
Learning Reduced-Dimension Models
of Human Actions

Christopher Lee

CMU-RI-TR-00-17

Submitted in partial ful�llment of the
requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Yangsheng Xu, Chair

Pradeep Khosla
Karun Shimoga
Rajeev Sharma

May 1, 2000

Copyright c
 2000 Christopher Lee

ii

Abstract

A great deal of current robotics research studies the modeling of human reac-
tion skills: learning control mappings to represent a person's task-performance
strategies. The important related problem of modeling human action skills
has received less attention. Action learning is the characterization of the
state space or action space explored during typical human performances of a
given task. Action models learned from human performances typically rep-
resent some form of prototypical performance, and also characterize how the
human's performances vary stochastically or due to external in
uences. They
are used for gesture recognition, for realistic computer animations of human
motion, for study of an expert performer's motion (e.g., Tiger Woods' golf
swing), for generating feed-forward or reference robot control signals, and for
evaluating the naturalness of the performances generated in real and simu-
lated systems by reaction-skill models.

This thesis formulates the process of building action models from human
performance data as a dimension reduction problem. Characterizing action
skills involves determining the lower-dimensional manifolds, within the very
high-dimensional space of possible actions, upon which human performances
actually tend to lie. This manifold or constraint surface is determined by
building two mappings: one from a high-dimensional \raw-data space" to a
lower-dimensional \feature space," and another from the feature space back
to the raw-data space.

A best-�t trajectory is arguably the best one-parameter model for a typ-
ical human action. A new method is developed to �nd such a trajectory by
�tting a curve to sampled position and velocity performance data. A new
spline smoother is derived which can be used within a specially-adapted ver-
sion of the principal curves algorithm to �nd a best-�t curve through phase
space.

The methods investigated in this thesis are evaluated by using them to
model a human grasping motion, to recognize hand gestures in a letter-
signing application, and to analyze data collected in a robot teleoperation
experiment. These experiments show the e�ectiveness of local nonparametric
methods over global parametric methods, and also show that using both po-
sition and velocity information results in better models of action trajectories
than using position information alone.

iii

iv

Acknowledgements

I am especially grateful for the guidance and patience of Professor Yangsheng
Xu throughout my graduate studies, and for encouraging me on to comple-
tion from afar. Garth Zeglin, Henry Schneiderman, Michael Nechyba, and
Marcel Bergerman all provided excellent help and suggestions over the years.
Anne Murray provided the valuable experimental data and photographs for
Chapter 6, and her patience and determination to get these results despite
having to �x seemingly every piece of equipment in the Advanced Mecha-
tronics Laboratory was inspirational. I would like to thank Matt Mason and
the MLab for inviting me to their thought-provoking weekly meetings, and
the excellent support sta� and administration of the Robotics Institute for
their assistance.

Working with Professor Xu and the members of the CMU Space Robotics
Laboratory on (DM)2, (SM)2, underactuated manipulators, and teleopera-
tion was a rewarding and highly educational experience. This work forms
the basis for my practical understanding of the robotics �eld. Ben Brown,
of course, is the keystone who designed and built the robots and support
hardware, and who keeps everything working.

I would like to thank my family for their many years of support, and
especially my grandparents for the TI-99/4A which started me on the happy
road to computer science and engineering. Finally, I would like to thank
Abigail for her suggestions and encouragement, and for quietly doing far more
than her share of so many things while I systematically neglected everything
except this thesis.

This work was supported in part by a Pennsylvania Space Grant Fellow-
ship, and by a Department of Energy Integrated Manufacturing Predoctoral
Fellowship.

v

vi

Contents

1 Introduction 1

1.1 Learning action models . 1
1.2 Dimension reduction formulation 5
1.3 Related research . 8

2 Global parametric methods 15

2.1 Introduction . 15
2.2 Parametric methods for global modeling 16

2.2.1 Polynomial regression 16
2.2.2 First principal component 19

2.3 An experimental data set . 19
2.4 PCA for modeling performance data 21
2.5 NLPCA . 24
2.6 SNLPCA . 32
2.7 Comparison . 34
2.8 Characterizing NLPCA mappings 35

3 Local methods 41

3.1 Introduction . 41
3.2 Non-parametric methods for trajectory �tting 42
3.3 Scatter plot smoothing . 44
3.4 Action recognition using smoothing splines 46
3.5 An experiment using spline smoothing 48
3.6 Principal curves . 50

3.6.1 De�nition of principal curves 53
3.6.2 Distance property . 54
3.6.3 Principal curves algorithm for distributions 54
3.6.4 PC for data sets: projection 55

vii

viii CONTENTS

3.6.5 PC for data sets: conditional expectation 58
3.7 Expanding the one-dimensional representation 59
3.8 Branching . 62
3.9 Over-�tting . 64

4 Spline smoother for trajectory �tting 65

4.1 Smoothing with velocity information 65
4.2 Problem formulation . 67
4.3 Solution . 70
4.4 Notes on computation and complexity 75
4.5 Similar parameterizations . 76
4.6 Multi-dimensional smoothing 78
4.7 Estimation of variances . 78
4.8 Windowing variance estimates 80
4.9 The e�ect of velocity information 82
4.10 Cross-validation . 82

5 Principal curves for trajectory �tting 85

5.1 Model formulation . 85
5.2 Input data . 86
5.3 Metrics and costs . 87
5.4 Projection space . 91
5.5 Conditional-expectation space 96
5.6 Projection metric and smoothing penalty 98
5.7 Selection of scalar weights . 100
5.8 Initial principal curve estimate 102
5.9 Algorithm summary . 103
5.10 Results from �-example . 106
5.11 Diagnostics . 114
5.12 Speed of performances . 115
5.13 Problems with the principal curve model 117
5.14 Discussion . 117

6 Robot teleoperation experiment 121

6.1 Introduction . 121
6.2 Simulation and analysis . 123
6.3 Pre-grasp: approaching the part 126
6.4 Grasp and Finish . 133

CONTENTS ix

6.5 Part transfer . 133
6.6 Loading the spring-box . 133
6.7 Discussion . 140

7 Modeling actions for recognition 141

7.1 Introduction . 141
7.2 Hidden Markov models for recognition 143
7.3 Interactive training . 145
7.4 Learning and recognition . 146
7.5 Signal preprocessing . 147
7.6 Implementation . 149
7.7 Con�dence measure . 151
7.8 Discussion . 153

8 Conclusion 155

8.1 Contributions . 155
8.1.1 Action learning as dimension reduction 155
8.1.2 Trajectory �tting in phase space 156
8.1.3 Analysis of existing methods for action learning 156
8.1.4 Software . 157

8.2 Future research . 158
8.2.1 Cross-validation for phase space principal curves 158
8.2.2 Cross-validation for phase space smoother 159
8.2.3 Multidimensional models from the best-�t trajectory . 159
8.2.4 Reducing the knots in spline models 159
8.2.5 Reducing computational complexity of smoother 160
8.2.6 Complexity of low-level action skills 160
8.2.7 Usable robot skills . 160

8.3 Publications from thesis work 160

A High-level robot control 163

A.1 Dynamically recon�gurable real-time software 163
A.2 Scripting for high-level control 165
A.3 Message-based evaluation . 168
A.4 Messaging infrastructure . 172
A.5 Memory management . 173
A.6 Conclusion . 174

x CONTENTS

List of Figures

1.1 Mappings between raw data space S and feature space S� . . 7

2.1 Parametric data models . 18
2.2 VR skill demonstration system 20
2.3 Graphical feedback . 21
2.4 Error unexplained by p features of PCA. 23
2.5 PCA analysis of grasp gesture: \eigenhands" 23
2.6 Neural network architecture for NLPCA 26
2.7 Sigmoid function . 27
2.8 Error unexplained by p features of NLPCA. 29
2.9 NLPCA analysis of grasp gesture 30
2.10 Interface for controlling hand con�guration using y�0 31
2.11 SNLPCA computation . 32
2.12 Error unexplained by p features of SNLPCA 33
2.13 NLPCA vs. PC space mapping 37
2.14 NLPCA vs. PC training point projections 38

3.1 Fitting error verses smoothness 44
3.2 Modeling a data-set with a scatter plot smoother. 44
3.3 Final hand positions for letter-signs `A' and `C.' 49
3.4 Spline smoother �ts from `A' letter-sign 51
3.5 Principal curve . 53
3.6 Result for two iterations of principal curves algorithm 57
3.7 Projection step . 58
3.8 Illustration of branching problem 63

4.1 Velocity information can help smoother 66
4.2 Example trajectories . 68
4.3 Computed interpolation . 75

xi

xii LIST OF FIGURES

4.4 E�ect of variance estimation 79
4.5 E�ect of windowing the variance estimates 81
4.6 E�ect of derivative information 83
4.7 Smoothing data from drawing motions 84

5.1 Figure-drawing interface . 88
5.2 Preprocessing by spline smoothing 89
5.3 Position verses velocity for projection 92
5.4 tanh(x=
) . 94
5.5 Samples from three examples of �-drawing 95
5.6 Distance between unit vectors 101
5.7 Examples of �-drawings . 104
5.8 First two iterations of PC for �-drawing 107
5.9 Third iteration of PC for �-drawing 108
5.10 Smoothing x0 of �-plot vs. � and t 109
5.11 Smoothing x1 of �-plot vs. � and t 110
5.12 Smoothed input data from �-drawing examples 112
5.13 Principal curves iteration results for � example 113
5.14 Smoothed plots of speed verses � for � and � �gures 116

6.1 Photographs of the spring-box insertion experiment. 122
6.2 Spring-box playback interface 124
6.3 Spring-box pre-grasp PC iterations 1 and 2, heavy smoothing . 127
6.4 Spring-box pre-grasp PC iteration 3, heavy smoothing 128
6.5 Spring-box pre-grasp �nal PC iteration, less smoothing 128
6.6 Spring-box pre-grasp �nal PC iteration, less smoothing, wide . 130
6.7 Smoothing-spline �t of speed vs. � with estimated variance. . 131
6.8 Plots of � values verses time from spring-box experiment. . . . 132
6.9 PVC transfer: operator and top views 134
6.10 PVC transfer: side view and speed vs. � 135
6.11 Spring-box loading motion . 137
6.12 Spring-box loading motion: position verses � 138
6.13 Spring-box loading: measured force verses � 138
6.14 Spring-box loading: �nger motion verses � 139

7.1 Data
ow in the gesture-data preprocessor 148
7.2 Data
ow for online learning system 149
7.3 Evaluation of gesture classi�cation process 152

LIST OF FIGURES xiii

A.1 Example con�guration of real-time modules 164
A.2 (DM)2 . 166
A.3 Robot code for a guarded move 168
A.4 Evaluation by graph reduction 169

xiv LIST OF FIGURES

Chapter 1

Introduction

1.1 Learning action models from human

demonstrations

This thesis is a study of methods for learning action skills from human demon-
strations. The goal of action learning is to characterize the state space or
action space explored during typical human performances of a given task.
The action models that are learned from studying human performances typi-
cally represent some form of prototypical performance, and also characterize
the ways that the human's performance of the action tend to vary over mul-
tiple performances due to external in
uences or stochastic variation. Action
models can be used for gesture recognition, for creating realistic computer
animations of human motion, for detailed study of an expert performer's
motion, for building feed-forward signals for complex control systems around
which custom feed-back controllers can be designed, and for evaluating the
naturalness of the performances generated in real and simulated systems by
reaction-skill models.

Although a great deal of work in robotics has gone into the study of meth-
ods for modeling human reaction skills, much less work has so far been done
on the important related problem of modeling human action skills. Action
learning is the characterization of open-loop control signals into a system,
or the characterization of the output of either an open-loop or closed-loop
system. While reaction learning generates a mapping from an input space
or state space to a separate action/output space, action learning character-
izes the state space or action space explored during a performance. Given

1

2 CHAPTER 1. INTRODUCTION

data collected from multiple demonstrations of task performance by a human
teacher, where the state of the performer or the task-state is sampled over
time during each performance, the goal is to extract from the recorded data
succinct models of those aspects of the recorded performances most respon-
sible for the successful completion of the task. Reaction learning focuses on
the muscle control a dancer uses to move his or her body, for example, while
action learning studies the resulting dance. The methods presented here for
action learning are based on techniques for reducing the dimensionality of
data sets while preserving as much useful information as possible.

The original motivation for this work is for applications involving skill
transfer from humans to robots by human demonstration. Instead of ex-
plicitly programming a robot to perform a given task, the object is to learn
from example human performances a model of the human action skill which
a robot may use to perform like its teacher. Consider a remote teleoperation
scenario where a human expert on Earth is guiding the operation of a distant
space robot performing a complex manipulation task. Instead of attempting
closed-loop control over a communication link with a latency of several sec-
onds, it would be more useful to use pre-built models of the human's low-level
action skills. The models could be used locally at the teleoperation station
to recognize and parameterize the operator's individual low-level actions as
he or she controls a virtual-reality robot model in performance of the task.
Concisely parameterized symbolic descriptions of the operator's actions can
be sent to the remote robot as they are recognized. Provided that we have
already transfered the skill models to the robot, it can then execute under
local real-time supervision the actions desired by the operator.

Outside such a scenario, the methods presented in this thesis have a more
general set of applications. Models of human action can be used for animation
in video games, in movies, or for human-like agents for human-computer
interaction (HCI); for analysis of what makes an expert's performances of a
given task more successful than others; and for prescriptive analysis of how
a novice might make their performances more like an expert's (e.g., how can
I make my backhand more like that of Pete Sampras). Because this thesis
focuses on techniques for extracting human skill models and has not yet been
extended to robotic performance of the tasks characterized by the models,
the results here are more immediately useful for gesture recognition and these
more analytical applications. The connection between the learned skills and
robotic performance is the next logical step for study in this research e�ort.

What does action learning have to do with dimension reduction? Think

1.1. LEARNING ACTION MODELS 3

about the process of reaching across a table to pick up a co�ee mug. When
we perform this task, it seems no more complicated than its description:
reach toward the mug, grasp the handle, and then lift. We can accomplish
this with hardly a conscious thought.1 To transfer this skill to a robot by the
typical process of human to robot skill transfer, however, we need to record
our motions in detail. When we instrument our hand and arms to record our
motions as we perform the task, the resulting raw data are very di�erent in
quantity and quality from our simple description. To record the motion of
the palm of our hand, for example, we need to sample three dimensions of
position data and three dimensions of orientation information. Recording the
motions of our �nger joints and wrist typically requires about twenty more
channels of information, and several additional channels could be collected
for the other joints in our arm. To fully capture the motion of our arm and
hand, we would normally sample all these variables many times a second,
and write these data to a computer �le. The result of recording the motion
is a large quantity of high-dimensional data, where the overall structure of
the task and the relative purpose and importance of each motion is obscured.

