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Evolution of an Artificial Neural Network

Based Autonomous Land Vehicle Controller
Shumeet Baluja

Abstract— This paper presents an evolutionary method for
creating an artificial neural network based autonomowus land
vehicle controller. The evolved controllers perform better in
unseen situations than those trained with an error backpropa-
gation learning algorithm designed for this task. In this paper,
an overview of the previous connectionist based approaches to
this task is given, and the evolutionary algorithms used in this
study are described in detail. Methods for reducing the high
computational costs of training artificial neural networks with
evolutionary algorithms are explored. Error metrics specific to
the task of autonomous vehicle control are introduced; the evolu-
tionary algorithms guided by these error metrics reveal improved
performance over those guided by the standard sum-squared
error metric. Finally, techniques for integrating evolutionary
search and error backpropagation are presented. The evolved
networks are designed to control Carnegie Mellon University’s
NAVLAB vehicles in road following tasks.

I. INTRODUCTION

PECIAL purpose hardware is currently being designed at
Carnegie Mellon University to allow pre-trained artificial
neural networks (ANN’s) to control the steering direction
of an autonomous vehicle. The hardware design does not
support modification of the network weights; therefore, on-line
retraining of the networks is not possible. However, current
neural network based methods for controlling autonomous land
vehicles require frequent retraining to adapt to changing road,
weather, and lighting conditions. An alternative to retraining
is to use a pool of pre-trained networks in which each network
is trained to work well in a different situation. Because each of
the networks in the pool will be trained only once (before the
system is installed), the generalization ability of these networks
is crucial to good performance. The goal of this project is to
create networks which have good generalization capabilities;
they should be able to perform well in scenes which may be
similar, but not identical, to those used in training.
In this paper, an evolutionary method for developing ar-
tificial neural networks for autonomous vehicle control is
explored. The standard method of training ANN’s, error back-
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propagation, is a method of gradient descent through the
weight space, and is therefore susceptible to getting caught
in local minima. In contrast, evolutionary algorithms (EA’s)
are global search heuristics, and should be less susceptible to
local minima.

There currently exists a great deal of interest in both evolu-
tionary optimization techniques and artificial neural networks
within the artificial intelligence communities. Recently, many
attempts have been made to integrate the two fields. This
integration has broadly moved along two axes, that of applying
connectionist principles to evolutionary procedures in order
to enhdnce the capabilities of the evolutionary procedures
[11, [4], and applying evolutionary principles to enhance the
capabilities of artificial neural networks (ANN’s) [2], [5], [6],
[9], [10], [14], [20], [22], [29], [31]. This paper concentrates
on the latter form of integration; evolutionary optimization
methods are used to improve the generalization capabilities of
feed-forward artificial neural networks.

Many of the previous studies involving evolutionary opti-
mization techniques applied to ANN’s have concentrated on
relatively small problems. This paper presents a study of an
evolutionary optimization method on a real-world problem,
that of autonomous navigation of Carnegie Mellon’s NAVLAB
system. In contrast to the other problems addressed by similar
methods in recently published literature, this problem has a
large number of pixel-based inputs, and on one of the two tasks
presented in this paper, also has a large number of outputs to
indicate the appropriate steering direction.

The feasibility of using evolutionary algorithms for net-
work topology discovery and weight optimization is dis-
cussed throughout the paper. Methods for avoiding the high
computational cost associated with these procedures are pre-
sented. Nonetheless, evolutionary algorithms remain more
computationally expensive than training by standard error
backpropagation. Because of this limitation, the ability to
train on-line, which may be important in many real-time
reactive robotic environments, is not addressed in this paper.
In the current autonomous vehicle system, (re)training speed is
crucial because the system must be able to adapt “on-the-fly”
to changing conditions. In the system explored in this paper,

“on-line training is not required, as the full network pool is

trained before any of the networks are used.

In this paper; error metrics specific to the task of au-
tonomous vehicle control are introduced; the evolutionary
algorithms guided by these error metrics reveal improved per-
formance over those guided by the standard sum-squared error
metric. Also explored in this paper are methods of integrating
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Fig. 1.

The Carnegie Mellon NAVLAB autonomous navigation testbed.

evolutionary search and backpropagation. The integration of
these two methods yields slightly better results than those
achieved by evolutionary search alone.

The next section describes the ANN based autonomous land
vehicle controller, ALVINN (Autonomous Land Vehicle In a
Neural Network), which serves as the prototype for the studies
presented here [25]. Section III describes the evolutionary
approach used to evolve the neuro-controller. Section IV
presents an overview of the experiments. Section V compares
standard and evolutionary approaches to this problem. Section
VI examines the use of a task-specific error metric for guiding
the evolution. The paper concludes with a discussion of the
results and future directions for research.

II. INTRODUCTION TO ALVINN

ALVINN is an artificial neural network based perception
system which learns to control Carnegie Mellon’s NAVLAB
vehicle, see Fig. 1, by watching a person drive. ALVINN’s
architecture consists of a single hidden layer backpropagation
network. The input layer of the network is a 30 x 32 unit
2-D “retina” which receives input from the vehicle’s video
camera, see Fig. 2. Each input unit is fully connected to a
layer of four hidden units which are in turn fully connected to
a layer of 30 output units. In the simplest interpretation, each
of the network’s output units can be considered to represent
the network’s vote for a particular steering direction. After
presenting an image to the input retina, and passing activation
forward through the network, the activations of the output units
represent the steering arc the network believes to be best for
staying on the road. '

To teach the network to steer, ALVINN is shown video
images from the onboard camera as a person drives, and is
trained to output the steering direction in which the person
is currently steering. ALVINN is able to learn which image
features -are important for particular driving situations. It
has been successfully trained to drive in a wider variety of
situations than other autonomous navigation systems which
require fixed, predefined features (e.g., the road’s center line)
for accurate driving. The situations ALVINN networks have
been trained to handle include single lane dirt roads, single lane
paved bicycle paths, two lane suburban neighborhood streets,
and lined divided highways. In this last domain, ALVINN has
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Fig. 2. The ALVINN neural network architecture.

successfully driven autonomously at speeds of up to 55 miles
per hour, and for distances of over 90 miles on a highway
north of Pittsburgh, PA [25], [27].

