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OVERVIEW 
 
Two groups were contracted to experiment with coding of FACS (Ekman & Friesen, 1978) action 
units on a common database.  One group is ours at CMU and the University of Pittsburgh, and the 
other is at UCSD. The database is from Frank and Ekman (1997) who video-recorded an 
interrogation in which subjects lied or told the truth about a mock crime. Subjects were ethnically 
diverse, action units occurred during speech, and out-of-plane motion and occlusion from head 
motion and glasses were common. The video data were originally collected to answer substantive 
questions in psychology, and represent a substantial challenge to automated AU recognition. This 
report describes the results of automated facial expression analysis by the CMU/Pittsburgh group. 
An interdisciplinary team of consultants, who have combined expertise in computer vision and in 
facial analysis, will compare the results of this report with those in a separate report submitted by 
the UCSD group. 
 
BACKGROUND 
 
People communicate not only by speech and written language but also by their tone of voice, the 
way they stand or move and their patterns of gaze.  These modes of nonverbal behavior 
communicate emotion and often are referred to as paralinguistic because they modify, substitute 
for, and improve the understanding of spoken communication. Of the various modes of nonverbal 
communication, the human face is especially important.  Facial expressions can indicate emotion 
and pain, regulate social behavior, and reveal brain function. A large literature in psychology 
(Ekman & Rosenberg, 1997), comparative biology (Darwin, 1872/1998; Fridlund, 1994; Schmidt 
& Cohn, in press), rehabilitative medicine (VanSwearingen & Cohn et al., 1998, 1999), and 
neuroscience (Rinn, 1984) informs the interpretation of facial expression. Available methods for 
coding facial expression, however, are human-observer dependent, labor intensive, and difficult to 
standardize. These problems tend to limit the use of facial expression analysis in clinical and 
forensic settings and in human-computer interaction where they are needed.  To make optimal use 
of the information afforded by facial expression, reliable, valid and efficient methods of 
measurement are critical.   
 
Within the past decade, there has been significant effort toward analysis of human facial 
expression using computer vision.  Several such systems (e.g., Essa & Pentland, 1994, 1997; 
Padgett, Cottrell, & Adolphs, 1996; Yacoob & Davis, 1994) have recognized under controlled 
conditions a small set of emotion-specified expressions, such as joy and anger. This focus on 
emotion-specified expressions follows from the work of Darwin (1872) and more recently 
Ekman (1993) and Izard (Izard et al.,1983) who proposed that basic emotions have 
corresponding prototypic facial expressions.  In everyday life, however, such prototypic 
expressions occur relatively infrequently.  Instead, emotion more often is communicated by 
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changes in one or two discrete features, such as tightening the lips in anger or obliquely 
lowering the lip corners in sadness (Gosselin et al., 1995).  Change in isolated features, 
especially in the area of the brows or eyelids, is typical of paralinguistic displays (e.g., Eibl-
Eibesfeldt, 1989). Subtle changes in facial expression are associated with negative emotion and 
intention in high-stakes contexts (Ekman, 2001).  To capture the full range of facial expression, 
detection, tracking, and classification of fine-grained changes in facial features are needed. 
 
The anatomically based Facial Action Coding System (FACS: Ekman & Friesen, 1978a) currently 
is the most comprehensive manual method of analyzing facial displays. FACS consists of 44 
action units.  Thirty are anatomically related to contraction of specific facial muscles while the 
anatomic basis of another 14 is unspecified. Using FACS and viewing videotaped facial behavior 
in slow motion, coders can manually code all possible facial displays.  Although Ekman and 
Friesen (1978) proposed that specific combinations of FACS action units represent prototypic 
expressions of emotion, it should be noted that emotion expressions are not part of FACS; they 
are coded in separate systems, such as EMFACS (Friesen & Ekman, 1983) or MAX (Izard et al., 
1983).  FACS itself is purely descriptive, uses no emotion or other inferential labels, and provides 
the necessary ground truth with which to describe facial expression.   
 
