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Abstract

This paper describes recent improvements to the ALVINN sys-
tem (Autonomous Land Vehicle In a Neural Network) for neural
network based autonomous driving. We have recently reported a
technique which allows an an artificial neural network to quickly
learn to steer by watching a person drive. But the faster the
network is trained, the less exposure it receives to novel or in-
frequent scenarios. For instance, during a typical four minute
training run, the network sees few if any examples of passing
cars. When a rare situation like this occurs during testing, itslack
of coverage in the training set can result in erratic driving. By
modeling the appearance of infrequent scenarios and then using
the model to augment the training set, we can teach the network
to generalize to situations not explicitly represented in the live
training data. Using this technique, a network trained over a two
mile stretch of highway was able to drive autonomously for 21.2
miles at speeds of up to 55 miles/hour.

1. Introduction

The ability of an artificial neural network to perform a task is
heavily influenced by the quality of its training set. If the training
set contains examples taken from the full range of situations the
network is expected to handie, the network will learn to perform
the task accurately. Butif important situations are missing during
training, the network is likely to perform poorly when it later
encounters the novel circumstances.

In the domain of autonomous driving, we have shown that the
connectionist architecture shown in Figure 1 can quickly learn to
steer by watching a person drive [2]. The network receives live
input from a camera on the vehicle. The network is trained using
back-propagation [3] to activate the output unit representing the
driver’s current steering direction. After approximately four
minutes of watching a person drive on a particular type of road,
the network is able to take over for itself and drive at up to 55
miles per hour. Individual networks have been trained to drive
in a wide variety of situations, including single and multi-lane
roads with and without lane markings.

2. Transitory Feature Problem

Certain types of transitory driving situations have proven trou-
blesome for this connectionist approach to autonomous driving.
Two examples of temporary but problematic situations are illus-
trated in the real video images of Figure 2. The left image shows
a typical multi-lane highway scene used to train the network.
It has features including the lane markings down the left, right
and center of the road, and a patch of grass from the median in
the upper left comer. The other two images illustrate deviations
from this typical scene. The center image shows a jersey barrier
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Figure 1: Neural network architecture for autonomous driving.

Figure 2: Three video images of a multi-lane highway.

instead of a patch of grass in the upper left comer as the vehicle
drives over a bridge. The right image shows the vehicle passing
another car.

The reason this type of transitory disturbance causes trouble is
that the network is trained over a relatively short stretch of road (<
2 miles). As a result, during training the network is not exposed
to all the possible driving situations it might encounter when
driving autonomously. In particular, since situations like the two
illustrated in Figure 2 are relatively rare and limited in duration,
even if the network sees them during training, it doesn’t learn
enough from its brief exposure to handle them appropriately.
As a result, while the network is capable of reliably driving in
situations closely resembling those it was trained on, when it
encounters novel situations like the ones illustrated above, it
frequently steers incorrectly.

The influence spurious image features can have on driving
performance can be seen in Figures 3. The left image in Figure 3
illustrates a typical reduced resolution multi-lane highway image
like the ones ALVINN was trained on. The dark triangle in the
upper left is the green grass on the left side of the road. Notice
that ALVINN'’s output response is nearly identical in position to



Figure 3: Two low resolution images of a multi-lane highway
and the network’s response. The image on the left is a typical
highway image, with no unexpected features. As a result, the
network responds correctly. The image on the right contains a
guardrail on left side of the road (the white stripe in the upper
left comer). Since the network did not see a situation like this
during training, its steering response is far from correct.

the target, indicating ALVINN is steering in the correct direction.
The image on the right of Figure 3 has a guardrail on the left side,
which appears as a white stripe in the upper left corner. Notice
ALVINN’s steering direction is significantly disturbed by this
relatively minor change to the image.

The reason for this disturbance is illustrated in Figure 4.
Each of the rectangles labeled "Input-Hiddenl Weights™ through
"Input-Hidden4 Weights" represents the weights projecting from
the input retina to one of the four hidden units in the network.
‘White squares within each of these rectangles represent exci-
tatory weights, black squares represent inhibitory weights, and
grey squares represent weights with small magnitude. The con-
nections from the pixels in the upper comers of the image to
each of the hidden units have relatively large magnitude, indi-
cating the network is using those pixels to determine the correct
steering direction. The reason the network came to rely heavily
on those pixels is that during training, no guardrails or passing
cars appeared in the periphery during training. In the case of
the left periphery, it contained only grass over the entire training
sequence. As a result, the size of the grass patch was a good
indication of how sharply the vehicle should turn. The larger
the patch, the more towards the left the vehicle was, and there-
fore the more the vehicle should turn to the right. Because of
the high correlation between the size of the dark patch and the
correct steering direction, the network learned to use this fea-
ture to determine how to steer. Therefore, the connections from
the upper left pixels were given large weights, while the center
and bottom portions of the image were largely ignored. The
same argument hold true for the pixels in the upper right comner:
the network relies heavily on them because of their consistency
during training.

