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Abstract 

Mobile robot vehicles must control the execution of numerous perception and planning processes to navigate 
successfully in complex environments. In the past, most mobile robot systems have utilized "stop-and-go" control 
schemes that avoid addressing the driving control problem, or have used f m d  control schemes that ab not allow for 
the changing environment and field of view of the vehicle. This paper presents a new architecture for mobile robot 
control called the "Driving Pipeline", that integrates multiple perception and planning processes and provides 
continuous motion with adaptive control. The Driving Pipeline has been implemented and tested on numerous 
versions of two vehicles: the Terregator and the NAVLAB. It has proven to be a flexible and powerfd mechanism 
for building integrated software for mobile robot perception and planning. 
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1. Introduction 
This paper describes a dnving control scheme for a mobile robot that drives the robot vehicle outdoors, avoiding 

obstacles, and keeping the vehicle within a navigable area. As illustrated by Figure 1-1, the driving control scheme 
takes a high-level navigation plan from planning modules and sensor data from sensors, and generates vehicle 
motion commands, performing the necessary computations including perception, environment modeling, path 
planning, and vehicle control. We have developed a scheme for the coordination of these tasks, which we call the 
Driving Pipeline. This paper describes the Driving Pipeline, the various processes that it coordinates, and the 
experiments in which the Driving Pipeline has been successfully used for building mobile robot systems. 

High Level P lan  

Driving Control Scheme 
I 

Percept i on  

Planning 

Environment 
Modeling 

Ve h i c 1 e 
Control 

1 Motion Comand Sensor Data 

Figure 1-1: Driving Control Scheme 

Our objective is to build an autonomous mobile robot working in the real world in real-time, so we adopted the 
following design goals: 

Flexibility: Other systems have been developed that perform a single navigation task well; however, 
these systems are not easily extended to handle a broad range of tasks. 
Continuous Vehicle Motion: Continuous motion is more desirable than stop-and-go motion, because 
it produces higher vehicle speeds and smoother control. 

Adaptive Control: Driving control must be adaptive to the environment and to the internal condition 
of the robot vehicle. For example, the vehicle should be able to drive faster using less sensor data on a 
flat broad ground than on a winding n m w  road. The driving control scheme must adjust its 
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computation and maintain effective coordination among numerous perception and planning processes. 

0 Parallel Execution: For real-time motion, driving control requires a large amount of computation in a 
variety of different procedures. For this end, parallel computing is the most practical solution. In 
addition to small-grain parallelism such as parallel machines for signal data processing, large-grain 
parallelism can be used to coordinate the various tasks involved in driving. Parallel computing can take 
advantage of two kinds of parallelism: parallelism in processing steps and parallelism in data to be 
processed. 

In order to achieve these goals, we developed the Driving Pipeline based on two key ideas: 
0 The Driving Unit: We divide the area in which the vehicle navigates (road, hillside, etc.) into a 

sequence of small areas called driving units so that it can process each driving unit separately. Each 
processing module for perception and planning will operate successively on each driving unit in turn. 
Execution Pipeline: The Driving Pipeline allocates the primitive processing steps along a pipeline so 
each one can work independently, receiving input data from the previous processing step and passing 
data to the following processing step. 

These two key ideas enable the pipelined execution of the primitive processing steps on the sequence of driving 
units, which provides enough throughput to allow continuous vehicle motion. As the vehicle encounters changes in 
the road configuration, it can place driving units with different sizes and intervals by adjusting the sensor view 
frames. execution intervals, and vehicle speed. 

Although several mobile robot systems have been built in the past, they did not address driving control scheme 
very deeply. Stop-and-go motion, although it does incorporate all of the primitive processing steps, deliberately 
avoids the problem of continuous motion control r2.4.7, lo]. Waxman et al. mentioned the necessity for vehicle 
speed adjustment using knowledge, but didn’t show any method for doing so [ll]. Brooks developed a layered 
control structure that drives a vehicle continuously [ll. However, it does not have the ability to adapt the control to 
meet the changing needs of perception. Dickmanns and Zapp develped a system for high-speed navigation on the 
German Autobahn [31. This system tracks simple visual features (e.g., white lines bordering the road) and cannot be 
easily extended to handle more difficult perceptual scenarios. 

