362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 3, MAY 1988

Vision and Navigation for the Carnegie-Mellon
Navlab

CHARLES THORPE, MARTIAL H. HEBERT, TAKEO KANADE, MEMBER, IEEE,
AND STEVEN A. SHAFER, MEMBER, IEEE

Abstract—This paper describes results on vision and navigation for
mobile robots in outdoor environments. We present two types of vision
algorithms: color vision for road following, and 3-D vision for obstacle
detection and avoidance. In order to evaluate these algorithms in a
realistic outdoor environment, we have integrated the vision capabili-
ties into a complete system including a self-contained mobile platform,
and a software architecture for the real-time control of distributed per-
ception and navigation modules. The resulting system is able to navi-
gate continuously on roads while avoiding obstacles.

Index Terms—Blackboards, color vision, mobile robots, range data.

I. INTRODUCTION

OBILE robot systems provide a unique opportunity

to develop perception and navigation techniques in
complex real-world environments. The tools a robot uses
to bridge the chasm between the external world and its
internal representation include sensors, image under-
standing to interpret sensed data, geometrical reasoning,
and a concept of time and of the vehicle’s motion over
time. This paper presents a mobile robot system that in-
cludes both perception and navigation tools. The rationale
for developing a whole system is that it allows us to con-
front our vision techniques with real-world environments
in the context of actual autonomous navigation missions.
We have developed a testbed for the study of mobile
robots, the Navigation Laboratory. The testbed is used for
integrating perception and navigation capabilities. The
sensory capabilities of the system are color vision, and
3-D vision using an active sensor. Color vision is used for
finding roads in color images. 3-D vision is used for ob-
stacle detection and terrain modeling. We have integrated
the perception modules into a system that allows the ve-
hicle to drive continuously in an actual outdoor environ-
ment. In order to integrate perception modules, naviga-
tion modules, and hardware interface, we propose a
distributed architecture articulated around a knowledge
database ‘‘Communication Database with Geometric

Manuscript received December 15, 1986; revised May 15, 1987. This
work was supported by the Strategic Computing Initiative of the Defense
Advanced Research Projects Agency, ARPA Order 5351, monitored by the
U.S. Army Engineer Topographic Laboratories under Contract DACA760-
85-C-0003, DARPA Contract DACA76-86-C-0019, and National Science
Foundation Grant DCR-8604199.

The authors are with the Department of Computer Science and the Ro-
botics Institute, Carnegie-Mellon University, Pittsburgh, PA 15213.

IEEE Log Number 8820104.

Reasoning’’ (copGER). The CODGER tools handle much of
the modeling of time and geometry, and provide for syn-
chronization of multiple processes. The architecture co-
ordinates control and information flow between the high-
level symbolic processes running on general purpose
computers, and the lower-level control running on dedi-
cated real-time hardware.

II. NavLAB: NAVIGATION LABORATORY

The Navlab [11] is a self-contained laboratory for nav-
igational vision system research with on-board computing
facilities. Figs. 1 and 2 show the vehicle.

Navlab is based on a commercial van chassis, with hy-
draulic drive and electric steering. Computers can steer
and drive the van by electric and hydraulic servos, or a
human driver can take control to drive to a test site or to
override the computer. The Navlab has room for com-
puters on board including Sun workstations and a Warp
systolic computer [1]. Navlab is currently equipped with
two sensors mounted above the cab: a TV camera, and a
laser range finder. The interface between the computers
and the driving hardware is provided by a controller which
can steer the Van along circular arcs. The vehicle has
room for up to four researchers in the back. This gets the
researchers close to the experiments, and eliminates the
need for video and digital communications with remote
computers.

III. Roap FoLLowING

The first application of a mobile robot is to find and
follow roads using a video camera. Two approaches could
be used: line tracking and region analysis. The first ap-
proach attempts to extract the edges of the road as seen
by a camera, and backprojects them on the ground plane
in order to compute the appropriate steering commands
for the vehicle [4], [15]. This approach assumes an ac-
curate model of the road shape. Unfortunately, in practice
the strongest edges are often the shadow edges, whereas
the road edges are much weaker and do not necessarily fit
the straight line model. The line tracking approach relies
heavily on inferring the road geometry from the road
edges. The geometric inference assumes that the road
edges are parallel [15], and therefore it is very unstable
when applied to noisy data. In fact, it can be shown that
the inferred road may fold over or under the ground plane

[5].

0162-8828/88/0500-0362$01.00 © 1988 IEEE

THORPE er al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB 363

Fig. 2. Navlab interior.

The second approach classifies the pixels of a color im-
age as on-road or off-road pixels based on the color char-
acteristics of the road [13]. This approach does not re-
quire a geometric model as accurate as the line tracking
approach. The main problem is that the dominant color
features are dark (shadows) and light (sun). As a result
road and nonroad pixels cannot be separated by a single
threshold in RGB space. Furthermore, characteristic RGB
values for a given feature (e.g., sunny road) drift, so that
algorithms based on fixed threshold fail.

Previous work shows that the road following problem
is difficult; existing systems work adequately for their
particular environments, e.g., even illumination or
straight edges. We use the second approach to find and
follow roads [12]. We use multiclass adaptive color clas-
sification to classify image points as ‘‘road’’ or ‘‘non-
road’’ on the basis of their color. Since the road is not a
uniform color, color classification must have more than
one road model, or class, and more than one nonroad
class. Because conditions change from time to time and

from place to place over the test course, the color models
must be adaptive. In addition to color classification, we
added texture information to the classification algorithm.
Once the image is classified, the road is identified by
means of an area-based voting technique that finds the
most likely location for the road in the image.

A. Overview of the Road Following Algorithm

Fig. 3 shows a simple scene which we will use to ex-
plain our algorithm. As shown in Fig. 4, the algorithm
involves three stages:

1) Classify each pixel.

2) Use the results of classification to vote for the best-
fit road position.

3) Collect new color statistics based on the detected
road and nonroad regions.

Pixel classification is done by a standard pattern clas-
sification method [6]. Each class i is represented by the
means m; and covariance matrix, L, of red, green, and
blue values, and by its a priori likelihood, f;, based on
expected fraction of pixels in that class. Assuming Gaus-
sian distribution, the confidence that a pixel of color X
belongs to a class is computed based on the distance (X
— m;) 7' (X — m;). Each pixel is classified with the
class of highest probability. Figs. 5 and 6 show how each
pixel is classified and its confidence.