Previous work by the UCSD and CMU/Pittsburgh groups.  In previous work, the 
CMU/Pittsburgh and UCSD groups have achieved some success in recognizing FACS action 
units under controlled conditions. The CMU group has demonstrated automatic recognition of 18 
action units using a feature-based approach whether they occur alone or in as many as 30 
combinations (Cohn, Zlochower, Lien, & Kanade, 1999; Tian, Kanade, & Cohn, 2000, 2001). 
The UCSD group using a computational neuroscience approach has recognized 12 action units 
(Bartlett, Hager, Ekman, and Sejnowski, 1999; Donato et al., 1999). A limitation of this work, 
and indeed of almost all research to date in automated facial expression analysis (cf. Schmidt & 
Cohn, 2001), is that it is limited to deliberate facial expressions recorded under controlled 
conditions that omit significant head motion and other factors that complicate analysis. 
 
Automatic recognition of facial action units in spontaneously occurring facial behavior presents 
several technical challenges. These include rigid head motion, non-frontal pose, occlusion from 
head motion, glasses, and gestures, talking, low intensity action units, and rapid facial motion 
(Kanade, Cohn, & Tian, 2000). These challenges are well represented in the database used in the 
research reported here. This is the first research effort to attempt automated action unit 
recognition in naturally occurring (spontaneous) facial behavior. 
 
To accomplish this goal, the CMU/Pittsburgh group has developed a third version of its 
Automated Face Analysis.  The CMU/Pittsburgh system automatically recognizes action units in 
the context of non-frontal pose, moderate out-of-plane head motion, and occlusion.  The system 
recovers 3D motion parameters, stabilizes facial regions, extracts motion and appearance 
information, and recognizes action units in spontaneous facial behavior.   Manual processing is 
limited to marking seven feature points in the initial image of the stabilized image sequence.  All 
other processing is automatic. In initial tests, reported below, the system recognized blinks (AU 
45) with 100% accuracy (kappa = 1).  Action units in the brow region were recognized with 57% 
accuracy (kappa = .33). Excluding brow-down, for which training data were limited to only 13 
sequences, recognition accuracy for brow motion increased to 80% (kappa = .58, p < .0001).   
 
DATABASE 
 
Image data were from a study of deception by Frank & Ekman (1997). The subjects were 20 
young adult men. Seven were Euro-American, 2 African-American, and 1 Asian. Two subjects 
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wore glasses.  Subjects either lied or told the truth about whether they had stolen a large sum of 
money.  Prior to stealing or not stealing the money, they were informed that they could earn as 
much as $50 if successful in perpetuating the deception and could anticipate relatively severe 
punishment if they failed.  Twelve subjects stole $50 and 8 told the truth. By providing strong 
rewards and punishments, the manipulation afforded ecological validity for deception and for 
truth-telling conditions.   
 
Subjects were video recorded using a single S-Video camera.  Head orientation to the camera 
was oblique and out-of-plane head motion was common. The tapes were digitized into 640x480 
pixel arrays with 16-bit color resolution. A certified FACS coder at Rutgers University under the 
supervision of Dr. Frank manually FACS-coded start and stop times for all action units in 1 
minute of facial behavior in the first 10 subjects; brow motion was coded in an additional 7 
subjects.  Certified FACS coders from the CMU/Pittsburgh group confirmed all coding.       
 
Blink.  Measurement of blink (AU 45 in FACS) is important in several fields, including 
neurology, physiology, and psychology.  Control of blinking is distributed among cranial nerves 
3 and 7, higher motor pathways, and facial muscles levator palpebrae superioris, orbicularis 
oculi, and pars palpebralis.  Blink rate varies with physiological and emotional arousal, 
dopaminergic activity and personality (Blin et al., 1990; Depue et al., 1994), cognitive effort 
(Holland & Tarlow, 1972; Karson, 1988), and incentive motivation (Meyer et al., 1953).  Blink 
rate is decreased in Parkinson’s disease (Karson et al., 1984) and increased in schizophrenia 
(e.g., Karson, 1988).  Increased blink rate is an indicator of deception (Ekman, 2001).  We 
included for analysis all instances of blink (AU 45) for which the coders agreed; 95% of blinks 
(AU 45) met this criterion and were included in the analyses. We also included an equal number 
of non-blink sequences of equal duration for comparison. 
 