The performance of the ALVINN system has been exten-
sively analyzed by Pomerleau [23], [24], [25]. Throughout
the development of ALVINN, various network architectures
have been examined, including architectures with more hidden
units and different output representations. Although the output
representation was found to have a large impact on the
effectiveness of the network, other features of the network
architecture were found to yield approximately equivalent
results [25]. In this paper, two output representations will be
considered; the first representation uses only a single output
to determine the steering direction. The second representation
is the one currently used in the ALVINN system, a distributed
output representation of 30 units. There are three motivating
factors in choosing these output representations for study.
The first is that the hardware design uses the 30 output unit
representation: the networks developed in this study should be
compatible with this hardware. The second motivation is that
the 30 unit representation has been successfully used in the
ALVINN/NAVLAB system. The third reason is that previous
studies of both these representations provide benchmarks with
which to compare new results. The output representations are
described in greater detail in Section IV.

A. Training ALVINN

To train ALVINN, the network is presented with road
images as input and the corresponding correct steering di-
rection as the desired output. The backpropagation algorithm
alters the strengths of the connections between the units so
that the network produces the appropriate steering response
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Fig. 3. ‘Gaussian output representation, using 30 output units. The steering
direction represented in the above diagram is straight ahead. Figure adapted
from [25].

when presented with a video image of the road ahead of the
vehicle. Training is currently done on-line with an onboard
Sun SPARC-10 workstation.

~Several modifications to the standard backpropagation al-
gorithm are used to train ALVINN. First, the weight change
momentum factor is steadily increased during training. Second,
the learning rate constant for each weight is scaled by the
fan-in of the unit to which the weight projects. Third, a
large amount of neighbor weight smoothing is used between
the input and hidden layers. Neighbor weight smoothing is
a technique to constrain weights which connect to neigh-
boring units in the input retina to similar values. This is a
method of preserving spatial information in the context of the
backpropagation algorithm [25].

In its current implementation, ALVINN is trained to produce
a Gaussian distribution of activation centered around the
appropriate steering direction, see Fig. 3. By requiring the
network to produce a Gaussian distribution as output, instead
of a more traditional “one out of V" classification, the learning
task is made easier since slightly different road images require
the network to respond with only slightly different output
vectors. This is in contrast to the highly nonlinear output
requirement of the “one out of N representation in. which
the network must significantly alter its output vector (from
having one unit on and the rest off, to having a different unit
on and the rest off) on the basis of fine distinctions between
slightly shifted road scenes [25].

One of the problems associated with training ALVINN is
that the human driver will normally steer the vehicle correctly
down the center of the road (or lane). Therefore, the network
will never be presented with situations in which it must recover
from errors, such as being off the correct portion of the road.
In order to compensate for this lack of real training data,
the images are shifted by various amounts relative to the
road’s center. The shifting mechanism maintains the correct
perspective to ensure that the shifted images are realistic.
The correct steering direction is determined by the amount of
shift introduced into the images. A description' of the shifting
mechanism can be found in [23], [25]. The network is trained
on the original and shifted images.

1. AN EVOLUTIONARY APPROACH

Evolutionary algorithms (EA’s) span a very broad range of
learning algorithms which rely on a population of individuals,
each of which represents a search point in the space of
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potential solutions to the given problem-[11]. In one of the
standard EA techniques, genetic algorithms (GA’s) [17], the
population of points, which is usually initialized randomly,
evolves toward ‘better regions of the search space by means -
of selection, recombination and mutation. The environment,
which is defined by the specific problem to ‘be optimized,
returns information assessing the quality of each of the. indi-
vidual search points. The selection process favors the survival
of the points with a higher assessed quality. The recombination
operator allows several members of the current population of
points to contribute to a member of the subsequent generation.
The mutation operator ensures that the population does not -
become too homogenous. Homogeneity decreases the ability
of the GA to perform innovative search. A comprehensive
overview of evolutionary algorithms, and their applications to
parameter optimization tasks, can be found-in [3], [12].

The majority of approaches in which evolutionary principles
are used in conjunction with neural network training can be
broadly subdivided into two groups. The first concentrates on
formulating the problem of finding the connection weights of
a pre-defined artificial neural network architecture as a search
problem. Traditionally backpropagation, or one of its many
variants, has been used to train the weights of the connections.
However, backpropagation is 4 ‘method of gradient descent
through the weight space, and can therefore get stuck in local
minima. Evolutionary algorithms are global search heuristics,
and are less susceptible to local minima. Finding the appropri-
ate set of weights in a neural network can be formulated as a
parameter optimization problem to which EA’s can be applied
in a straightforward manner.

The second group uses EA’s to find the appropsiate structure
of the network for the particular task; the number of layers,
the connectivity, etc., are defined through the search process.
The weights can either be determined using a separate neural
network training algorithm, or can simultaneously be found
while searching for the network topology.

The approach used in this paper is a variant of the second
group of approaches described above; it will be presented in
greater detail in Section V. One of the advantages -of this.
method is that if there is very little knowledge of the structure
of the problem, or if no knowledge other than the number
of inputs and outputs needed is available, the structure of the
network does not need to be predefined in detail.

Given the possibility of backpropagation falling into a local
minimum, and the potential lack of knowledge regarding
the appropriate neural network architecture to use, using
EA’s appears to be an interesting option. Previous studies
which have used evolution as the principal learning paradigm
for training artificial neural networks have often modeled
evolution through genetic algorithms [5], [6], [9], [201, [22],
[29], [31]. However, the computationally intensive nature of -
GA’s often makes them prohibitive for real-world applica-
tions. As GA’s do not explicitly use‘gradient information (as
backpropagation does), large amounts of time may be spent
searching before an acceptable solution is found.

In order to reduce search times, a novel evolutionary search
algorithm is used in this study: Population-Based Incremental
Learning (PBIL). Although a complete description of PBIL’s
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derivation and performance compared with other evolutionary
algorithms is beyond the scope of this paper, a description
of its fundamental mechanisms can be found below. More
detailed descriptions of the algorithm and results obtained in
comparisons with genetic algorithms and hillclimbing can be
found in [4].

A. An Overview of Population-Based Incremental Learning

Population-based incremental learning (PBIL) is a combi-
nation of iterative and evolutionary optimization techniques
[4]. The algorithm is based upon the mechanisms of a genetic
algorithm and the weight update rule of supervised competitive
learning [16]. The PBIL algérithm, like standard GA’s, relies
on discrete evaluations of potential solutions. In this study,
each potential solution is a fully specified network. Both the
network topology and the connection weights are encoded in
the potential solution and evolved in the search process. The
PBIL algorithm described in this paper operates on potential
solutions defined on a binary alphabet.