Once each point has been classified, we must find the
most likely location of the road. We assume the road is
locally flat, straight, and has parallel sides. The road ge-
ometry can be described by two parameters as shown in
Fig. 7:

1) The intercept P, which is the image column of the
road’s vanishing point. This is where the road centerline
intercepts the vanishing line of the locally flat plane of the
road. In other words, the intercept gives the road’s direc-
tion relative to the vehicle. Since the camera is fixed to
the vehicle this vanishing line is constant assuming that
the vehicle’s pitch and roll relative to the road are small.
In the following, 7,,i.., i the row position of the vanish-
ing line in the image.

2) The orientation 6 of the road in the image, which
tells how far the vehicle is to the right or left of the cen-
terline.

We set up a two-dimensional parameter space, with in-
tercept as one dimension and orientation as the other. Each
point classified as road votes for all road (P, 6) combi-
nations to which it could belong, while nonroad points
cast negative votes, as shown in Fig. 9 and Fig. 8. For a
given pixel (row, col), the corresponding set of pairs
(P, 0) is the curve:

rhorizon) X tg 09 0)

in parameter space. The (P, 6) pair that receives the most
votes is the one that contains the most road points, and it
is reported as the road. For the case of Fig. 3, the votes
in (P,) space look like Fig. 10. Fig. 11 shows the de-
tected position and orientation of the road. It is worth not-
ing that since this method does not rely on the exact local

(col + (row —

364 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 3, MAY 1988

Fig. 3. Original image.

Image

v

Road/Non-road V
Classification I i

Road Model |

Non-road Mode!d

Widh
Position

Appea N R
RGBT ‘

Road]Sosmon -—
& Orientation

Vehicle

Motion

Hough for T 7y - T x
f
|
i

Self Clustering
&
Update

Fig. 4. Color vision for road following, including color classification,
Hough transform for road region detection, and updating muitiple road
and nonroad models.

Fig. 5. Segmented image. Color and texture cues are used to label points
below the horizon into two road and two off-road classes.

geometry of the road, it is very robust. The road may ac-
tually curve or not have parallel edges, or the segmenta-
tion may not be completely correct, but still the method
outputs approximate road position and orientation. The
main limitation is the field of view of the camera which
limits the size of the parameter space. Currently, the in-
tercept lies within the parameter space as long as the road
has a curvature radius greater than 60 meters assuming a
60 degree field of view. If the road curve is sharper, the
algorithm returns the closest interpretation in the param-
eter space.

Fig. 6. Road probability image. The pixels that best match typical road
colors are displayed brightest.

P: Road direction relative to vehicle
©: Vehicle position relative to road center

p/<®

Vanishing Point

Vanishing Line
Knowledge of Ground Plane

Knowledge of

H

]
Find a good combination of (P,®)

Fig. 7. Road transform that considers the geometry of road position and
orientation. Geometry of locally flat, straight, and parallel road regions
can be described by only P and 6. Point A classified as road could be a
part of the road with the shown combination of (P, 6), and thus casts a
positive vote for it. Point B classified as off-road, however, will cast a
negative vote for that (P, §) combination.

\

Fig. 8. A road point could be a part of roads with different orientations
and vanishing points.

Once the road has been found in an image, the color
statistics of the road and off-road models are modified for
each class by resampling the detected regions (Fig. 12)
and updating the color models. The updated color statis-
tics will gradually change as the vehicle moves into a dif-
ferent road color, as lighting conditions change, or as the
colors of the surrounding grass, dirt, and trees vary. As

THORPE et al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB 365

o hurizon puint

O O

Fig. 9. The point from Fig. 8 would vote for these orientation/intercept
values.

Fig. 10. Votes for best road orientation and intercept, and point with most
votes (dark square), for road in Fig. 3.

Fig. 11. Detected road, from the point with the most votes shown in
Fig. 10.

long as the processing time per image is low enough to
provide a large overlap between images, the statistics
adapt as the vehicle moves. The road is picked out by
hand in the first image. Thereafter, the process is auto-
matic, using the segmentation from each image to calcu-
late color statistics for the next.

Actually several important additional processing steps
are possible. One is to smooth the images first. This re-
moves outliers and tightens the road and nonroad clusters.
Another is to have more than one class for road and for
nonroad, for instance one for wet road and one for dry,
or one for shadows and one for sun. Other variations
change the voting for best road. Besides adding votes for
road pixels, we subtract votes for nonroad points. Votes
are weighted according to how well each point matches
road or nonroad classes. Finally, an image contains clues
other than color, such as visual texture. Roads tend to be
smooth, with less high-frequency variation than grass or
leaves, as shown in Fig. 13. We calculate a normalized
texture measure, and use that in addition to color in the
road classification.

Fig. 12. Updating road and nonroad model colors, leaving a safety zone
around the detected road region.

Fig. 13. Zoomed picture of road-nonroad boundary. The road (at left) is
much less textured than the grass (at right).

B. Implementation

The implementation of the road following algorithm
presented above runs in a loop of six steps: image reduc-
tion, color classification, texture classification, combin-
ing color and texture results, voting for road position, and
color update. These steps are shown in Fig. 14, and are
explained in detail below.

Image Reduction: We create a pyramid of reduced res-
olution R, G, and B images. Each smaller image is pro-
duced by simple 2 X 2 averaging of the next larger image.
We found that other reduction methods, such as median
filtering, are more expensive and produce no noticeable
improvement in the system. We start with 480 x 512 pixel
images, and typically use the images reduced to 30 x 32
for color classification. We use less reduced versions of
the images for texture classification. Image reduction is
used mainly to improve speed, but as a side effect the
resulting smoothing reduces the effect of scene anomalies
such as cracks in the pavement.