The quantitative effect transitory image features like
guardrails have on driving performance is shown in the left-
most two bars of the graph in Figure 5. These two bars represent
the performance of a network trained without noise on a se-
quence of multi-lane images like the ones shown in Figure 2.
The leftmost bar shows the network’s average steering error on
a disjoint set of 180 multi-lane road images. The steering er-
ror represents the curvature difference between the steering arc

392

Figure 4: Weight diagram of a network trained without noise.

(Umx10-Y)

Aversge Steering Ervor

Lats
Tost Sax

Tmages w1 Katre  Limagee s’
Guarrt Tate  Guardri

Tmages w7

Exire
TmtSet  Guanirad

™ Gaumdan Netee Structured Mot

Figure 5: Graph illustrating the performance of networks trained
using three different techniques on a set of 180 images, and on a
subset of 32 images containing a guardrail.

suggested by the network for an image and the arc the person
was driving along when the image was taken. The bar next to it,
labeled “Images w/ Guardrail” shows the average steering error
of the same network on a 32 image subset from the test sequence
which contained a feature not present in the training images,
namely a guardrail on the left side of the road. The network’s
steering error more than doubles on images containing the novel
feature, clearly illustrating the detrimental impact these features
can have on performance. If allowed to steer autonomously over
the stretch of road where the guardrail images were taken, the
network would have steered off the road.

The problem caused by transitory image features results from
insufficient diversity in the training examples. The network
does not encounter these transitory features frequently enough
during the short training period to leamn to ignore them. One
useful aspect of the problem, exploited in the solution below,



Figure 6: A multi-lane highway image corrupted with gaussian
noise.

is that these transitory features do not radically alter the overall
appearance of the image. Due to the redundancy of features in
the image, if the network could learn to i gnore spurious features,
it should be capable of driving accurately.

3. Training with Gaussian Noise

A commonly employed technique for improving generalization
from a limited amount of training data is to add uncorrelated
gaussian noise to the training patterns [4]. The idea is that
adding noise to the input prevents the network from relying on
idiosyncrasies in the training patterns to perform the task. Si-
etsma and Dow found a dramatic improvement in generalization
when noise was added to the training pattems on a frequency
classification problem. In their task, the input was a 64 unit
vector whose input activation pattern formed a sine wave of a
particular frequency. The task was to classify an input sine wave
according 1o its frequency, regardless of its phase within the in-
put field. They found that when gaussian noise was added to the
training patterns, the resulting network made dramatically fewer
classification errors on novel, noise-free input pattemns (0.5%
vs. 17%).

We performed a similar experiment by adding various amounts
of gaussian noise to the road images used for training. The noise
had a mean of 0 and a standard deviation ranging from 0.4 to 1.2
(The pixel intensity values ranged from -1.0 to 1.0). Figure 6
shows one corrupted road image used for training.

Surprisingly, networks trained with this noisy input performed
uniformly worse than network trained without noise, as illus-
trated by the bars in Figure 5 labeled “Gaussian Noise”. They
represent the best performance of any of the networks trained
with gaussian noise. Both on the entire test set, and particularly
on the guardrail subset of images, the networks trained with noise
steered less accurately than the network trained without noise.

The reason for this drop in performance is evident in Figure 6.
The finer image features such as the lane markings, which were
visible in the noise-free image of Figure 3, have been obscured
by the noise. The only visible feature is the patch of grass in
the upper left comner. The network had no choice but to key on
the size and location of the grass patch to determine the steering

direction, This degraded performance on the test set because
despite its large size, the grass patch is actually a less reliable
feature than the lane markings, since it is frequently obscured by
guardrails and jersey barriers.