One of the drawbacks of using a binary alphabet is that
the values of the weights of the encoded network must be
discretized to a specified precision. As the solution string
lengths used in this study have a fixed size, the number of
bits allocated to represent each weight is specified before the
algorithm is started. The translation of these bits to weights
assumes that the bits encode a base-2 number which specifies
the value of the weight within a pre-specified range of possible
values. Although methods have been presented to avoid this
limitation by dynamically varying the number of bits allocated
for representing the weights [22], such schemes were not
adopted for this study. We found through empirical testing
that overestimating the number of required bits did not hinder
performance, although it did increase the search time. More
details on the representations will be given with the description
of the specific tests.

The object of the PBIL algorithm is to create a real valued
probability vector which specifies the probabilities of having
a ‘1’ in each bit position of high évaluation solutions. When
this probability vector is sampled, it should generate high
evaluation vectors with high probability. For example, if a
good solution to a problem can be encoded as a string of
alternating 0’s and 1’s, a suitable final probability vector is
0.01, 0.99, 0.01, 0.99, etc. The probability vector can be
considered a “prototype” for high evaluation vectors for the
function space being explored.

One of the key features in the early portions of genetic
optimization is the parallelism inherent in the search; many
diverse points are represented in the population of a single
generation [71, [17]. In PBIL, the population of a GA is
represented in terms of a probability vector. In the probability
vector, the most diversity will be found by setting the values of
each bit position to 0.5. This specifies that generating a 0 or 1
in each bit position is equally likely. In a manner similar to the
training of a competitive learning network, the values in the
probability vector are gradually shifted toward the bit values
of high evaluation vectors. A simple procedure to accomplish
this is described below. The probability update rule, which is
based upon the update rule of standard competitive learning,
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is shown below:

probability, .,
= (probability; , * (1.0 — LR)) + (LR * solution;) (1)

where probability, , is the probability of generating a 1 in bit
position ¢ at time step ¢, solution; is the value of the ith position
in the highest evaluation vector in the current generation, and
LR is the learning rate. The learning rate is a user defined
parameter, and was set to 0.1 for this study. The probability
vector and the solution vector both have the same length as
the encoded solution.

The step which remains to be defined is determining which
solution vectors to move toward. These vectors are chosen as
follows: a number of potential solution vectors are generated
by sampling the probabilities specified in the  probability
vector. Each of these potential solution vectors is evaluated
with respect to the goal function. For this task, the goal
function is how well the encoded ANN performs on the
training set. This is determined by decoding the solution vector
into the topology and weights of the ANN, performing a
forward pass through the training samples, and measuring the
error of the outputs. The probability vector is pushed toward
the generated solution vector with the lowest total error; it is
pushed according to the equation described above. In addition,
the probability vector is also moved toward the complement of
the vector with the highest total error'. After the probability
vector is updated, a new set of potential solution vectors is
produced; these are based upon the updated probability vector,
and the cycle is repeated.

In addition to the update rule shown above, a “mutation” op-
erator is used. This is analogous to the mutation operator used
in standard genetic algorithms. Mutation is used to prevent the
probability vector from converging to extreme values without
performing extensive search. In standard genetic algorithms
the mutation operator is implemented as a small probability of
randomly changing a value in a member of the population.
In the PBIL algorithm, the mutation operator affects the
probability vector directly; each vector position is shifted in
a random direction with a small probability in each iteration.
The magnitude of the mutation shift (0.05) is smaller than the
learning rate (0.1).

In the implementation used in this study, the population
size is kept constant at 30; the population size refers to
the number of potential solution vectors which are generated
before the probability vector is updated. This is a very small
population size in comparison to those often used in other
forms of evolutionary search. For a test suite of small neural
network evolution problems, [22] has shown that larger se-
quential populations may not yield sufficiently better results to
warrant the associated extra computational penalties. Because
of the small size of the population used, and the probabilistic

" generation of solution vectors, it is possible that a good vector

may not be created in each generation. Therefore, in order to
avoid moving toward unproductive areas of the search space,

! Actually, the probability vector is moved toward the complement of the
vector with the lowest evaluation only in the bit positions in which the highest
evaluation vector and the lowest evaluation vector differ.
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***** Initialize Probability. Vector *****
fori :=1 to LENGTH do
P[] = 0.5;

while (NOT termination condition) do
begin
***** Generate Samples *****
fori:=1to NUMBEFL_SAMPLES do
begin

end;

fori:=1to LENGTH do

fori:=11to LENGTH do

=+ Mutate Probability Vector *****
for i :=1 to LENGTH do
begin

else

end

end;

sample_vectorsli] := genserate_sample_vector_according_to_probabilities (P);
evaluations]i] := Decode_and_Evaiuate_Network (sampie_vectorsli));

best_vector := find_vector_with_best_evaluation {(sample_vectors, evaluations);
worst_vector := find_vector_with_worst_evaluation (sample_vectors, evaluations);
*m*** Update Probability Vector towards best network *****

P[i] := P[i] * (1.0 - LR) + best_vector{ij * (LR);
*+*** Undate Probability Vector away from worst network *****

if (best_vectorli] # worst_vector]i]) then
Pfi] := P[i] * (1.0 - NEGATIVE_LR) + best_vector[i] * (NEGATIVE_LR);

if (random (0,1) < MUT, PROBABILITY) then

if (random (0,1) > 0.5) then
mutate_direction := 1

mutate_direction := 0;
P[i] := P[i] * (1.0 - MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS (Typical Values Used in this Study):

NUMBER_SAMPLES: the number of vectors generated before update of the probability vector (30).
LENGTH: the number of bits in a generated vector (6,684 - 8,912).

LR: the learning rate, how fast to exploit the search performed (0.1).

NEGATIVE_LR: the negative learning rate, how much to learn from negative examples (0. 075)
MUT_PROBABILITY: the probability for a mutation occurring in each position (0.02).

MUT_SHIFT: the amount a mutation alters the value in the bit position (0.05).

