since every feature is represented by a6 � 1

vector, the inverse covariance of each feature is the Hessian ofErr in the shape parameters,
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Focusing on the diagonal blocks ofHj, the upper left corner (denoted as a3� 3 matrixHjs) approxi-

mates the inverse covariance of the initial position of thejth feature and the lower right corner (denoted

as a3� 3 matrixHjv) approximates the inverse covariance of its velocity. We have,

Hjs =
X
i

h
ii ji

i
Gij

"
iTi

jTi

#
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X
i

h
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i
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"
iiTi
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i
Gij
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jTi
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(6.4)
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Therefore, we can approximate the inverse covariance of velocities aso(n2) times the inverse covari-

ance of positions. We can prove geometrically that this relationship is correct.

At momentt, the position of a feature point is represented by a3� 1 vectorst,

st = s0 + tv (6.5)

wheres0 is its initial position andv is its velocity. We have,

�st = �s0 + t�v =
h
1 t

i " �s0

�v

#
(6.6)

therefore,

V(�st) =
h
1 t

i
Vs0v

"
1

t

#
� V(�s0) + t2V(�v) (6.7)

where� represents perturbation andV(�) is its variance. This equation shows that the scale be-

tween the variance of the initial position and that of its velocity iso(n2), which demonstrates that the

relationship between the inverse covariances (Equation (6.4)) is correct.

6.2.3 Sequences with missing data

The reconstruction methods described in this thesis do not work for the image sequences with

missing data, that is, they require that each feature point is visible in each frame. However, practically,

there are many image sequences in which the camera views several distinct parts of the scenes due to

the camera motion and occlusion. It is desirable to incorporate the information of missing data into the

reconstruction framework.

Shum et al.[Shumet al., 1995] proposed an iterative method which minimized the sum of square

differences between the fitted low rank matrix and the elements that are not missing in the data matrix.

This method can always converge to a locally optimal solution, however, it is not guaranteed to find the

global minimum. Urban et al.[Urbanet al., 1999] presented a linear projective reconstruction method

from image sequences with missing data. It requires the images share a common reference view. Jacobs

[Jacobs, 1997] fit a low rank matrix to a matrix with missing elements by combining constraints on the

solution derived from small submatrices of the full matrix. He also presented the application of the

linear fitting method to structure from motion problem. The basic idea is to regard the missing data

estimation and recovery problem as a EM process in order to find maximum likelihood estimates for

unknown values. We are interested in exploring the possibilities of incorporating the linear fitting idea

into the reconstruction methods presented in this thesis.
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6.2.4 Dense shape recovery

The linear and bilinear subspace methods presented in this thesis are feature-based methods. How-

ever, it is important to notice that the subspace constraints used throughout the thesis are not limited to

the finite space composed of feature points. It is the computation and representation cost which prevent

direct application of the methods to dense shape recovery.

We have been working on a system which is a combination of the feature-based uncalibrated re-

construction method and the dense stereo algorithm using level set methods proposed by Faugeras

and Keriven[Faugeras and Keriven, 1996, Faugeras and Keriven, 1997, Faugeras and Keriven, 1998a,

Faugeras and Keriven, 1998b]. Given calibrated image sequences, the level set stereo algorithm recon-

structs the dense shape with the assumptions:

� Camera projections are perspective.

� Object surface is locally smooth.

� Images of the same 3D point share the same intensity.

We are interested in the level set algorithm because its advantages can nicely compensate for the dis-

advantages of the linear and bilinear subspace methods:

� There is no need to determine the correspondences beforehand for the level set algorithm, while

the subspace methods require tracked feature points.

� Visibility and occlusion problems are handled naturally by surface evolution in the level set

algorithm, while the subspace methods cannot deal with the sequences with missing data.

� Dense shape is recovered and textureless part is dealt with by surface smoothing, while the

subspace methods recover sparse feature positions.

The level set algorithm starts with an initial surface which covers (or stays inside of) the real object.