’ 

To solve these problems. we have developed the concept of the Driving Pipeline and verified it in two 
experimental mobile robot systems: the Terregator and the NAVLAB. This paper describes the Driving Pipeline, 
including the component concepts of the Driving Unit and the Execution Pipeline, and describes our experiments 
with these vehicles. 

2. Processing Steps and Driving Unit 
We divide the computation necessary for driving control into the following primitive processing steps: 

The Prediction step plans the area that the vehicle will move into next. 

0 The Perception step detects navigable area boundaries and obstacles using sensor data. 
0 The Environment Modeling step makes a description of the vehicle environment and updates the 

The Local Path Planning step plans the vehicle trajectory. 

0 The Vehicle Control step drives the vehicle mechanism. 

estimate of the vehicle position. 

These steps must each execute in turn to process each area of terrain that the vehicle will traverse. 

We developed the concept of the driving unit to indicate the area that each primitive step wiII process once in 
each execution cycle. The vehicle’s entire route is divided into driving units which are passed, one at a time, to each 
of the primitive processing steps. In this way, planning and perception are synchronized to provide driving conuol. 
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2.1. Prediction and the Driving Unit 
The Predxtion step works as the manager of the Driving Pipeline. It receives the high-level plan from the map 

navigation level of the system, predicts the next chunk of area into which the robot vehicle should move, and 
indicates it by defining a new driving unit. Because the driving units are placed in the order that the vehicle travels, 
the sequence of driving units forms the vehicle passage, which outlines the planned path of the vehicle (Figure 2-1). 

a 

Figure 2-1: Sequence of Driving Units 

The parameters for placing the driving units are: 
0 location of the driving unit 

0 type of the driving unit : such as on-road, open-terrain. 

0 size of the driving unit : the width and length of the driving unit 

0 interval of driving units : the distance between the centers of consequtive driving units along the vehicle 
uajec tory. 

The driving unit location is determined based on the high-level plan derived from the navigational map, combined 
with the vehicle’s current position estimate. The type of driving unit can be road or intersection, depending also on 
the map and the vehicle position. The factors that determine the size and the interval area are discussed in the 
following sections. 

2.2. Perception and Driving Unit 
The Perception step scans a driving unit with sensors to determine the key objects within i t  Perception results 

will be used by the Environment Modeling step both for determining navigable areas and for updating the vehicle 
position estimate. 

Two parameters, the driving unit and a scanning position, direct the Perception step. The driving unit, which is 
given by the Prediction step, indicates the area that the Perception should see. Because sensor data must cover the 
driving unit, the sizes of sensor view frames give the upper limit of the driving unit sizes. 

The scanning position is the position at which the Perception step should scan the driving unit. Two factors 
determine the scanning position: the required accuracy of the visual measurement, and the need for specific vehicle 
position information. The required accuracy of the visual measurement is important because of the reduced 
accuracy as distance increases. Thus, the vehicle should be close enough to the driving unit to satisfy the accuracy 
needs of the Environmental Modeling step. The need for specific vehicle position information also constrains the 
scanning position. The vehicle position estimation is updated with both the perceptual results and dead reckoning 



4 

from the control system. In general, the perception result gives a more accurate vehicle position estimate. The 
vehicle position estimated with the perception result will, of course, be a scanning position. Therefore, when the 
mobile robot system needs an accurate vehicle position estimation at a specific position, this position should be the 
scanning position. 

Once the driving unit and the scanning position are determined, the Perception step can calculate the sensor view 
frame relative to the vehicle and aim the sensors. This enables Perception to aim the sensors adaptively. 

23. Environment Modeling and the Driving Unit 

indicates a navigable area from the current vehicle position toward the end of the last scanned driving unit 
By analyzing the perception results, the Environment Modeling step produces an environment description that 

The Environment Modeling step also updates the vehicle position estimation. Because the vehicle is traveling 
continuously and the the scanning positions are discrete, the Modeling step merges the perception result and the 
dead reckoning updates to estimate the vehicle positions between the scanning positions and beyond the last 
scanning position. 

2.4. Local Path Planning and the Driving Unit 

the Modeling step, from the current vehicle position to the end of the last scanned driving unit. 
The Local Path Planning step determines the physical vehicle trajectory within the navigable area determined by 

As shown in Figure 2-2, the local path plan restricts the minimum size of a driving unit, because the driving Unit 
must be large enough to allow the vehicle to manuever and avoid obstacles. 