Fig. 4. The PBIL algorithm for a binary alphabet. The “elitist” selection mechanism is -not shown.

the best vector from thé previous population is also kept in
the current population; it replaces the worst member of the
current population. This solution vector is only used in case a
better solution vector is not produced in the current generation.
In genetic algorithm literature, this technique of preserving
the best solution vector from one generation to the next is
- termed “elitist selection” [8], and is often used in parameter
optimization problems to avoid losing good solutions once
they are found. Without elitist selection, the search proceeded
slower; the final solution produced in the limited number of
generations (3 000) did not perform as well as PBIL with elitist
selection.
The PBIL algorithm, which is less complex than even a sim-
ple GA, very quickly optimizes many of the functions which

are used to gauge GA performance. However, it neither uses
the crossover (recombination) operator, nor-defines operations
directly on the members of the population, both of which are
common to genetic algorithms. The basic algorithm is shown
in Fig. 4. In the set of standard GA benchmark problems on
which PBIL has been compared, the solutions found by PBIL
were better than those found with the GA, and were discovered
with less computational cost [4].

IV. THE EXPERIMENTS

For the experiments presented here, four sets of data were
collected. The first set of data was obtained by driving down
a partially shaded single lane paved bicycle path, the second
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was obtained by driving back along the same path. The third
set of data was obtained by driving on a two lane suburban
neighborhood street, the fourth was obtained by driving back
along this same street. The training for all of the experiments
in this paper was done on a total of 1000 images. In the
training set, 500 images from the first road type were used,
traveling only in one direction, and 500 images were used of
the second road type, again only traveling in a single direction.
The remaining sets of images were used in the validation and
testing sets. Each of these four sets of images are composed

of typical road scenes, and shifts and rotations of the road in

the original images.

In these experiments, the input retina size was 15 x 16 pixels.
This is half the resolution on each axis as is normally used by
the standard ALVINN networks. This smaller retina size was
used to reduce training times in order to increase the number of
training trials for each of the algorithms examined. Samples of
images at this resolution are given in the next section; many
of the important features in the images are retained at this
resolution.

A. Using a Single Output Unit

The first set of experiments used a single output unit to
represent the steering direction. The activation of the output
unit determined how sharply the steering should be to the left
or to the right of center. The target activations of the output, in
both the single and 30 output experiments, ranged from —1.0
to +1.0.

For the experiments attempted in this paper, a maximal
network is defined. This is a user-defined prototype network
which determines the structure and maximum connectivity of
the evolved networks. Through evolution, connections may
be removed from the maximal network; however, connections
which are not specified in the maximal network cannot be
added. This network is used as the basis of the solution
encodings for PBIL; a similar scheme has been used in [22].
The presence of each connection is determined by the value of
an assigned bit in the encoding. The maximal network architec-
ture used for the single output unit experiments presented here
has a 15 x 16 input layer, five unit hidden layer, and a single
unit output layer. The maximal network is a fully-connected
strictly layered feedforward neural network; all units in layer
1 receive their inputs from all of the units in layer ¢ — 1 only,
and provide outputs to all of the units in layer 2 4+ 1 only.

As the PBIL algorithm presented here operates on a binary
bit string, the network must be encoded into an appropriate
form. The encoding was as follows: each connection in the
network is determined to be either present or absent by a
single bit. If the connection is present, its weight is encoded as
a base-2 number, in a fixed number of bits. If the connection
is not present, the bits used for encoding the weight remain in
the bit-string, although they have no effect on the network.

B. Using 30 Output Units

In the second set of experiments, the maximal network .

was defined to be the original ALVINN network architecture,
with 15 x 16 input units. As mentioned earlier, the maximal
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Fig. 5. Input image, target output and network’s output before training. The -
bright pixels represent units with strong positive activation. The dark’ pixels
are units which contain strong negative activation. The target output shows
Gaussian activation levels centered around the correct steering direction.

network only specifies the maximum number of connections
which can be present in the evolved network; the number
of connections ultimately used by the final architecture is
determined through the search process. The maximal network
architecture used for the 30 output unit experiments presented
here has a 15 x 16 input layer, four unit hidden layer, and 30
unit output layer. This architecture contains one less hidden
unit than the networks tested with a single output unit. Only
four hidden units were used to match the current ALVINN
system’s architecture. '

A representative training example is show in Fig. 5. The .
15 % 16 input retina displays a typical road input scene for the
network. The target output is also shown. This corresponds to
the steering direction the driver of the NAVLAB chose during
the test drive made to gather the training images. Also shown is
the output of an untrained network. Later in the paper, trained
outputs will be shown for comparison.

V. USING POPULATION-BASED INCREMENTAL LEARNING

In the evolutionary approach, the need to evaluate each
ANN is the source of the largest time penalties. Each ANN
must be evaluated to determine which network in the current
population has the smallest sum squared error and the largest
sum squared error on the training set, as these two examples
are used for adjusting the probability vector in the PBIL
algorithm. In all the experiments presented in this paper, the
training set size was 1000 images. Because of the large size
of the training set, evaluating each network is computationally
expensive. One method to reduce the training times is to
use a parallel machine. The evaluation of each network is
independent from the evaluation of any other network, and
can therefore be parallelized very easily. For the algorithm
described here, parallelization could lead to dramatic improve-
ments in speed. An alternative training method, which can
reduce the computational burden on both serial and parallel
machines, is presented below.

Rather than evaluating each network on the entire training
set, for each network evaluation a small, randomly selected,
portion of the training set is used to measure the network’s
performance. Although this does not provide an exact in-
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dication of the performance of the network on the entire
training set, it provides an estimate. The larger the sample
size is, the more accurate the estimate becomes. In some of
the experiments performed in this study, only 50 out of the
1000 training examples were used.to evaluate each network
while still achieving good results. As the computational cost
of decoding the solution string into the network is very small
in comparison to the time needed to evaluate the network,
approximately 20 networks could be evaluated at the cost of
evaluating only one if the entire set was used?. A somewhat
similar technique, which used incrementally larger portions of
the training set to train a neural network to recognize speech
fragments using backpropagation, was explored by [30].

The drawback of using only a subset of the training set for
each network evaluation is the potential noise in each evalua-
tion. The robustness of genetic algorithms in the presence of
poise has been examined by [13]. The consequences of this
drawback are reduced as the survival of networks throughout
a number of consecutive generations will most likely be an
indication of their ability to work well on Jarge portions of the
training set. In practice, -as is shown in the next section, this
provides an effective method of reducing the computational
burden with little loss in generalization ability. However, if a
particular application relied upon the network’s capability to
memorize the training set, this method would not perform as
well. This is shown in more detail in the description of the
results given in the next section. All of the results presented
in the next sections are the average of at least 10 training
sessions.