Once we have collected these data, we are left with the question of how
to extract from them a useful model of the underlying human action skills.
In this thesis we assume a two step approach: (a) high-level analysis of the
overall structure of the task to break it into simpler component motions, and
(b) learning a typical motion for each low-level component motion, as well
as the most signi�cant ways each such motion is most likely to vary from the
prototypical motion.

The analysis step isolates those portions of performances which are similar
in purpose and execution, and from which it should be easiest to build good
models of typical motions and their variations. If we can build good models,
we should be able to relate their basic features to their purpose within the
structure of the overall task. We may also be able to learn from the low-
level models something about the complexity of the skills underlying their
performance.

A particular performance can be compared to a given model for gesture
recognition, resulting in some measure of how likely it is that the perfor-
mance belongs to the corresponding class of motions. If the performance
does belong to that class, a good action model will let us concisely describe

1I know this because I am not capable of conscious thought in the morning before I
actually drink the co�ee (or tea).

4 CHAPTER 1. INTRODUCTION

the most important ways that the performance di�ers from the prototypical
motion. This concise description is a reduced-dimension representation of
the performance.

The high-level task analysis, the �rst step of the action-learning process
described above, is a simple process in most cases. Because we generally
have a solid high-level understanding of how we perform tasks, we can use
this knowledge to focus on the low-level action skills which we really want to
model using the collected data. In our example, we know that our strategy for
picking-up the mug is roughly reach, then grasp, then lift. Instead of building
a single model the entire task, we can instead write a high-level program
which calls the low-level tasks `reach,' `grasp,' and `lift' as subroutines, and
then focus on learning these low-level skills from the collected performance
data.

Because the analysis process is not diÆcult for the skills we look at in this
thesis it will not be the topic of study here, although some research related
to this problem is discussed in Section 1.3. Writing the high-level strategy
for use by a robot and design of a high-level architecture for implementing
such a strategy are interesting problems which I discuss in Appendix A.

Once we have performed the high-level analysis, we can focus on learning
models for individual low-level action skills. Each low-level action will have
an associated set of training data which is a subset of the overall performance
data. The goal is to build a description of the action skill which is as simple
and straightforward as the action itself, in a form which can adequately
explain the associated high-dimensional training data. For example, although
our raw data from the grasping of the mug handle has on the order of 30
data channels indicating the state over time of the many joints in the hand
and arm, the hand con�gurations actually observed during the performances
can be represented using only a few task-speci�c parameters. This is because
some parts of the motion will be highly consistent for each grasping motion:
we normally grasp the handle with our palm vertical, our thumb near the top
of our hand, our wrist �rm, and we usually curl all the joints in our �ngers
in unison as we grasp the handle. These consistencies in the motion of the
hand can be modeled as linear or non-linear constraints between the di�erent
dimensions of the raw-performance data, and they e�ectively restrict the
intrinsic dimensionality of our grasping motion. Once we have accounted for
and represented these constraints, we can accurately describe the position of
the hand with a simple parameterization such as the position of our �ngertips
as they approach the handle, how spread-apart they are and how closed

1.2. DIMENSION REDUCTION FORMULATION 5

around the handle. Such a description is similar to our own understandings
of the motion.

Given a library of low-level task descriptions of this type, parameterized
representations of the typical con�gurations for each given motion, we can
specify a performance of an action by supplying the name of a skill model
and a set of parameters. There should be few parameters for adjusting a
simple skill, and more parameters for adjusting a skill that is more complex.
For the grasp, we might want to specify \use the grasp skill, and keep the
�ngers close together." In building a model of a low-level skill, then, we need
to be able to do several things: (a) we need to be able to isolate the intrinsic
dimensionality of the skill, meaning the number of parameters we need to
adequately describe a given performance with respect to a particular skill
model, (b) we need to be able to map a high-dimensional raw state description
of a given performance to a description with this intrinsic dimensionality,
and (c) we need to be able to map a lower-dimensional description back to
a corresponding state description in the space of the raw data. The next
section discusses how these tasks are formulated in this thesis. In this work,
we address (b) and (c) for parametric and nonparametric models, and do
some work on addressing (a) for parametric models. Although some potential
approaches for addressing the determination of intrinsic dimensionality in
nonparametric models will be discussed, the full investigation of this problem
is still an issue for future research.

1.2 Formulation of the dimension reduction

problem

This thesis deals with the problem of �nding a low-dimensional representation
for high-dimensional data sets collected from multiple human performances
of a given task. Such performances consist both of some motions which
are essential for successful task completion and some which are inessential.
Because all the data correspond to successful performances of the task, the
essential motions will always be present, and will probably be more consistent
and less stochastic in nature than the inessential motions. In our example
from the previous section, when we reach across a table to grasp the co�ee
mug, the essential aspects of the performance are the end point of our hand's
trajectory toward the handle of the mug, the orientation and con�guration

6 CHAPTER 1. INTRODUCTION

of our �ngers when we grasp the handle, and the force closure of our �nal
grasp. The inessential aspects are the particular path by which our hand
moves to the handle, the orientation and con�guration of our �ngers in the
earlier parts of our reach, the overall speed of the motion, and the small
jitters in our hands and �ngers over the course of the the motion.

To assist in the extraction of the essential aspects of the performance, we
will �rst need to isolate the low-level skills most suitable for learning, and
we need to supply training data which we believe most directly shows the
important aspects of the performance. In this case, the low-level skills may
be a particular kind of reach and a speci�c kind of grasp, and the learning
algorithm may be told to look at the motion of the hand relative the mug
rather than to a global frame of reference.

We formulate the extraction of the essential aspects of the performance
as a dimension-reduction problem. Multiple human performances of a given
task are recorded by sampling the performance state over time. Each result-
ing sample is an m-dimensional vector, where m may be a fairly high number
(e.g., a Cyberglove records roughly 20 channels of data about the con�gura-
tion of the �nger joints in the hand, and tracking position and orientation of
the hand requires six more channels). GivenX(m�n), the training data matrix
containing some or all of the samples from the example performances, the
dimension reduction process generates a mapping g : Rm ! R

p (p < m) to a
p-dimensional space which preserves as much information as possible about
each point, and a second mapping h : Rp ! R

m which maps feature points
back to the original. We will call the input space S � R

m raw data space,
and space S� � R

p feature space. These spaces and the mappings between
them are summarized in Figure 1.1. We optimize g and h such that mapping
training data X into and back from the p-dimensional feature space results
in a faithful reconstruction: kX� h(g(X))k is minimized over g and h.2

After this optimization,

� g encodes information about the similarities between the points in
training data X,

� g(X) encodes the information about how training vectors xi 2 X di�er
signi�cantly from one another,

2When g and h are written with matrix arguments, they operate on each individual
column-vector of the matrix.

1.2. DIMENSION REDUCTION FORMULATION 7

S

S�

x1

g(x1)

h(g(x1))

x�2

h(x�2)

[x1 � h(g(x1))]

g

h

h

Figure 1.1: Mappings between raw data space S and feature space S�

� the image h(S�) � S is the p-dimensional manifold in them-dimensional
raw data space within which or close to which the training vectors lie,
and

� [X � h(g(X))] is the set of residual vectors by which the low-level
representation fails to model the high-level data.

If the norms of the residual (error) vectors are generally small, then these
vectors likely encode inessential random motions in the task demonstrations.
If the norm of the error vector for a given point is much higher than that of
most, then it is not typical of the training data set. Moreover, if the norms of
most error vectors are high, then either g and h are signi�cantly sub-optimal,
or the speci�ed dimensionality for the feature space is lower than the intrinsic
dimensionality (p) of the training set.

In addition to providing us with a great deal of information about the
nature of the sub-task being analyzed, the method of dimension reduction
provides a low-dimensional feature space in which to plan robotic perfor-
mances of the sub-task. If we are able to generate mappings of suÆcient
quality, then performances planned within this feature space may closely
resemble human performances.

An important special case of dimension reduction is modeling using a one-
dimensional parameterization. We will discuss in Section 3.2 that the best
one-dimensional parameterization of an action skill is a variable describing a

8 CHAPTER 1. INTRODUCTION

temporal ordering of points. The process of building such a parameterization
is trajectory �tting. If g and h are smooth mappings to and from a one-
dimensional feature space, then the result of smoothly varying that single
parameter over time from a starting value to a �nal value, and projecting
that value into the raw performance space using mapping h, can represent a
\best-�t" model of the action. Another way to describe the �tted trajectory
is \the one-dimensional model most likely to have generated training data
X."

The remainder of this chapter will review research related to the thesis.
Chapter 2 will investigate the use of general purpose parametric modeling
methods to create mappings g and h that minimize modeling error kX �
h(g(X))k. Local modeling based on general purpose non-parametric methods
is the focus of Chapter 3, which discusses the advantages that local models
(i.e., as opposed to global parametric models) hold for human performance
modeling. Chapters 4 and 5 present adaptations to these non-parametric
methods for the speci�c purpose of modeling human performance. I derive a
spline smoother which can build best-�t trajectories of human performance
data through phase space in Chapter 4, and I adapt the principal curves
algorithm to use this smoother in Chapter 5. Chapter 6 demonstrates the use
of these methods, particularly the method from Chapter 5, for analyzing data
from a telerobotics experiment. A very di�erent kind of action model based
on hidden Markov models is presented in Chapter 7, which is specialized for
the purpose of gesture recognition. Chapter 8 summarizes the conclusions
and contributions of the thesis.

1.3 Related research

This section relates the work presented in this thesis to several areas of the
robotics and machine learning literature. First, we describe the relationship
between the high-level analysis described in Section 1.1 and current work
on task-level recognition of human actions for learning assembly plans and
for building symbolic descriptions of human motions. Next we survey some
the current work on skill-based robot programming, and describe how the
conceptions of skills or primitives in this work relate to the low-level action
models used in this thesis. Because action modeling is formulated as a dimen-
sion reduction problem in this thesis, we review current work on dimension
reduction, particularly those methods based on local data models. Finally,

1.3. RELATED RESEARCH 9

we describe how potential uses of action models relate to current applications
of reaction models, and note a few other applications which could potentially
bene�t through the use of the use of action models.

High-level analysis Section 1.1 divides the process of action learning into
two steps: high-level analysis, and learning individual low-level actions. A
general task-level strategy or plan is inferred from watching one or more hu-
man performances, and the set of low-level actions from which this strategy
may be constructed is identi�ed. This is an inverse and potentially compli-
mentary process to the traditional task planning problem, where a strategy
or plan of low-level actions is deduced from a task description in a \task-level
language" such as described by Lozano-P�erez [41].

The high-level analysis process is relatively straightforward for the tasks
examined in this thesis. Thus the problem of decomposing tasks into low-
level actions is not a focus of this research. During the process of performing
experiments, however, subtasks within full task performances were recog-
nized, labeled, and graded by hand using computer animation interfaces to
represent the collected performance data (e.g., Chapter 6). Research that
could be useful in automating this labor intensive process to some degree
for experiments in the manipulation domain includes the work of Ikeuchi et
al. [32, 34] and Hasagawa et al. [27] on using vision systems to extract assem-
bly plans from human demonstrations. Tung and Kak [78] achieve a similar
goal of recognizing and parameterizing low-level actions using a DataGlove.

The process of task recognition for extracting assembly plans from human
performances is focused on the e�ects of human actions. Ikeuchi et al., for
example, compare \before" and \after" images from human assembly actions.
When we are modeling human actions, however, it is often more important to
identify the actual human motions rather than the e�ects of these motions.
For recognizing whole-body human motions, Davis et al. [15] use Motion
Histograms, while Wilson et al. [82] use hidden Markov models (HMMs) of
visual data. Azoz et al. [6] use a method based upon the extended Kalman
�lter [6]. Hand motions may be identi�ed using techniques for sign-language
recognition, such as the work of Starner [71], which uses HMMs with vision
information. This thesis describes two methods for recognizing sign-language
with data from an instrumented glove: one using HMMs (e.g., Chapter 7),
and the other using a most-likely trajectory model (Section 3.5). Methods
for real-time visual interpretation of hand gestures are reviewed in [57].

10 CHAPTER 1. INTRODUCTION

Primitives and skills The robotics literature often uses the term \skill"
or \primitive" to describe a unit of functionality by which robots achieve
an individual task-level objective. A \skill" is often de�ned as an ability
to use knowledge e�ectively and readily, and the e�ectiveness of a skill for
attaining a given desired result is its primary attribute [74]. The develop-
ment of high-level strategies as combinations of these units is often referred
to as \skill-based programming." Examples of this approach are often found
in the area of dextrous manipulation, such as the work of Michelman and
Allen [44], and Nagatani and Yuta [52]. Skills or primitives are also useful for
encapsulating expert knowledge and for the software engineering purpose of
making this expertise simple to interface into working systems by task-level
programmers, as demonstrated by Morrow et al [46, 47, 48] and Archibald
and Petriu [2]. In the robotics literature as a whole, they are used as sym-
bolic units of description for computer representations of task-level plans,
and for mapping to human-language descriptions (e.g., \grasping," \placing,"
\move-to-contact") for human understanding, communication, and reason-
ing. In the manipulation domain, these primitives are often further de�ned as
sensorimotor units for eliminating motion error due to modeling uncertainty
in the task environment.

In contrast to this work in the manipulation domain, this thesis will
focus on skills or primitives (the terms \low-level actions" or \component
motions" will also be used) as descriptions of actions instead of as a mapping
from sensed task state to actions. Thus, we will be characterizing classes of
motions or subspaces of action space which correspond to hand movement
when reaching, �nger movement when grasping, or body movement when
walking. This is more closely related to work like that of Yang et al. [88],
which uses a hidden Markov model representation to build a model of a
\most-likely performance" from multiple example performances.

Dimension reduction and local learning As discussed in Section 1.2,
our approach to action modeling is to build mappings to and from reduced-
dimension representations of human action data. Most work on skill learning
deals with reaction learning (i.e., control) rather than action learning. One
notable exception is the work of Bregler and Omohundro [9]. They present a
technique for representing constraint surfaces within high-dimensional spaces.
Points are sampled from the constraint surface, which is a low-dimensional
subspace of the possible space of points. K-means clustering is used to gen-

1.3. RELATED RESEARCH 11

erate a representative set of cluster centers for these sampled points. In the
region containing each cluster, local principal component analysis (PCA) is
used to linearly approximate the constraint surface and determine its local
dimensionality, and the constraint-surface approximation at a given point is
a blended approximation formed from the local PCA models of the nearest
cluster centers. Expectation-maximization is used to re�ne the global model
de�ned by the combination of all the local models. Bregler and Omohun-
dro use this method in a speech recognition application to model a speaker's
lip motions. A \snake" representation is used to model the contour of the
speaker's lips. This representation consists of a chain of 40 points which
track the edges of the speaker's lips within a video image, and the image
coordinates of these 40 points can be represented as a single point in an
80-dimensional space. The model of the lip's motion for a given word is
the surface within this huge space within which the snake model is con-
strained while the word is spoken. Although this method for building a
reduced-dimension representation of high-dimensional data from a set of dis-
tinct local models seems fundamentally di�erent from the methods used later
in this thesis such as principal curves, similarities between the blended PCA
models and the formulation of the nonparametric smoothers used within the
principal curves algorithm actually form a strong relationship between them.
Tibshirani's formulation of the principal curve [76] and Tipping and Bishop's
mixtures of probabilistic principal component analysis [77] provide an inter-
esting connection between such mixture models and the theory presented in
Chapter 3.