The goal is to move this surface along its normal directions to fit the real object surface by minimizing

the intensity errors between the projections of the same3D point. The Euler-Lagrange equations of the

error functional, which are a set of Partial Differential Equations (PDEs), are solved as a time evolution

process by level set methods.

Faugeras and Keriven’s technical report ([Faugeras and Keriven, 1996]) described details of the

derivation and provided nice2D results. Their conference paper on ECCV’98 ([Faugeras and Keriven,

1998a]) gave3D results while the journal version ([Faugeras and Keriven, 1998b]) presented several

implementation hints. We implemented the level set stereo algorithm and built a combination system

based on the subspace reconstruction methods and the level set algorithm, which works on uncalibrated

views. We summarize the system as follows:
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1. Track feature points (initialized by clicking or automatically selecting feature points on the first

frame) by Lucas-Kanade method[Lucas and Kanade, 1981a];

2. Apply the uncalibrated Euclidean reconstruction method to get the camera calibrations and the

3D locations of the feature points;

3. Initialize one 3D surface (currently we are using semi-sphere) which covers the feature points;

4. Repeat the following steps for each point on the surface (parameterized by(v; w)) and for each

pair of images where this point is visible;

(a) Compute the surface pointS(v; w) and the normal vectorN(v; w);

(b) Compute the mean curvatureH and the curvature gradientdN;

(c) ProjectS(v; w) to the pair of images and get the image coordinatesm1 andm2;

(d) Compute the homographyK from which we can get the affine matrixA;

(e) Integrate over the image patches (we use5� 5 windows) and compute the change rate� of

the normal;

(f) Move the surface:S = S+ �N.

We would like to explore the following questions based on this system:

� Can this algorithm be regarded as a good way to get dense correspondences? How good is it

comparing with Lucas-Kanade method ([Lucas and Kanade, 1981a]) and Irani’s rank constrained

method ([Irani, 1999])?

� How can the idea of this algorithm be extended to the subspace methods in order to get a dense

shape (even with correspondenceless and missing data)?



104 CHAPTER 6. CONCLUSION



Appendix A

Homography-Based Scene Analysis from

Image Sequences

In this appendix we describe a framework to recover scene depth based on image homography and

discuss its application to scene analysis from image sequences. We propose a robust homography algo-

rithm which incorporates contrast/brightness adjustment and robust estimation into image registration.

We then present a camera motion solver to obtain the ego-motion and the real/virtual dominant plane

position from the image homography, and apply the Levenberg-Marquardt method to generate a dense

depth map. We also discuss temporal integration of information over image sequences. Finally we

present the results of applying the homography-based method to motion detection problem.

A.1 Introduction

Approaches handling 3D scene analysis from monocular image sequences can be classified into

two categories: algorithms which use 2D transformation or model fitting, and algorithms which use

3D geometry analysis. The first category works for the situations where the scene is flat or the camera

undergoes pure panning and zooming. The second one deals with the situations where the scene is close

to cameras. Image sequences of our interest are taken from a moving airborne platform where the ego-

motion is complex and the scene is relatively distant but not necessarily flat, therefore, an integration

of 2D and 3D algorithms is more appropriate.

Most approaches of structure from motion were feature-based and could not provide dense depth

maps. Xiong and Shafer presented a flow-based method[Xiong and Shafer, 1995] to recover dense

shape via the Kalman Filter. They assumed that the feature correspondences were given. Baker et al.

[Bakeret al., 1998] proposed a method to deal with multi-layer scenes, however, layer segmentation

remained a problem. Incorporating 3D geometry into 2D constraints was widely used in motion detec-
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tion and segmentation[Shashua and Werman, 1995, Irani and Anandan, 1998]. The plane plus parallax

method contributes a great deal to ego-motion computation[Irani et al., 1997], parallax geometry anal-

ysis [Kumaret al., 1994, Irani and Anandan, 1996, Iraniet al., 1999] and video indexing[Irani et al.,

1998].