A. Results With a Single Output Unit

In order to ensure that the test set does not have any effect
on the training ,of the network (including stopping criteria),
in all of the experiments presented in this paper, three sefs
of images were used: 1000 training images, 100 validation
images, and 800 testing images. The training set is used to
evolve the networks; the network’s evaluation is based solely
upon the error obtained on the images in this set. To ensure
that the network is not memorizing the training set, the errors
on a separate set of images, the validation set, are used to
determine which network will be selected from all of the
networks evolved in the run. The network which has the lowest
error on the validation set is considered the best network of the
run. The generalization ability of the best network is gauged
by examining the errors the network produces on the images in
the rest set, which is composed of 800 images. The test set was
used only once per run, to gauge the performance of the single
network which had the lowest error on the validation set.

For these experiments, one bit was used to represent the
presence of each connection, six bits were used to represent the
value of each weight, with the ranges of weights between —0.5
and 0.5. The search was allowed to progress 500 generations
with 30 networks evaluated per generation. The length of the
solution strings were 8 477 bits, which represented a possible

2With regard to the “elitist selection” mentioned previously: the best vector
from the previous generation is re-evaluated in each generation. This may
cause fluctuations in its evaluation as the examples on which its evaluation is
based are drawn randomly from the full set of examples in the training set.

1211 connections in the network, including the connections
from a bias unit. The bias unit-has connections to-all of the
units in the hidden and outputs layers. The bias unit’s value .
is set to +1.0 [16].

For a base-line comparison, the maximal. network was
trained with error backpropagation (BP) with the added fea-
tures mentioned in the Section II-A. The networks were trained
with the 1000 image training set. The average sum squared
error for each image was 0.080 on the 800 image test set.
When the networks were trained with PBIL, using only a small
randomly sampled portion of the full training set (50 out-of
1000 images) to evaluate each network, the sum squared error
was reduced to 0.051 (a 36% decrease from BP) on the test
set. If all 1000 images were used to evaluate each network,
the average sum squared error was slightly reduced to 0.048 (a
40% decrease from BP) on the test set. The difference between
this result and the one achieved through using only 50 images
out of 1000 for training was found to be not statistically
significant. The final networks evolved by both of the PBIL
training methods maintained only approximately half of the
possible connections of the maximal network.

In Fig. 6, the performances of using the full and sampled
training sets are compared. In each figure, both methods
of network evaluation are shown. In graph (A), each line
represents the best network seen in the entire run up to the
current generation (averaged over all runs). The four lines
correspond to the best network in terms of the training and
validation sets, and sampled and full training set methods.
Graph (B) shows the progression of the search algorithm.
It displays the best network seen in the population of each
generation (averaged over all runs).’

On average, the performances of the networks developed
by both training set selection methods do equally well on the
validation set. However, using the entire training set decreased
the error on the validation set faster, in terms of the number
of networks evaluated, than training with a sampled training
set. A potential cause for this is the noise in the evaluation of
the networks caused by using only a small sample of training
examples. As the size of the sample set increases to the entire
training set, this problem decreases. Nonetheless, as the size
of the sample set increases, the time to perform each network
evaluation increases.

t

B. Results With a 30 Unit Gaussian Encoded Output

As with the singie output networks, the tests in this section
were performed with the same 1000 training, 100 validation’
and 800 image test sets. For these experiments, one bit
was used to represent the presence of each connection. Two
configurations, which gave approximately equivalent results,
were used to represent each weight: the first used six bits, the

31t should be noted that the validation-set curves in graph B do not reach
as low as those in graph A because in individual runs, each network reaches
its best performance on the validation-set during different generations. The
network which performs the best on the validation set in a generation may
be lost in the subsequent generations as it may not have performed the best
on the training set. Only the network which performs the best on the training
set is explicitly preserved from one generation to the next. Therefore, with
averaging over multiple runs, graph A should reach lower as it shows the best
network ever seen rather than the best network in the current generation.
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1000 Training, 100 Validation image set. Average error per image is'shown. Graph (A) shows the best network seen in the entire run up to the

current generation (averaged over 10 runs). Graph (B) shows the progression of the search algorithm; it shows the best network seen in the population
of each generation (averaged over 10 runs). The key (§) means that selection was based only upon a small sample (50 images) of the training set. The
(F) means that the performance on the full training set was used in the evaluation of network performance. In order to gauge the relative performances
of these two methods, the left graph is more informative than the right. Graph (A) shows the performance of the best network found in the entire run.

Graph (B) gives an indication of how the training progresses.

second used seven (this created 7798 and 8912 bit solution
strings, respectively). The range of weights was between —1.0
and 1.0. The increased range of weight values (in comparison
to the single output tests) was determined by examining the
weights of the original ALVINN neural network. The range of
the weights was larger when 30 outputs were used than when
a single output was used. The search was allowed to progress
3000 generations with 30 networks evaluated per generation.
One fifth to one third of the entire training set (200-333
images) was used to evaluate each network. In this section,
the networks were evolved to minimize the sum squared error
(SSE) between the actual and predicted output vectors. An
alternate, task specific, error metric is explored in Section VI.
SSE was used in these experiments to provide a comparison
with the error metric used by backpropagation.

All of the improvements to the standard backpropagation
algorithm which are used to train the ALVINN system were
used for obtaining the backpropagation results reported here.
These modifications were briefly reviewed in Section II;
they are explained in greater detail in [25). The revised
backpropagation algorithm was able to achieve an average
sum squared error of 9.40, measured on the 800 image test
set. The PBIL algorithm was able to achieve an average error
of 8.19, an error reduction of approximately 13%.

Similarly to the single output tests, the final networks pruned
away, on average, approximately half of the possible connec-
tions. The drawback of the PBIL approach, in comparison
to the backpropagation training method, is the training time;
the backpropagation algorithm took only several minutes,
on average, to train the networks to its lowest error. The
evolutionary approach took over an hour. Nonetheless, the

parallelization of the evolutionary algorithm has the potential
for large speed improvements. In Fig. 7, a typical sample input
and output is given after training by PBIL. A typical sample
output attained by standard backpropagation is also shown.