Zhang and Knoll [89] present an interesting reaction-learning method
based on a global parametric model of a high-dimensional input signal. They
present a visual servoing application whereby an eigenspace representation
is used to reduce the dimensionality of the image used to control a robot.
This reduced-dimension representation is input to a fuzzy rule-based system
based on B-splines, which is trained to control the robot for performing simple
manipulation tasks.

Chapter 2 of this thesis presents global parametric methods for action
learning, including principal component analysis [33] and Kramer's nonlinear
principal component analysis [36], while Chapters 3, 4, and 5 focus on local,
nonparametric methods. In the comparison of the two, it will be demon-
strated that the nonparametric methods have many practical and theoretical
advantages. Schaal [63], in the context of learning nonlinear transformations
for control, comes to similar conclusions. He is concerned with �nding learn-

12 CHAPTER 1. INTRODUCTION

ing methods which can enable autonomous systems, particularly humanoid
robots [62], to develop complex motor skills in a manner similar to humans
and other animals. He concludes that nonparametric models are more ap-
propriate than parametric models when the functional form of the mapping
to be learned is not known a priori , though the nonparametric methods can
be more computationally expensive on non-parallel hardware.

Atkeson et al. [4] survey the literature in locally weighted learning, and
in the process present a good summary of the available methods for creating
local models, including local regression and scatter-plot smoothers. In [5]
they survey the use of these locally weighted learning techniques for control:
mapping task-state information to an appropriate action. Schaal et al. [64]
compare several of these local modeling technique using Monte Carlo simula-
tions, and �nd that locally weighted partial least squares regression [20, 85]
gives the best average results.

One concern mentioned in the locally-weighted learning surveys [4, 5] is
the problem of high-dimensional input spaces. It is simply infeasible to col-
lect enough training data to fully characterize all regions of high-dimensional
space, and it is diÆcult to blend di�erent local models together because
all points begin to look equidistant in these spaces [67]. Nevertheless, Vi-
jayakumar and Schaal [79] present a method called Locally Adaptive Sub-
space Regression (LASS) for learning mappings in these high-dimensional
spaces. Their approach is based on empirical observations that \despite
being globally high dimensional and sparse, data distributions from physi-
cal movement systems are locally low-dimensional and dense." LASS learns
functional mappings in high-dimensional spaces by using locally-weighted
principal-component analysis to reduce the dimension of the local model be-
fore attempting to �t the model. Its input space is a combination of local
PCA patches which looks similar in some ways to the constraint surfaces of
Bregler and Omohundro [9].

An important problem for building reduced-dimensional representations
of data sets is choosing the dimensionality of the model. Minka [45] gives one
approach to doing this for models based upon principal component analysis
(PCA). His work uses the interpretation, from Tipping and Bishop [77], of
PCA as a maximum-likelihood density estimation.

Uses for action models In addition to presenting methods for building
models of human actions, this thesis presents example applications including

1.3. RELATED RESEARCH 13

the representation and analysis of a human grasping motion, analysis of a
telerobotics experiment, and two gesture recognition experiments. These are
only a small subset of the potential applications of this research, however.
Most of the potential applications for action models are similar to those for
reaction or control models.

Although reaction learning is a popular strategy for abstracting primi-
tives from human demonstration data for use in dextrous manipulation, for
example with neural networks [35, 40] and hidden Markov models [30], ac-
tion learning also can build models useful for robot execution [88]. When
combined with a system for recognizing a human operator's actions in a vir-
tual environment such as that described by Ogata and Takahashi [56], such
models can be used for task-level teleoperation of a remote robot (e.g., [29]).
Some motions such as the brush stroke of a painter or the pen stroke of a cal-
ligrapher may be very subtle and appropriate for learning by demonstration,
but may however be primarily feed-forward in nature (possibly with applied
force as one dimension of the action state) and best modeled using action
learning rather than reaction learning. For these motions, we probably want
to learn not only the typical stroke of the painter or calligrapher, but also
the ways which the stroke may vary yet remain typical of the artist. This
could allow for appropriate variation in the execution of the skill to make the
result look less \robotic."

Action models are also useful for applications in which skills are trans-
ferred from a human expert to a student. Nechyba and Xu [53] demonstrate
a system whereby an expert's reaction skill, modeled by a cascade neural net-
work, is used to guide a student's learning of a diÆcult inverted-pendulum
stabilization task. They also present a stochastic similarity measure [54] for
quantifying the similarity between reaction-task performances, which is use-
ful for evaluating skill transfer experiments. The methods developed in this
thesis are particularly applicable to action skill transfer due to their ability
to analyze the motions of human experts, and their ability to describe an
expert's nominal performance and likely modes of variation for comparison
with student performances. For human motions such as swinging a golf club
or throwing a baseball, a student's action can be compared to an expert's
motion trajectory in space to form prescriptive suggestions, so an action
model built around a best-�t trajectory will have important advantages over
a black-box input/output model such as a neural network.

Computer animation is one of the most promising applications for ac-
tion models. Instead of simply recording the motion of a human actor for

14 CHAPTER 1. INTRODUCTION

later playback with an animated character, action learning can be used to
characterize the full range of motions which are typical of that person's per-
formances. These models could be used to create animations of the corre-
sponding motions (e.g., walking) which are stochastically varied in a \human"
manner to give them a more natural look. For research in physics-based ani-
mation of human models, action models could be used for evaluating di�erent
control methods. For example, Matari�c et al. [43] evaluate various methods
for controlling the movements of a humanoid torso simulation in performance
of the macarena. Their evaluations are based on qualitative and quantita-
tive measures of \naturalness of motion," where their quantitative analysis is
based primarily on a measure of end-e�ector jerk. A distance metric from an
appropriate action model learned from human performances could be used to
build an improved criterion for the naturalness of these simulated motions.

Chapter 2

Global parametric methods for

dimension reduction

2.1 Introduction

In this chapter we look at some methods for dimension-reduction which are
not speci�c to characterizing human performance data sets, but which may
however be useful for this purpose. These methods do not look at the human
performance data in terms of multiple example trajectories in time, nor do
they look directly at the local relationships between example points from
similar parts of a given performance or the state space. They rather look
at all the points from all the training examples as a single set of vectors in
raw data space X(m�n) = [x0jx1j : : :xn�1] and simply try to map them to
a lower-dimensional feature space and back again while preserving as much
useful information as possible. Since these methods do not look at the local
structure of task performances, we call them global methods for dimension
reduction.

In Section 2.2 we will review the general topic of parametric methods
for global modeling, and in the rest of the chapter we will discuss global
parametric modeling of human performance data. We will present three
global methods for this purpose: principal component analysis (PCA), non-
linear principal component analysis (NLPCA), and a variation on NLPCA
called sequential non-linear principal component analysis (SNLPCA). Given
training-data X, these methods develop mappings g : Rm ! R

p to feature
space and h : Rp ! R

m back to raw-data space. PCA generates linear map-

15

16 CHAPTER 2. GLOBAL PARAMETRIC METHODS

pings. The forms of the mappings resulting from both NLPCA and SNLPCA
are non-linear, but they are found in slightly di�erent ways. To demonstrate
and compare these methods, we use an example human performance data
set described in Section 2.3.

2.2 Parametric methods for global modeling

Reducing the dimensionality of a data set can be thought of as the process of
�nding correlations between its di�erent variables or dimensions. Strong cor-
relations between dimensions of the data may be used as constraint equations
to explicitly reduce the dimensionality of their representation.

The tool boxes of statisticians are full of methods for uncovering these
relationships between two or more variables in a given set of data. These
methods generally assume that there is some underlying structural relation-
ship between the variables, and also some random error or variation in one or
more of the variables. If we have a data set of n observations of two variables
x and y, we might �rst make a scatter plot of the points (x; y) to get a rough
idea of how one relates to the other. Figure 2.1(a) on page 18 shows an exam-
ple scatter plot. Such plots are more diÆcult to use for higher-dimensional
data sets, but we can still learn a great deal about high-dimensional data by
plotting two- and sometimes three-dimensional projections.

The most familiar methods for modeling the relationship between the
di�erent parts of a data set are parametric methods. These result in para-
metric models|equations relating one set of variables to another, with a set
of parameters which can be adjusted to �t a given dataset. Adjusting one
of the parameters of these models tends to change the model over the entire
domain, and the e�ect is generally measured against a single scalar value
indicating the goodness-of-�t over the entire set of training data. In this
section we review several well-known global parametric methods, then in the
rest of the chapter we will describe how similar methods may be used for
modeling human performance data.

2.2.1 Polynomial regression

The class of polynomial functions is a commonly-used set of parametric mod-
els. They are most useful when we can separate the dimensions of the data
we are modeling into a single explanation variable x and a set of response

2.2. PARAMETRIC METHODS FOR GLOBAL MODELING 17

variables y. We will assume a single response variable y in this discussion. All
the error is assumed to appear in the response variable, while the explanation
variable is assumed to be error-free.

We generally assume that the data comes from a process with an un-
derlying systematic relation between the variables, and a separate source of
random error. We model the systematic relation using a p-th order polyno-
mial, and the random error with variable �:

y =

p�1X
j=0

cjx
j + �: (2.1)

If we assume that error � comes from a Gaussian distribution with an
expected value of zero, we can estimate the coeÆcients c� of the polynomial
by minimizing the sum of squared error

Sp =
n�1X
i=0

yi �

p�1X
j=0

cj(xi)
j

!2

: (2.2)

The estimated coeÆcients of the polynomial c can be found by solving the
linear system

M(p�p)c(p) =m(p); (2.3)

where M is a symmetric matrix with terms Mij =
Pn�1

k=0(xk)
i+j+1, and m

is the vector such that mi =
Pn�1

k=0 yk(xk)
i (although this is not the most

eÆcient solution).
The polynomial most often used for �tting data is a straight line. Fig-

ure 2.1(b) shows the result of performing linear regression (i.e., polynomial
regression with p = 2) on the dataset in Figure 2.1(a). Because we assume
that all the error is in the response variable, the error vectors, which connect
each data point to its projection on the model line, are vertical. Figure 2.1(c)
shows the result of a polynomial curve �t with p = 3, a parabolic curve �t.
Again, the error vectors are vertical.

Since we have an explicit parameterization (or explanation) variable,
polynomial regression of a dataset with a multi-dimensional space of response
variables is equivalent to performing regression separately on each individual
response variable.

18 CHAPTER 2. GLOBAL PARAMETRIC METHODS

x

y

-1 11

1

13

(a) Scatter plot of example data set

x

y

-1 11

1

13

(b) Linear regression

x

y

-1 11

1

13

(c) Parabolic curve �t

x

y

-1 11

1

13

(d) First principal component

Figure 2.1: Various parametric models of an example data-set. Each model
minimizes the sum of squared errors, where the errors are length of the vector
between data-point and its projection onto the model.

2.3. AN EXPERIMENTAL DATA SET 19

2.2.2 First principal component

Sometimes we want to �nd the best linear model for a dataset without �rst
choosing an explanation variable, or we might want to do a linear regression
assuming that the variance of the error in the explanation variable is the
same as that for the other variables. The �rst principal component is the
proper model for these cases. If we assume for multi-dimensional dataset
Y = fyig the model

yi = u0 + a�i + �i; (2.4)

and that covarience(�i) = �2I, then the least-squares estimate of slope vector
a is the �rst principal component. Figure 2.1(d) shows the �rst principal
component for the example dataset. Note that the error vectors are orthogo-
nal to the model line. This is due to the fact that error is being minimized in
both dimensions simultaneously. The error vectors are parallel to the second
principal component.

The parameterization variable � for the principal component is not part
of the original problem formulation|it is newly introduced by the modeling
equation (2.4). It can be considered a \discovered" (or \latent") explanation
variable. If we rotate Figure 2.1(d) slightly clockwise to make the �rst princi-
pal component line horizontal, then the error bars will be vertical like in the
regression plots. The regression against explanation variable � in the rotated
plot results in the horizontal-line model, a rather boring result because the
principal component already explained-away the correlation.

Principal component analysis (PCA), also known as the Karhunen-Lo�eve
transform [33], is a well-understood and commonly used method which can
be performed on data sets of arbitrary dimension. Because it does not need
an a priori explanation variable to generate its models, because it is compu-
tationally inexpensive, and because it generates a linear model which is easy
to understand and interpret, it is a useful �rst modeling technique to apply
to human performance data. We will describe its use for this application in
Section 2.4.

2.3 An experimental data set

In Chapter 1 we described how the process of human to robot skill trans-
fer typically involves recording several individual human task performances

20 CHAPTER 2. GLOBAL PARAMETRIC METHODS

Simulation
 engine

Data collection
code

OpenGL graphics
 rendering

Cyberglove

Figure 2.2: \Virtual reality" skill demonstration system

by sampling performance state over time using signals from various input
devices. Some example input devices include a Cyberglove or other instru-
mented glove, a Polhemus or other 6-DOF tracker, a joystick, a mouse, a hap-
tic interface, or other measuring devices such as visual trackers, instrumented
cockpits, etcetera. Although there may be a large number of dimensions in
the resulting representations of recorded performances, the actual intrinsic
dimensionality of the underlying human skill is often much lower. In this
section, we present an example set of recorded human task performances
whose raw-data space has a large number of dimensions, but which should
be represented more appropriately using only a few independent parameters.
This data is collected from the grasping phase of a ball-catching task which
was demonstrated in a simple virtual environment.

A human subject performed a number of catches of a virtual ball using
the system outlined in Figure 2.2. The input device was a Virtual Technolo-
gies Cyberglove which measures 18 joint angles in the �ngers and wrist of
its wearer, with a Polhemus sensor which returns the overall position and

2.4. PCA FOR MODELING PERFORMANCE DATA 21

Figure 2.3: Graphical feedback

orientation of the wearer's hand. The feedback to the user was a render-
ing of the hand and ball from several perspectives, on the graphical display
monitor of an SGI workstation (as shown in Figure 2.3). The recorded data
was interpolated and resampled evenly at 10Hz, and stored in a performance
database for later retrieval and analysis.