Gaussian noise is a poor model of the important "noise" that
occurs in the input while driving. The noise that matters results
from the appearance or disappearance of coherent 2-D features
such as guardrails and other cars. Modeling these irrelevant fea-
tures and adding them to the input while training can improve
generalization dramatically, as illustrated by the last two bars
in Figure 5. Networks trained by adding structured noise to
the input, as described in the next section, generalized better on
the test set as a whole than networks trained without noise or
with gaussian noise. Even more significant was the performance
improvement of the network trained with structured noise on
images with spurious features in them, as illustrated by the low
error of the network on the guardrail images. In fact, the net-
work'’s steering performance on the novel guardrail images was
not significantly different than its performance on the test set
as a whole, demonstrating that it has leamned to ignore spurious
image features (See Figure 5).

4. Characteristics of Structured Noise

A number of straightforward characteristics of structured image
noise can be employed to improve network generalization. The
most obvious features is the high degree of spatial correlation.
Important noise does not appear as corruption of random image
pixels. Instead, the physical object (like a car or guardrail)
causing the noise makes a 2-D projection into the input image.
As a result, the important irmage noise takes the form of a two-
dimensional regions of nearly uniform intensity. While objects
with multiple or variable intensities do occur, their rarity makes
a uniform intensity model a reasonable approximation.

A more subtle characteristic of structured image noise results
from the fact that objects can change in three ways. Objects
can suddenly appear in the image, obscuring part or all of a
previously visible feature. An example of this effect is when
a car passes and obscures the lane markings. Objects can also
disappear from the image, making previously hidden features
visible. This effect might occur when the guardrail disappears,
revealing the grass on the other side. Finally, a feature can
change color or brightness, as when the centerline changes from
white to yellow. Shape is not considered a changing feature
characteristic, since objects visible when driving are assumed to
be rigid.

Another useful domain-specific characteristic of structured
image noise is that when driving, irrelevant features are more
likely to occur in the periphery of the image than in the center.
Even if during training the appearance of the terrain off to the side
of the road remains constant, it is helpful for the network to learn
that the appearance of the periphery can change dramatically.
This way the network learns not to rely on the position of the
guardrail or the size of the grass area in the off-road region, since
they may be obscured or disappear at any time.

The size of significant image features can be constrained by
estimating the size and distance to noise features. The retinal
size of significant features ranges from a few tens of pixels for
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the lane markings or guardrail to several hundred pixels for large
objects such as passing trucks. The shape of significant image
features is also constrained in the domain of autonomous driving.
Image features are frequently oriented with their primary axis
pointed towards the vanishing point of the image. The technique
for incorporating these characteristics of image features when
generating noise is described in the next section.

5. Training with Structured Noise

Structured noise characteristics are used during training to de-
termine the appearance of the noise to be added to the input
patterns.  Instead of adding gaussian noise to each pixel, the
following technique is employed to add or remove coherent
two-dimensional features from the training patterns.

First, for each pattern on each epoch of the back-propagation,
a decision is made whether to add noise to that pattern or not.
Empirically, adding noise on 3 out of every 4 presentations of
a pattern seems to be a good compromise between teaching the
network to be insensitive to noise and teaching it to process clean
images correctly.

Once the decision is made to add noise to a pattern, the next
question is where to put it. We have found that when trained on
tmages with a single noise feature, a network is able to generalize
to images with multiple noise features. Therefore, at most one
noise feature is added per image during training. The location
for this single noise feature is selected randomly with a bias
towards the periphery of the scene, corresponding to the upper
corners of the image. That is, the likelihood that a pixel will be
chosen as the starting point for the noise feature is proportional
to its proximity to one of the upper comers of the image. This
periphery bias roughly models the tendency of noise features to
appear away from the path directly ahead of the vehicle.

After determining the starting location for the noise feature,
a decision is made whether a new feature should be added or
an existing feature should be removed from that position. This
choice is made randomly, but with a bias towards deleting a
feature if one exists at that location, and towards adding a feature
if that location appears to be “feature free”. The judgement
conceming whether a feature exists at a location is made based
on the size of the uniform region that location is part of. First, a
region is grown around the chosen location to encompass all the
contiguous pixels whose intensity is within a fixed threshold of
the chosen pixel’s value. If the size of this region is within the
size range of interesting features as characterized above, then the
location is considered to be part of a feature and that feature is
removed. If the size of the region falls outside the size range of
interesting features, it is considered part of the background, and
a new feature is added at that location.