Temporal information redundancy of image sequences allows us to use efficient, incremental meth-

ods which perform temporal integration of information for gradual refinement. We first calculate im-

age homography between consecutive images since the camera-to-scene distance is relatively large and

therefore we can use the first-order approximation of the scene as being planar. Section A.2 describes

the three components to achieve robust homography including contrast/brightness adjustment, progres-

sive complexity of transformation and robust estimation. Based on the image homography, a camera

motion solver is presented in Section A.3 to compute the camera ego-motion and the plane equation,

then the Levenberg-Marquardt optimization is used to recover the dense depth map of the scene. Tem-

poral integration is performed over image sequences to refine the scene depth. The results of applying

the homography-based method to motion detection are discussed in Section A.4.

A.2 Robust homography

Monocular image sequences taken from a moving airborne platform usually include lighting and

environmental changes. Contrast and brightness adjustment is therefore very critical in image registra-

tion. Registration by image homography is based on the assumption that either the scene is planar or the

camera is only undergoing rotation and/or zooms. However, many image sequences are taken with no

restriction of the camera motion and the scenes do not have dominant planes. Therefore, it is necessary

to use statistical techniques to obtain robust homography. We incorporate contrast/brightness adjust-

ment and robust estimation into image registration to generatedominant homography for complex

environments.

A.2.1 Image intensity adjustment

Homography defines the relationship between two images by an eight-parameter perspective trans-

formation,

x0 � Px (A.1)

where

x0 =

2
664
u0

v0

1

3
775 P =

2
664
P11 P12 P13

P21 P22 P23

P31 P32 P33

3
775 x =

2
664
u

v

1

3
775 (A.2)
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wherex andx0 are the homogeneous representations of the corresponding image coordinates and�

denotes equality up to a scale. Szeliski and Shum[Szeliski and Shum, 1997] gave a simple solution for

the transformation based on which we design the robust homography algorithm.

Due to the difference of viewpoints and change of lighting, image sequences may have different

intensity levels from frame to frame. We model the change between images as a linear transformation

[Lucas and Kanade, 1981b]:

I0(x) = �I1(x
0) + � (A.3)

where� stands for the contrast change,� for the brightness change,I0 and I1 are the two images.

Combining this with Szeliski and Shum’s homography computation[Szeliski and Shum, 1997], we

obtain the error functionE,

E(D; �; �) =
X
i

h
I0(xi)� �Î1(x

0

i)� �
i2

(A.4)

where Î1 is the warped image ofI1 by the current homographyP which is initialized as the3 � 3

identity matrix,D is the incremental update forP ,

(I +D)P =) P (A.5)

and eachx0i is calculated as,

x0i � (I +D)xi (A.6)

We minimize the error metric using a symmetric positive definite (SPD) solver such as Cholesky de-

composition which is time efficient.

A.2.2 Progressive transformation complexity

The image homography is computed hierarchically on Laplacian image pyramids where estimates

from coarser levels of the pyramids are used to initialize the registration at finer levels[Anandan,

1989, Bergenet al., 1992]. To decrease the likelihood of the minimization process converging into

local minima and to improve the registration speed, we use different transformations with progressive

complexity at different pyramid levels, that is, we use translation (2 parameters) at the coarsest level,

then scaled rotation plus translation (4 parameters), affine transformation (6 parameters), and finally

perspective transformation (8 parameters) at the finest level. The progressive method improves the

reliability of the homography computation.
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A.2.3 Robust estimation

To deal with scenes without dominant planes, we use robust estimation to compute image homog-

raphy. The random sample consensus paradigm (RANSAC)[Fischler and Bolles, 1981] is an early

example of robust estimation. Similar geometric statistics were also explored in motion analysis ap-

proaches[Torr and Murray, 1997, Kanatani, 1997]. We apply the RANSAC scheme to the homography

computation by randomly choosing a small subset of the images to obtain an initial homography solu-

tion where the subset defines a real/virtual plane, and then identifying the outliers which are the points

not lying on the plane. The process is repeated enough times on different subsets and the best solution

is the homography which maximizes the number of points lying on the plane. Points which are not

identified as outliers are used to obtain the dominant homography as the final step.