Color Classificarion: Each pixel (in the 30 x 32 re-
duced image) is labeled as belonging to one of the road
or nonroad classes by standard maximum likelihood clas-
sification. We usually have four road and four nonroad
classes. The number of classes is a compromise between
having only two classes [13] (one for road and one for
nonroad), which leads to poor performance in a changing
environment, and having too many classes, which leads
to an unreliable classification. Each class is represented
by the mean R, G, and B values of its pixels, by a 3 x 3
covariance matrix, and by the fraction of pixels expected

366 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 10. NO. 3. MAY 1988

RED EDGE 0 |, b=

BLUE
GREEN
REDUCE

I

TEXTURE
NORMALIZATION

COLOR
CLASSIFICATION

TEXTURE
IMAGE

COLOR.
STATISTICS

TEXTURE
CLASSIFICATION

GRASS 1

A GRASS 0

ROAD 1

CLASSIFICATION
COMBINATION

ROAD 0

SAMPLE
COLORS

NEGATIVE

HIGHEST VOTE

VOTE

(HOUGH
SPACE

GRASS

EDGES

POSITIVE
VOTE

Fig. 14. Processing cycle for color vision.

a priori to be in that class. The classification procedure
calculates the probability, P{, that a pixel belongs to each
of the classes.

Texture Calculation: The regions of paved roads tend
to appear smoother in the image than nonroad regions of
grass, soil, or tree trunks. The texture calculation com-
bines a low-resolution (low-frequency) gradient image and
a high-resolution (high-frequency) gradient image into a
texture image. The algorithm is composed of six sub-
steps:

¢ Calculate gradient at high resolution by running a
Roberts operator over the 240 x 256 image.

® Calculate a low resolution gradient by applying a
Roberts operator to the 60 X 64 image.

¢ Normalize the gradient by dividing the high resolu-
tion gradient by a combination of the average pixel value
for that area and the low resolution gradient. Dividing by
the average pixel value handles shadow interiors, while
dividing by the low resolution gradient removes the
shadow boundary.

* Normalized gradient

high-freq gradient
a X low-freq gradient + 8 X mean pixel value

Typical values for the coefficients are « = 0.2 and 8 =
0.8.

® Threshold. Produce a 240 X 256 binary image of
“‘microedges’’ by thresholding the normalized gradient.
A fairly low threshold, such as 1, is usually adequate.

® Count Edges. Count the number of edges in each
pixel block of 8 X 8 pixels. This gives a 30 X 32 pixel
texture magnitude image. Fig. 15 shows the texture image
derived from Fig. 3. Each texture pixel has a value be-

Fig. 15. Low resolution texture image, showing textures from Fig. 3. The
brighter blocks are image areas with more visual texture.

tween 0 and 255, which is the number of microedge pixels
in the corresponding block of the full-resolution image.

® Texture Classification. Classify each pixel in the 30
X 32 image as road or nonroad on the basis of texture,
and calculate a confidence P! for each label. We found
experimentally that a fixed mean and standard deviation
for road and nonroad textures were better than adaptive
texture parameters. Our best results were with road mean
and standard deviation of 0 and 25, and nonroad values
of 175 and 100. Effectively, any pixel block of the image
with more than 35 microedges above threshold is consid-
ered textured, and is therefore classified as nonroad.

The weights and thresholds used in the texture calcu-
lation have been initially determined from a training set
of 50 images.

Combination of Color and Texture Results: For each
road or nonroad class i, confidence measures from color
and texture are combined into one confidence P, using the
formula:

P,=(1 - a)P] + aPf.

The weight « takes into account the fact that color is more
reliable, so that the color probabilities should be weighted
more than the texture probabilities. The final result is a
classification of the pixels into road and nonroad, and a
confidence calculated by:

C = Max {P,, i road class }
~ Max {P,, i nonroad class} .

The final confidence C is negative for nonroad pixels,
and positive for road pixels.

Vote for Best Road Position: This step uses a 2-D pa-
rameter space similar to a Hough transform. Parameter P
is the column of the road’s vanishing point, quantized into
32 buckets because the image on which the classification
and voting are based has 32 columns. Parameter 6 is the
road’s angle from vertical in the image, ranging from — 1
to | radian in 0.1 radian steps. A given road point votes
for all possible roads that would contain that point. The
locus of possible roads whose centerlines go through that
point is an arctangent curve in the parameter space. Be-
cause the road has a finite width, the arctan curve has to
be widened by the width of the road at that pixel’s image
row. Road width for a given row is not a constant over all

THORPE et al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB 367

possible road angles but is nearly constant enough that it
does not justify the expense of the exact calculation. Each
pixel’s vote is weighted by its calculated confidence. Pix-
els classified as nonroad cast negative votes (with their
weights reduced by a factor of 0.2) while road pixels add
votes. In pseudo C code, the voting for a pixel at (row,
col) is

for (theta = —1; theta < = 1; theta += 0.1) {
center = col + tan (theta) * (r — r_horizon);
for (¢ = center — width/2; ¢ < = center + width/
2;c++){
parameter_space|[theta] [c] + = confidence;
}
}

At the end of voting, one road pair (P, 6) will have the
most votes. That intercept and angle describe the best road
shape in the scene.

Color Update: The parameters of the road and nonroad
classes need to be recalculated to reflect changing colors.
We divide the image into four regions plus a ‘‘safety
zone’’: left off-road, right off-road, upper road, and lower
road. We leave a 64-pixel wide ‘‘safety zone’’ along the
road boundary, which allows for small errors in locating
the road, or for limited road curvature. For each of the
four regions, we calculate the means of red, green, and
blue. We use the calculated parameters to form four
classes, and reclassify the image using a limited classifi-
cation scheme. Limited reclassification is based on dis-
tance from a pixel’s values to the mean values of a class,
rather than the full maximum likelihood scheme used in
classifying a new image. This tends to give classes based
on tight clusters of pixel values, rather than lumping all
pixels into classes with such wide variance that any pixel
value is considered likely. The limited reclassification al-
lows road pixels to be classified as either of the two road
classes, but not as nonroad, and allows nonroad pixels to
be reclassified only as one of the nonroad classes. The
reclassified pixels are used as masks to recalculate class
statistics. Since the limited reclassification is based on the
distances between pixels and mean values, the loop of
classify pixels/recalculate statistics is guaranteed to con-
verge to a classification in which no pixels can switch
classes. In practice, the loop is repeated three times. The
final reclassified pixels are used to calculate the means,
variances, and covariances of R, G, and B for each of the
classes, to be used to classify the next image.