Ob s t ac 1 e 
Goal of 
P a t h  Plan 

Figure 2-2: Driving Unit Size for Vehicle Maneuvering 

The Driving Pipeline includes two levels of path planning: the driving passage from the Prediction step and the 
trajectory from the Local Path Planning step. If the map database is complete, the driving passage can be planned 
before navigation by consulting the map data. If not, it is determined gradually based on perception results from the 
previous driving units. This is the reason why we include planning the vehicle passage in the the Driving Pipeline 
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level of the system rather than in a higher level. 

2.5. Vehicle Control and the Driving Unit 
The Vehicle Control step drives the physical vehicle. It generates a set of motion commands for the vehicle 

mechanism from the trajectory plan given by the Local Path Planning step. Because the trajectory plan ends at the 
far edge of the last scanned driving unit. the vehicle never moves into an unscanned area. Also, this step adjusts the 
vehicle speed to be optimal unless the Local Path Planning step gives commands on speeds (such as stopping at a 
specific place). The details will be described in Section 3.4. 

3. Continuous Motion, Adaptive Control, and the Driving Pipeline 
The simplest control structure for implementing the Driving Unit concept would be for the vehicle to stop at the 

end of each driving unit, process the ncxt one through each of the primitive steps, then drive across the next driving 
unit and stop, repeating this cycle over and over. This paradigm is known as the "stop-and-go" model of vehicle 
control. and it produces very jerky motion as well as being far below the optimum vehicle speed. To remedy these 
problems, we apply the concept of pipelined execution of the primitive steps to form the Driving Pipeline. 

3.1. Pipelined Execution for Continuous Motion 
In order to drive the robot vehicle continuclusly. the Vehicle Control step should work on one driving unit aftex 

another without stopping the vehicle. To accomplish this, the Prediction step, the Perception step, the Modeling 
step, and the Local Path Planning step must have finished processing the next driving unit before the Vehicle 
Control step finishes the current driving unit. This is the reason that continuous vehicle motion needs a Driving 
Pipeline to process multiple driving units in parallel. 

The Driving Pipeline supports continuous vehicle motion by using pipelined execution. As described in Section 
2. the processing steps are allocated along the pipeline, and the Driving Pipeline executes the processing steps in 
parallel by passing a sequence of the driving units through this pipeline. Figure 3-1 illustrates the pipeline execution 
of the Driving Pipeline as follows: 

1. When the vehicle is on Driving Unit 1, the Prediction step places a new prediction for Driving Unit 4. 

2. When the vehicle is on Driving Unit 2, the Perception step works on Driving Unit 4. At the Same 
time, the Prediction step places the next driving unit, Driving Unit 5. 

3. When the vehicle is on Driving Unit 3, the Modeling step determines the vehicle passage and the 
Local Path Planning step plans the path to the end of Driving Unit 4. In parallel, the Prediction step 
defines Driving Unit 6 and the Perception step works on Driving Unit 5. 

4. When the the Vehicle control step drives the vehicle on Driving Unit 4, the Prediction step is defining 
Driving Unit 7, Perception is working on Driving Unit 6. and the Modeling and the Local Path 
Planning step are working on Driving Unit 5. 

Several key features of the Driving Pipeline make the pipelined execution possible. First is the concept of the 
driving unit, which is critical because it allows the route ahead of the vehicle to be partitioned into individual units 
for processing by the successive steps. Because each driving unit specifies an area on which one processing step 
works, the Driving Pipeline may assign the different processing steps to different areas along the vehicle passage. 

The second is the constant flow of the driving units through the processing steps in a prearranged sequence. Each 
driving unit is created at the Prediction step and is passed through the following steps from one step to the next step 
ending with the Vehicle Control Step, thus forming the data flow through the processing steps. This flow is always 
one way and in the Same direction; no dnving unit skips any processing step or goes back to the previous steps. 



6 

1( b-d I:... I( Predi;tion 

t = t2 I( 
t = t 3  Percept  i o n  

i, - - - - -  

_.---- 

P r e d i c t i o n  

t = t 4  Execution P lanning  Percept ion 

Figure 3-1: Pipelined Execution of the Driving Pipeline 

Therefore, the order of execution of the primitive processing steps can be "hard-wired into the system without the 
need for symbolic reasoning to decide what to do next. 

