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Abstract

Stnce a variety of recent changes in both robotic
hardware and software suggests that service robots will
soon become possible, to find “natural” ways of com-
munication between human .and robots is of funda-
mental importance for the robotic field. This paper
describes a gesture-based interface for human-robot
interaction, which enables people to instruct robots
through easy-to-perform arm gestures. Such gestures
might be static pose gestures, which involve only a
specific configuration of the person's arm, or they
might be dynamic motion gestures, that is, they in-
volve motion (such as waving). Gestures are recog-
nized in real-time at approximate frame rate, using
neural networks. A fast, color-based tracking algo-
rithm enables the robot to track and follow a person
reliably through office environments with drastically
changing lighting conditions. Results are reported in
the contert of an interactive clean-up task, where a
person guides the robot to specific locations that need
to be cleaned, and the robot picks up trash which it
then delivers to the nearest trash-bin.

1 Introduction

The field of robotics is currently undergoing a
change. While in the past, robots where predomi-
nately used in factories for purposes such as man-
ufacturing and transportation, a new generation of
“service robots” has recently begun to emerge. Ser-
vice robots cooperate with people, and assist them
in their everyday tasks. A landmark service robot
is Helpmate Robotics’s Helpmate robot, which has
already been deployed at numerous hospitals world-
wide [8]. Helpmate, however, does not interact with
people other than by avoiding them. In the near fu-
ture, similar robots are expected to appear in var-
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ious branches of entertainment, recreation, health-
care, nursing, and others, and to interact directly with
people.

This upcoming generation of service robots opens
up new research opportunities. While the issue of mo-
bile robot navigation has been researched quite exten-
sively (see e.g., [2]), considerably little attention has
been paid to issues of human-robot interaction. The
need for more effective human-robot interfaces has
been recognized. For example, Torrance developed a
natural language interface for teaching mobile robots
names of places in an indoor environment [16]. Due to
the lack of a speech recognition system, his interface
still required the user to operate a keyboard; how-
ever, the natural language component made instruct-
ing the robot significantly easier. Recently, Asoh and
colleagues [1] developed an interface that integrates a
speech recognition system into a phrase-based natural
language interface. They successfully instructed their
“office-conversant” robot to navigate to office doors
and other significant places in their environment, us-
ing verbal commands. Other researchers have pro-
posed vision-based interfaces that allow people to in-
struct mobile robots via arm gestures. For example,
Kortenkamp [9] recently developed a gesture-based
interface, which is capable of recognizing arm poses
such as pointing towards a location on the ground.
In a similar effort, Kahn and his colleagues [7} devel-
oped a gesture-based interface which has been demon-
strated to reliably recognize static arm poses (pose
gestures) such as pointing. This interface was success-
fully integrated into Firby’s reactive plan-execution
system RAP [5], where it enabled people to instruct
a robot to pick up free-standing objects. Both of these
approaches, however, recognize only static pose ges-
tures.

Our approach extends this work to motion ges-
tures, that is, gestures that are defined through spe-
cific temporal patterns of arm movements, such as



Figure 1: AMELIA,
the robot used in our
research, is a RWI
B21 robot equipped
with a color camera
mounted on a pan-

tilt unit, 24 sonar
sensors, and a 180°
SICK laser range
finder.

waving. Motion gestures, which are used for commu-
nication among people, provide additional freedom in
the design of gestures. In addition, they reduce the
chances of accidentally classifying arm poses as ges-
tures that were not intended as such. Thus, they ap-
pear better suited for human robot interaction than
static pose gestures.

This paper presents an adaptive dual-color track-
ing algorithm which enables the robot to track and,
if required, follow a person around at speeds of up
to one foot per second while avoiding collisions with
obstacles. This tracking algorithm quickly adapts to
different lighting conditions. Gestures are recognized
by a real-time neural-network based algorithm. This
algorithm works in two phases: one that recognizes
static arm poses, and one that recognizes gestures
(pose and motion). In the first phase, the algorithm
predicts the angles of the two arm segments relative
to the person’s body from image. In the second phase,
the results of the first phase are temporally matched
to previously recorded examples of gestures, using the
Viterbi algorithm [12]. The gesture angles matcher
can recognize both pose and motion gestures. The re-
sult 1s a stream of probability distribution over the set
of all gestures, which is then thresholded and passed
on to the robot’s high-level controller.

This approach has been integrated into our ex-
isting robot navigation and control software, where
it enables human operator to provide direct motion
commands (e.g., stopping), to guide the robot to
places which it can memorize, to point tc objects

(e.g., trash on the floor) and to initiate clean-up tasks,
where the robot searches for trash, picks it up, and
delivers it to the nearest trash-bin.