The color update technique cannot handle sudden
changes in color statistics, it is therefore important to en-
sure enough overlap between images. In the current im-
plementation, the speed of the vehicle is adjusted so that
there is at least 75 percent overlap between consecutive
images.

Calculation of Road Position in Vehicle Coordi-
nates: The pair (P, 0) gives the position of the road in
image coordinates. The last step of the algorithm is to
convert the image position into vehicle coordinates. In or-
der to perform the conversion, the system is first cali-

detected road

lanishing line

rl cl

r2 Q1

Fig. 16. Calibration procedure.

brated by computing for two rows r;, and r, the number of
pixels per meters, ppm; and the column corresponding to
the center of the road ¢;. The calibration assumes that the
width of the road w is known, and that the distance d;
between the vehicle and each row r; is known. The loca-
tion in vehicle coordinates of a road of image coordinates
(P, 6), is given by the vehicle coordinates of the inter-
sections Q;, between the line of parameters (P,) and the
rows r; (Fig. 16). If Q; is at column C; in the image, then
the distance between Q; and the center of the vehicle is
given by x; = (C; — ¢;)/ppm,.

C. Performance

We have run this algorithm on the Navlab in an outdoor
environment. The failure rate is close to 0. The occasional
remaining problems come from one of three causes:

® The road is covered with leaves or snow, so one road
color class and one nonroad color class are indistinguish-
able.

¢ Drastic changes in illumination occur between suc-
cessive pictures (e.g., the sun suddenly emerges from be-
hind a cloud) so all the colors change dramatically from
one image to the next.

® The sunlight is so bright and shadows are so dark in
the same scene that we hit the hardware limits of the cam-
era. It is possible to have pixels so bright that all color is
washed out, and other pixels in the same image so dark
that all color is lost in the noise.

Not every image is classified perfectly, but all are good
enough to result in the detection of correct road position
and orientation for navigation. We sometimes find the
road rotated in the image from its correct location, so we
report an intercept off to one side and an angle off to the
other side. But since the path planner looks ahead about
the same distance as the center of the image, the steering
target is still in approximately the correct location, and
the vehicle stays on the road. This algorithm runs in about
10 s per image on a dedicated Sun 3/160, using 480 X
512 pixel images reduced to 30 rows by 32 columns. We
currently process a new image every 4 m, which gives
about three fourths of an image overlap between images.
Ten seconds is fast enough to balance the rest of the sys-

368 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 10. NO. 3. MAY 198R

Fig. 17. Road following on a sequence of images.

tem but is slow enough that clouds can come and go and
lighting conditions change between images. Fig. 17 shows
the detected road on a typical sequence of nine images.
This example is a typical case in which the presence of
large shadow areas would preclude the use of both road
edge tracking and classification based on two classes, road
and nonroad.

D. Evaluation

In the course of our study of the road following prob-
lem, we have identified the following principles:

Assume Variation and Change: The appearance of a
road varies from place to place and from time to time. For
example, the road may be locally covered with leaves, or
the lighting conditions may change in time due to clou-
diness. We therefore need more than one road color model
at any one time. The color models must adapt to changing
conditions. In addition, we need to process images fre-
quently so that the change from one image to the next will
be moderate.

Use Few Geometric Parameters: A complete descrip-
tion of the road’s shape in an image can be complex. The
road can bend gently or turn abruptly, can vary in width,
and can go up- or downhill. However, the more parame-
ters there are, the greater the chance of error in finding
those parameters. Small misclassifications in an image
could give rise to fairly large errors in perceived road ge-
ometry. We found that two free parameters, orientation
and distance from the vehicle, are sufficient to locally de-
scribe the road. Using only those two parameters implies
that road width is fixed, the world is flat, and that the road
is straight. While none of these assumptions is true over
a long stretch of the road, they are nearly true within any
one image; and the errors in road position that originate
in oversimplifications are balanced by the smaller chance
of bad interpretations.

Work in the Image: The toad can be found either by
projecting the road shape into the image and searching in
image coordinates, or by back projecting the image onto
the ground and searching in world coordinates [14]. The
problem with the latter approach comes in projecting the
image onto an evenly spaced grid in the world. Unless

one uses a complex weighting scheme, some image pixels
(those at the top that project to distant world points) will
have more weight than other (lower) points. On the other
hand, working directly in the image makes it much easier
to weight all pixels evenly. Moreover, projecting a road
shape is much more efficrent than back projecting all the
image pixels.

Calibrate Directly: A complete description of a camera
must include its position and orientation in space, its focal
length and aspect ratio, lens effects such as fisheye dis-
tortion, and nonlinearities in the optics or sensor. The
general calibration problem of trying to measure each of
these variables is difficult. It is much easier, and more
accurate, to calibrate the whole system than to tease apart
the individual parameters. The easiest method is to take a
picture of a known object and build a lookup table that
relates each world point to an image pixel and vice versa.
Projecting road predictions into the image and back proj-
ecting detected road shapes onto the world are done by
means of table lookup (or table lookup for nearby values
with simple interpolations). Such a table is straightfor-
ward to build and provides good accuracy, and there are
no instabilities in the calculations.

IV. PERCEPTION IN 3-D

Color vision is not sufficient for the navigation of a mo-
bile robot. Information such as the location of obstacles
requires the availability and processing of 3-D data. 3-D
vision has two objectives: obstacle detection, and terrain
analysis. Obstacle detection allows the system to locally
steer the vehicle on a safe path. Terrain analysis provides
a more detailed description of the environment which can
be used for more accurate path planning or for object rec-
ognition [7].

In order to study 3-D vision for a mobile robot, we used
an ERIM scanning laser range finder. The scanner pro-
duces, every half second, an image containing 64 rows by
256 columns of range values; an example is shown in Fig.
18. The scanner measures the phase difference between
an amplitude-modulated laser and its reflection from a tar-
get object, which in turn provides the distance between
the target object and the scanner. The scanner produces a
dense range image by using two deflecting mirrors. one
for the horizontal scan lines and one for vertical motion
between scans. The volume scanned is 80 degrees wide
and 30 degrees high. The range at each pixel is discretized
over 256 levels from O to 64 feet.