We manually segmented the performances into approach and grasp phases,
and subjectively graded each recorded grasp on a scale from 0-9. We selected
the vectors representing the joint angles in the �ngers and wrist during the
grasp phase of all catches for which the grasp satis�ed a minimum grade.
This generated a data set of 461 vectors, each representing a hand con�gura-
tion of 18 joint-angles during grasping motions. These vectors were randomly
allocated into a training set of 155 points, a cross-validation set of 153 points,
and a test set of 153 points.

2.4 Principal component analysis for

modeling human performance data

As mentioned in Section 2.2.2, principal component analysis (PCA) [33] is
a well-understood and useful method for modeling data sets. When applied
to a set of multidimensional vectors, it �nds a linear mapping between them
and each lower-dimensional space such that when the vectors are mapped

22 CHAPTER 2. GLOBAL PARAMETRIC METHODS

to a lower-dimensional space and then mapped back to the original space,
the sum-of-squared error of the reconstructed vectors is minimized. In the
compressed representation of a vector, we can consider each dimension a
separate feature, and the value of that dimension of the feature-vector a
feature-score.

To perform principal component analysis of a set of n m-dimensional zero-
normed vectors X(m�n) = [x0jx2j : : : jxn�1], we �nd the eigenvalues �i and
eigenvectors vi of the symmetric matrix XXT . To generate a p-dimensional
feature-vector representation of a m-dimensional vector1 y (where p < m),
we form a m � p matrix Vp = [v0j : : : jv(p�1)] where v0 : : :v(p�1) are the
eigenvectors corresponding to the p largest eigenvalues. Then the feature-
vector y� is

y� = g(y) = VT
p y; (2.5)

and the reconstructed approximation ~y of the original vector y from feature-
vector y� is

~y = h(y�) = Vpy
� = VpV

T
p y: (2.6)

The value of the i-th element of the feature vector y� is the magnitude
of the projection of y upon the corresponding eigenvector vi. Because eigen-
value �i is the variance of training data in the direction given by the eigen-
vector vi [7], the eigenvalue indicates relative signi�cance of feature score y

�
i

for representing vectors from a distribution similar to the training data.
Performing this analysis on the data set from Section 2.3 gives us a set

of eigenvectors which attempt to explain the data set in terms of linear
dependencies between its dimensions. The ability of the �rst 5 eigenvalues
to represent the data set is summarized in Figure 2.4. The values shown are
the relative magnitudes of the residuals,

%-Errp =
kY �VpV

T
p Yk

kYk ; (2.7)

where Y is the set of testing vectors from the experiment (independent from
the set X used to generate the eigenvectors), and k � k is the Frobenius (L2)
norm. Figure 2.4 clearly shows that the �rst two linear features are nearly
equal in importance for explaining the con�guration in the test data, while
the remaining features are much less signi�cant.

1In this chapter, we will use x to refer to a vector which is in the training-set, and y

to refer to a vector which is not in the training-set.

2.4. PCA FOR MODELING PERFORMANCE DATA 23

%

features
543210

72.0

41.4
33.4

26.8 23.1

0

100

Figure 2.4: Error unexplained by p features of PCA.

Initial Eigen 1 (v0) Eigen 2 (v1)

Figure 2.5: PCA analysis of grasp gesture. Initial position, and �rst and
second principal \eigenhands," front and side views.

24 CHAPTER 2. GLOBAL PARAMETRIC METHODS

Figure 2.5 provides a graphical illustration of the e�ects of these �rst
and second linear principal components, which we might call \eigenhands."2

These hand con�gurations are generated by varying the components y�0 and
y�1 of the feature vector, and then mapping these features to ~y using an
interface like the one shown in Figure 2.10 on page 31. We are able to use
the slider bars in this interface to look at the separate e�ects of the two
features y�0 and y

�
1 because PCA learns a linear mapping, and thus the e�ects

of the features are independent and additive:

~y = v0y
�
0 + v1y

�
1: (2.8)

While this linearity makes the resulting model easy to analyze and interpret,
it also limits the generality of the model.

We can see that the main e�ect of the �rst principal component is to bring
the �ngers closer together and to bend the �ngers at the knuckles (mcp),
while the e�ect of the second principal component is to curl the �ngers at
the second (pip) and third (dip) joints. Moreover, we see that although the
grasp positions of the hand generated from the �rst and second eigenvectors
look plausible, the best attempt to create an adequate initial (open) position
for the grasp using only the �rst principal component looks less plausible.
Closer inspection of this con�guration reveals that the pinky and index �ngers
overlap in space, and that it is thus physically impossible. The problem is
the linear nature of the mapping. The �rst principal component reduces the
average sum-of-squares error for all joint-angles during the grasps by �tting a
straight line in the space of training con�gurations, but if the general trend of
the performances in state space is not linear, then this principal component
will �t the trend of the performances poorly at some stages. Nevertheless,
we see from Figure 2.4 that PCA allows much of the 18-dimensional data set
to be explained by only a few linear feature values.

2.5 NLPCA

Nonlinear principal component analysis (NLPCA) also attempts to �nd map-
pings between a multidimensional data set and a lower-dimensional feature-
space while minimizing reconstruction error, but allows the mappings to be

2The thumb positions in these diagrams are slightly erroneous due to a sensor which
was not working during the experiments.

2.5. NLPCA 25

nonlinear. In contrast to linear mappings (2.5) and (2.6), the nonlinear map-
pings are of the general form

y� = g(y) (2.9)

~y = h(y�) = h(g(y)) = n(y): (2.10)

If the lower-intrinsic dimensionality of a data set arises from a nonlinear re-
lationship between the di�erent dimensions of the data set, a nonlinear prin-
cipal component analysis is capable of better representing the original data
set with a reduced-dimension representation than would a linear principal
component analysis. Several methods proposed for performing NLPCA in-
clude the use of autoassociative neural networks, as described by Kramer [36];
principal curves analysis, as described by Hastie and Stuetzle [28], and Dong
and McAvoy [17]; adaptive principal surfaces, as described by LeBlanc and
Tibshirani [37]; and optimizing neural network inputs, as presented by Tan
and Mavrovouniotis [75]. In this section we will focus on Kramer's method
for NLPCA, and in Section 2.6 we look at a modi�cation of that method
called SNLPCA. These are global parametric methods because for a given
neural-network architecture, there is a corresponding parametric equation
whose parameters are adjusted to optimize a global measure of goodness-of-
�t, and there is no speci�c relationship between parameters of the equation
and local regions of the mapping space.

Kramer's method for NLPCA involves training a neural network with
three hidden layers, such as the one shown in Figure 2.6. These neural
networks are autoassociative, meaning they are trained to map a set of input
vectors X to an identical set of output vectors. If the second hidden layer, or
\bottleneck" layer, has a lower dimension than the input and output layers,
then training the network creates a lower-dimensional representation X� of
the vectors presented to the networks inputs in the form of the activations
of the units in the bottleneck layer. The mapping from the input vectors to
these activations in the bottleneck layer is the \compression" transform g,
and the mapping from the bottleneck activations to the activations of the
output units is the \decompression" transform h. Using sigmoidal units of
the form

�(x) = (1 + e�x)�1 � 1
2

(2.11)

26 CHAPTER 2. GLOBAL PARAMETRIC METHODS

g(�)z }| {

x0

x1

x2

xm�1

...

� x�0

� x�1

� x�p�1

...

Mapping
layer (Mc)

Bottleneck
layer

h(�)z }| {

� ~x0

� ~x1

� ~x2

� ~xm�1

...

Demapping
layer (Md)

Figure 2.6: Neural network architecture for NLPCA.
 indicates a sigmoidal
unit, and �
 indicates a unit which may be either linear or sigmoidal.

2.5. NLPCA 27

x

�(x)

-5 5

-0.5

0.5

Figure 2.7: Sigmoid function

in the �rst and third hidden layers (the sigmoid function is shown in Fig-
ure 2.7) allows the mapping function g and de-mapping function h to take
the forms

g : gk(x) = ~�

McX
j=0

w
(2)
kj �

mX
i=0

w
(1)
ij xi

!!
k 2 0 : : : p� 1 (2.12)

h : hk(x
�) = ~�

MdX
j=0

w
(4)
kj �

pX

i=0

w
(3)
ij x

�
i

!!
k 2 0 : : :m� 1; (2.13)

where ~�(�) may either be the sigmoidal function (2.11) or the identity function
~�(x) = x depending on whether sigmoidal or linear units are used in the
bottleneck and output layers. Given enough mapping units, these functional
forms may approximate any bounded, continuous multidimensional nonlinear
function v = f(u) with arbitrary precision [14]. Just as PCA de�nes a linear
mapping to and from a reduced-dimension representation which minimizes
the sum of squared reconstruction error kX � VTVXk2 for a given set of
vectors, training the weights W of the autoassociative neural network to
minimize the sum of squared error

e2p(X) = kX� n(W;X)k2 (2.14)

of mapping vectors xi to themselves through the bottleneck layer e�ectively
performs a nonlinear principal component analysis of the vectors.

28 CHAPTER 2. GLOBAL PARAMETRIC METHODS

The principal advantage of NLPCA over PCA is its ability to represent
and learn more general transformations, which is necessary in cases when
one wishes to eliminate correlations between dimensions in a set of data
which cannot be adequately approximated by a linear dependency. However,
NLPCA also has important disadvantages compared to PCA.

The trade-o� for the extra-representational power of the nonlinear map-
ping functions g and h is that they cannot be as easily interpreted as the
eigenvector-based mappings returned by PCA. In addition, NLPCA tends
to require several orders more computation time than linear PCA, and be-
cause training the neural network is a high-dimensional nonlinear optimiza-
tion problem over the weights of the neural network, we can guarantee only
a locally optimal solution, unlike the globally optimal solution returned by
PCA. In the version of NLPCA presented to this point the relative im-
portance of each output dimension of the compression mapping cannot be
determined by the training process, and there is no guarantee that any one
of the output dimensions corresponds to a primary nonlinear factor of the
training data. However, if an explicitly prioritized factorization is desired,
Kramer's sequential NLPCA algorithm (SNLPCA), discussed in Section 2.6,
may be used.

We used Kramer's NLPCA method to analyze the data set from Sec-
tion 2.3. The neural networks were trained using the L-BFGS-B implemen-
tation of Byrd et. al [10]. We used a network architecture with linear units
for the bottleneck and output layers, and without direct interconnections
between the input and bottleneck layers, nor between the bottleneck and
output layers. Choosing linear output units for the output layer allowed the
network to be trained on data which was not rescaled to �t within the output
range of the sigmoidal function (although the data was zero-normed). This
gave better results than rescaling the data and using sigmoidal units.

The parameter M , the number of mapping units in the �rst and third
hidden layers of each network, was chosen by a heuristic search over the range
p : : :min(n

4
; pM � 1) where n is the number of training vectors, and pM is the

smallest possible value forM for which the number of weights in the network
Nw will exceed the available number of values in the training matrix, (mn).
M must be at least as great as p if there are no interconnections across the
mapping layers; otherwise, the mapping layers would be the real bottlenecks.
The selection criteria for the value of M was not cross-validation error (al-
though it is used for early-stopping of the weight-optimization algorithm),

2.5. NLPCA 29

%

features
543210

58.5

40.9
30.1 25.7

20.2

0

100

Figure 2.8: Error unexplained by p features of NLPCA.

but rather the information theoretic criterion described in [36]:

AIC = ln(e=(2m)) + 2Nw=Nd; (2.15)

where

Nw = m + p+ 2M(m + p+ 1) (2.16)

is the number of weights in the network, Nd = (nm) is the number of training
vectors times the dimension of the training vectors, and e=(2m) is the average
sum of squares error. This criterion penalizes network complexity, and thus
tends to reduce over-�tting of the training data. At least two units are used
in the mapping layers, even when p = 1, because a network architecture with
only a single unit in each of the three hidden layers is degenerate and unable
to learn signi�cantly nonlinear principal components.

In Figure 2.8 we show the results of this NLPCA analysis. The e�ect of
NLPCA on residual error for each number of principal nonlinear factors is
calculated as

%-Errp =
kY � np(Y)k
kYk : (2.17)

The most interesting aspect of the analysis is that although NLPCA explains
signi�cantly more of the data set than PCA when p = 1, the two methods
perform similarly when p > 1. This is due to the fact that the grasping mo-
tions analyzed are relatively simple and open-loop in nature, due to a lack of

30 CHAPTER 2. GLOBAL PARAMETRIC METHODS

Initial N0(�)

Figure 2.9: NLPCA analysis of grasp gesture. Initial position, and e�ect of
�rst nonlinear principal component, front and side views

haptic feedback in the virtual environment in which they were demonstrated.
We can thus think of each performance as following a nominal grasping tra-
jectory in con�guration-space from an open hand to a closed hand, with
some stochastic variation. The �rst nonlinear principal component follows
the nominal grasping-trajectory, and since this trajectory is curved, it ex-
plains the data in the testing data set better than the �rst linear principal
component. However, since the basic non-stochastic structure of the grasp is
adequately explained by the �rst nonlinear principal component, it is plau-
sible that when a higher-dimensional feature-space is used NLPCA simply
optimizes the mutual orthogonality of the resulting features to most eÆ-
ciently explain the more stochastic nature of residual performance data, and
the result is thus similar to PCA.

Figure 2.9 illustrates the �rst nonlinear principal component from our
analysis. These con�gurations are formed by varying a scalar value y�0 and
mapping it to a hand con�guration using function h0 : R1 ! R

m . This
can be accomplished using an interface with a slider-bar controlling y�0 as
in Figure 2.10. The grasping con�guration of the hand looks similar to that
generated by the �rst linear principal component in Figure 2.5, but the initial
position generated from the nonlinear principal component is more plausible.

2.5. NLPCA 31

Figure 2.10: Interface for controlling hand con�guration using y�0

Moreover, the grasping motion resulting from smoothly varying the feature
value looks more natural than the motion generated by the principal linear
feature.

It should be noted that in this example we started by building a repre-
sentation for individual hand con�gurations, but this resulted in a mapping
which we could use to animate a nominal grasping performance by smoothly
and monotonically varying the nonlinear principal component y�0 from an
initial to a �nal value. This was possible because the grasping motion is a
smooth directed path in con�guration space, and because the forms of the
mapping functions (2.12) and (2.13) are well suited to learning such smooth
mappings. However, we are making a substantial leap here. We are treat-
ing a nonlinear regression �t as if it were a best-�t trajectory estimate of
the grasping motion|a directed path through con�guration space which is
typical of the example training performances. Although we have created
a one-dimensional parameterization of the grasping motion, this was done
using only global information, and our learning techniques learned nothing
directly about the local relationships between the points in the data-set and
how the hand typically moves between them in con�guration space. In Sec-
tion 2.8, we will discuss the di�erence further and motivate the methods

32 CHAPTER 2. GLOBAL PARAMETRIC METHODS

g0

g1

gp�1

h0

h1

hp�1

+

{

x0
x�0

+

{

x1
x�1

...
...