The third necessary feature is the independent computation of the processing steps. The computation for driving 
control is divided into processing steps in such a way that each processing step performs a different function. Each 
step requires as input only the outputs of the previous steps. Therefore, each step can only work on a driving unit 
after the previous steps have completed their processing on that driving unit. 

The fourth feature is the order of the driving units themselves. Since the driving units are created as the vehicle 
travels and are placed along the vehicle passage, the order of their generation is always the same as the order in 
which they are processed by the processing steps. Therefore, the Driving Pipeline can feed the driving units to the 
processing steps continuously. 

Finally, the ability of the sensors to look ahead of the vehicle more than one driving unit's distance is necessary. 
This permits Perception to be working at a distance beyond the next driving unit. This ultimately limits the distance 
over which pipelining can be effective. 

The existence of all of these features allows pipelined execution in both of the necessary aspects, the processing 
and the data. The name "Driving Pipeline" comes from the pipeline of processing steps, the sequence of driving 
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units, and the pipelined execution. The following sections provide a more detailed examination of the pipelined 
execution. 

3.2. Execution Intervals of the Driving Pipeline 
The "execution interval" of the driving control system refers to how often the mobile robot system executes the 

cycle of the primitive processing steps. Adjusting the execution interval to be optimal is essential for an 
autonomous mobile robot system, because the necessary execution intervals depend on driving conditions such as 
the width, flatness, and curvature of the road. Execution intervals that are too long may cause unstable vehicle 
motion, because the vehicle position and the path plan are updated only once in each interval. On the other hand, 
execution intervals that are too short consume unnecessary computation and slow down the vehicle speed because 
the amount of computation in each interval is roughly constant. 

To provide the optimal vehicle speed control, the driving control scheme needs a way to compute and change the 
execution intervals. In the Driving Pipeline the sizes of the consecutive driving units determine the execution 
intervals, because each execution cycle works on one driving unit and the number of driving units per unit trajectory 
length is equal of the number of the execution cycles. Therefore, the Driving Pipeline is able to adjust the execution 
intervals by changing the driving unit intervals. 

If the vehicle could be controlled to exactly follow the planned path, the driving units could be made as long as 
the range of the effective field of view of the sensors. Unfortunately, the actual vehicle trajectory may differ from 
the local path plan because of many reasons, particularly the error in the control mechanism and the inaccuracy of 
dead reckoning. The cumulative error in the control of vehicle motion and the allowed error tolerance in the vehicle 
position are the factors used to determine the driving unit intervals. 

The error in the vehicle position and direction, which grows as the vehicle travels, must be canceled by the 
execution of the driving pipeline before it surpasses an error tolerance. Therefore, if the accumulated error increases 
very rapidly, the intervals of the driving pipeline must be shorter. If the accumulated error increases slowly, they 
can be longer. For example. because errors in the vehicle direction can produce a larger accumulated error in the 
vehicle position than errors in the vehicle displacement, the interval must be shorter in turning than in moving 
straight. 

As mentioned in Section 2.4, vehicle maneuverability reshicts the minimum size of a driving unit. If a driving 
unit interval is shorter than a driving unit length, adjacent driving units overlap. 

33. Parallelism in the Driving Pipeline 
Although the pipelined execution allows the processing steps to work in parallel, it does not ensure a high degree 

of parailelism. Figure 3-2 illustrates an extreme example in which parallel execution is not well maintained. In this 
figure. the vehicle speed is too high. This brings the vehicle to the end of the local path plan before the next plan is 
produced by the Local Path Planning step. The vehicle then has to stop at the end of the current driving unit to wait 
for the new path plan to be completed. In this example, the hediction step, the Perception step, the Environment 
Modeling step, and the Local Path Plan step must work serially without any parallelism. In this section and the next 
we discuss the paralIeIism in the Driving Pipeline and a mechanism for keeping it high. This section discusses 
parallel execution among the Prediction, Perception, Environment Modeling, and Local Path Planning steps. The 
next section discusses parallelism between these steps and the Vehicle Control step. 