A. Preprocessing

Our range processing begins by smoothing the data and
undoing the peculiarities of the ranging geometry. The
ambiguity intervals, where range values wrap around from
255 to 0, are detected and unfolded. Two other undesir-
able effects are removed by the same algorithm. The first
is the presence of mixed points at the edge of an object.
The second is the meaninglessness of a measurement from
a surface such as water, glass, or glossy pigments. In both
cases, the resulting points are in regions limited by con-

THORPE et al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB 369

Fig. 18. Range image of two trees on flat terrain. Gray levels encode dis-
tance; nearer points are painted darker.

siderable jumps in range. We then transform the values
from angle-angle-range, in scanner coordinates, to x-y-z
locations. These 3-D points are the basis for all further
processing.

B. Obstacle Detection and Terrain Analysis

We have two main processing modes: obstacle detec-
tion and terrain analysis. Obstacle detection starts by cal-
culating surface normals from the x-y-z points. Flat, trav-
ersable surfaces will have vertical surface normals.
Obstacles will have surface patches with normals pointed
in other directions. This analysis is relatively fast, run-
ning in about 5 s on a Sun 3/75, and is adequate for smooth
terrain with discrete obstacles.

Simple obstacle maps are not sufficient for detailed
analysis. For greater accuracy we do more careful terrain
analysis and combine sequences of images corresponding
to overlapping parts of the environment into an extended
obstacle map. The terrain analysis algorithm first attempts
to find groups of points that belong to the same surface
and then uses these groups as seeds for the region growing
phase. Each group is expanded into a smooth connected
surface patch. The smoothness of a patch is evaluated by
fitting a surface (plane or quadric). In addition, surface
discontinuities are used to limit the region growing phase.
The complete algorithm is:

1) Edges: Extract surface discontinuities, pixels with
high jumps in x-y-z.

2) Clustering: Find clusters in the space of surface nor-
mals and identify the corresponding regions in the origi-
nal image.

3) Region growing: Expand each region until the fit-
ting error is larger than a given threshold. The expansion
proceeds by iteratively adding the point of the region
boundary that adds the minimum fitting error.

The clustering step is designed so that other attributes
such as color or curvature can also be used to find poten-
tial regions on the object. The primitive surface used to
compute the fitting error can be either a plane or a quad-
ric. The decision is based on the size of the region. Fig.
19 shows the resultant description of 3-D terrain and ob-
stacles for the image of Fig. 18. The flat, smooth, navi-
gable region is the meshed area, and the detected 3-D ob-
jects (the two trees) are shown as polyhedra.

Obstacle detection works at longer range than terrain
analysis. When the scanner is looking at distant objects,
it has a very shallow depression angle. Adjacent scan-
lines, separated by 0.5 degrees in the range image, can
strike the ground at widely different points. Because the

Smooth Patch

Updated Symbolic Surface Map

Fig. 19. The resultant description of 3-D terrain and obstacles from the
image in Fig. 18. The navigable area is shown as a mesh, and the two
trees are detected as *“textured obstacles’ and shown as black polygons.

grazing angle is shallow, little of the emitted laser energy
returns to the sensor, producing noisy pixels. Noisy range
values, widely spaced, make it difficult to do detailed
analysis of flat terrain. A vertical obstacle, such as a tree,
shows up much better in the range data. Pixels from
neighboring scanlines fall more closely together, and with
a more nearly perpendicular surface the returned signal is
stronger and the data cleaner. It is thus much easier for
obstacle detection to find obstacles than for terrain anal-
ysis to certify a patch of ground as smooth and level.

V. SystéM BUILDING

When computer vision is to be used as part of a larger
system, the architecture of the system influences the de-
sign of the vision components. A variety of design ap-
proaches for mobile robot architectures have been dis-
cussed [2], [3], [8], [9], [15]. The main feature our
approach has in common with them is the need for a dis-
tributed architecture integrating perception and naviga-
tion. We propose a system architecture called CODGER that
meets the needs of the NAvLAB and provides a framework
within which our vision programs are executed. The
CODGER system has been designed to integrate the algo-
rithms of Sections III and IV, and to demonstrate them on
the testbed of Section II.

A. Architecture Principles for Real World Robots

Artificial Intelligence systems, including intelligent
mobile robots, are symbol manipulators. In most Al sys-
tems, the symbol manipulation is based on inference,
either by the logic of predicate calculus or by probabili-
ties. In contrast, the bulk of the work of a mobile robot

370

is based on modeling geometry and time because these are
the properties utilized by knowledge sources for object
modeling, motion, path planning, navigation, vehicle dy-
namics, and so forth. Inference may be a part of a mobile
robot system, but geometry and time are pervasive. Con-
sequently, intelligent robots need a new kind of expert
system shell that provides tools for handling 3-D locations
and motion.

Based on this observation, we have developed and fol-
lowed the following tenets of mobile robot system design
in building our system:

Modularity: Much of the deep knowledge can be lim-
ited to particular specialist modules. The effects of light-
ing conditions and viewing angle on the appearance of an
object, for instance, are important data for color vision
but are not needed by path planning. So one principle of
mobile robot system design is to break the system into
modules and minimize the overlap of knowledge between
modules. Furthermore, modularity allows the system to
have different components written in different languages
or executing on specialized hardware as appropriate for
each module.

Virtual Vehicle: As many as possible of the details of
the vehicle should be hidden. We therefore hide the de-
tails of sensing and motion in a ‘‘virtual vehicle’’ inter-
face, so a single ‘‘move’’ command, for instance, will use
the different mechanisms of two vehicles but will produce
. identical behavior.

Synchronization: A system that has separate modules
communicating at a fairly coarse grain will be loosely
coupled. Lock-step interactions are neither necessary nor
appropriate. However, there are times when one module
needs to wait for another to finish, or when a demon mod-
ule needs to fire whenever certain data appear. The sys-
tem should provide tools for several different kinds of in-
teraction and for modules to synchronize themselves as
needed.

Real-Time Versus Symbolic Interface: A mobile robot
requires a blend of high-level reasoning processes and
low-level real-time processes within a single system. The
high-level processes are typically event-driven and re-
quire highly variable amounts of time depending on the
vehicle’s state and the environment. The low-level pro-
cesses, however, typically control vehicle functions such
as locomotion and must run in real time. The system
should provide for both real-time and asynchronous sym-
bolic processes, and for communications between them.