2 Visual Tracking and Servoing

The lowest-level component of our approach is
a vision-based tracking algorithm that enables the
robot to track and follow people in real-time. Visual
tracking of people has been studied extensively over
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the past few years [4, 3]. The vast majority of exist-
ing approaches assumes that the camera is mounted
at a fixed location. Such approaches typically rely on
a static background, so that human motion can be
detected through image differencing. Some more ad-
vanced approaches (e.g., [18]) can track people even
if the camera is mounted on a pan-tilt unit. However,
even in these cases, the illumination is usually fairly
uniform. In addition, processing power is limited on
our robot (200Mhz Pentium PC), which imposes an
additional burden on the software design.

Recognizing gestures with a robot-mounted cam-
era 1s more difficult due to the occasional occurrence
of drastic changes in background and lighting con-
ditions that are caused by robot motion. For ex-
ample, in [18], a system was proposed which tracks
human faces based on their color. This approach
was reported to track people reliably with a camera
mounted on a pan-tilt unit. When testing this ap-
proach on a mobile robot, however, changes in light-
ing conditions often made it impossible to follow a
person through a building.

We therefore extended the color-based approach
in a fairly straightforward way. Our approach tracks
humans based on a combination of two colors, namely
face color and body color (i.e., shirt color). Both
colors are assumed to be arranged vertically in the
image. The resulting algorithm iterates four steps:

Step 1: Color Filtering. Two Gaussian color
filters are applied to each pixel in the image. Each
filter is of the form

)

N

where X is the color vector of the i-th image pixel,
Xface and Xgace are the mean and covariance matrix of
aface color model, and Xy,o4y and Zpeqy are the mean
and covariance matrix of a body (shirt) color model.
The result of this operation are two filtered images,
example of which are shown in Figures 2b&c. These
images are then smoothed locally using a pseudo-
Gaussian kernel with width 5, in order to reduce the
effects of noise.

Step 2: Alignment. Next, the filtered image pair
is searched for co-occurrences of vertically aligned
face and body color. This step rests on the assump-
tion that a person’s face is above his/her shirt in the
camera image. First, the image is mapped into a hor-
izontal vector, where each value corresponds to the
combined face- and body-color integrated vertically.
Figure 2d illustrates the results of this alignment
step. The gray-level in the two center regions indicate
graphically the horizontal density of face and body
color. The darker a region, the better the match.
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Figure 2: Tracking a person: (a) Raw camera image,
(b) face-color filtered image, and (c) body-color filtered
image. {d) projection of the filtered image onto the hori-
zontal axis (within a search window). (e) Face and body
center, as used for tracking and adaptation. (f) Search
window, in which the person is expected to be found in
the next image.

Both responses are then multiplied, to determine the
estimated horizontal coordinates of the person. Fi-
nally, the filtered image regions are searched vertically
for the largest occurrence of the respective color, to
determine the vertical coordinates of face and body.
Figure 2e shows the results of this search. We found
this scheme to be highly reliable, even for people that
moved hastily in front of the robot.

Step 3: Servoing. If the robot is in visual ser-
voing mode (meaning that it is following a person),
it issues a motion command that makes the robot
turn and move towards this person. The command
is passed on to a collision avoidance method [6] that
sets the actual velocity and motion direction of the
robot in response to proximity sensor data.

Step 4: Adaptation. Finally, the means and
covariances Xrace, Lface, Xbody; Dbody are adapted,
to compensate changes in illumination. The
robot computes new means and covariances from
small rectangular regions around the center of the
face and the body (shown in Figure 2e). Let
Xfacer Stacer Xhody» Dbody denote these new values,
that are obtained from the most recent image only.
The means and covariances are updated according to
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(b)

Figure 3: Example gestures: (a) stop gesture and (b)
follow gesture. While the stop gesture is a pose gesture,
the follow gesture involves motion, as indicated by the
arrows.

the following rule, which is a temporal estimator with
exponential delay:

Xiace ¢— aXfce + (1~0)Xpace

Oface +— QOpce + (1—a)otace

Xoody ¢— @Xjogy + (1—a)Xpoay

Obody — oza'gody + (1—a)obody (2)

Here « is a learning rate, which we set to 0.1 in all
our experiments.

Finding a person. To find the person and ac-
quire an initial color model, the robot scans the im-
age for face color only, ignoring its body color filter.
Once a color blurb larger than a specific threshold is
found, the robot acquires its initial body color model
based on a region below the face. Thus, the robot
can track people with arbitrary shirt colors, as long
as they are sufficiently coherent.

This straightforward extension of the basic color-
based tracking approach was found to work reliably
when tracking people and following them around
through buildings with rapidly changing lighting con-
ditions. The tracking routine is executed at a rate of
20 Hertz on a 200 Mhz Pentium PC.