The Prediction. Perception, Environment Modeling, and Local Path Planning steps generally work on each 
driving unit sequentially, with their execution times overlapping each other on consecutive driving units due io the 
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Figure 3-2: Badly-Balanced Execution of the Driving Pipeline 

execution pipeline. However. the parallelism among these steps depends on whether or not there exists a 
sufficiently rich map database. When such a map exists. we call this the map navigation mode; if not, the vehicle 
drives in the map building mode. The timing of the start of pipelined execution varies in these these two modes. In 
the map navigation mode, the map database can offer enough information so that the Prediction step is able to place 
a new driving unit without using the perception results from the preceding driving unit, relying instead on the map 
database and the perception results from earlier driving units. Therefore, the Rediction step can work on the next 
driving unit before the Perception and the Environment Modeling steps finish the current driving unit. This 
produces the execution pattern illustrated in Figure 3-3. In this case, since all processing steps are ready to work on 
the next driving unit just after finishing the current one, complete pipelined execution is achieved. 

In the map building mode. the map database does not have enough information about the unscanned areas, so the 
Prediction step needs the perception result on the current driving unit in order to place the next driving unit In this 
case, the Prediction step has to wait until the Perception step and the Environment Modeling step finish the current 
driving unit The resulting execution pattern is illustrated in Figure 3-4. Consecutive execution cycles overlap less 
in the map building mode than the map navigation mode. 

The difference between the map navigation and map building modes explains one reason that a rich map database 
is able to produce the higher vehicle speed than the poor map database. In addition, a rich map database allows 
perception to potentially be faster and more accurate, thus reducing the processing time and/or allowing larger 
driving units. 

In both execution modes, the scanning position is a key factor in maintaining these parallel execution patterns 
bccause it regulates the execution patterns. The Environment Modeling step, the Local Path Plan step, and the 
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Figure 3-3: Parallel Execution Pattern in the Map Navigation Mode 

Vehicle Control step start just after the previous step finishes. The Prediction step starts just after the Perception 
step finishes in the map building mode, and may start any time in the map navigation mode. So, all of these steps 
can start at a time independent of the actual vehicle progress. On the other hand, the Perception step can start 
working only when the vehicle reaches the desired scanning position. The scanning positions that produce the 
highest parallelism, illustrated in Figures 3-3 and 3-4. are given by the following equation: 

scanning distance = - TP . Li 
TC where 

Li = driving unit interval 
Tp = total job time of Perception, Environment Modeling and Path Planning 
Tc = cycle time of Driving Pipeline 

In this equation, the "scanning distance" is the distance from the scanning position ta the driving unit to be 
scanned. The "cycle time" is the time between consecutive execution cycles. which is the time taken for the vehicle 
to travel one driving unit. In the map navigation mode, the cycle time is determined as: 

(2) T, = T, 

whereas in the map building mode. the cycle time is: 
T, = Max ( T, , T, 1 (3) 

where 
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Figure 3-4 Parallel Execution Pattern in the Map Building Mode 

T,,, =job time of the most time consuming step 
T, = total job time of Prediction, Perception and Environment Modeling 

In the map navigation mode, if the most time consuming processing step works in the whole cycle time, the 
execution pattern will be the most condensed and will exhibit the highest degree of parallelism. In this execution 
pattern, the Perception. Environment Modeling, and Local Path Planning steps must work after the vehicle passes 
the scanning position. That is the derivation of the above equation for the map navigation mode. In the map 
building mode, the processing for the sequence of the Prediction, Perception, and Modeling steps can not overlap 
with the processing of this sequence for consecutive driving units. Therefore, this execution sequence behaves like 
one individual processing step. That is the reason for the above equation for the map building mode. 

3.4. Vehicle Speed and Driving Pipeline 
The Vehicle Control step must take into account the execution time of all the processing steps in order to achieve 

the optimum vehicle speed. Too high a vehicle speed requires the vehicle to stop at the end of each driving unit, as 
described in the previous section. In this section. we discuss the highest possible vehicle speed and the method to 
achieve it. 

Because the distance that the vehicle moves in one cycle time is equals to the interval of the driving unit, the 
highest vehicle speed is described by the following equation: 

Li 
Tc 

vehicle speed < - (4) 
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n e  maximu vehicle speed is less than the driving unit interval divided by the cycle time because distance must 
be allocated for decelerating the vehicle in the event that some stage of the pipeline requires more time than 
expected. 