A second test was conducted to determine whether PBIL
could perform better if the architecture was pre-specified,
and only the weights of the connections were evolved (PBIL
w/Maximal Arch.). For this experiment, the maximal network
previously described was used. PBIL was only allowed to
modify the weights, not the architecture of the ANN. The
hope was that if PBIL was constrained to a pre-specified
architecture, it may do better because the search space is more
constrained. This method should be able to do at least as well,
as connections can effectively be eliminated by setting the
connection weight to 0.0. Using only the evolution of weights,
PBIL was able to find networks which, on average, had an
average sum squared error of 7.96; this reflects approximately
a 15% improvement over standard backpropagation. This is
not significantly different from the results of PBIL evolving
both the network architecture and the network weights.

Use of an evolutionary model instead of backpropagation
yields a benefit. One of the known strengths of evolutionary
techniques is their ability to quickly find regions of high
performance. However, after these regions are found, in many
evolutionary algorithms, such as genetic algorithms, moves
toward optimal points are much slower. Backpropagation has
somewhat complementary characteristics; it can quickly find
a local optimum from its initial starting point. However, as it
is a gradient descent method through the weight space of the
network, it cannot perform global search. A natural extension
of the model described up to this point is to combine the
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Fig. 7. (a) The PBIL derived network’s output. The actual output for this
image has the correct general location as the target output: However, the output
is not as smooth as the target. (b) Typical outputs of a network architecture
trained with backpropagation. Both figures are taken from the test set.

evolutionary and backpropagation techniques. Several simple
methods for combining these learning techniques are described
in the next section.

C. Combining Backpropagation and Evolutionary Search

In this section, integrated models of evolutionary and back-
propagation learning are presented. These models follow the
same fundamental two steps: First, the evolutionary search
proceeds as described in the previous section. Second, the
backpropagation algorithm is initialized with the results found
during evolutionary search. The differences in the approaches
described here reside in whether only the evolved network
architecture, or only the evolved network weights, or both the
evolved architecture and weights are used as a starting point
for backpropagation. Similar integration methods are presented
in [20]. All of the results presented in this section are sum-
marized in Table I and Table II. The statistical significance of
these results is examined after the experiments are presented.
All of these experiments are conducted with 30 output unit
architectures.

The first method of integration used the network architecture
and weights found by PBIL (PBIL+-BP with evolved arch. and
evolved weights). The network which was used to initialize
backpropagation is the network which performed the best in

TABLE 1
SUMMARY OF EMPIRICAL RESULTS—SINGLE OutpuT PBIL
COMPARED WITH SINGLE OUTPUT BP aND 30 Outpur BP

TRAINING METHOD
1 Qutput PBIL PBIL
w/ Sampled w/ Full BP
Training Set Training Set
Sum Squared Error 0.061 0.048 0.080
% ERROR DECREASE 36.2 40.0 -
with respect to ’
1 output BP (SSE)
% ERROR DECREASE -1.1 1.9 -26.6
with respect to .
30 output BP (GPPE}

each PBIL run. In less than 3 epochs (passes through the
training set in which the network’s weights are updated),
backpropagation was able to reduce the error to0 8.10 (a 13.8%
improvement over backpropagation alone).

The second integration method did not use the weights
found by PBIL. In order to test how well backpropagation
could do on the network architecture found by PBIL without
a good starting point in the weight space, the weights were
randomized, and backpropagatien -attempted (PBIL 4+ BP
with evolved arch. and random weights). Each of the ten
network architecture developed by PBIL was trained four
times with different initial randomized weights, and slightly
different parameter settings. The average of ‘the forty runs
yielded an average error of 10.13 (this is 7.8% worse than
backpropagation alone). This error is higher than any other
method examined in this paper.

Two remarks should be made about these results. First,
they indicate the possible existence of local minima. When
backpropagation is started in a good position in the weight
space, as in the first method of integration, it can achieve
a much lower error than when started in random locations,
as in the second method of integration. Second, the results
are suggestive of the fact that PBIL does not evolve net-
works which will necessarily work well with backpropagation
training. Methods for evolving such networks should evaluate
each network after backpropagation is applied. Technigues for
evolving networks which can learn quickly and -accurately
have been explored in [19]. -

In the first two methods of integration, the network archi-
tecture found by PBIL was used with backpropagation. In the
third method of integration, only the weights found by PBIL
were used with the full maximal architecture (PBIL + BP
with maximal arch. and evolved weights). The connections
which were not present in the architecture evolved by PBIL
were given a value of 0.0. This value could be changed
through backpropagation training. If BP was initialized with
the weights found by PBIL, within three epochs, the error was
reduced to 7.99 (a 15% improvement over backpropagation
alone).

The fourth, and final, method of integration -also used
only the weights evolved by PBIL. This method used the
weights found by (PBIL w/maximal arch.) as the starting
point for backpropagation (PBIL w/maximal arch. + BP with
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. TABLE 1I
SUMMARY OF EMPIRICAL RESULTS—30 OutpUT PBIL COMPARED WITH 30 OUTPUT BP. TRAINING USED THE SUM SQUARED ERROR METRIC
TRAINING METHOD
30 Output Units
PBIL BP PBIL AND BACKPROPAGATION
Arch & . Arch & Arch & Arch & .
What PBIL Evolved Weights Weights - Weights Weights Weights Weights
Maximal Evolved Evolved Maximal Maximal
How BP was Initialized - " Random | Evolved Random Evolved Evolved
Weights Weights Weights Weights Weights
Sum Squared Error 819 7.96 940 8.10 10.13 7.99 7.71
% ERROR DECREASE 129 153 - 138 78 15.0 18.0
with respect to
30 output BP (SSE)
GAUSSIAN PEAK 296 2.90 335 294 345 296 2.90
POSITION ERROR (GPPE)
% ERROR DECREASE 116 134 . 122 -30 116 134
with respect to
30 output BP (GPPE)

Fig. 8. Result after a final backpropagation pass.

maximal arch. and evolved weights). The difference between
this method and the previous one is that in this method,
PBIL. evolved only the weights of the network, rather than
the weights and the network architecture. After three epochs,
backpropagation was able to reduce the error to 7.71. This
error represents an 18% improvement over backpropagation;
it is the lowest error achieved on the sum squared error metric
in all of the experiments with 30 output units. A typical sample
input/output image after the backpropagation pass is shown in
Fig. 8.