We classified separately the few instances of multiple blinks that were present in the database.  
Multiple blink  (eyelid “flutter”) is defined as two or more rapidly repeating blinks (AU 45), 
which may be separated by AU 42 (eyelids appear as a ‘slit,’ or nearly closed) rather than full 
eyelid opening.  
 
Brow motion.  Brow motion is important in emotion and paralinguistic communication.  The 
combination AU 1+2 (frontalis), which raises both the inner and outer portions of the brow, is a 
component of the prototypic expressions of surprise (Ekman, 1984, 1993), and is common in 
paralinguistic communication (e.g., brow flash: Eibl-Eibesfeldt, 1989).  AU 4 (corrugator 
supercilii), which draws the brows medially and down, is an index of negative affect (Cacioppo 
et al., 1986; Ekman, 1984) and concentration (Scherer, 1992).  AU 9 (levator labii superioris 
alaeque nasi) is a component of disgust expressions. AU 9 wrinkles the nasal root and lowers 
the medial portion of the brows when moderate to strong. Action units were aggregated into 
brow-up (AU 1+2) and brow-down (AU 4 or AU 9) because there were too few sequences in 
which the component action units occurred singly. The Pittsburgh and Rutgers coders agreed on 
77% of the brow-up but only 52% of the brow-down.  While analysis was limited to sequences 
on which coders were in agreement, the low reliability and small number and heterogeneity of 
exemplars of brow-down were limiting factors.    
 
CMU/PITTSBURGH AUTOMATED FACE ANALYSIS V.3 
 
Figure 1 depicts an overview of the CMU/PITTSBURGH face analysis system.  A digitized image 
sequence is input to the system. The face region is delimited in the initial frame either manually or 
using a face detector (Rowley, Baluja, & Kanade, 1998).  Head motion (6 DOF) is recovered 
automatically.  Using the recovered motion parameters, the face region is stabilized. In the only 
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necessary manual step, a few feature points are marked around the subject’s right eye (image left) 
and brow in the first image of the stabilized image sequence. Eye and brow features are extracted 
in the image sequence, and action units and action unit combinations then are recognized.  Figure 2 
shows the graphical user interface we developed to implement this system. 

 
Automated Recovery of 3D Head Motion and Stabilization  
 
Expressive changes in the face often occur together with head movement.  Raised brows, for 
instance, often occur as the head pitches back (Camras et al., 1996), although the opposite action 

or head turns to the 
side also can be 
observed. Expression 
may vary too as a 
result of individual 
differences in facial 
proportions (Farkas & 
Munro, 1987).   
Completely removing 
the effects of head 
movement from the 
input image sequence 
would be very 
difficult.  It may even 
require a complicated 
transformation that is 
dependent on the 
knowledge of the 
exact shape of the 
individual face.  
When out-of-plane 
rotation of the head is 
negligible or absent 
(Bartlett et al., 1999; 
Cohn et al., 1999), an 
affine or perspective 
transformation is 
adequate to align 

images so that face position, size, and orientation are kept relatively constant across subjects (Cohn 
et al., 1999; Lien et al., 2000).  For significant out-of-plane motion, which is common in naturally 
occurring facial behavior, modeling and tracking of the head in 3D becomes necessary. We seek a 
model that is computationally fast, automatic, and contains the smallest number of parameters 
necessary for robust 3D head tracking, motion recovery, and image warping of the face region. 
Our goal is to stabilize the face image so that the effects of rigid motion do not interfere with 
feature extraction or action unit recognition. 
 
Initial processing includes face detection, which could be performed automatically (Rowley et 
al., 1998), histogram matching, for global lighting changes, and 2D color-blob face tracking.  
The latter provides preliminary estimates of 2D head location in the new image; from these 
initial estimates, the horizontal and vertical translations can be computed prior to 3D motion 
recovery.  In the absence of knowing the physical size of the face or the distance between face 
and camera, the head model and its initial location will be up to a scale. 3D head pose is 

 
Figure 1.  Overview, CMU/Pittsburgh Automated Face Analysis v.3.  