If the scanning position is adjusted as described in Section 3.3, the cycle time is given by Equations 2 and 3. 
Then the above equation can be rewritten as follows: 

in the map navigation mode. 

Li vehicle speed = - 
Trn 

and in the map building mode, 

These equations are based on the highest degree of parallelism among the processing steps and therefore give the 
highest achievable vehicle speed. 

The vehicle speeds given by these equations are possible only when the scanning position is optimally adjusted. 
The scanning position, however, may be determined by other factors as described in Section 2.2. For example, the 
scanning distance may be shorter than the distance given by Equation 1 because the Perception step requires a closer 
distance for more accurate measurement. If the scanning distance is shorter than the distance given by Equation 1. 
the speed of the Driving Pipeline is given by the following equation: 

Ds 
TP 

vehicle speed = - 

where 
D, = scanning distance 

(7) 

These equations (Equation 4 - 7) describing the vehicle speeds explain the following vehicle behavior patterns. 
which demonstrate the adaptive control capabilities of the Driving Pipeline: 

0 The most time consuming processing step limits the highest vehicle speed. The Driving Pipeline is 
capable of adjusting the vehicle speed to be as high as the processing times will allow. 

Longer driving unit intervals produce a higher vehicle speed. If the robot vehicle drives in easy driving 
conditions such as a broad, flat, smaight road, then the Prediction step may define driving units with 
large intervals. The vehicle speed will then be adjusted to be higher. 

0 Likewise, shorter scanning distances produces a slower vehicle speed. If the Perception step has to look 
at objects from a closer distance, the vehicle slows down. This behavior is similar to a human driver 
looking around carefully. 

These behaviors need not be explicitly programmed into the system. They arise ~ tu ra l l y  as a result of the operation 
of the Driving Pipeline and the calculation of each driving unit interval based on the geometry of the road, the 
vehicle, and the sensor field of view. 

Although Equations 4- 7 assume that each processing step always requires a constant execution time, the actual 
requirements may vary from time to time and place to place. In such a case, the Driving Pipeline calculates the 
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vehicle speed with the following equation, which is a modified version of Equation 7: 

D, 

Tr 
vehicle speed = - 

D ,  = remaining distance of local path plan 
T, = remaining job rime 

In this equation, D, is the distance from the current vehicle position to the end of the path plan in the current 
driving unit, and T, is an estimate of the total remaining execution time for the Prediction, Perception, Modeling, 
and Local Path Planning steps working on the nexr driving unit. The initial value of T, is a predicted execution time 
for these processing steps. Whenever these processing steps finish processing a driving unit, T, and Dr are 
recalculated and the vehicle specd is updated. This allows the vehicle speed to adaptively respond to the changing 
requirements for its own computation time. 

4. The Driving Pipeline in Action: Experimental Results 

4.1. Implementing the Driving Pipeline 
We have developed and tested the Driving Pipeline through building several experimental mobile robot systems, 

called Sidewalk System 2, Sidewalk System 3. and the Park System, [5]  [6] [9]. The Sidewalk 2 and the Sidewalk 3 
systems drive an experimental vehicle called the Terregator on the network of sidewalks on the campus of Carnegie 
Mellon University. The Park system drives the NAVLAB, a computer-controlled van, on a road in Schenley Park 
adjacent to Carnegie Mellon. Figure 4-1 shows these vehicles, which are both equipped with color TV Cameras and 
a laser range scanner made by ERIM. While the Terregator is linked to several SUN-3 workstations in the 
laboratory with radio communication and cables, the NAVLAB carries four SUN-3s on board. In the remainder of 
this chapter, we will describe primarily Sidewalk System 3 because it demonstrates the Driving Pipeline most 
clearly. 

Figure 4-2 shows the module structure of Sidewalk System 3. The processing steps are implemented as 
individual programs and are linked through the CODGER distributed database, a system-building tool written at 
Carnegie Mellon to support large-grain parallelism for mobile robot navigation [8]. CODGER makes it relatively 
easy to build the Driving Pipeline because of its capability to support parallel processing among multiple computers. 
All of the systems mentioned above use CODGER in this way. 