Geometry and Time: Much of the knowledge that needs
to be shared between modules has to do with geometry,
time, and motion. An object may be predicted by one
module (the lookout), seen separately by two others (color
vision and 3-D perception), and used by two more (path
planner and position update). During the predictions,
sensing, and reasoning, the vehicle will be moving, new
position updates may come in, and the geometrical rela-
tionship between the vehicle and the object will be con-
stantly changing. Moreover, there may be many different
frames of reference: one for each sensor, one for the ve-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 3, MAY 1988

hicle, one for the world map, and others for individual
objects. Each module should be able to work in the co-
ordinate frame that is most natural; for instance, a vision
module should work in camera coordinates and should not
have to worry about conversion to the vehicle reference
frame. The system should provide tools that handle as
many as possible of the details of keeping track of coor-
dinate frames, motion, and changing geometry.

Distributed Control: In some systems (notably early
blackboards) a single master process ‘‘knows’’ every-
thing. The master process may not know the internal
working of each module, but it knows what each module
is capable of doing. The master controls who gets to run
when. The master itself becomes a major AI module and
can be a system bottleneck. In contrast, the individual
modules in a mobile robot system should be autonomous,
and the system tools should be slaves to the modules. The
module writers should be free to decide when and how to
communicate and when to execute.

We have followed these tenets in building the Navlab
system. At the bottom level, we have built the CODGER
‘“‘whiteboard’’ to provide system tools and services [10].
On top of cODGER we have built an architecture that sets
conventions for control and data flow. copGer and our
architecture are explained below.

B. Blackboards and Whiteboards

The program organization of the NAVLAB software is
shown in Fig. 20. Each of the major boxes represents a
separately running program. The central database, called
the Local Map, is managed by a program known as the
Local Map Builder (LMB). Each module stores and re-
trieves information in the database through a set of sub-
routines called the LMB Interface which handle all com-
munication and synchronization with the LMB. If a
module resides on a different processor than the LMB, the
LMB and LMB Interface will transparently handle the
network communication. The Local Map, LMB, and
LMB Interface together comprise the copGer (COmmu-
nications Database with GEometric Reasoning) system.

The overall system structure—a central database, a pool
of knowledge-intensive modules, and a database manager
that synchronizes the modules—is characteristic of a tra-
ditional blackboard system. Such a system is called *‘het-
erarchical’’ because the knowledge is scattered among a
set of modules that have access to data at all levels of the
database (i.e., low-level perceptual processing ranging up
to high-level mission plans) and may post their findings
on any level of the database. We call CODGER a white-
board because it implements a heterarchical system struc-
ture, but it differs from a blackboard in several key re-
spects. In CODGER, each module is a separate,
continuously running program; the modules communicate
by storing and retrieving data in the central database. Syn-
chronization is achieved by primitives in the data retrieval
facilities that allow, for example, for a module to request
data and suspend execution until the specified data ap-
pears. When some other module stores the desired data,

THORPE e al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB 371

Blackboard Blackboard

Interface
Monitor & Pilot
isplay
Blackboard
Blackboard Blackboard Blackboard
1 f: f: Interface

Obstacle Color

Avoidance Vision Helm

Fig. 20. Navlab software architecture.

the first module will be reactivated and the data will be
sent to it. With copGer a module programmer thus has
control over the flow of execution within his module and
may implement real-time loops, demons, data flows
among cooperating modules, etc. Like other recent dis-
tributed AI architectures, whiteboards are suited to exe-
cution on multiple processors.

C. Data Storage and Retrieval

Data in the copGer database (Local Map) is repre-
sented in rokens consisting of classical attribute-value
pairs. A module can store a token by calling a subroutine
to send it to the LMB. Tokens can be retrieved by con-
structing a pattern called a specification and calling a rou-
tine to request that the LMB send back tokens matching
that specification. The specification is simply a Boolean
expression in which the attributes of each token may be
substituted; if a token’s attributes satisfy the Boolean
expression, then the token is sent to the module that made
the request. For example, a module may specify:

tokens with type equal to ‘‘intersection’’ and traffic-
control equal to “‘stop-sign’’

This would retrieve all tokens whose type and traffic-
control attributes satisfy the above conditions. The spec-
ification may include computations such as mathematical
expressions, finding the minimum value within an array
attribute, comparisons among attributes, etc. CODGER thus
implements a general database. The module programmer
constructs a specification with a set of subroutines in the
CODGER system.

One of the key features of CODGER is the ability to ma-
nipulate geometric information. One of the attribute types
provided by cobpgGer is the location, which is a 2-D or
3-D polygon and a reference to a coordinate frame in
which that polygon is described. Every token has a spe-
cific attribute that tells the location of that object in the
Local Map, if applicable, and a specification can include
geometric calculations and expressions. For example, a

specification might be

tokens with location within 5 units of (45, 32) [in world
coordinates)

or
tokens with location overlapping X

where X is a description of a rectangle on the ground in
front of the vehicle. The geometric primitives currently
provided by copGer include calculation of centroid, area,
diameter, convex hull, orientation, and minimum bound-
ing rectangle of a location, and distance and intersection
calculations between a pair of locations.

CODGER also provides for automatic coordinate system
maintenance and transformation for these geometric op-
erations. In the Local Map, all coordinates of location
attributes are defined relative to WORLD or VEHICLE
coordinates; VEHICLE coordinates are parameterized by
time, and the LMB maintains a time-varying transforma-
tion between WORLD and VEHICLE coordinates.
Whenever new information (i.e., a new VEHICLE-to-
WORLD transform) becomes available, it is added to the
“‘history’’ maintained in the LMB; the LMB will inter-
polate to provide intermediate transformations as needed.
In addition to these basic coordinate systems, the LMB
Interface allows a module programmer to define local co-
ordinates relative to the basic coordinates or relative to
some other local coordinates. Location attributes defined
in a local coordinate system are automatically converted
to the appropriate basic coordinate system when a token
is stored in the database. cODGER provides the module
programmer with a conversion routine to convert any lo-
cation to any specified coordinate system.

D. Module Architecture

Several modules use the CODGER tools and fit into a
higher level architecture. The modules are:

e Pilot: Looks at the map and at current vehicle posi-
tion to predict road location for Vision. Plans paths.