+

{

xp�2
x�p�1

xp�1

Figure 2.11: SNLPCA computation

presented in later chapters which make use of localized motion information
in the training data.

2.6 SNLPCA

Kramer's sequential NLPCA algorithm (SNLPCA) [36], is a modi�cation to
the NLPCA method which produces a nonlinear factorization, and where
the training process prioritizes each resulting feature as to its relative power
in explaining the variations of the training set. SNLPCA performs a series
of NLPCA operations, each training a neural network with a bottleneck
layer consisting of a single unit. Training such a neural network on the
raw performance data set explains as much of the set's variation as can be
represented by a single variable, and thus trains the compression part of the
network to perform the primary nonlinear factorization of the data set. The
next nonlinear factorization should explain the variation in the data set which
is not accounted for by the �rst factorization, and thus a second network is
trained on the residuals formed by subtracting each vector of the original
data set by its estimate as calculated by the �rst network. This process,
summarized in Figure 2.11, continues until the desired number of iterations
has been reached or until enough of the original data set's variation has been
explained.

The algorithm is:

2.6. SNLPCA 33

%

features
543210

59.9

47.4 43.1 42.0
36.8

0

100

Figure 2.12: Error unexplained by p features of SNLPCA

1. X0 X; p 0

2. Loop for p in 0 : : : (F � 1) or until kXpk < �

(a) Train Wp+1 to minimize kXp � np+1(Xp)k2,
where np+1(�) � n(Wp+1; �)

(b) Xp+1 (Xp � np+1(Xp))

(c) Split np+1 : R
m ! R

m into gp+1 : R
m ! R

1 and hp+1 : R
1 ! R

m

such that hp+1(gp+1(�)) � np+1(�)
(d) X�

(p;�) gp+1(Xp) (i.e., sets row p of X�).

This algorithm generates a reduced-dimension representation X� of X,
but does not automatically generate the mapping and de-mapping functions
g and h. These may be formed in two ways. The �rst is to cascade the
networks gp, which were trained in the SNLPCA algorithm, to form a large
single network for computing g in a manner corresponding to the computa-
tion shown in Figure 2.11. In a similar fashion, networks hp can be cascaded
to form a network for computing h. This method requires no additional
training and will perform exactly the mappings calculated by the SNLPCA
algorithm. The second method is to train separate neural networks to per-
form the mapping fromX toX� andX� toX. This method results in smaller,
more computationally eÆcient networks, but may not necessarily converge
to acceptable approximations of the desired mappings.

Figure 2.12 shows the results of SNLPCA on the data set from Section 2.3.
For this data set, we see that its performance is roughly equivalent to NLPCA

34 CHAPTER 2. GLOBAL PARAMETRIC METHODS

for p = 1, and worse than both NLPCA and PCA when p > 1 (the compari-
son is summarized in Table 2.1). This is due to the fact that the �rst iteration
has eliminated almost all of the underlying structure of the grasping skill,
thus leaving the residual vectors X1 dominated by stochastic variations in
the individual human performances. Since the nonlinear factors are trained
sequentially, it is diÆcult for the SNLPCA algorithm not to over-�t the re-
maining noisy residuals at each iteration, rather than learn to represent this
noise by building some equivalent of an orthonormal basis of linear features in
the manner of PCA. In addition, as the number of features used increases,
the compression networks have increasing diÆculty learning the generated
compression mappings.

An additional explanation for the degradation in performance after the
�rst iteration of the algorithm compared to NLPCA is that the residuals in
Xp (where p � 1) are correlated with the features generated from previous
iterations. This makes some intuitive sense: it seems likely that the particu-
lar ways that the sampled grasp con�gurations vary from the model depends
largely on to which part of the grasping motion they correspond. Hand con-
�gurations at the beginning of the grasp di�er from one another in di�erent
ways than con�gurations near the end of the grasping motion. If we consider
the feature-score from the �rst iteration to correspond roughly with a tem-
poral ordering of some prototypical grasp, then the variations modeled by
the second iteration of the algorithm are highly dependent upon the feature-
score learned by the �rst iteration. Since the information represented by the
�rst feature score is not directly available to the learning process in later
iterations, the modeling ability of these later iterations is handicapped. For
this reason, I suspect that the results from SNLPCA may be improved by
adding adding the output value of the preceding iterations to the dimensions
of the residual data used for training in later iterations. This hypothesis is
not investigated in this thesis, however, as we will turn our attention to local
methods and away from those based upon neural-networks.

2.7 Comparison

Table 2.1 compares the results from PCA, NLPCA, and SNLPCA. Based on
its ability to represent the nominal trajectory of the grasping skill in con�gu-
ration space, we conclude that the one-dimensional NLPCA mapping (equiv-
alent to the one-dimensional SNLPCA mapping) is the best representation

2.8. CHARACTERIZING NLPCA MAPPINGS 35

p PCA NLPCA SNLPCA
%-Err %-Err M %-Err Mc Md

1 72.0 58.5 12 59.9 14 3
2 41.4 40.9 3 47.4 14 6
3 33.4 30.1 8 43.1 12 5
4 26.8 25.7 5 42.0 15 9
5 23.1 20.2 10 36.8 19 8

Table 2.1: Experimental results. Percent of test data set Y unexplained by
p factors for each method, calculated by (2.7) for PCA and by (2.17) for
NLPCA and SNLPCA. M is the size of the mapping layers in NLPCA,
and Mc and Md are the sizes of the mapping layers in the compression and
decompression networks trained by SNLPCA.

of the grasping skill of the models we generated. For faithful reconstruc-
tion of a given hand con�guration from a reduced-dimension representation,
PCA analysis is the simplest and most e�ective method. Higher-dimensional
NLPCA and SNLPCA models might potentially be more appropriate for
more complex skills.

Although NLPCA and SNLPCA both have the advantage that they can
generate nonlinear models, these models have a black-box nature. It is diÆ-
cult to understand exactly what they do and how, and this diÆculty increases
dramatically with the dimensionality of the input space and feature space.
When NLPCA is used to model grasping motion using two feature compo-
nents, and then we control the two activation values of the bottleneck layer
using two slider-bars like the one shown in Figure 2.10, it is diÆcult to get
a sense for what the two values do independently of one another. More-
over, given the functional form of the decompression network and how the
entire bottleneck network is trained, there is little likelihood of any clear
independent relationship.

2.8 Characterizing NLPCA mappings

A paper by Malthouse [42] discusses Kramer's NLPCA method and indicates
that it has several important limitations, including an inability to model
curves and surfaces that intersect themselves, and an inability to parame-

36 CHAPTER 2. GLOBAL PARAMETRIC METHODS

terize curves with discontinuities. These limitations are due to the fact that
the mapping and de-mapping projections (2.12) and (2.13) are continuous
functions. For our example data set, and for many typical human skills,
continuous mappings to and from the feature representation are not partic-
ularly restrictive because the skills can be smoothly parameterized. Global
models in general will have a diÆcult time learning about data-sets which
are highly discontinuous. Later in this thesis, we will show how some curves
which intersect themselves in position space can be successfully modeled by
other methods in phase space.

A criticism in Malthouse's paper which is more relevant to the goals of
this thesis is that Kramer's NLPCA method tends to result in suboptimal
projections, and that methods based on principal curves [17, 28, 37] tend
to result in better parameterizations. This problem is demonstrated in
Figure 2.13. In 2.13(a), we �rst randomly sample a set of points from a
circular distribution, and then add uniform random noise to the x and y
dimensions of the sample points. A NLPCA network, shown in 2.13(b) is
used to learn to map these points to themselves through a single bottleneck
node, using 10 neurons in each mapping layer. Figure 2.14(a) shows how
the training points map to the learned model, and Figure 2.13(c) shows how
this network projects points in the immediate vicinity of the training points
onto the learned model. The circles are the input points, and the line from
the center of each circle shows to where the network maps that input. The
output of the decompression part of the network h0 over the full range of
activations on the bottleneck neuron, from the minimum value generated by
the training data to the maximum value, is drawn as a dashed curve. We see
that although some of the mappings are plausible, particularly those in the
lower-right hand side of the �gure (e.g., around the (5;�5) coordinate), the
projections of other points are far less sensible. The closer we look toward
the upper-left corner of the �gure, the more distorted the mappings appear.
Instead of mapping to the closest point on the dashed model-line, many
inputs project to points on the far side of the model. The input at (3;�7),
which is fairly close to one part of the model curve and near to inputs points
whose projections are very plausible, even maps past the far side of the model
curve to the top of the plot.

These strange projection results should not be surprising given the nature
of back-propagation neural networks. The power of these functional forms is
that they are suÆciently nonlinear and have enough degrees of freedom that
they can �t complex mappings with ease, even when trained using straight-

2.8. CHARACTERIZING NLPCA MAPPINGS 37

x

y

-7. 7.

-7.

7.

(a) Training data: Points sampled
from circle with added noise.

x0

x1
�

� ~x0

� ~x1

(b) NLPCA network used for learning
circle mapping.

x

y

-7. 7.

-7.

7.

(c) Mapping generated by NLPCA.

x

y

-7. 7.

-7.

7.

(d) Mapping generated by principal
curve.

Figure 2.13: Mappings to circular �gure of surrounding space, generated by
NLPCA and principal curves.

38 CHAPTER 2. GLOBAL PARAMETRIC METHODS

x

y

-6. 6.

-6.

6.

(a) NLPCA

x

y

-6. 6.

-6.

6.

(b) Principal curve

Figure 2.14: Mapping of training points to models learned by neural networks
and principal curves.

2.8. CHARACTERIZING NLPCA MAPPINGS 39

forward hill-climbing algorithms. Starting with a random mapping in this
case, the network adjusts its projection of the output points until they nearly
match the input points. Along the way, the learning function can easily warp
the projection for any region as necessary to reduce the error measure. This
ease of warping the output space, and the fact that what happens outside the
training set has no e�ect on training error, gives us reason to believe that the
resulting projection for points outside the training set may look somewhat
bizarre.

There are several reasons why we are looking at plots of projections in
a two-dimensional space. The �rst of course is that these plots are much
easier to understand than higher-dimensional projections, and it is easier
to make the connection between �tting the training points and modeling
trajectories which might pass through them. Since building a good one-
dimensional model for trajectory �tting is one of the more important uses of
dimension reduction, we want our methods to perform well in this case. The
complexity of the neural network mapping increases with its dimensionality,
and we would expect the mappings in higher dimensions to become more
rather than less strange as we look at less simple cases, so these results for two
dimensions should give use pause. We are thus motivated to look for modeling
techniques where the resulting projections are more understandable, and
which are explicitly based on principals appropriate for �tting trajectory
information.

What kind of projection function would be better than that shown in
Figure 2.13(c)? The least-squares projection method of the PCA model is
an appealing answer. If we associate a metric function with the raw-data
space, and consider the model to be some lower-dimensional manifold in
this space, then the projection of each point in the raw-data space onto
the model is the nearest point in the model. Figure 2.13(d) shows a model
built from the training points of 2.13(a) where the de�nition of projection is
based on a least-squares function in a similar manner to PCA, but using a
nonlinear model. The method used to generate this model is the principal
curves algorithm of Hastie and Stuetzle [28]. Figure 2.14(b) shows how the
training points map to the principal curve learned from them. Unlike the
methods introduced in this chapter, the principal curves algorithm examines
the relationship between points which are close in proximity, and thus it is
not a global method.

It should be noted here, that at least one global parametric model can
generate a mapping which looks more like that of the principal curve model of

40 CHAPTER 2. GLOBAL PARAMETRIC METHODS

Figure 2.13(d). The input-training neural network of Tan and Mavrovouni-
otis [75] generates a much better mapping than does Kramers's NLPCA
method. For modeling human performance data, their method should thus
outperform NLPCA. Their method still has the problem that it is based on a
neural network mapping, however, and is thus more diÆcult to analyze than
the methods based on local models which we present later in this thesis.

In the following chapters we will demonstrate how methods such as princi-
pal curves, which make use of local information, can be used to build models
of human performance data. We will also exploit this local information to ad-
dress another problem with the global methods: the fact that while we really
would like to build parameterizations which can express typical performance
trajectories, global methods can only �t individual performance data points,
and thus information about how typical human performances progress from
one sampled point to another is completely lost from the training data. Fig-
ure 2.13 demonstrates that while neural-network based NLPCA does a good
job of �tting the training data, we should be hesitant to use the resulting
projections of points between the training points, and thus we should be
wary of using trajectories in feature-space to model realistic trajectories and
motions in the raw-con�guration space. This problem can be addressed by
methods for �tting trajectories which use local information in the human
performance data set.

Chapter 3

Local methods for dimension

reduction

3.1 Introduction

This chapter introduces the use of local, non-parametric methods for dimen-
sion reduction of human performance data. The previous chapter demon-
strated the use several global methods for this purpose, methods which look
at all the data points from all the training examples as a single set of vectors
X(m�n) = [x0jx1j : : :xn�1] and simply try to map them to a lower-dimensional
space and back again so as to preserve maximum information. Global para-
metric models have a number of diÆculties when it comes to modeling com-
plex data sets such as those from human performances, however. When the
models are simple enough for easy analysis, they can be too simple to ade-
quately model the data. PCA is analytically beautiful, but the �rst principal
component adequately describes con�gurations along a best-�t performance
trajectory only when that trajectory is linear in con�guration space. On the
other hand, models like NLPCA and SNLPCA, which are
exible enough
to �t a wide variety of data sets, can be very diÆcult to analyze and use.
Methods for dimension reduction such as these, which are based upon neu-
ral networks, also tend to result in inadequate projections to and from the
feature space.

Focusing on non-parametric methods will help us to construct suitable
projections to and from feature space via nonlinear models, and to generate
trajectories typical of human performance from multiple examples. These

41

42 CHAPTER 3. LOCAL METHODS

methods are data-driven rather than based a priori upon a global parametric
form, and generally �t data locally rather then globally. The output value
at a given domain point is typically found by a simple average or weighted
regression of the values of nearby sample points. Because these local models
are simple, it easy to understand their outputs. The entire model is still

exible enough to adequately represent an almost arbitrary set of functions
or mappings, however, since it is constructed from a large number of these
local models.

In this chapter, we will focus on trajectory-�tting. As we discuss in
the next section, a best-�t trajectory is the most basic kind of reduced-
dimension action model. Two general-purpose non-parametric methods will
be reviewed for this purpose: scatter plot smoothing and principal curves.
We will discuss how these work, and how their use of local information helps
build good trajectory models from human performance data. The next two
chapters will present adaptations of these methods I have developed for the
speci�c purpose of modeling human performance data.

3.2 Local, non-parametric methods for

trajectory �tting

Non-parametric methods can allow us to explicitly design the structure of the
local model for the speci�c purpose of modeling human performance. The
simplest logical model for human action data is the \best-�t" or \most-likely"
performance trajectory.