3 Recognition of Pose and Motion
Gestures

Our primary goal has been to devise a vision-based
interface that is capable of recognizing both pose and
motion gestures, while the robot might be in motion.
Pose gestures involve a static configuration of a per-
son’s arm, such as the “stop” gesture shown in Fig-
ure 3(a), whereas motion gestures are defined through
specific motion patterns of an arm, such as the “follow
me” gesture shown in Figure 3(b).

The approach proposed here employs two phases,
one for recognizing poses from a single image (pose



Figure 4: Gaussian output encoding for a pair of angles

analysis), and one for recognizing sequences of poses
from a stream of images (temporal angles matching).

Pose analysis. In the first stage a probability dis-
tribution over all poses is computed from a camera
image. A neural-network based method is used for
image interpretation. The approach operates on a
color-filtered sub-region of the image which contains
the person’s right side, as determined by the tracking
module.

The neural network-based approach predicts the
angles of the two arm segments relative to the per-
son’s right side from the image. The input to the
network 1s a downsampled image segment constituted
by a vector of 100 components, and the output cor-
responds to the angles of the arm segments, encoded
using multi-unit Gaussian representations, just like in
to Pomerleau’s ALVINN [11]. The output encoding
uses multiple units to encode a single scalar value, by
generating Gaussian-like activations over the array of
output units. Like Pomerleau, we found that those
representations gave the best results among several
ones that we tried during the course of this research.

The network was trained using Backpropagation
algorithm [13], considering a database of 1708 hand-
labeled training images, that is, for each image rel-
ative to the person’s right side, we have computed
two angles corresponding of the two arm segments
through a graphic interface, in order to build the
training data set. We used 60 output units, 30 for
each one of the two arm angles. As a simple example,
Figure 4 shows two different angles: Anglel = 124.3
degrees and Angle2 = 224.5 degrees codified by using
the Gaussian Output representation given by:

v = o= 50%d}
where d; = 222 — L for i = 0,1,...,29 and angle €

R. Figure 5(b) shows the input, output, and target
values for the network. The input is a down-sampled,
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82

(b)

input

T Output o
2 B target o

output f wmmesmys
targetf  rommesm—"

Figure 5: Neural network pose analysis: (a) Camera im-
age, with the two arm angles as estimated by the neu-
ral network superimposed. The box indicates the region
which is used as network input. (b) The input to the neu-
ral network and the outputs and targets of the networks
for the two angle.

Average error
Topology | Upper arm Lower arm
segment segment
100-200-60 4.85 5.24
100-100-60 473" 5.45
100- 50-60 4.96 5.56

Table 1: Average error obtained by neural network in the
testing data

color-filtered image of size 10 by 10. The output is
Gauss-encoded. The nearness of the outputs (first
and third row) and the targets (second and forth row)
suggests that in this example, the network predicts
the angle with high accuracy.

After the training phase was concluded, since the neu-
ral network output is a vector with 60 components
in which the 30 first components correspond to the
upper segment of the arm whereas the 30 last com-
ponents correspond to the lower segment of the arm,
it was necessary to convert the network’s output acti-
vation levels into two angles (in degrees) for interpre-
tation of the results. For this, the gaussian of width
specified during training that best fits the output ac-
tivation levels was determined as for the first 30 out-
put units as for the last 30 output units. In our case,
the technique used was the Discrete Search technique
considering the LMS given by:

E(a) = L [yi - f(z:)]?

_(zj—a)?
e 2593, H

where f(x;) z; = ¢/29.%360.0 and
yi is the i** component of the output of the neural
network. The value of a corresponding the minimum
value of E(a) has been considered as the angle cor-
responding to those output activation levelss, that is,

the angle a* provided by the network is determined



by the value corresponding to the best fit gaussian’s
peak along the output given by:

sj—a)?
a* = arg,min{%; [y,——e""_‘( 32|}

The network’s average error for the angle of the up-
per arm segment, and for the angle of the lower arm
segment, for an independent set of 569 testing im-
ages, is shown in Table 1 considering three different
topologies and a learning rate equals to 0.025. Other
rate learning has been considered but as it was ex-
pected as much one requires precision in the learning
of training set as less precision is obtained in the test-
ing data. So, we decided to choose this value as the
value of learning rate. The tests in real time were per-
formed considering 100 neurons in the hidden layer,
that is, the topology 100-100-60. Figure 5(a) shows
an example image. Superimposed here are the two
angle estimates, as generated by the neural network.