The three components (image intensity adjustment, progressive transformation complexity and ro-

bust estimation) are used in combination to achieve the robust homography. Figure A.1(a) and (b)

show two aerial images of buildings taken under different lighting conditions. The robust estimation

randomly chooses20 subsets, each of which is equal to5% of the whole image. Each subset generates

a homography. The best homography has the largest support area in the image. This area is used to

compute the final homography. In this example, the support area for the final homography consists of

the tops of several short buildings rather than the real ground because the ground is not actually flat.

White dots in Figure A.1(c) are the outliers of the final homography which correspond to the tops of

the tall buildings (closer to the camera than the dominant plane) and part of the ground (farther than the

dominant plane).

A.3 Recovery of scene depth

A.3.1 Scene depth and homography

Let x andx0 denote the homogeneous coordinates of the corresponding pixels in two images. The

corresponding scene point can be represented by the homogeneous coordinates[u v f w]T in the 3D

coordinate system of the first image, therefore,

p =

�
u

w

v

w

f

w

�T
(A.7)

wherew denotes the depth to be recovered, which is called projective depth of pointp in [Szeliski,

1996]. p0 denotes the same scene point with respect to the second image coordinate system,

p0 = Rp+ T 0 (A.8)
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whereR represents the rotation between the two image coordinate systems andT 0 represents the 3D

translation between the two views expressed in the second image coordinate system.

Assuming that the cameras are intrinsically calibrated except the focal lengths, we use,

V =

2
664
f 0 0

0 f 0

0 0 1

3
775 V 0 =

2
664
f 0 0 0

0 f 0 0

0 0 1

3
775 (A.9)

to represent the perspective projections of the two images and obtain,

x0 � V 0p0

= V 0Rp+ V 0T 0

� V 0RV �1x+ V 0T 0
w

f
(A.10)

Each 3D planar surface can be represented by a1 � 3 vector [a b c], which is the scaled normal

direction whose size denotes the inverse of the distance to the plane from the origin. Ifp is on the

plane, h
a b c

i
p = 1 (A.11)

we get, h
a b c

i
V �1x =

w

f
(A.12)

According to Equations (A.10) and (A.11), we get,

x0 � V 0RV �1x+ V 0T 0
w

f

= V 0RV �1x+ V 0T 0

h
a b c

i
V �1x

= V 0(R+ T 0

h
a b c

i
)V �1x

� Px (A.13)

whereP is the homography between the two images. Therefore,

P � V 0(R+ T 0

h
a b c

i
)V �1 (A.14)

A.3.2 Camera motion solver

The robust image registration gives an accurate estimation of the dominant homography between

two images. The support region (non-outliers of RANSAC output) corresponds to a real or virtual
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planar surface in the scene. Given the camera focal lengths (refer to Section A.4.3 for the recovery of

the unknown focal lengths), the camera motion and the plane equation can be solved directly according

to Equation (A.14). The camera rotation matrixR is expressed by Euler angles which have3 variables,

the camera translationT 0 and the plane distance are up to scale, therefore, they have5 variables in

combination. Since the Euler representation ofR is non-linear, the Levenberg-Marquardt method is

used to solve the above equation. As the number of variables (8 parameters) is small, the optimization

process is rapid and stable.

A.3.3 Scene depth solver

The camera motion solver provides the rotation and the translation between the two image coordi-

nate systems. According to Equation (A.10), we have,

x0 �Mx+ wt (A.15)

whereM = V 0RV �1 andt = 1
f
V 0T 0 are known. The Levenberg-Marquardt method is used here to

minimize:

E(wi) =
X
i

[I0(xi)� �I1(Mxi +wit)� �]2 (A.16)

Assuming that the depths of different pixels are independent, we get the diagonal Hessian matrix which

makes the optimization process more efficient.