D Summary and Signiﬁcahce of Empirical Results

Many results have been presented in this section. In order
to judge whether the differences in performance are relevant,
the significance for the differences in sum squared error are
measured here. For these tests, two sided Mann-Whitney tests,
and Kruskal-Wallis ANOVA tests are performed, at the 95%
significance level. These tests are nonparametric equivalents
of using the standard two-sample pooled t-test, and-one-way
analysis of variance tests, respectively [28]. The results of the
previous sections are summarized in Tables I and II.

For the 30 output units, the worst training method is the
PBIL + BP w/PBIL arch. and random weights method, which
revealed an average SSE error of 10.13. The next worst is
standard BP, which revealed an error of 9.40. These errors
are significantly different from each other, and from all of the
other training methods. The difference between training with
PBIL (in which the architecture and weights are evolved) and
PBIL w/maximal Architecture (only the weights are evolved)
is not significant, their respective errors are 8.19, and 7.96.
The addition of backpropagation training (PBIL w/maximal
arch. + BP w/maximal arch. and evolved weights) statistically
improves the performance over PBIL (in which the architecture
and weights are evolved). However, backpropagation does not
significantly improve the performance of PBIL when only the
weights of the network are evolved. Finally, the difference
between (PBIL+ BP w/evolved arch. and evolved weights) and
(PBIL w/maximal arch. + BP w/maximal arch. and evolved
weights) is significant.

In summary, evolving the architecture and weights of the
network does not provide a benefit, in terms of error reduction,
over just evolving the weights. Nonetheless, the networks
evolved used only approximately half of the connections;
therefore, implementation of these networks may be more
efficient. In the experiments conducted, evolving the archi-
tecture performs a function similar to weight pruning, or
free parameter reduction, while the network is constructed.
Free parameter reduction is described in detail in [16], [21].
Using backpropagation on the evolved networks improves
performance in the cases in which PBIL is used to evolve

- both the network topology and the weights. Nonetheless, when

PBIL is used to evolve only the weights of a network with
fixed network topology, using backpropagation did not help
significantly in error reduction.

Only very simple integration methods have been presented,
more comprehensive integration may reveal improved results.
For example, in this study, the evolutionary algorithm was
used for weight optimization, with backpropagation applied
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at the end. An alternate strategy is to use backpropagation in
each generation, so that the EA is used to find a set of weights
from which backpropagation can be initialized to perform local
optimizations. This changes. the search task to finding a good
basin of attraction for gradient descent methods rather than
an exact set of weights. An approach similar to this was used
by [19].
To this point, the effectiveness of evolutionary search tech-
“niques has been compared to that of backpropagation using
the sum squared error metric. As both algorithms were trained
only with this error metric, it is correct to measure their general
relative effectiveness by comparing the performances based
upon this error. However, in terms of actual performance,
domain-specific error metrics are often more indicative of
real performance improvements. In this domain, such an error
metric is Gaussian peak position error (GPPE). This error
metric can-be used with the 30 unit output architecture; it
is a measure of the distance (in output units) between the
correct Gaussian peak and the predicted Gaussian peak. It is a
linear translation of the steering error. The performances of the
training methods gauged by this error metric are also provided
in Tables I and II. Since the evolutionary techniques used
network evaluations based upon SSE, larger improvements
are seen when performance is gauged using SSE than when
gauged using GPPE. In the next section, PBIL network training
in which network evaluations are based upon the GPPE metric
is explored. It should be. emphasized that although simple
backpropagation could not have directly used the GPPE error
metric, evolutionary algorithms can very easily incorporate
such information to guide the search.

VI. USING A TASK SPECIFIC ERROR METRIC

For many problems, the -output which is produced by an
ANN must be translated into a different form to be used
by the specific task. For example, in order to use the 30
‘output representation, a Gaussian is fit to the outputs, and
the peak of the Gaussian is used to determine the predicted
steering direction. It is the distance between the predicted
and actual. peaks of the Gaussian which is crucial to good
performance, since this determines the error in the network’s
steering direction. However, this error measure, GPPE, does
not provide an easy mapping of credit or blame to each specific
output unit, as is needed for backpropagation. Therefore, sum
squared error is often used as the guiding error metric.

In other domains, alternate error metrics have been pro-
posed for backpropagation to better capture the underlying
requirements of specific tasks. One such error metric, the
Classification Figure of Merit (CEM) error metric has been
used for problems such as the 1-of-V classifier. The stan-
dard SSE error metric attempts to minimize the difference
between each output node and its target activation. The CFM
error metric attempts to maximize the difference between
the activation of the output node representing the correct
classification and the output of all the other nodes which
represent incorrect classifications [15]. The CEM error metric
concentrates changes on ensuring that the correct classification
is made rather than ensuring that the target output is matched
exactly.

The GPPE error metric focuses the training toward yielding
accurate peak position interpretation of the output vector.
Unlike the CFM error metric, however, error cannot easily be
assigned to individual output units with the GPPE error metric.
Nonetheless, because most evolutionary techniques do not use
explicit credit assignment, the GPPE error metric can still be
used to guide the evolutionary search. In this-section, networks
are evolved which explicitly reduce the GPPE rather than. the
sum squared error; each network is evaluated by its ability to
minimize the GPPE error on each image in the training set,
without regard to the sum squared error.

The use of the GPPE error metric changes the goal of the
search algorithm. Using the SSE error metric, the goal is to
reproduce the entire target output vector exactly. Using the
GPPE error metric, the goal is to place a larger output activa-
tion on the portions of the output vector which correspond
to the correct steering direction than those which do not.
In fitting a Gaussian to the activations of the output vector,
many of the small amounts of noise are ignored. This gives
the search procedure the flexibility to not be as precise in
large portions of the output vector and still achieve a high
score; this is clearly displayed in Fig. 9. The average error
using the GPPE error metric was 2.76 (GPPE); this is an 18%
improvement over backpropagation networks trained with the
SSE error metric (it is statistically significant). These results
are an improvement over the previous best networks which
were evolved with SSE. The networks evolved with SSE
achieved a GPPE error of 2.90, see Table 11, (the difference
is also statistically significant).