Removing a feature is easy. The pixels defining the feature
have already been determined in the region growing step de-
scribed above. Deleting the feature involves changing the val-
ues of all the pixels within the region to a new randomly chosen
intensity. Altering a region’s intensity models the corresponding
object changing color. By selecting the new intensity to be the
same as the intensity of the area surrounding the feature, the
disappearance of the feature can also be simulated. The result
of using this technique to alter an existing feature is illustrated

Figure 7: Two images augmented with structured noise. In the
left image, an existing feature (the patch of grass in the upper left
corner) has been altered by changing its intensity. In the image
on the right, a new dark feature has been added on the right.

in the left image of Figure 7. The image is identical to the one
on the left of Figure 3, except that the patch of grass in the upper
left comer has changed intensity from very dark to very light.

Adding a new feature to model the sudden appearance of ob-
jects such as a guardrail or automobile is more difficult, since
unlike in the feature alteration process described above, the shape
of the feature is not known. The shape of spurious 2-D image
features can in theory be arbitrary. There is the weak constraint
that significant features tend to have their major axis pointing to-
wards the vanishing point. However, this orientation specificity
is difficult to implement directly in the noise generation model
since it requires knowledge of the sensor geometry.

A simpler technique for generating reasonable spurious fea-
tures involves using the shape of the feature detectors the net-
work develops in its internal representation to bias the shape of
the simulated noise features. As is evident in the weights from
the input retina to the hidden units in Figure 4, the network de-
velops a strong model of the shape of important image features.
The network’s knowledge that features tend to be oriented to-
wards the vanishing point is demonstrated by the tendency of
features in the receptive fields of the hidden units to converge
towards the top.

To bias the new feature’s shape using the shapes of the features
in the network’s internal representation, a random hidden unit is
first selected. The values of the weights from the input retina to
this hidden unit are then used as the “image” in which to grow
the new feature. In other words, a pixel in the vicinity of the
feature’s start pixel is chosen to be an element of the feature if
the weight of the connection from it to the chosen hidden unit is
sufficiently similar in value to the weight of the connection from
the feature’s start pixel to the chosen hidden unit. By biasing
the shape of noise features by the shape of important features in
the intemnal representation, this technique ensures that only noise
features with a reasonable shape are added to the input.

To mimic situations in which image noise does not precisely
align with significant feature detectors, a spatial coherence con-
straint is added to the feature growing algorithm. The following
equation balances the tendency of the feature growing algorithm
to follow hidden unit weight contours with the tendency to create
a spatially compact feature. A pixel: will be included in a newly
created features if:

Win — Wl + (1 — )i —s| >T

i
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In this equation, w;s is the weight value of the connection origi-
nating at pixel i in the input image and terminating at the chosen
hidden unit 4. The variable w,; cormesponds to the weight of the
connection originating at s, the pixel chosen as the start position
of the feature, to the chosen hidden unit h. The quantity ii — s|
represents the Euclidean distance between pixels 7 and s in the
input retina. The constant o is used to weight the tendency to
follow hidden unit weight contours with the tendency to keep
the feature spatially compact. With an n of 0, the new feature
will form a circular region centered on pixel s. With an « of
1, the new feature will grow to include all the pixels in the im-
age having connections to hidden unit 4 with a weight close in
magnitude to the connection from pixel s to unit A. Randomly
choosing an « from the range 0.1 to 0.3 for each image creates
realistic looking new noise features. The threshold T is used to
limit the growth of the new feature. If the weight from pixel i to
hidden unit & differs significantly from the weight from the start
pixel s to unit h, or if pixel i is a great distance from pixel s, then
the threshold T will be exceeded by the above sum and pixel i
will not be included in the new feature.

Once the position and shape of the noise feature is determined,
it is made to contrast with the surrounding area by filling it with
a randomly chosen uniform brightness. A real video image in
which a noise feature (the dark region in the upper right) has
been added is shown in the right image of Figure 7. Notice how
the feature appears close to the upper corner of the image due
to the periphery bias built into the noise feature generation algo-
rithm. The right image of Figure 7 also illustrates how growing
noise features along important contours in the hidden unit repre-
sentation results in features with appropriate orientations for the
domain. In this example, this bias results in a feature oriented
diagonally towards the vanishing point. The feature is spatially
compact due to the bias in the noise generation algorithm to-
wards choosing pixels in the vicinity of the feature’s start pixel.
This combination of biases based on known, consistent image
feature characteristics results in the generation of noise features
with realistic appearance. In fact, the feature in right image of
Figure 7 appears very much like a car passing by on the right
side of the vehicle, as in the right image of Figure 2.