The hierarchical framework used in the homography computation is also applied here. To decrease

the possibility of converging to local minima and to improve the efficiency, we use patch-based depth

recovery and local search. The image is divided into small patches. Each patch shares the same depth

while the patch Jacobian is the sum of the Jacobian of each pixel in the patch. When the patch dis-

placement exceeds a certain scale, even the multilevel depth recovery fails. To overcome this problem,

local search is performed at each patch for subpixel displacement. This displacement is used to solve

wi directly and the solution is incorporated into the optimization as initial values.

Figure A.1(d) demonstrates the depth map recovered from the two images in Figure A.1(a) and (b).

The darker parts denote the scenes farther from the camera. The image size is256 � 240. We use the

patch size of2� 2 pixels and the local search area of7� 7 pixels.

A.4 Temporal integration over image sequences

An image sequence stores a large amount of redundant information of scenes as the temporal con-

sistency. We use the information integrated over image sequences to refine the recovered scene depth

and take advantage of the depth map to get a better image registration for motion detection.
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A.4.1 Depth integration

From each pair of consecutive images, we recover the scene depth represented in the first image

coordinate system. It is necessary to propagate this depth representation to the second image coordinate

system so that temporal integration can be performed on the recovered depth.

Symmetric to Equation (A.10), we get,

x � V R�1V 0�1x0 +
w0

f 0
V (�R�1T 0) (A.17)

Take care of the scales in the homogeneous representations ofx andx0,

k0x0 = V 0RV �1x+
w

f
V 0T 0

kx = V R�1V 0�1x0 +
w0

f 0
V (�R�1T 0) (A.18)

We obtain,

k0x0 = V 0RV �1 1

k
(V R�1V 0�1x0 +
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f
V 0T 0

=
1

k
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w0

kf 0
V 0T 0 +

w

f
V 0T 0 (A.19)

that is,

(k0k � 1)x0 = (
wk

f
�
w0

f 0
)V 0T 0 (A.20)

where the3� 1 vectorV 0T 0 is the camera motion which is same for all the pixels. Therefore,

k0k = 1 and w0 =
f 0

f
kw =

f 0w

fk0
(A.21)

In this way we transform the depthw represented in the first image coordinate system tow0 represented

in the second coordinate system. We can then refine this depth by the next pair of images consisting of

the second and the third images. This process is repeated over the entire image sequence.

A.4.2 Plane integration

The first pair of images gives a plane equation from the dominant homography. The plane equation

is actually up to scale with the translation parameters. This is the reason why the same scale must

be maintained for the same plane in the succeeding pairs in order to refine the current depth. Similar

to the depth integration, we need to propagate the plane equation representation from the first image
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coordinate system to the second one for temporal integration.

Let n = [a b c] andn0 = [a0 b0 c0] denote the equations of the same plane represented in the two

image coordinate systems respectively. Since they are the scaled normal directions,

n0
T
= �RnT (A.22)

whereR is the rotation between the two coordinate systems and� is the scale between these two normal

directions which is going to be calculated. For pointp = [x y z]T expressed in the first coordinate

system, we have,

np = 1 and n0(Rp+ T 0) = 1

=) n0Rp� 1 = �n0T 0

=) �np� 1 = ��nRTT 0

=) 1�
1

�
= �nRTT 0

=) � =
1

1 + nRTT 0
(A.23)

Therefore, the scale� and the rotationR propagate the plane position from the first image coordinate

system to the second one (Equation (A.22)) so that we can adjust the scale of the camera motion solver

for the succeeding pair of images to maintain the plane at the same position.

A.4.3 Focal length recovery

Mohr and Triggs[Mohr and Triggs, 1996] summarized the projective reconstruction approaches

and concluded that when the camera intrinsic parameters are constant, three images are enough to

recover the Euclidean shape. Pollefeys et al.[Pollefeyset al., 1999] demonstrated that if the skew

parameter equals zero, even with varying intrinsic parameters three images are sufficient to recover the

Euclidean shape. We assume that all the intrinsic parameters are known except the focal lengths.

Each homography has8 parameters which include the information of the rotation (3 parameters)

and the translation (3 parameters) between the consecutive images. Given the initial values of the first

two focal lengths, we can obtain the dominant plane equation from the camera motion solver. The

plane equation is propagated to the following images and can then be used to solve the focal lengths

from the image homography in the same way as solving the camera motion.