4.2. Processing Steps and Driving Units 
Figure 4-3 shows a diagram of the primitive processing steps working on one driving unit in approaching an 

intersection. Figure 4-3(a) shows the driving unit placed by the Prediction step. In Figure 4-3(b), the trapezoid is 
the sensor view frame aimed by the Perception step to cover the driving unit. Figure 4-3(c) shows the vehicle 
position estimated by the Modeling step. The Vehicle Control step drove the vehicle as illustrated in Figure 4-3(d). 
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Figure 4-1: Terregator and Navlab 

4.3. Pipeline Execution and Parallelism 
Figure 4 4  is a recorded timing diagram of the processing steps. The bars in the figure indicate the time during 

which each step is processing a driving unit. The driving unit number appears next to the bar. Because Sidewalk 
System 3 has a complete pre-stored map database, the Prediction step does not need to wait for the Perception step 
for placing a new driving unit and the consecutive pipeline executions overlap completely. This is the "map 
navigation" mode described above. Because the scanning position and the vehicle speed were adjusted as described 
in Section 3.3, the most time consuming step (Perception) was the limiting factor in the cycle time of the system. 

4.4. Execution Intervals 
Because turning at intersections requires more accurate vehicle position estimation than following sidewalks, and 

because the Terregator vehicle makes larger dead reckoning errors in turning than in straight motion, the Prediction 
step USCS a shorter driving unit interval while the vehicle is turning. Figure 4-5 shows the driving unit intervals 
around the intersection and the straight sidewalks. On the other hand, Sidewalk System 2 used constant driving unit 
intervals and had unstable turning bccause of the large dead reckoning error. Sidewalk System 3, however, did not 
have such unstable motion thanks to the adjustment of the dnving unit intervals. 
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4.5. Vehicle Speed 
Figure 4-6 shows a recorded vehicle speed that was adjusted according to Equation 8. The vehicle speed was 

recalculated whenever the processing steps were done. The vehicle slowed down around the intersection where the 
driving unit intervals were shorter and went back to a high speed on the straight road where the driving unit intervals 
were longer. Because of the hardware limitations of the Terregator vehicle, the vehicle speed could not be changed 
frequently; this is the reason that the recorded vehicle speed is not smooth. 
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Figure 4-3: Processing Steps 

4.6. Sensor Aiming 
Our experiments on the Carnegie Mellon campus test site showed the necessity for adaptive sensor aiming. The 

fixed sensor view frame created a problem in turning at the intersections, because the vehicle had to turn through a 
large angle and the fixed sensor view frame could. not cover the destination sidewalk while the vehicle was turning. 
To remedy this problem, the sensor ' :w h m e  has to be aimed so that it covers the vehicle's destination. In 
addition, the scanning distance must be different in following straight sidewalks and in turning through 
intersections. In turning through an intersection, the vehicle position estimation must be accurate in both the 
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Figure 4-4: Timing Diagram of the Processing Steps 

vehicle's heading direction and the direction perpendicular to the vehicle's heading. Therefore, the scanning 
distance must be shon During straight travel, however, the vehicle position estimation along the vehicle's heading 
dircction does not need to be so accurate and the scanning distance may be longer. 

Figure 4-7 shows the Sensor view frames and the scanning positions. The scanning positions were calculated 
using Equation 1 and the local path plan that was produced in the previous execution cycle. The scanning distance 
varied at the intersection and on the sidewalks. 

To aim the TV camera into the predicted driving units. pan and tilt mechanisms are needed. This can present a 
very challenging timing problem if mechanical pan and tilt mechanisms are used. To avoid this, the Terregator 
vehicle was quipped with two cameras and switched between them instead of using a mechanical pan. The TV 
cameras had wide angle lenses and covered broad areas. The Perception step processed the desired rows of the 
image in place of a mechanical tilt. This "software pan/tilt" is very fast and simple to program, as opposed to a 
mechanical pan/tilt which is relatively slow and difficult to control optimally. However, the software pan/tilt 
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requires duplicated sensor hardware. 

5. Conclusion 
This paper has described the Driving Pipeline, a driving control scheme to control a robot vehicle maneuvering in 

the physical world. By organizing and managing the primitive processing steps, the Driving Pipeline provides the 
following capabilities: 

Continuous Vehicle Motion: The Driving Pipeline drives the vehicle continuously by adjusting the 
vehicle speed and executing the Vehicle Control step in parallel with other processing steps. 