The neural network-based method generates two-
dimensional feature vectors, one per image. The neu-
ral network generates two angles that are compared to
two angles (desired angles) of each image in training
set. The result is a vector of 2 components, where
each value corresponds to the distance between the
desired angle and angle provided by network. These
feature vectors form the basis of the temporal angle
matching.

Temporal Angle Matching. In the second
phase, a temporal angle matcher compares the tem-
poral stream of feature vectors with a set of pre-
recorded prototypes of individual gestures. Each of
these templates is a sequence of prototype feature vec-
tors, where time is arranged vertically. Gesture tem-
plates are composed of a sequence of feature vectors,
constructed from a small number of observations.

The temporal angle matcher continuously analyzes
the stream of incoming feature vectors for the pres-
ence of gestures. It does this by matching the ges-
ture template to the most recent n feature vectors,
for varying numbers of n (n = 40,50, .. .,80); notice
that the gesture templates are much shorter than n.
To compensate differences in the exact timing when
performing gestures, our approach uses the Viterbi
algorithm [12] for time alignment, which employs dy-
namic programming to find the best temporal align-
ment between the feature vector sequence and the
gesture template.

4 Integration and Results

The gesture-based approach has been integrated
into our previously developed mobile robot naviga-
tion system, to build a robot that can be instructed
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gestures gestures recognized
given stop follow point-2 point-1 no gesture

241 40 62 51 45 41
stop 40 40 - - - -
follow 59 - 59 - - -
point-2 50 - - 50 - -
point-1 42 - - - 42 -
no gesture 50 - 3 1 3 41

Table 2: Recognition results. Point-1 means gestures

pointing towards to floor and Point-2 for pointing hori-
zontally .

Figure 6: Map of the robot’s operational range (80 by
25 meters) with trace of a specific example of a successful
clean-up operation. The robot waited in the corridor, was
then guided by a human into a lab, where it picked up a
can and later deposited it into a trash-bin.

by natural means [15]. In a nutshell, our navigation
methods enable robots to navigate safely while ac-
quiring maps of unknown environments.

Table 2 surveys experimental results for the recog-
nition accuracy of the gesture-based interface. Each
row corresponds to a number of experiments, in which
a human subject presented a specific gesture. In some
experiments, no gesture was shown, to test the robot’s
ability to detect gestures only if the person actually
performed one. Since false-positives (the robot recog-
nizes a gesture that was not shown by the instructor)
are generally worse than false-negatives (the robot
fails to recognize a gesture), we tuned our thresholds
such that the number of false-positives was small.

As can be seen in Table 2, our approach recognizes
gestures fairly accurately. In 191 experiments where
a human showed a gesture, and an additional 50 ex-
periments where the human did not show a gesture,
the robot classified 97.2% of the examples correctly.
All errors were not of the type that the robot failed to
recognize a gesture. There were no misclassifications
among different gestures.

We tested the effectiveness of the gesture-based
interface in the context of a clean-up task that in-
volved human user interaction and mobile manipula-
tion. The specific choice of the task was motivated
by past AAAI mobile robot competitions.

Figure 8 shows an example run, in which our robot
AMELIA is instructed to pick up a piece of trash.
Shown there is a map of the the robot’s environ-
ment, constructed using an occupancy grid technique



[10, 15], along with the actual path of the robot and
the (known) location of a trash-bin. Initially, the
robot waited in the corridor for a person. The person
instructed the robot to follow him into the lab (using
the follow gesture), where it first stopped the robot
(using the stop gesture), then pointed at a piece of
trash (a can). The robot picked up the can, and re-
turned to the corridor where it deposited the trash in
a bin.

5 Conclusion

This paper described a gesture-based interface for
human-robot interaction. A hybrid approach, con-
sisting of an adaptive color-filter and an artificial
neural network, was described for recognizing human
arm gestures from streams of camera images. Our
approach is capable of recognizing both static pose
gestures, and dynamic motion gestures. The paper
demonstrated the usefulness of the interface in the
context of a clean-up task, where a person cooper-
ated with the robot in cleaning up trash.

There are several open questions that warrant fur-
ther research. First, our approach has several limita-
tions. For example, the tracking module is currently
unable to deal with multi-colored shirts, or to follow
people who do not face the robot. We believe, how-
ever, that the robustness can be increased by consid-
ering other cues, such as shape and texture, when
tracking people. Secondly, our approach currently
lacks a method for teaching robots new gestures. This
is not really a limitation of the basic gesture-based in-
terface, as it is a limitation of the robot’s finite state
machine that controls its operation. Future work will
include providing the robot with the ability to learn
new gestures, and to associate those with specific ac-
tions and/or locations. Finally, we believe it is worth-
while to augment the interface by a speech-based in-
terface, so that both gestures and speech can be com-
bined when instructing a mobile robot.
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