A.4.4 Application to motion detection

In this section we discuss the application of the homography-based method to motion detection.
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Detecting moving objects in image sequences taken from moving cameras is an important task in

scene analysis. Some algorithms work well in 2D situations when the scene can be approximated by

a flat surface and/or when the camera is undergoing only rotations and zooms, and some algorithms

can only apply to the scenes when large depth variations are present. Our goal is to perform motion

detection in aerial image sequences while the cameras experience complex ego-motion and the scenes

can neither be classified as flat surface nor provide significant depth variations.

Figure A.2(a) shows three images of the bridge sequence provided by the Video Surveillance and

Monitoring (VSAM) project of CMU. The sequence was taken from an airplane flying above a bridge.

Two cars were moving on the bridge and one car was moving on the road which was far below the

bridge. We first obtained the image homographies to register the consecutive images in the sequence.

Figure A.2(b) demonstrates the difference images between the consecutive registered images. White

dots indicate the differences which are actually the outliers of the homographies. We can observe

that the ground below the bridge was selected as the dominant plane by the robust estimation process.

We can also see that both motion (the moving cars) and parallax (the bridge which was closer to the

camera than the ground) appear in the difference images. Based on the homographies we recovered the

scene depth map by temporal integration over7 images and used that to register the consecutive images

again. Figure A.2(c) shows the recovered depth. It can be seen that the depth map is improved through

integration. The recovered depth map of the seventh image shows the scene structure including the

bridge in the front and the road along the gully. New difference images (Figure A.2(d)) were generated

between the registered images with depth compensation. They show that the differences due to the

depth are cleaned up and white dots represent the motion only. Cars on the bridge and on the road

below are detected and tracked correctly. However, in the situation where the motion of the object

always satisfies the epipolar constraints, the object is classified as a stationary rigid object.

A.5 Discussion

We present a framework for homography-based depth recovery. We first describe a robust homog-

raphy algorithm which incorporates image contrast/brightness adjustment and robust estimation into

image registration. Based on the homography between two images, the camera motion solver gives the

solution of the ego-motion and the plane equation, and the solution is refined to generate a dense depth

map by the Levenberg-Marquardt method. We also propose the temporal integration of depth recovery

and its application to motion detection.

The encouraging temporal integration results motivate us to expand this work to include spatial

integration as well. Image homography can be used to generate 2D mosaics[Szeliski and Shum, 1997]

and 3D reconstruction from panoramic images always works as the next step[Shumet al., 1998a,

Shumet al., 1998b]. The framework described in this appendix presents a way of building 3D mosaics



114 APPENDIX A. HOMOGRAPHY-BASED SCENE ANALYSIS FROM IMAGE SEQUENCES

directly from image registration, which makes other application tasks, such as image based rendering

and video editing, promising areas to explore. Figure A.3 and Figure A.4 show the 3D mosaics we

build for the building sequence and the bridge sequence. The first one is built from the image sequence

of 21 images and the second one is from14 images.
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(a) (b)

(c) (d)

Figure A.1: Robust homography and scene depth.(a) 1st image, (b) 2nd image of the building
sequence. (c) White dots denote the outliers of the robust estimation including the tops of the tall
buildings and part of the ground. (d) Recovered depth map (darker denotes farther from the camera).
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(a)

(b) (c) (d)

Figure A.2:Application to motion detection: (a) 1st, 7th and 11th images of the bridge sequence. (b)
1st and 7th difference images between the registered images. White dots show the differences which
are actually the outliers of the homographies. (c) 1st and 7th depth images, darker denotes farther.
The depth image is improved through integration. (d) 1st and 7th difference images after the depth
compensation. White dots show the differences which correspond to the moving objects while the
differences due to the depth are cleaned up.
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Figure A.3:3D mosaic for the building sequence.This mosaic is built from21 images.

Figure A.4:3D mosaic for the bridge sequence.This mosaic is built from14 images.
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