In Section 1.2, we formulated dimension reduction for a training set of
action data as a feature-extraction problem. Given a set of performance data
X in space S, we would like to convert these data to a lower-dimensional rep-
resentation X� in space S� where X� = g(X): These lower-dimensional data
map to a corresponding representation in the original space ~X = h(X�) =
h(g(X)). One important feature of such a mapping is that smooth paths
in S should map to smooth paths in S�, and smooth paths in S� should
map to smooth paths in S. This allows directional-derivatives in S� to be
meaningful, and it simpli�es the problem of representing a trajectory in S�

which maps a plausible trajectory in S. This lets us create an animation
of action-performance in a simulation environment by moving a few slider-
bars representing feature-values in S�, and it simpli�es writing successful

3.2. NON-PARAMETRIC METHODS FOR TRAJECTORY FITTING 43

controllers that use input or output vectors from space S�.
We have seen in Chapter 2 that it may be plausible in some cases to model

an extrinsically high-dimensional data-set using just a single parameter. If
we use a scalar parameter s 2 S� to model a dataset from multiple examples
of some action, then we want the image h(s) to contain representative points
for all parts of a \most-likely" or \best-�t" version of the action. If a smooth
non-intersecting best-�t trajectory path in S maps to a smooth path in S�

(an interval � R
1), then s is a parameterization variable which can be trans-

formed via a monotonic function to a time-parameterization of the best-�t
trajectory. Parameter s represents a temporal-ordering of points along this
best-�t trajectory. If a one-dimensional feature parameter s does not specify
a temporal ordering of points along a continuous trajectory in S, then it will
be much more diÆcult to use it to represent motion, and derivatives with
respect to that parameter will not always have a meaningful interpretation.
In a simulation interface such as the one shown in Figure 2.10 on 31, moving
a slider bar to vary s from one value to another at the appropriate speed
should create a plausible animation representing some portion of the action,
and moving the slider from an s-value which is typical of a starting con�gu-
ration to an s-value which is typical of an ending con�guration should create
a plausible animation of the entire action.

A best-�t trajectory is very useful model of a human action. Examples
include the motion for a typical power grasp, Mark McGwire's typical home
run swing, a typical walking or swimming motion, or a typical motion of the
lips when saying a given word. Such a trajectory can be used for creating an
animation for a video game or movie, for comparing a novice's actions to an
expert's (e.g., \how does my golf-swing compare to Tiger Woods' "), or for
gesture recognition.

We saw in the last chapter that while it is possible for global methods
such as NLPCA to generate something akin to a best-�t trajectory, there
is no explicit constraint requiring them to generate a satisfactory model.
Global methods �t individual training points, but may not necessarily in-
terpolate between them in a manner plausible for an actual performance.
Non-parametric methods, on the other hand, can make explicit tradeo�s on
the local level such as balancing quality of �t verses the smoothness of the
model, as depicted in Figure 3.1. Spline smoothers, discussed in the next
section, are based on precisely this trade-o�. Moreover, the projections of
points onto the local models can be done in a principled manner by project-
ing to the nearest model point, as demonstrated by the principal curves in

44 CHAPTER 3. LOCAL METHODS

Figure 3.1: Explicit trade-o� between �tting error and smoothness of the
model.

x

y

-1 11

1

13

Figure 3.2: Modeling a data-set with a scatter plot smoother.

Figure 2.13(d) on page 37 and Figure 3.5 on page 53.

3.3 Scatter plot smoothing

Scatter plot smoothers allow us to balance local smoothness of the estimated
model against modeling error, or to smoothly combine localized �tting into a
global model, without assuming a parametric form for the model. Figure 3.2
shows the result of a smoother based on a robust locally-weighted regres-
sion [11, 12]. Note that the error vectors are vertical. As in linear regression
and polynomial �tting (Section 2.2.1), scatter plot smoothers minimize error

3.3. SCATTER PLOT SMOOTHING 45

in the response variable only.
There are several kinds of scatter plot smoothers. Kernel smoothers �t

each point in the dataset using a locally weighted average, while locally-
weighted regression �ts local models to the data [4].

Spline smoothers [16, 61, 66, 81] generate a model by minimizing a cost
function weighing modeling error against the integral of the d-th derivative
of the model curve. The cost function is

S = p
n�1X
i=0

�
yi � f(xi)

Æyi

�2

+ (1� p)

Z xn�1

x0

(f (d)(x))2dx; (3.1)

where p is the smoothing parameter weighing approximation error against
smoothness of the curve, and the Æyi weigh individual data points. Weights
Æyi are often local estimates of standard deviation. Minimizing S for a given
set of values p and Æyi results in a model curve f which is a polynomial spline
of order k � 2d with simple knots at x0; : : : ; xn�1 (xi < xi+1), and natural
end conditions:

f (j)(x0) = f (j)(xn�1) for j 2 fd� 1; : : : ; k � 3g: (3.2)

Optimization is often performed using an acceleration penalty (d = 2), which
results in a cubic spline solution with the form

Pi(x) = ai + bi(x� xi) + ci(x� xi)
2 + di(x� xi)

3 (3.3)

between each knot.
For a given value of the smoothing parameter p, we can solve for param-

eters c = fcig using the tridiagonal system [16]

(6(1� p)QTD2Q+ pR)c = 3pQTy; (3.4)

where D is the diagonal matrix of weights dÆy0; : : : ; Æyn�1c, R by (4.19) on
page 72, and QT by (4.20). Band matrices R and QT are described in
Chapter 4 as I derive a spline smoother which also penalizes error in velocity
information. Once c has been computed in this way, we can easily determine
the other terms of the smoothing spine parameterization:

a = y � 2

�
1� p

p

�
D2Qc

di =
ci+1 � ci
3�xi

bi =
ai+1 � ai
�xi

� ci�xi � di(�xi)
2;

(3.5)

46 CHAPTER 3. LOCAL METHODS

where �xi = (xi+1 � xi).

From (3.1), it might at �rst appear that a spline smoother is a global
parametric model rather than a local model. The model is indeed de�ned as
the minimum of a global error function, and the resulting curve may be pa-
rameterized as a spline function. However, the number of parameters de�ning
the spline is actually greater than the number of values in the training data,
and the error term of the cost function is balanced against a smoothness
measure based upon derivatives, which are by de�nition local. In fact, Sil-
verman [68] shows that a spline smoother is equivalent to a kernel smoother
with a variable-sized kernel.

When using spline smoothers, it is important to choose a suitable value for
the smoothing parameter p. Cross validation [73] is a good method to use for
selecting this value for a given data set. While leave-one-out cross-validation
for a data set using the simple spline solution presented in this section is com-
putationally expensive, Craven and Wahba [13] present a closed-form method
for computing the optimal solution for a given data set, and Hutchinson and
de Hoog [31] show how to compute this closed-form solution in linear time.

3.4 Action recognition using smoothing

splines

The error term of spline-smoother cost function (3.1) is based upon the as-
sumption of a Gaussian error distribution at each parameterization xi. We
can use this assumption to formulate a probability that a given performance
belongs to the class of actions corresponding to a given model, and to com-
pare this probability across several models for the purpose of recognition.

Smoothing each dimension of a data set Y against parameterization vec-
tor x results in a model (x; f ; fDig), where f : R1 ! R

m is the multi-
dimensional spline model of the best-�t trajectory, and the diagonal elements
of each matrix Di are the estimated standard-deviation for each dimension
of the training data at parameterization xi. Given this model, and the as-
sumption of a Gaussian distribution at each parameterization value, we can
estimate the probability of a given example point (xe;ye) given the model

3.4. ACTION RECOGNITION USING SMOOTHING SPLINES 47

as [7]

p((xe;ye) j (f ; fDig))

=
1

(2�)m=2jD̂2j1=2 exp
�
�1
2
(ye � f(xe))T D̂2(ye � f(xe))

�
: (3.6)

For this evaluation, f(xe) may either be computed exactly from the spline
equation, or approximated by linear interpolation between the nearest points
yk;yk+1 on the model such that xk < xe < xk+1, and D̂ can be estimated by
linear interpolation between Dk;Dk+1.

While the cost function for the spline smoother relates the points in its
model by the roughness penalty term, this term balances model smoothness
against an error cost which treats each sample as independent of the others.
When we look at data from an example performance Ye, where ne samples
of the performance have been taken over time, we thus treat each point as
independent, uncorrelated with the other samples. This gives us

p((xe;Ye)j (f ; fDig)) =
ne�1Y
i=0

p((xei;yei) j (f ; D̂(xei)))

=
Y
i

1

(2�)m=2j(D̂(xei))2j1=2
exp

�
�1
2
(yei � f(xei))T (D̂(xei))

2(yi � f(xei))
�
:

(3.7)

For an example with many sample points, this probability will be very small,
so it is useful to consider its logarithm instead:

log p((xe;Ye) j (f ; fDig)) =
X
i

log

1

(2�)m=2j(D̂(xei))2j1=2

!

+
X
i

�
�1
2
(yei � f(xei))T (D̂(xei))

2(yei � f(xei))
�
; (3.8)

which simpli�es to

log p((xe;Ye) j (f ; fDig))

= �nem
2

log(2�)�
ne�1X
i=0

m�1X
j=0

log(Æŷj(xei))� 1

2

ne�1X
i=0

m�1X
j=0

�
yji � fj(xei)

Æŷj(xei)

�2

:

(3.9)

48 CHAPTER 3. LOCAL METHODS

Note that right-most terms of (3.8) and (3.9) are expressions of the Maha-
lanobis distance measure [7].

Bayes' theorem can then be used to express the probability that the model
(f ; fDig) was the cause of the data set:

log p((f ; fDig) j (xe;Ye)) = log p((xe;Ye) j (f ; fDig))
+ log p((f ; fDig))� log p((xe;Ye)): (3.10)

The probability of a real data set is 1 (because it actually happened), so we
may drop the last term of (3.10).

Since the absolute magnitude of these probabilities is so low, we typically
compare the ratio of probabilities between pairs of models, which corresponds
to the di�erence between their log probabilities. If we assume that the a pri-
ori probabilities for all the candidate models are equal, then for recognition
purposes, we need only compare the �rst term of (3.10), which is the proba-
bility of the data given each model.

3.5 A gesture-recognition experiment using

spline smoothing

Because human performance data sets do not usually contain an appropri-
ate explanation variable against which to smooth, the main role of spline
smoothers in this thesis will be as the preferred smoothers for trajectory �t-
ting using the principal curves algorithm. In some cases, however, we are
able to �nd a suitable explanation variable. If the speed of motion is very
consistent between example performances, for example, we may be able to
smooth against time.

Data from �nger motions in letter-signing is one potential application
for building models by smoothing against time. The data set used for test-
ing sign-language recognition using hidden Markov models in Chapter 7 has
some characteristics which make it appropriate enough for modeling with
smoothing splines. This data set was recorded while a user signed 14 di�er-
ent letters: A, B, C, D, E, F, G, I, K, L, M, U, W, and Y. The user signed
each letter thirty times, but in a randomized order as prompted by a com-
puter program. The program also ensured that the user was not prompted to
sign the same letter twice in a row. The signer wore a Virtual Technologies

3.5. AN EXPERIMENT USING SPLINE SMOOTHING 49

Figure 3.3: Final hand positions for letter-signs `A' and `C.'

`Cyberglove' which collected 18 channels of information about the con�gu-
ration of the joints in the �ngers, and the letters chosen for signing were a
set of motions which could be unambiguously recognized using only �nger
motions (i.e., without data about the position, orientation, or motion of the
hand). Figure 3.3 shows the �nal hand positions for the letter signs A and
C. Because the example performances for each letter start from the �nal
con�guration of the random previous letter, the endings of these examples
are much more consistent than their beginnings. As the signs are so varied
near the beginning of each example, precise alignment of the examples in
time is not important until the end of the gesture. Scaling the time values t
for each gesture to fall between 0 and 1,

t� = t=max ti; (3.11)

will cause points near the end of the gestures to appear better aligned in
time, and thus to correspond fairly well there.

We built a model for each letter by smoothing against t�. For each letter,
we combined the data from a set of training examples into a single ma-
trix whose column-vectors are sorted by their corresponding values t�i , and
smoothed each row j of this matrix against parameterization variable t�.

The smoothing parameter p was chosen by experimentation, and the nu-
merical stability of the smoothing solution was increased using the method for
combining points with similar parameterizations documented (in a form ex-
tended to include velocity information) in Section 4.5. Initially, the variance
matrices D2

i = dÆy20;i; : : : ; Æy2m�1;ic were set to the identity matrix (Æyji = 1),
and then we used Equation (4.38) on page 77 to compute equivalent values
of Æyji for points which need to be merged due to similar parameterizations.
Equation (4.39) was used to merge the corresponding values yji.

50 CHAPTER 3. LOCAL METHODS

After smoothing each dimension j of the data, the local variance for each
dimension as a function of time was estimated using the method suggested
by Silverman in [69] and documented (in an extended form) in Section 4.7.
This variance estimate was combined via point-wise multiplication with the
result from (4.38), and this new variance estimate was used to smooth the
data again.

The result is a best-�t trajectory f for each letter-sign, and a set of
variance estimates (Æyji)

2 for each dimension j of the motion at each rescaled
time value t�i . We store the model for a given letter sign as (t�;Y; fD2

ig),
where t� is the vector of rescaled time values, Y is composed of the column
vectors yi = f(t�i), and the diagonal elements ofD2

i contain the corresponding
variance estimates (Æyji)

2. Figure 3.4 plots four dimensions from the model
of the sign for A. As expected, the example points from the start of each plot
are widely scattered, and points near the end of the plot are clustered more
tightly. This is true for all eighteen dimensions of the data. The estimated
standard deviations are thus large at the beginning and small at the end for
each dimension. The roughness of the standard deviation plots is due to the
square window used for their estimation in (4.38).

These models can be used for classi�cation of unknown performance data
using the method presented in Section 3.4. This classi�cation method was
tested on 294 examples outside the training set: 21 examples for each of
the 14 letter-signs. Table 3.1 summarizes the results from using a minimum
of 3 and a maximum of 9 training examples per model. After training on 6
examples per model, we see that the classi�er has better than 97% reliability.
After training on 9 examples per model there are no misclassi�cations, and
the minimum ratio of the probability of the correct model to the next most
likely is nearly 30 to 1.

3.6 Principal curves

Smoothing, like regression, requires an explanation variable against which to
model the response variables. The principal curve, introduced by Hastie and
Stuetzle [28], is a kind of smoother which can build its own parameteriza-
tion against which to smooth the points in the data set. A principal curve
is thus a non-linear analogue of the �rst principal component discussed in
Section 2.2.2. If we assume that yi = f(�i) + �i where f is a smooth curve,
and that covarience(�i) = �2I, then optimizing f to minimize the modeling

3.6. PRINCIPAL CURVES 51

t�

x0

0. 1.