As illustrated in the bar graph of Figure 5, a network trained
by adding and removing features steers more accurately than a
network trained without noise, particularly on images containing
spurious features. The reason for this is evident in the weight
diagram of Figure 8. The network shown in this diagram was
trained on the same sequence of images as the network shown
in Figure 4, except that on each iteration of back-propagation,
75% of the patterns were randomly selected to have a noise
feature added to their input. Varying the noise at every epoch
prevents the network from leamning characteristics of a single
noise feature. The remaining 25% of the patterns were presented
without noise to ensure the network would also handle noise free
situations.

Itis clear by looking in the upper comners of the input-to-hidden
weight arrays that adding structured noise to the image has the
desired effect. Namely, the network leamed to rely less on fea-
tures in the periphery than the network depicted in Figure 4. The
network developed detectors primarily for the line marking the
left lane boundary, since this is the feature that appears most reli-

Figure 8: Weight diagram of a network trained with structured
noise.

ably in this type of road image. Because of its frequent occlusion
and absence from the image, the dashed line marking the right
boundary of the lane was given little importance in the internal
representation. The resulting performance improvement is illus-
trated by the input pattern and corresponding network response
in the lower right comer of Figure 8. The input pattem is the
same guardrail image that confused the network trained without
noise on the right side of Figure 3. This network handles the
guardrail image perfectly, since it has learned not to be disturbed
by features in the periphery.

6. Improvement from Structured Noise Training

The bar graph in Figure 5 illustrates the significant increase in
steering accuracy which results when structured noise is added
in the training process. This steering accuracy improvement
translates directly into dramatic gains in driving performance.
Quantitatively, we have found that a network trained without
adding structured noise on a two mile stretch of a four lane di-
vided highway was capable of driving autonomously for only
about four miles before straying from the road because of a spu-
rious feature. Driving successfully for even this relatively short
distance was somewhat fortuitous, in that it was achieved on a
stretch of road free from guardrails and other potentially con-
fusing permanent features, and at a time of day when there was
very little traffic to confuse the network. When other vehicles
did appear, the network trained without noise frequently swerved
towards or away from them depending on their brightness rela-
tive to the background. The swerves were relatively small, so the
safety driver allowed the run to continue without interference.
The situation which ended the run after four miles was the one
depicted in the center image of Figure 2. The vehicle encoun-
tered a bridge with jersey barriers along the edge of the road.
This spurious feature caused the vehicle to swerve dramatically,
forcing the safety driver to intervene.

The network trained with structured noise drives significantly
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better. Its best run was 21.2 miles without human intervention,
on the same highway that caused the network trained without
noise to fail after 4.0 miles. It made it over the bridge that
caused the previous network to fail, and through a number of
other situations that would have caused trouble for the network
trained without noise. The reason the run came to an end after
21.2 miles was that the width of the road changed significantly,
causing the network to become confused.

7. Discussion

The appearance or disappearance of irrelevant features can dis-
rupt a network’s driving when the network’s training did not
demonstrate their irrelevance. Adding structured noise to the
training pattems using a model describing the characteristics of
irrelevant features significantly improves driving performance.
A simpler gaussian model of image noise has been shown to
be ineffective at compensating for this problem because it does
not mimic the important characteristics of real world, structured
noise.

But are there other possible solutions which do not require
such complex modeling? In theory, training the network over
a longer stretch of road than the two miles currently employed
should result in a more representative training set and hence a
more robust network. However there are a number of short-
comings to this approach. One long term goal of this work is
the development of a “super cruise control system” capable of
controlling both the vehicle’s speed and steering. If the training
period required by this super cruise control is too long, it will be
impractical.

But even given unlimited training time, the scarcity of irrele-
vant features would make it difficult to train a network to ignore
them. For instance, over many miles of highway driving, the
size of the patch of grass on the left side of the image is a good
indicator of the correct steering direction. Only in rare situa-
tions, like going over a bridge, will relying on this feature get the
network in trouble. Even if the training period were extended
to ensure encountering this type of situation, its low frequency
would make it beneficial for the network to ignore these few
patterns. This is because the network could lower the total er-
ror over all training patterns by employing the patch of grass to
improve the steering performance on the vast majority of pat-
terns, while suffering substantial error only on the few pattems
in which the patch of grass is missing. In other words, the high
correlation between an irrelevant feature and the correct output
would result in the network employing the feature despite being
exposed to a few situations where this degrades performance.

The current model of structured image noise has obvious short-
comings. Noise features do not always occur in the periphery.
‘When driving in traffic, cars directly in front of the vehicle will
obscure central image features. But even this simple model is
sufficient to demonstrate that dramatic improvements in neural
network generalization can be achieved by actively employing
domain-specific knowledge during the training process.
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