CMU Final Report: FACS Coding Algorithms  

Page 5 of 17 

estimated automatically.  Experimental tests suggest that the system is insensitive to small 
variations in the initial fit of the head model (Xiao, Kanade, & Cohn, Submitted).  

 
While tracking, the templates change dynamically.  Once head pose is estimated in a new frame, 
the region facing the camera is extracted as the new template. Robust statistics are applied to 
remove outliers from the templates. A pixel (x, y) within this region will be removed from the 
new template as an outlier if,  

RctyxfItyxfI σµµ >−+
∧

|)),;,(()1),;,((|  
 

where c is a constant that represents the strictness of judgment on outliers. This procedure 
contributes to system robust to occlusion and non-rigid motion. 
 
Because head poses are recovered using dynamic templates and the pose estimated for the 
current frame is used in estimating the pose in the next frame, errors would accumulate unless 
otherwise prevented. To solve this problem, the first frame and the initial head pose are stored as 
a reference. When the estimated pose for the new frame is close to the initial one, the system 
rectifies the current pose estimate by registering this frame with a reference one. The re-
registration prevents errors from accumulating and enables the system to recover head pose 
following occlusion, such as when the head moves momentarily out of the camera’s view. By re-
registering the face image, the system can run indefinitely. The system has been tested 
successfully in image sequences that include maximum pitch and yaw as large as 50° and 90°, 
respectively, and time duration of up to 20 minutes (For further detail, please see Xiao, Kanade, 
& Cohn, submitted) (Appendix 6).   An example of system output using the Frank & Ekman 
(1997) data can be seen in Figure 2. 
 

Figure 2. Graphical user interface for CMU/Pittsburgh Automated Face Analysis system. 
For demonstration, please see www-2.cs.cmu.edu/~tmoriyam/blink/. 
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Figure 3. Automated recovery of 3D head motion and image stabilization.  A) Frames 1, 10, and 26 from original image sequence. B) 
Face tracking in corresponding frames. C) Stabilized eye and brow regions.
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ANALYSIS OF BLINK 
 
The eye region (Figure 4) consists of the iris, sclera, upper and lower eyelids and the eyelashes, 
which can be regarded as vertically symmetric with the exception of vertical motion of the iris 
and the difference between upper and lower eyelashes. The visible part of the iris is 
approximately rectangular in the absence of moderate to strong AU 5.   
 

If we divide an eye region into 
upper and lower portions, the 
difference between the upper 
and lower portion would be 
reflected in the difference of the 
statistical feature of illumination 
associated with the eyelashes. In 

blinking, illumination changes occur when the eyelashes descend into the lower portion of the 
eye region.  

 
Automated Feature Extraction in the Eye Region  
 
The input face image sequence (Figure 3A) has been automatically preprocessed to obtain the 

stabilized image sequence (Figure 3C and as described above). 
The face region is tracked in the image sequence and change from 
the first frame (head position angle = 0) in terms of head motion is 
recovered. Then, by manually giving the feature points (Figure 
5) },,,;,{ bottomrighttopleftiyx ii = ) in the first frame of the 
stabilized image sequence, the eye regions for the rest of the 
sequence },|),({),( bottomtoprightleft yyyxxxyxIyxI ≤≤≤≤=  are 
obtained, which is the target sequence of eye action classification 
here (Figure 6). 
 
Now we treat only the right eye (image left) here because it is 

assumed for now that the target eye actions are symmetric between left and right. The target eye 
actions are blink, multiple blink (eyelid ‘flutter’) and non-blink.   
 
 

 
         

Frame 1  Frame 2   Frame 16 

Figure 6. Automatically stabilized eye images. 
 
 
The algorithm to classify blink, multiple blink (eyelid flutter), and non-blink from feature 
vectors is: 

 

 
Figure 4. 2D eye model.  