-1.4

1.

t�

x3

0. 1.

-1.

0.

t�

x11

0. 1.

-0.4

0.4

t�

x14

0. 1.

0.2

1.6

Figure 3.4: Spline smoother �t of four representative dimensions from the
eighteen measured by a Cyberglove during signing of the letter A. Dots are
sample points, the continuous line is the smoothed �t, and the dashed lines
show the estimated region within one standard deviation at each time value.
Time values of each example performance are rescaled to fall between 0 and 1.

52 CHAPTER 3. LOCAL METHODS

Training Misclassi�cations

examples number percent min(P (Mcor)
P (Minc)

)

3 46 16 -
4 69 23 -
5 24 8.2 -
6 7 2.4 -
7 8 2.7 -
8 6 2.0 -
9 0 0.0 29.9

Table 3.1: Letter sign classi�cation results. For the models trained using 9
training examples there were no errors in 294 classi�cations, and the smallest
ratio of the probability of the correct model P (Mcor) to the next most likely
model P (Minc) over all the classi�cation trials is nearly 30 to 1.

error transforms it into an estimated principal curve of the data set.

Figure 3.5 shows a principal curve model of the example dataset from
Figure 2.1(a). Figure 2.14(b) on page 38 also shows a principal curve, this
time resulting from a noisy data-set sampled from a circular two-dimensional
distribution. In these plots, we see that the error vectors are orthogonal to the
model curve. This is because the principal curves algorithm runs a smoother
on each dimension of the data (the conditional expectation step, which will
be described later), and then each point is modeled by the nearest point on
the resulting curve (the projection step).

Because every dimension of the data is smoothed, we need an additional
parameterization against which to smooth them. The parameterization vari-
able � arises here in a manner similar to the way it does in the principal
component model of Section 2.2.2. For the principal component model, �
was a discovered explanation variable against which variables in the orthog-
onal direction could be modeled. This turned a problem of �nding a linear
model with two response variables into a (trivial) regression of one response
variable against one explanation variable. In a similar manner, the projection
step of the principal curves algorithm gives us a parameterization variable �
against which to use a scatter plot smoother for each dimension of the data.

Because the principal curves algorithm can use a smoother which balances
local quality of �t against the smoothness of the model curve, it is intuitively

3.6. PRINCIPAL CURVES 53

x

y

-1 11

1

13

Figure 3.5: Principal curve

appealing as a method for smoothing trajectories. Figures 3.5 and 2.14(b)
each suggest a plausible trajectory which �ts a set of con�guration points.
In fact, Hastie and Stuetzle give an example of where principal curves were
used to smooth the path of particle beams through the Stanford Linear Col-
lider at the Stanford Linear Accelerator Center. Chapter 5 will demonstrate
how local velocity data from example performances can be used within the
principal curves algorithm to �nd best-�t or most-likely trajectories in phase
space from human performance data.

3.6.1 De�nition of principal curves

Principal curves are those smooth curves that are self consistent for a distri-
bution or dataset. This means that if we pick any point on the curve, collect
all the data in the distribution that project onto that point, and average
them, this average coincides with the point on the curve.

To be more precise, the principal curve is de�ned as follows [28]. Let X be
a random vector in Rm with density h and �nite second moments. Assume,
without loss of generality, that E(X) = 0. Let f be a smooth C1 unit speed
curve in Rm , parameterized over � � R

1 , a closed (possibly in�nite) interval,

54 CHAPTER 3. LOCAL METHODS

that does not intersect itself, and has �nite length inside any ball in Rm .
The Projection index �f : R

m ! R
1 is

�f (x) = sup� [� : kx� f(�)k = inf� kx� f(�)k] : (3.12)

The curve f is called self-consistent or a principal curve of h if

f(�) = E(X j �f(X) = �) (3.13)

for a.e. �.
In general, we do not know for what kinds of distributions principal curves

exist, nor the properties of the curves for these distributions. For some cases,
however, we can give answers to these questions. For ellipsoidal distributions,
the �rst principal component is a principal curve. For spherically-symmetric
distributions, any straight line through the center of the distribution is a
principal curve.

3.6.2 Distance property

Principal curves are critical points of the distance from observations. Let G
be a class of curves parameterized over �. For g 2 G de�ne ft � f+tg. Then,
curve f is called a critical point of the distance function D for variations in
the class G i�:

dD2(h; ft)

dt

����
t=0

= 0 8g 2 G: (3.14)

A nice property of the principal curve is that this distance property is similar
to the minimization of the cost function in a spline smoother.

3.6.3 Principal curves algorithm for distributions

Principal curves are actually de�ned over continuous distributions rather
than discrete data sets. Thus before we discuss how to approximate the
principal curve from a given set of data, we present the algorithm for distri-
butions. We can roughly state the algorithm for �nding a principal curve of
a given distribution as:

1. Starting with any smooth curve (usually the largest principal com-
ponent), check whether the curve is self-consistent by projecting and
averaging.

3.6. PRINCIPAL CURVES 55

2. If it is not, repeat the procedure using the new curve obtained by
averaging as a starting guess.

3. Iterate until the estimate (hopefully) converges.

More precisely, the algorithm is

1. Initialization:
Set f (0)(�) = �x+ a� where a is the �rst linear principal component of
h. Set �(0)(x) = �f (0)(x).

2. Repeat, over iteration counter j:

(a) Conditional expectation:
Set f (j)(�) = E(X j �f (j�1)(X) = �).

(b) Projection:
De�ne �(j)(x) = �f (j)(x) 8x 2 h; transform �(j) so that f (j) is unit
speed.

(c) Error evaluation:
Calculate D2(h; f (j)(x)) = E�(j)E[kX � f(�(j)(X))k2 j �(j)(X)]

Until the change in D2(h; f (j)(x)) is below some threshold.

Unfortunately, there is no guarantee that the curves produced by the con-
ditional expectation step are di�erentiable (especially at the ends). There-
fore, convergence cannot be proved.

However, the algorithm converges well in practice. Some justi�cations for
why it generally works include that by de�nition, principal curves are �xed-
points of the algorithm. Also, assuming that each iteration is well de�ned
and di�erentiable, the distance does converge. Finally, if we use straight lines
for conditional expectation, the algorithm converges to the �rst principal
component.

3.6.4 Principal curves algorithm for data sets:

projection step

Although principal curves are de�ned in terms of distributions, in practice we
are generally concerned with �nding principal curves of datasets containing
a �nite number of points sampled from a distribution. The algorithm for

56 CHAPTER 3. LOCAL METHODS

�nding a principal curve through a dataset is roughly analogous to that
for �nding the curve through a distribution, with a projection step and a
conditional expectation step. The conditional expectation step, however,
necessarily involves smoothing to estimate the e�ects of the distribution from
which the data was sampled.

Figure 3.6 shows the result of the �rst two iterations of the principal
curves algorithm on the example data set from Figure 2.1(a). We see in
Figure 3.6(b) that the e�ect of the second iteration is small, indicating that
it is converging to a self-consistent curve. The initial estimate, the straight-
line in Figure 3.6(a), is the �rst principal component.

In the projection step, we parameterize each data-point in terms of a
distance from some starting point along the estimated principal curve from
the last step. The assumption here is that the probability that a given data-
point corresponds to a given point on a model-trajectory is a monotonically
decreasing function of the distance between these points. Thus, for �xed
f (j)(�) we �nd for each xi in the sample the value

�i = �f (j)(xi): (3.15)

The most obvious way to do this is to �nd the �-parameterization of the
nearest point ~xi of the set of (n�1) points nearest to xi on the line segments
comprising the current estimate of the principal curve. Let �(j)+ be the
vector of �(j)i values sorted into order of increasing magnitude. The current
estimate of the principal curve is then the set of line segments with endpoints
f (j)(�

(j)+
k) and f (j)(�

(j)+
k+1). If �

+
ik is the parameterization of the closest point

to xi on the line segment between f (j)(�
(j)+
k) and f (j)(�

(j)+
k+1), and dik is the

distance kxi � f (j)(�
(j)+
ik)k, then ~xi is the point f (j)(�

(j)+
ik) for which index

k 2 (0; : : : ; n� 2) corresponds to smallest value of dik (see Figure 3.7). The

�-parameterization for xi can then be computed as kf (j)(�(j)+k)� ~xik+�
(j)+
k .

Note that it is an approximation to consider the principal curve estimate a
sequence of line-segments. The actual form of the principal curve estimate
between consecutive points depends on the kind of smoother used in the con-
ditional expectation step. For a spline smoother which penalizes acceleration,
the functional form of the curve-estimate is actually a cubic spline. The line
segment approximation tends to work well enough in practice, however.

Unfortunately, �nding each ~xi in this way involves computing the nearest
point to each of (n�1) line segments, so the entire projection step is an O(n2)
operation. If we are willing to assume that the line segment containing ~xi

3.6. PRINCIPAL CURVES 57

x

y

-2 11

0

13

(a) Iteration 1: Starting from the �rst
principal component.

x

y

-2 11

0

13

(b) Iteration 2: Principal curve estimate
is close to converging.

Figure 3.6: Result of �rst two iterations of the principal curves algorithm,
starting from a projection onto the �rst principal component. The data-
points, the larger dots, are from a sine curve with some added noise. The
smaller dots are the projections of the data points onto the principal curve
estimates.

58 CHAPTER 3. LOCAL METHODS

~xi

f (j)(�
(j)+
k)

f (j)(�
(j)+
k+1)

xi

Figure 3.7: Projection step

has at least one endpoint in the set of l points f (j)(�
(j)+
k) that are closest

to xi, we can dramatically reduce the expense of the search. We can use a
method such as kd-trees to �nd the l nearest neighbors in f (j)(�

(j)+
k), then

assemble all segments with at least one of these points as endpoints (there
will not be less than l � 2 and not more than 2l such segments), and select
~xi as the closest of the points on those segments closest to xi. I chose to use
this approximation when I coded my implementation of the principal curves
algorithm for data sets, generally using l = 3.

The eÆciency of this method is determined by the cost of building the
kd-tree once and then doing n searches for the l closest points in the tree.
Building the kd-tree is an O(n logn) operation [22]. The cost of the l-nearest-
neighbor search depends on the intrinsic dimensionality of the set of points
in the kd-tree. Generally, if the intrinsic dimensionality is approximately
8 or greater, the na��ve O(n2) search is more eÆcient, and if the intrinsic
dimension is much lower than 8, then building and searching the kd-tree to
do the projection step is close to a cost of O(n logn). Since the points in the
kd-tree are from a representative subset of a smooth one-dimensional curve,
we can expect the kd-tree method to be much faster than the na��ve search.

3.6.5 Principal curves algorithm for datasets:

conditional expectation step

In the conditional expectation step, we make a new estimate of the principal
curve. The goal is to estimate

f (j+1)(�) = E(X j �f (j) = �); (3.16)

3.7. EXPANDING THE ONE-DIMENSIONAL REPRESENTATION 59

for the values � 2 f�0 : : : �n�1g from the projection step. Because we have
a data set rather than a distribution, the process for each data point xi
is actually to �nd the point which is the expected value at �

(j)
i � �(j)(xi)

of the distribution most likely to have generated the data in this vicinity
of �-space. That is, given the points which are near xi in terms of their
�-values, we estimate a local distribution over � then determine what the
value of that distribution is at �

(j)
i . Fortunately, as described in Section 3.3,

this is exactly what a scatter plot smoother does. The projection step of the
principal curves algorithm thus generates a parameterization against which
a smoother can be run for each dimension of the data-set to generate the
next estimate of the principal curve.

The fact that the conditional-expectation step of the principal curves
algorithm uses a scatter plot smoother is what makes the principal curve
of a data set a local model. Section 3.2 noted that local models should be
able to use local information in the example data to build good trajectory
models while balancing trajectory smoothness against modeling error. By
choosing an appropriate smoother, we can leverage this information to use
the principal curves algorithm to �nd most-likely or best-�t trajectories from
multiple example human performances.

3.7 Expanding the one-dimensional

representation

There are some signi�cant problems with dimension reduction by trajectory
�tting as it has been presented so far. The most obvious, discussed in this
section, is that a best-�t trajectory is only a one-dimensional parameteriza-
tion. The second, discussed in the next section, is the problem of \branching"
in the distribution of example trajectories in the training data. The problem
of principal curves over-�tting the data set is discussed in Section 3.9.

Trajectory �tting generates a one-dimensional action model, with a pa-
rameterization representing the temporal ordering of points in the best-�t
trajectory. For suÆciently complex action skills, this is an inadequate pa-
rameterization. If the motion of my �ngers while I grasp the handles of
di�erent mugs varies consistently in particular ways depending on the shape
of the particular handle or just due to stochastic variation, then there are
other important variables besides temporal ordering necessary for modeling

60 CHAPTER 3. LOCAL METHODS

the grasping motion.
The solution to this problem is to construct additional parameterizations

locally around the temporal-ordering. A simple �rst step is to estimate the
local variance of the training points which map to each given point on the
model trajectory. For a principal curve f , and a distribution of training
points X, this is

�2(�) = E(kX � f(�)k2 j X = �); (3.17)

where � is the standard deviation. Such an estimate identi�es those parts of
the model trajectory corresponding to portions of the example trajectories
which are most consistent, and also those parts of the model corresponding
to portions of the example trajectories which are highly variable.

This variance estimate is also helpful for gesture recognition applications.
When comparing an unknown gesture to the model, the variance estimate
tells you how to weigh the distance between each sample point and the closest
point on the gesture model. The use of variance here is similar to its use for
gesture recognition using smoothing splines in Section 3.5.

Though useful, variance estimates do not actually increase the dimension-
ality of the model|the number of feature values assigned to a given data
point to show where it projects onto the model. Using localized principal
component analysis along the model trajectory can increase the dimension-
ality of the model, however. A small enough portion of a smooth model
curve looks like a straight line segment, which should approximate the �rst
principal component of the data that is nearby with respect to parameter-
ization �. Principal component analysis of the residuals from the nearby
data points [xi� f(�(xi))], weighted by their distance in �-space, should give
the directions of greatest variation which are orthogonal to the local model
curve. If each point along the model curve is associated with one or more
local principal component vectors, then the dimension of the model increases
by this number of local principal components. To project a data point x
onto this augmented model, one �rst projects it onto the model trajectory
to get parameterization value �, then computes the parameter a�;j for each
local principal component vector v�;j by projecting the residual vector onto
that principal component vector

a�;j = [x� f(�)] � v�;j: (3.18)

This approach is related to other work on local dimensionality reduction,
particularly that of Bregler and Omohundro [9] who blend local PCA mod-

3.7. EXPANDING THE ONE-DIMENSIONAL REPRESENTATION 61

els from neighboring patches in a high-dimensional space. Tibshirani [76]
presents an alternative de�nition for principal curves which is very related to
such a blend of locally linear models. The work on mixtures of probabilistic
principal component analyzers of Tipping and Bishop [77] is also very similar.