The error measured by GPPE is lower for the evolved
networks than 'the backpropagation networks. However, if the
error of these networks is measured in terms of SSE, it is much
higher than previous experiments. The average SSE error is
19.3. The large difference in SSE error, in comparison to the
other experiments presented before, indicates that doing well
in terms of SSE is not a prerequisite for good performance on

‘the error metric of interest, GPPE.

VIL. CONCLUSION

Although the backpropagation algorithm used in this study
maintained spatial information about the input retina which
the evolutionary algorithm was not given, the evolutionary
approach performed better, on average, than backpropagation.
The largest improvements occurred in the one output networks
(36-40%). This study, and previous studies which have used
alternative single output network architectures trained with
backpropagation, have shown.the performance of one output
unit to be much worse than that of a distributed thirty output
unit network [25]. Through the evolutionary approach, the
single oufput representation is equivalent in performance to
the thirty unit backpropagation network, measured in terms
of steering error. In the experiments in which the thirty
output unit networks were evolved, the evolved networks
performed 18% better than the networks trained with error
backpropagation. All of the network topologies which are
evolved in this study are efficient; they use approximately only
half of the total number of possible connections.
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Fig. 9. The left column shows sample input and output pairs using the GPPE error metric. Images taken from test set. Errors in image al: 0.53, b1: 1.16,
cl: 1.71, d1: 2.41. In the right column, sample input and outputs pairs using backpropagation with the standard SSE error metric are shown. These images
have the following GPPE errors: a2: 0.49, b2: 1.70, ¢2: 5.12, d2: 3.83. Images were chosen to show a range of GPPE errors.

- Evolutionary search procedures have the ability to perform
global search. Backpropagation, on the other hand, provides
the ability to perform local optimizations. In these experi-
ments, the EA was used until a good network was found.
Using backpropagation to perform local optimizations on the

evolved networks yielded slightly improved results over either
method alone. .

In this study, the GPPE and SSE error metrics were used to
guide the evolutionary search. Using the GPPE metric did not
produce as smooth output vectors as the SSE metric. However,
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in terms of steering error, networks evolved with the GPPE
metric performed better than networks evolved with SSE
alone. When the networks evolved with' SSE used backpropa-
gation for local optimizations, the results were comparable to
the networks evolved with GPPE alone.

The drawback of using an evolutionary approach is the
severe computational penalties. For example, in training the
networks with thirty output units, the backpropagation method
was able to achieve its minimum in several minutes, the
evolutionary approach took over an hour. Nonetheless, as
the evaluation of networks on the training set is the largest
computational burden, parallelization of this will lead to
improved training times. In determining whether or not an
evolutionary approach is appropriate for a particular applica-
tion, the conflicting needs for accuracy and speed must be
taken into careful consideration. )

This paper has presented several techniques for increasing
the efficiency of evolutionary procedures for training artifi-
cial neural networks. The first is the evolutionary procedure
used—population based incremental learning; this has been
shown to be more effective and efficient than standard GA’s
in a variety of optimization problems [4]. The second is the
evaluation of each network on a small subset of the original
training set instead of on the entire training set. As mentioned
before, since the majority of the time in the evolutionary search
procedure is spent evaluating each network’s effectiveness
on the training set, reducing the time for evaluation has a
tremendous impact on the overall speed of leaming.

VIII. FUTURE DIRECTIONS

One of the first areas in which this study should be directed
is to examine which features the hidden units have developed.
~ Pomerleau and Touretzky [26] have examined the features
developed in the ALVINN networks. It will be interesting to
determine whether the features developed through evolution
are similar to those developed using only backpropagation. It
is suspected that because the backpropagation algorithm used
in ALVINN uses a high neighbor smoothing rate, that perhaps

if a similar mechanism was incorporated into the evolutionary
* algorithm, the features developed may be similar to those
found in the standard ALVINN networks.

In many of the previous studies in which artificial neural
networks were evolved, either the entire network structure
was evolved from only the inputs and outputs specified,
or only the weights were evolved once the network was
entirely - prespecified. The method presented in this paper,
which is similar to the one chosen by [22], is a hybrid
between these two extremes. This hybrid approach allows
any a priori information regarding the network topology to
be easily incorporated into the search. Nonetheless, a more
automatic specification of the network and scaling of weight
ranges would be desirable. For example, the maximal network
limits the architecture of the network to a pre-specified form. A
direction for future work is allowing any arbitrary architecture
to be evolved, as in [2]. The need for automatic specification
of the network architecture and weights must be balanced by

the larger search times which genetic or PBIL methods will
require. ‘

The version of population-based incremental learning which
was used in this study was very simple. More advanced
versions of the algorithm may yield better results, For example,
although the cardinality of the networks encoding was two,
the PBIL algorithm can also work on alphabets of larger
cardinality. Either using a larger cardinality alphabet or using
real valued features may improve the performance of the
algorithm. Fogel et al., have studied evolving neural networks
with real values rather than binary encoded values, and have
achieved good results [10].

In the experiments presented here, a fraction of the entire
training set was used. However, no method for determining
the correct fraction of the training set to use was presented.
If too large a portion is used, search can be slowed.down
tremendously. If too small a portion is used, the noise in
the evaluation of each network may lead the search algorithm
away from finding networks which perform well on the entire
training set. As using only a few samples from the training
set has the potential to greatly reduce the amount of time used
for developing networks with good generalization capabilities,
more rigorous statistical techniques should be used to define
the sample size needed for network evaluations. »

The long-term future goal, of which this project is a part,
is to collect a pool of the evolved nétworks which can be
installed into the NAVLAB. However, before this can be done,
several issues need to be resolved, such as determining the best
method of using a pool of networks. One alternative is a system
like MANIAC, in which a meta-level network controls which
expert networks (networks trained on specific road types) will
contribute to the final outcome [18]. Other alternatives are
systems which use reliability estimates of each network to
determine which network should control the steering direction
[25]. The second issue which needs to be addressed is that of
training networks with more than a single road type. The desire
to use a small number of expert networks must be weighed
against the potential performance degradation of networks
trained on more than a single road type: The transition to using
evolved networks, whether they are eventually evolved with
single or multiple road types, will not be difficult. The evolved
networks can use the same inputs and outputs as the ALVINN
networks, Their ouiputs are translated into steering commands
in exactly the same manner as the ALVINN networks already
in use. The results shown here appear promising in their error
reduction; nonetheless, only actual use ‘will determine their
true efficacy.
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