 
Figure 5. Feature points 
used to define size of eye 
region in initial frame. 
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Input : T frames, eye region images (size M x N) 
Output : Eye action class (blink, multiple blink [eyelid flutter], non-blink) 
Begin 
 
1. for Tt ≤≤1  

 1.1 ∑
≤≤≤≤

=
2/,
),,(1:)(Im

bottomtoprightleft yyyxxx
u tyxI

D
t  

 1.2 ∑
≤≤≤≤

=
bottomtoprightleft yyyxxx

l tyxI
D

t
2/,

),,(1:)(Im  

 where, 
2

))(( bottomtopleftright yyxx
D

−−
=  

2. BC := 0 
3. BlinkFlag := 0 
4. for Tt ≤≤1   
 4.1 if BlinkFlag=0 and ( )(Im tu > )(Im tl ) and ( )1(Im +tu < )(Im tu ), 
     then, BC=BC+1、BlinkFlag=1 
 4.2 if BlinkFlag=1 and ( )(Im tu < )(Im tl ), then BlinkFlag = 0 
5. if 
 5.1 BC = 0, then Non-Blink 
 5.2 BC = 1, then Blink 
 5.3 BC ≥  2, then Multiple Blink (eyelid flutter) 
end 
 
In 1., the average illumination intensity in the upper and the lower half of the eye region image 
of frame #t is calculated, where 1.1 is correspondent to the upper half ( )(Im tu ), 1.2 corresponds 
to the lower half ( )(Im tl ). 
2. initializes BC which denotes the number of blinks. 3. initializes the eye closure flag BlinkFlag. 
4. calculates the number of blinks, where in 4.1, BC is incremented when the eye closure 
condition is satisfied, and BlinkFlag is set to 1, in 4.2, BlinkFlag is reset to 0. In 5., the eye 
action is classified based on the number of BC. 
 
Figure 7 shows examples of luminance curves for blink, multiple blink (eyelid flutter), and non-
blink.  Additional examples may be found at http://www.cs.cmu.edu/~tmoriyam/blink. 

Recognition Results for Blink 
 
The algorithm achieved an overall accuracy of 98%, with 100% accuracy between blinks and 
non-blinks (Table 1).  Six of 14 multiple blinks were incorrectly recognized as single blinks.  
Rapid transitions from AU 45 to AU 42 to AU 45, in which eye closure remains nearly complete, 
were occasionally recognized as a single blink. The symmetry metric in this case was not 
consistently sensitive to the slight change from eye closed to AU 42.  Additional statistical 
measures may be needed to more consistently recognize instances of AU 42.  In previous work, 
we have found that Gabor wavelets can perform well for this purpose (Tian, Kanade, & Cohn, 
2000).   
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The current findings are 
encouraging in light of the 
challenges presented in 
this image database.  
Ethnic background of the 
subjects was varied, 
several wore glasses, 
which occluded the brows, 
orientation to the camera 
was typically non-frontal, 
behavior was spontaneous, 
and out-of-plane motion 
was common.  Reflection 
from the eyeglasses was a 
further challenge. Overall 
accuracy was 98%. 
Combining single and 
multiple blinks (which is 
common practice among 
FACS coders), accuracy 
was 100%. In future work, 
we will refine and 
formulate the model of eye 
motion and will examine 
the ability of this approach 
quantitatively in terms of 
factors such as noise and 
image resolution. A major 
goal is to test the system 
on additional action units. 
 

 
Table 1. Comparison of Manual FACS Coding and 
Automated Face Analysis Recognition of Blink. 

Automated Face Analysis v.3  
 Blink 

(AU 45) 
Multiple 
Blink 

Non-Blink 

Blink (AU 45) 153 0 0 
Multiple Blink  6 8 0 

 
 
Manual 
FACS 
Coding 

Non-Blink 0 0 168 
Note. Multiple blinks are 3 triple blinks and 2 doubles, separated 
by 1-2 frames of AU 42 or open eye. Overall agreement = 98% 
(kappa = .97). Combining blink and multiple blink, agreement = 
100% (kappa = 1).  
 