® Map Navigator: Maintains a world map, does global
path planning, provides long-term direction to the Pilot.
The world map may start out empty, or may include any
level of detail up to exact locations and shapes of objects.

o Color Vision: Waits for a prediction from the Pilot,
waits until the vehicle is in the best position to take an
image of that section of the road, returns road location.

o Obstacle Detection: Gets a request from the Pilot to
check a part of the road for obstacles. Returns a list of
obstacles on or near that chunk of the road.

o Helm: Gets planned path from Pilot, converts poly-
line path into smooth arcs, steers vehicle.

e Graphics and Monitor: Draws or prints position of
vehicle, obstacles, predicted and perceived road.

These modules use CODGER to pass information about
driving units. A driving unit is a short chunk of the road
or terrain (in our case 4 m long) treated as a unit for per-
ception and path planning. The need for driving units
comes from the limited field of view of the sensors. The
environment must be divided into chunks small enough to

372

be viewed in one frame of each sensor. The sizes and
positions of the driving units is computed based on the
field of view of the sensors and the speed of the vehicle.
The Pilot gives driving unit predictions to Color Vision,
which returns an updated driving unit location. Obstacle
Detection then sweeps a driving unit for obstacles. The
Pilot takes the driving unit and obstacles, plans a path,
and hands the path off to the Helm. The whole process is
set up as a pipeline, in which Color Vision is looking
ahead 3 driving units, Obstacle Detection is looking 2
driving units ahead, and path planning at the next unit. If
for any reason some stage slows down, all following
stages of the pipeline must wait. So, for instance, if Color
Vision is waiting for the vehicle to come around a bend
so it can see down the road, Obstacle Detection will finish
its current unit and will then have to wait for Color Vision
to proceed. In an extreme case, the vehicle may have to
come to a halt until everything clears up. All planned paths
include a deceleration to a stop at the end, so if no new
path comes along to overwrite the current path the vehicle
will stop before driving into an area that has not been seen
or cleared of obstacles.

VI. ConcLusioNs AND FUTURE WORK

The system described has successfully driven the Nav-
lab many tens of times, processing thousands of color and
range images without running off the road or hitting any
obstacles. cODGER has proved to be a useful tool, han-
dling many of the details of communications and geome-
try. Module developers have been able to build and test
their routines in isolation, with relatively little integration
overhead. Yet there are several areas that need much more
work.

We drive the Navlab at 10 cm/s, a slow shuffle. Our
slow speed is because our test road is narrow and wind-
ing, and because we deliberately concentrate on compe-
tence rather than on speed. But faster motion is always
more interesting, so we are pursuing several ways of in-
creasing speed. One bottleneck is the computing hard-
ware. We have mounted a Warp, Carnegie Mellon’s ex-
perimental high-speed processor, on the Navlab. We have
implemented the vision and range algorithms of the Warp
machine, allowing us to drive the vehicle at 50 cm/s. At
the same time, we are looking at improvements in the
software architecture. We need a more sophisticated path
planner, and we need to process images that are more
closely spaced than the length of a driving unit. Also, as
the vehicle moves more quickly, our simplifying assump-
tion that steering is instantaneous and that the vehicle
moves along circular arcs becomes more seriously flawed.
We are looking at other kinds of smooth arcs, such as
clothoids. More important, the controller is evolving to
handle more of the low-level path smoothing and follow-
ing.

One reason for the slow speed is that the Pilot assumes
straight roads. We need to have a description that allows
for curved roads, with some constraints on maximum cur-
vature. The next steps will include building maps as we

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 3, MAY 1988

20, so that subsequent runs over the same course can be
faster and easier. Travel on roads is only half the chal-
lenge. The Navlab should be able to leave roads and ven-
ture cross-county. Our plans call for a fully integrated on-
road/off-road capability. Current vision routines have a
built-in assumption that there is one road in the scene.
When the Navlab comes to a fork in the road, vision will
report one or the other of the forks as the true road de-
pending on which looks bigger. It will be important to
extend the vision geometry to handle intersections as well
as straight roads. We already have this ability on our side-
walk system and will bring that over to the Navlab. Vi-
sion must also be able to find the road from off-road. Es-
pecially as we venture off roads, it will become
increasingly important to be able to update our position
based on sighting landmarks. This involves map and per-
ception enhancements, plus understanding how to share
limited resources, such as the camera, between path find-
ing and landmark searches.

ACKNOWLEDGMENT

The Navlab was built by W. Whittaker’s group in the
Field Robotics Center, and the Warp group is led by H.
T. Kung and J. Webb. The real work gets done by an
army of eight staff, nine graduate students, five visitors,
and three part time programmers.

REFERENCES

[1] M. Annaratone, F. Bitz, J. Deutch, L. Hamey, H. T. Kung, P. C.
Maulik, P. S. Tseng, and J. A. Webb, *‘Applications experience on
Warp,”’ in Proc. AFIPS Nat. Comput. Conf., 1987.

[2] R. Bhatt, D. Gaw, and A. Meystel, ‘‘A real-time guidance system
for an autonomous vehicle,”” in Proc. IEEE Int. Conf. Robotics and
Automation, 1987.

[3] R. A. Brooks, ‘‘A robust layered control system for a mobile robot,”’
IEEE J. Robotics and Automation, vol. RA-2, no. 1, 1986.

[4] L. S. Davis, T. R. Kushner, J. Le Moigne, and A. M. Waxman,
‘‘Road boundary detection for autonomous vehicle navigation,”’ Opr.
Eng., vol. 25, no. 3, Mar. 1986.

[51 D. DeMenthon, ‘‘Inverse perspective of a road from a single image,”’
Center for Automation Research, Univ. Maryland, College Park,
Tech. Rep. 210, July 1986.

{6] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analy-
sis. New York: Wiley, 1973.

[7] M. Hebert and T. Kanade, ‘‘Outdoor scene analysis using range
data,”’ in Proc. IEEE Int. Conf. Robotics and Automation, 1986.

[8] D. Kuan and U. K. Shorna, ‘‘Model-based geometric reasoning for
autonomous road following,”’ in Proc. IEEE Int. Conf. Robotics and
Automation, 1987.