*Parallel Execution: The Driving Pipeline executes the primitive processing steps in parallel and 
maintains a high degree of parallelism. Thanks to the pipelined execution, the Driving Pipeline 
achieves the highest possible vehicle speed. 

Adaptive Control: The Driving Pipeline is capable of adapting sensor aiming, vehicle speed, and 
execution intervals to the driving conditions. 

These capabilities of the Driving Pipeline are ma& possible by the two key ideas of the Driving Pipeline, the 
driving unit and the pipelined execution of the processing steps. By using driving units, the data to be processed is 
divided into a sequence of driving units that can be processed separately by the Processing steps. The steps 
themselves are designed to work in a fixed order on each driving unit. Because of the pipelined execution, the 
computation for these processing steps can be overlapped on successive driving units. These pipelines in both the 
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Figure 4-6: Control of the Vehicle Speed 

processing steps and the data enable the pipelined execution, giving rise to parallel computation and continuous 
vehicle motion. The driving units also enable adaptive control. By adjusting the location, size, and interval of each 
driving unit, the Driving Pipeline adapts the processing to the driving situation. The pipeline execution thus enables 
the adaptive control in the continuous vehicle motion. 

The Driving Pipeline clearly describes the driving control scheme in four aspects: primitive processing steps, 
organization of these processing steps, execution scheduling, and control parameters. In the case of stopand-go 
motion, the last three aspects of the driving control scheme are implicit and do not need to be well defined. 
However, to achieve our goals -- continuous motion, parallel execution, and adaptive control -- we have developed 
the Driving Pipeline based on an explicit understanding of all of these aspects. This is why the Driving Pipeline is 
capable of controlling both geometry, such as the sensor view frames, and time, such as execution timing. Adjusting 
the vehicle speeds demonstrates these capabilities of the Driving Pipeline. 

Although the Driving Pipeline supports continuous vehicle motion, the primitive processkg steps involved in the 
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Figure 4-7: Sensor View Frames 

Driving Pipeline employ only static algorithms. The Perception step, for example, analyzes the sensor data without 
taking into account the vehicle motion. Similarly, the Local Path Planning step determines the trajectory path plan 
as if the vehicle were not moving while the Local Path Planning step is processing. By introducing the driving units, 
the Driving Pipeline converts dynamic problems into a set of static problems for each driving unit. By employing 
the pipelined execution, the Driving Pipeline overlaps the static processing steps to perform dynamic vehicle 
motion. This feature of the Driving Pipeline gives two advantages. First, the Driving Pipeline makes it easier to 
build mobile robot systems by integrating relatively well developed processing algorithms for perception and path 
planning. Second. the Driving Pipeline provides a test bed for studying these primitive algorithms using real mobile 
robot systems. 

We envision two major directions for future research in this topic. The first is the further development of the 
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Driving Pipeline. This includes the following topics: 
Multiple sensor view frames in one driving unit. When the Perception uses multiple sensors and 
their view frame sizes are largely different, the sensor with smaller view frame may need to scan more 
than twice on one driving unit. In this situation, we may have to expand the concept of the driving unit. 

Uncertainty in the map database. In Section 3.3, we have discussed how a richer map database can 
produce higher parallelism among the processing steps and the length of the driving unit intervals. It 
seems plausible for humans that the greater accuracy in the map database, such as more accurate road 
shapes. allows a faster vehicle speed. We would like to build the theory and demonstration to account 
for this intuition. 

Cross-country travel. The Same concept of the Driving Pipeline can be used for cross-country travel, 
with a different version of the Prediction, Perception, and Environment Modeling steps. By selecting 
the appropriate versions of these processing algorithms for each driving unit, crosscounny travel may 
be incorporated with road-following travel in a single Driving Pipeline. producing a system that can 
combine on-road and off-road navigation. Cross-country travel may include greater uncertainty in 
vehicle motion control and more occlusions in the sensor data, thus reducing the vehicle speed through 
the same natural mechanisms described above for roadway travel. 

The other major topic for further research is the development of a dynamic driving control scheme. The faster 
vehicle speed and the quicker vehicle response may need dynamic algorithms for perception, planning, and vehicle 
control. For this end, we need new approaches both in the algorithms for the individual processing steps and the 
scheme to organize and coordinate them. 
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