 
 
 
 
 
 
 
Blink 

 
 

 

 
 
 
 
 
Multiple 
Blink 

 

 
 
 
 
 
Non-Blink 

 
Figure 7.  Examples of luminance curves for blink, multiple 
blink, and non-blink. 
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ANALYSIS OF BROW MOTION 
 

As noted above, we focused on brow-up (AU 1+2) and brow-down (AU 4 or AU 9 or AU 1+4 if 
AU 4 preceded the AU 1).  We aggregated action units in this way because the number of 
individual action units of each type was too small for analysis.  Even so, the number of brow-
down was only 13. The target action units tended to occur at low intensity. In brow-down, for 
instance, only in two cases did intensity exceed the ‘b’ level on a 5-point ordinal scale from ‘a’ 
(barely perceptible), ‘b’ minimal intensity, to ‘e’ (maximal intensity).   
 
Brow motion may be detected by change in both the position of face components (i.e., brows) 
and in the appearance of transient wrinkles. The brows are raised in AU 1+2 and lowered and 
drawn medially in AU 4.  AU 9 tends to lower the brows.  Wrinkling perpendicular to the 
direction of muscle contraction provides additional cues.  In AU 1+2, wide horizontal wrinkles 
appear across the forehead.  In AU 4, vertical wrinkles form between the brows and oblique 
wrinkles may appear beginning near and above the inner corners.  In AU 9, horizontal wrinkles 
may occur at the nasal root.  Because the action units we observed were typically of low 
intensity, wrinkles often failed to form.  In addition, because action units occurred at low 
intensity, the amount of brow motion often was often less than 2 pixels in magnitude.  Under 
these conditions, small errors in image stabilization or in feature extraction could result in error. 
 
Automated Feature Extraction in the Brow Region 
 
Figure 8 indicates the general flow of our method. The input sequence refers to the brow region 
image sequence, which was obtained by the automated preprocessing described in Figure 3. The 
brow region image is processed by two parallel modules. To detect wrinkles, we use edge 
detectors in the rectangular region just above the brow. To quantify motion, we quantify the 
pixel displacement from the initial position. Based on these measurements, brow action 
classification is performed. 

 
In this system, the input face image sequence (Figure 3A) is preprocessed to obtain the 
stabilized image sequence (3C) by detecting the face region through the sequence and 
recovering the changes from the first frame (head position angle = 0) in terms of head motion. 
Then by giving the feature points manually (Fig. 9 },,;,,,{ rightcenterleftiyxyx ririlili = ) on the 
first image, the brow regions for the rest of the image sequence  

),( yxI  
}0,0,:

2/)(:

lbottomrbottomrbottomlbottom

lrightrleftrightlleft

yyelseyyyyify
xxxlxxx

≤≤≤≤≤

−+≤≤
 

are obtained, which is the target sequence of brow action classification here. In this report we 
treat only the left brow here because it is assumed that the target brow actions here are 
symmetric between left and right. 
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Figure 8.  Flow of CMU/Pittsburgh Automated Analysis 
of Brow Motion 

 
Now the algorithm to classify the target brow region image sequence into these categories is: 
 
Input : T frames, brow region images (size M x N) 
Output : Brow action class (Brow-up, Brow-down, non-brow motion) 
begin 

1. for Tt ≤≤1  
 if ,9.0)(0.2)( ≤−≤ tCandtD  then classified as Brow-down 
 where, tscoefficiennCorrelatiotCntDisplacemetD == )(,)(  
  
2. for   Tt ≤≤1  

 
T

tD
ADntdisplacemeaverage t

∑
=

)(
_ , if 0>AD , then classified into Brow-up 

3. for   Tt ≤≤1  

 
T

DtD
EVianceedge t

∑ −
=

2))((
var_ , if 0.1>EV , then classified into Brow-up 

 where, D  is average edge power. 
4. otherwise  classified as Non-brow motion 

end 
 
In 1., Brow-down is sifted first based on the displacement and the decrease of the correlation 
coefficients. Then in 2., if the average displacement is positive, it is classified into brow-up, 
and in 3., if the variance of temporal edge curve is more than 1.0, it is classified into brow-up. 
Otherwise, it is classified as non-brow motion. 
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Figure 9. Brow region from automatically stabilized image sequence. 
 