[9] M. Parodi, J. J. Nitao, and L. S. McTamaney, *‘An intelligent system
for an autonomous vehicle,”” in Proc. IEEE Int. Conf. Robotics and
Automation, 1986.

[10] S. Shafer, A. Stentz, and C. Thorpe, ‘‘An architecture for sensor
fusion in a mobile robot,” in Proc. IEEE Int. Conf. Robotics and
Automation, 1986.

[11] J. Singh et al., ‘“NavLab: An autonomous vehicle,”” Carnegie Mellon
Robotics Inst., Pittsburgh, PA, Tech. Rep., 1986.

[12] C. Thorpe, ‘‘Vision and navigation for the CMU Navlab,’’ in Proc.
SPIE, Oct. 1986.

[13] M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra,
““Video road-following for the autonomous land vehicle,’” in Proc.
IEEE Int. Conf. Robotics and Automation, 1987.

[14] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T.
Kanade, *‘Progress in robot road-following,”” in Proc. IEEE Int. Conf.
Robotics and Automation, 1986.

[15]1 A. M. Waxman, J. J. LeMoigne, L. S. Davis, B. Srinivasan, T. R.
Kushner, E. Liang, and T. Siddalingaiah, ‘‘A visual navigation sys-
tem for autonomous land vehicles,”” IEEE J. Robotics and Automa-
tion, vol. RA-3, no. 2, 1987.

THORPE er al.: VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB

Charles Thorpe received the B.A. degree in nat-
ural science from North Park College, Chicago,
IL, in 1979, and the Ph.D. degree from Carnegie-
Mellon University, Pittsburgh, PA, in 1984. His
doctoral dissertation described FIDO, a stereo vi-
sion and navigation system for a robot rover.

He is a Research Scientist in the Robotics In-
stitute of Carnegie-Mellon University. He is one
of the Principal Investigators on the Navlab proj-
ect. His research focuses on perception, and on
the interactions between perception and plannin,
in mobile robots.

Dr. Thorpe is a member of the Association for Computing Machinery
and the American Institute of Aeronautics and Astronautics.

Martial H. Hebert received the Master’s degree
and Doctorate degree in computer science from the
University of Orsay, France, in 1981 and 1984,
respectively.

He is a Research Scientist at the Robotics In-
stitute at Carnegie-Mellon University, Pittsburgh,
PA. His past experience includes working as a
Research Scientist at the Institut National de Re-
cherche en Informatique et Automatique from
1982 to 1984. His current research includes 3-D
vision for an autonomous land vehicle.

Takeo Kanade (M’80) received the Ph.D. degree
in information science from Kyoto University, Ja-
pan, in 1974.

He is Professor of Computer Science and Ro-
botics at Carnegie-Mellon University, Pittsburgh,
PA. Currently he is Acting Director of the Robot-
ics Institute. Before his 1980 appointment with
Carnegie-Mellon, he was Associate Professor of
Information Science at Kyoto University. He has
worked on several areas in robotics and artificial
intelligence: theoretical and practical aspects of
computer vision, 3-D range sensing and analysis, development and control
of new direct-drive arms which were first conceived and prototyped at CMU
(DD Arm I and DD Arm II), and mobile robot systems. He has authored
and edited three books and over sixty papers and technical reports in these
areas. His current research includes: the Navlab (a van with on-board sen-
sors and computers) vision system, the Mars Rover development, and Re-
configurable Modular Manipulator System.

Dr. Kanade served as a General Chairman of IEEE International Con-
ference on Computer Vision and Pattern Recognition in 1983, and a Vice
Chairman of IEEE International Conference on Robotics and Automation
in 1986. He is the Editor of the International Journal of Computer Vision.

373

Steven A. Shafer (M'84) received the B.A. de-
gree in computer science from the University of
Florida in 1977 and the Ph.D. degree in computer
science from Carnegie-Mellon University, Pitts-
burgh, PA, in 1983.

He is a Research Scientist studying computer
vision and mobile robots in the Department of
Computer Science of Camegie-Mellon Univer-
sity, where he has been working since 1983. He
is primarily interested in the analysis of images by
computer, using optical properties of illumina-
tion, objects, and cameras. By analyzing properties such as color, gloss,
and shadows, he is developing methods to base computer vision on an un-
derstanding of physics rather than the current ad hoc statistical and pattern
classification techniques. His view of computer vision as a problem in mea-
surement of physical quantities is also reflected in his work on geometric,
photometric, and spectral calibration of cameras. This work is carried out
in the Calibrated Imaging Laboratory at CMU, and is primarily oriented
toward robotics tasks in navigation and object manipulation. He is also
studying architectures for mobile robot perception, planning, and control.
He is one of the authors of CODGER, the distributed blackboard system used
by the NAVLAB autonomous robot van at Carnegie-Mellon University,
and has been active in designing the software for control of the NAVLAB.
He is also coauthor of the PHAROS *‘microscopic’’ traffic simulator, which
will be used to develop a computer program to control a robot vehicle driv-
ing through traffic. He is conducting the effort at CMU to integrate into the
NAVLAB system modules that are being developed at other universities
and research labs. In addition to his research work, he has been active in
the enhancement of the UNIx operating system at Carnegie-Mellon. He is
the author and maintainer of over one hundred system programs and library
subroutines, including a relational database manager (DAB) and a software
upgrade program (sup). He is the author of several software reference man-
uals and instructional documents, and has taught the use of unix at CMU
and elsewhere.

Dr. Shafer has been active in professional activities in the fields of com-
puter vision and optics (appearance measurement). He has produced two
programs to perform digital image segmentation, one each at Carnegie-
Mellon and at the University of Hamburg in Germany; the former program
(PHOENIX) is a component of the Darpa Image Understanding Testbed com-
piled by SRI International. He is the author of one book and numerous
papers, appearing in both the computer science and optics literature, and
served as a consultant for the Handbook of Artificial Intelligence, the En-
cyclopedia of Artificial Intelligence, and the Time-Life book series Under-
standing Computers. He has taught several courses in computer science,
including computer vision, and organized and instructed in the CMU Ro-
botics Institute’s Tutorial on Computer Vision. He is a member of profes-
sional societies for computer science, optics, and color science; he is chair-
man of Committee 42 of the Inter-Society Color Council, ‘‘Terminology
for the Optics of Materials.”’