 
 
 
 

A 
 
 
 

B 
 
 

C 
 

 

 
 

 
 Frame 1  Frame 2  Frame 16 

 
Figure 10. Feature extraction in brow region. A: Stabilized brow region. B: Binary 
images. C: Contour. 
 

The input (brow region images) are shown in Figure 10A, and correspondent binary images are 
shown in Figure 10B. For the binary images, the boundary between skin and brow region 
(darker part) was searched from the lower edge in each frame, respectively (Figure 10C). 
Contours can be regarded as a 1D signal on the horizontal axis. We can store the contour of the 
first frame as the template to be compared with that of the following frames and calculate the 
correlation coefficients and the displacement from the initial position. 
 
Results of Brow Classification 
 
Accuracy in the brow region was higher for brow-up than for brow-down.  Average accuracy 
across the three categories was 57 % (Table 2), which represents moderate agreement between 
manual and automated recognition.  
 
Compared with the eye region, accuracy in the brows was lower. Several factors may have 
contributed to this difference.  Action unit intensity was one factor.  While blinks are defined by 
qualitative closing of the eyelid (except when combined with AU 42), brow motion can vary in 
degree.  In the brow motions we analyzed, intensity typically was low. With only two exceptions, 
brow-up in particular was no higher than the ‘b’ level of a 5-point scale ranging from ‘a’ (barely 
perceptible) to ‘e’ (maximum intensity).    
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Brow-down is a heterogeneous category, which included both AU 4 and AU 9. While both 
action units lower the brows, AU 4 pulls them medially while AU 9 does not, and the occurrence 

and pattern of wrinkling 
differs both within and 
between these action units. 
Given the small number of 
brow-down (n = 13), this 
heterogeneity was 
particularly challenging. 
Occlusion from eyeglasses 
was another factor 
especially in the case of 
AU 4 and AU 9.   
 
Human FACS coders had 

similar difficulty with brow-down, agreeing only about 50% in this dataset. The combination of 
occlusion from eyeglasses and correlation of forward head pitch with brow-down complicated 
FACS coding.  Reliability between human FACS coders for brow-down was comparable to that 
between human FACS coders and the CMU/Pittsburgh analysis system.  Were we to omit brow-
down from analysis and only consider brow-up and non-brow motion, for which the amount of 
data was adequate and manual reliability higher, recognition accuracy would increase to 80% in 
the brow region.   In future work, it will be important to increase substantially the amount and 
reliability of training data in the brow region. 
 
GENERAL DISCUSSION 
 
This study is one of the first to attempt automatic action unit recognition in naturally occurring 
facial behavior. All other work in automated facial expression recognition has been limited to 
analysis of deliberate facial expressions that have been collected under controlled conditions for 
purposes of algorithm development and testing.  We analyzed image data from Mark and Ekman 
(1997) who collected them under naturalistic conditions in the course of psychological research 
on deception and not with the intention of automated facial expression analysis. We analyzed 
spontaneously occurring behavior rather than posed expressions. The data presented significant 
challenges in terms of heterogeneity of subjects, luminance, occlusion, pose, out-of-plane head 
motion, and the low intensity of action units.   
 
To meet these challenges, the CMU/Pittsburgh group developed Automated Face Analysis v.3 
that automatically estimates 3D motion parameters, stabilizes face images for analysis, and 
recognizes facial actions using a face-component based approach to feature extraction.  We 
emphasized the aspect of automated analysis of feature extraction, localization and tracking; 
manual processing was limited to feature marking in a single frame, and all other processing was 
fully automatic. This contrasts with the emphasis of the UCSD group, which requires manual 
labeling and registration of each image followed by manual localization of facial regions but 
emphasizes the various classification schemes of extracted features (Bartlett et al., unpublished 
manuscript, 2001).  The two groups had complementary approaches and emphases that made 
this collaborative effort most productive.  
 
The Automated Face Analysis v.3 of the CMU/Pittsburgh group successfully recognized blinks 
from non-blinks for all the examples in the database (which turned out to be a relatively easy 
task). It was also able to distinguish, with lower accuracy, however, multiple blinks separated by 

Table 2. Comparison of Manual FACS Coding and 
Automated Face Analysis Recognition of Brow Motion. 
 Automated Face Analysis v.3 
 
Manual FACS 
Coding 

Brow-Up 
(AU 1+2) 

Brow-Down 
(AU 4 or AU 
9) 

Non-Brow 
Motion 

Brow-Up (AU 1+2) 23 17 8 
Brow-Down (AU 4 
or AU 9) 

1 6 6 

Non-Brow motion 8 13 40 
Note. Overall agreement = 57%, kappa = .33. Omitting brow-
down, agreement = 80%, kappa = .58. 
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as few as one frame and partial eye closure (AU 42). Accuracy in automatically recognizing 
brow-up, brow-down, and non-brow motion was not as high; it was 57%. The small number 
(n=13) of samples, heterogeneity, and lower reliability of brow-down were limiting factors. 
Omitting brow-down, accuracy in the brow region increased to 80%, and intersystem agreement 
between human FACS coders and Automated Face Analysis v.3 approached or was comparable 
to that of human FACS coders, which is the current gold standard.  
 
We found that automated analysis of facial images still present significant challenges.  Many 
previously published algorithms, including our own, that worked well for frontal faces and good 
lighting condition images fail with images under non-frontal facial poses, full 6-DOF head 
motions and ordinary lighting. Precise and reliable extraction and localization of features is the 
key to the success of automated FACS coding, facial expression and emotion analysis.  The 3D-
model based stabilization technique presented here for stabilizing the arbitrary and unknown 
head motion is one such example.  In the next phase of our research, we will expand the size and 
diversity of our database of FACS-coded spontaneous facial behavior and increase the number 
and complexity of action units that can be recognized automatically in this context.  While 
challenges remain, these findings support the feasibility of developing and implementing 
comprehensive, automated facial expression analysis in applied settings.   
 
 
ACKNOWLEDGEMENTS 
 
We thank Marian Bartlett, Javier Movellan, and Terry Sejnowski from the UCSD group for their 
productive and collaborative working relationships that we enjoyed and that gave insight for 
improving our automated face expression analysis system.  We thank consultants Paul Ekman, 
Mark Frank, Pietro Perona, and Yaser Yacoob for invaluable comments, suggestions, and 
leadership, and Kathleen Miritello for her guidance in making possible this collaborative effort.  
 
 
APPENDICES 
 
1) PowerPoint Demo (Distributed in August). 
2) On-line demo from www-2.cs.cmu.edu/~tmoriyam/blink/  presents detailed results, 

including comparisons with manual pattern recognition. 
3)  Lien, J.J.J., Kanade, T., Cohn, J.F., & Li, C.C. (2000). Detection, tracking, and 

classification of subtle changes in facial expression. Journal of Robotics and Autonomous 
Systems, 31, 131-146. www.cs.cmu.edu/~face. 

4)  Tian, Y., Kanade, T., and Cohn, J.F. (October 2000). Eye-state detection by local regional 
information. Proceedings of the International Conference on Multimedia Interfaces, pp. 
xxx-xxx. Beijing, China. www.cs.cmu.edu/~face. 

5) Tian, Y.L, Kanade, T., & Cohn, J.F. (2001). Recognizing action units for facial expression 
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 97-116. 
www.cs.cmu.edu/~face. 

6)   Xiao, J., Kanade, T., & Cohn, J.F. (Submitted). A real-time system of 3D head motion 
recovery. Proceedings of the IEEE International Conference on Automated Face and 
Gesture Recognition.  This is a revised version with additional experiments of a 
manuscript distributed in August. 
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