Augmenting the dimensionality of a one-dimensional trajectory model by
using local PCA is like adding hyper-ellipsoidal \
esh" to a one-dimensional
\skeleton" model. Use of one local principal component turns the one-
dimensional curve model into a ribbon-shaped manifold in the raw-data
space, and adding two local principal components turns the model into a
snake-like shape. The associated singular values of the local principal com-
ponents describe the length of each diameter of the local hyper-ellipsoid,
serving an analogous function to the local variance value discussed earlier,
but weighing an associated direction in \residual space."

As opposed to the multi-dimensional feature-models generated by NLPCA
and SNLPCA, this type of multi-dimensional model is much easier to inter-
pret. The �rst dimension of the model corresponds to the temporal ordering
of points from the model (i.e., what part of the motion), and the remaining
dimensions represent the projections of the point in the local directions of
greatest variance from the best-�t trajectory. The model describes a great
deal about the nature of the performances it was trained from, and it is
easy to understand the meaning of the feature-scores for a particular raw
data-point projected onto the model.

The problem with this approach of growing a higher-dimensional data rep-
resentation from the \skeleton" of a best-�t trajectory is the issue of whether
the meaning of the second or third feature score is similar in di�erent regions
of the model. For instance, imagine a nearly cylindrical distribution, where
the �rst feature score s0 is roughly a length along the axis of the cylinder,
and the second feature score s1 is the projection of the residual vector onto
the most signi�cant principal component of a nearly 2-dimensional circular
distribution of residual vectors [x�h0(s0)]. Since this distribution of residual
vectors is nearly cylindrical, the orientation of the �rst principal component
of the residuals may be a highly erratic function of the �rst feature score.
Thus, there is no consistent interpretation of the second feature score in this
case. This is an issue for future research.

62 CHAPTER 3. LOCAL METHODS

3.8 Branching

The second major problem with dimension-reduction by trajectory-�tting is
branching. What if there is no single best-�t trajectory in the set of example
performances, but instead two or more distinct prototypical trajectories?
Imagine that the action I am modeling is my path as I walk from one side
of a room to another, and that there is a table in the center of the room.
Figure 3.8(a) shows a simple illustration of my paths across the room. This
data was actually entered using the interface shown in Figure 5.1 on page 88,
with the obstacle drawn on-screen. Sometimes I may walk to the left of the
table, and sometimes to the right, but of course never through.

When I try to model a best-�t trajectory of my room-crossing action using
a principal curve, one of two things can happen. The �rst is that the model
assigns equivalent parameterization values for points in both branches of my
paths as they pass the table. In this case, demonstrated in Figure 3.8(b),
the trajectory smoother will draw the model trajectory through the table
as it takes the expected value of the points with similar parameterizations.
One method for diagnosing this problem is to examine the distribution of
residual vectors from training points in each region of the trajectory. If the
distribution over some region of the �-space has two or more distinct clusters
rather than a roughly Gaussian shape, this is an indication that the principal
curve model has averaged two branches.

Another possibility is that the branching of paths will completely confuse
the parameterization step of the model-building procedure. This will result in
a failure to build the model|the principal curves algorithmwill not converge.

To address the problem of branching, we need to treat each branch as
an action to be modeled separately, as demonstrated in Figure 3.8(c). This
solution, however, may result in two further diÆculties. The �rst is that we
need suÆcient example points in each branch to build a quality model, but are
subdividing a �xed pool of training data. The second diÆculty is the number
of models we may need to deal with. If we are modeling letter-signing, for
instance, each signing gesture is a path in hand-con�guration space from the
�nal con�guration of one letter-sign to another. Thus, instead of learning
26 models we (theoretically) need to learn 262 models to show each possible
transition, which is an infeasible undertaking. This is the problem we avoided
in Section 3.5 by eliminating the parameterization step of the principal curves
algorithm and instead smoothing against time.

The multiple starting points were handled by the high estimated variance

3.8. BRANCHING 63

x

y

0. 12.

14.

1.

(a) Paths crossing a room, going
around a table.

x

y

0. 12.

14.

1.

(b) A single room-crossing skill.

x

y

0. 12.

14.

1.

(c) Two separate skills.

Figure 3.8: Room crossing as an illustration of the branching problem for
local modeling. A table in the center of the room is an o�-limits part of the
state space for the room-crossing skill. Using a single model for the skill gives
a result by which the path is averaged into the state-space obstacle. Using
separate models for each path results in acceptable models.

64 CHAPTER 3. LOCAL METHODS

values at the beginning of the gestures. This approach is more useful for
building models for recognition rather than for performance.

3.9 Over-�tting

I �t the grasping data from the previous chapter with a principal curve, using
a spline smoother for conditional expectation. The diÆculty in comparing
the result of this model with the one-dimensional models from PCA and
NLPCA, summarized in Table 2.1 on page 35, is that principal curves can
easily over-�t the data. Using a fairly crude method for cross-validation of
the smoothing spline (compared to generalized cross-validation), I was easily
able to reduce the error of the testing data to 43.1% while still reducing cross-
validation error. Hastie and Stuetzle note that when �nding principal curves,
using cross-validation to weigh the smoothness penalty verses approximation
error tends to over-�t the data.

The problem with using cross validation to determine the smoothing pa-
rameter when using the principal curves algorithm is that over-�tting the
data tends to lengthen the principal curve as it wiggles through space to
come near to each data point. The fact that there is a greater length of
curve means that it is more likely that there is a point on that curve which
happens to be close to a given cross-validation point. Although Hastie and
Stuetzle recommend selecting the smoothing weight manually or using early
stopping of the principal curves algorithm, it is diÆcult to do this for �t-
ting data in a very high-dimensional space, which is by nature diÆcult to
visualize.

It is important to note that while an over-�t principal curve can approxi-
mate the individual points in a human performance data set very accurately,
such a curve will not look like any of the example performances. In particular,
the local direction of the curve at its approximation of a given example point
will likely be very di�erent than the direction of the trajectory in con�gura-
tion space from which the point was sampled. The greater the over-�tting
in con�guration space, the greater the error we would see if we plotted the
velocity data from the training data against the local derivative of the prin-
cipal curve. Fortunately, the methods presented in the next two chapters
will allow us to �t both the position and velocity components of the training
data simultaneously, and this will greatly reduce the problem of over-�tting.

Chapter 4

A spline smoother in phase

space for trajectory �tting

4.1 Trajectory smoothing with velocity

information

Many important problems in robotics and related �elds can be addressed by
�tting smooth trajectories to datasets containing several example trajecto-
ries. Chapter 3 describes some methods based upon local, non-parametric
methods which can be used to model such trajectories. These models can be
used for robot programming by demonstration, gesture recognition, anima-
tion, and comparison of a novice's motions to that of an expert.

Although using non-parametric models allows us to improve the quality
of best-�t trajectory estimates by accounting for e�ects such as the trade-o�
between local �tting-error and the smoothness of the model curve, in the
chapters to this point we have been using a collection of static positions
learn to model trajectories of dynamic systems. We have not used any ex-
plicit information about what happens between these points. By considering
position information only, we have also been limited to using only part of
the state-space information of most dynamical systems. The state space for
physical systems typically includes both position and velocity variables.

Using velocity information in addition to con�guration information en-
ables us to build better trajectory models. When multiple example perfor-
mances have been combined into a single data set without explicit informa-
tion indicating which points correspond to which example performance, for

65

66 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

Figure 4.1: Velocity information can help a smoother determine that these are
two parallel straight paths which should be averaged rather than interpolated
between.

instance, we can sometimes exploit the close structural relationship between
local position and velocity information to reconstruct the individual perfor-
mances. Figure 4.1 depicts how local velocity information can aid in �nding
a best-�t trajectory from two example trajectories. A smoother operating in
phase space rather than con�guration space, used alone or with the principal
curves algorithm, can thus potentially build better trajectory models.

Conventional smoothers such as kernel smoothers, locally weighted re-
gression [11], and spline smoothers [16, 61, 81] are not suitable for building
smoothed curves in phase space. These smoothers are designed for perform-
ing nonlinear regression|�tting response variables to explanation variables.
They are not designed to operate in multidimensional spaces where dimen-
sions are tightly coupled on a local scale, as are position and velocity variables
within phase space vectors. Elementary calculus gives us this relationship
for smooth curves: 1

�
(xt+� � xt) � _xt:

Because they cannot deal directly with such coupling, we could try two
di�erent methods for modeling phase space data with conventional smoothers:
(a) smooth only in position space, then estimate the velocity values from the
smoothed model (this is easiest with spline smoothers), or (b) smooth the full
phase space data as if all its dimensions were independent. Method (a) has
the disadvantage that all potentially useful state information in the velocity
data is lost. Method (b) has the problem that although we are using the
velocity information, we are not considering the close structural relationship
between position and local velocity. Thus the result of method (b) will be
an inconsistent trajectory through phase space where the smoothed paths in
position space and velocity space are not compatible. That is, if we integrate
the path in the velocity subspace, there is no reason why we should exactly

4.2. PROBLEM FORMULATION 67

get the corresponding path in the position subspace, and if we di�erenti-
ate the position-path, there is no reason why that should exactly match the
velocity-path.

For this reason, I have derived a spline smoother which can smooth data
in phase space by correctly modeling the relationship between velocity and
position variables. This derivation is presented in this chapter. As dis-
cussed in Section 3.5, where we used a conventional spline smoother to model
letter-signing motions, smoothers are only directly useful for modeling human
performance data when we have a suitable explanation variable to smooth
against. The principal curves algorithm can often generate such a suitable
parameterization if one cannot be speci�ed a priori . In Chapter 5, I show
how my smoother can be used as part of the principal curves algorithm to
�nd principal curves in phase space for trajectory modeling.

The formulation is based upon a smoothing spline because the polynomial
form of the spline sections expresses the relationship between position and
velocity in a straightforward manner. A spline function is also an explicit
representation of a smooth trajectory, which is our desired output. It is a
convenient form for use in interpolation, and thus well suited for tasks such
as animation, or for measuring the distance between the smoothed trajectory
and points sampled from other trajectories.

4.2 Problem formulation

Assume we are attempting to �nd a \best-�t" or \characteristic" trajectory
f �, over a given domain, of a given process dy

dx
= p�(x; y). The state equation

of the process is unknown, and it is controlled by a set of unknown parameters
� which vary stochastically between trials, so that we cannot expect two
trials of the process over the given domain to result in the same trajectory.
Suppose the process's trajectory to be smooth over each trial, and traversing
through roughly the same region of the phase space within each region of the
domain, but with some stochastic variation in position y and velocity v � dy

dx

(e.g. Figure 4.2 (a)).
During a number of trials we sample y and v over a representative set of

the domain x, and call the samples (xts;yts;vts) where t indicates the trial
index and s indicates the index of the sample within a given trial. Instead
of explicitly preserving the information about which samples correspond to
which trial, we sort the data points from the multiple trials into a single list

68 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

x

y

0 10.5
-4.5

4.5

(a) Example trajectories

x

y

0 10.5
-4.5

4.5

(b) Sampled vector �eld

Figure 4.2: Arti�cial trajectories generated over domain x using equation
y = 2� � cos

�
�
10
x
�
+ � cos

�
3�
10
x
�
for � 2 f1:0; 0:6; 0:2;�0:2;�0:6;�1:0g.

4.2. PROBLEM FORMULATION 69

(xi; yi; vi) such that x0 < x1 < � � � < xn�1. The data now resembles a set
of samples in a vector �eld (e.g., Figure 4.2 (b)). We want to �nd the path
through the �eld which best balances smoothness against the quality of �t.
We achieve this by minimizing the cost function

S = p1

n�1X
i=0

�
yi � f(xi)

Æyi

�2

+ p2

n�1X
i=0

�
vi � f 0(xi)

Ævi

�2

+ (1� p1 � p2)

Z xn�1

x0

(f (d)(x))2dx; (4.1)

which weighs accuracy in position and velocity against smoothness of the
curve, where smoothness is de�ned as the integral of the square of the d-
th derivative over the trajectory. Thus minimizing S for p1 = 1; p2 = 0
interpolates the data (i.e., strong over-�tting), while any curve f for which
f (d)(x) = 0 over x0 � x < xn�1 (e.g., a straight line for d = 2) will minimize
S when p1 = p2 = 0. If we assume that (yi�f(xi)) and (vi�f 0(xi)) are drawn
from roughly Gaussian distributions at each point xi, then Æyi and Ævi should
be the corresponding estimated standard deviations at xi. Equation (4.1) is a
simple extension of the cost function for a conventional spline smoother (3.1).

The function f = f � which minimizes S is a spline1 of order k � 2d with
simple knots at x0; : : : ; xn�1 (xi < xi+1), and natural end conditions:

f (j)(x0) = f (j)(xn�1) = 0 for j 2 fd; : : : ; k � 2g: (4.2)

Although there may be some arguments for minimizing jerk (d = 3) for
certain human performance datasets, we will focus on penalizing acceleration
(d = 2). Spline smoothing is similar to smoothing with a variable kernel, and
it has been demonstrated [68] (in the conventional smoother case) that the
equivalent kernel for d = 3 is very similar to that for d = 2, so we don't
expect to see a dramatic di�erence in results between the two. The result
of using d = 2 is that the optimal curve f � is a cubic spline with free end
conditions:

f 00(x0) = f 00(xn�1) = 0: (4.3)

The following derivation of this smoothing spline starts in a similar manner
to that presented by De Boor [16] for the conventional case which does not
consider velocity information [16, 61].

1Note that this is proved for the conventional smoothing case, but I have yet to prove
it for this case.

70 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

4.3 Solution

Given a set of n data points (xi; g(xi)) for which x0 < x1 < � � � < xn�1, the
cubic spline that interpolates these points is

f(x) = Pi(x) for xi � x < xi+1; (4.4)

where each Pi(x) is a fourth-order polynomial function, and f(x) is contin-
uous in position, velocity, and acceleration. This gives rise to the following
smoothness constraints:

Pi�1(xi) = Pi(xi) = g(xi) (4.5)

P 0
i�1(xi) = P 0

i (xi) (4.6)

P 00
i�1(xi) = P 00

i (xi): (4.7)

Polynomials Pi may be expressed in Newton form

Pi(x) = ai + bi(x� xi) + ci(x� xi)
2 + di(x� xi)

3; (4.8)

where the coeÆcient terms may be expressed in terms of divided di�erences2

with the knot sequence (xi; xi; xi; xi+1):

Pi(x) = Pi(xi) + (x� xi)[xi; xi]Pi + (x� xi)
2[xi; xi; xi]Pi

+ (x� xi)
3[xi; xi; xi; xi+1]Pi: (4.9)

The divided di�erences in (4.9) are determined by this divided divided

2Following [16], we de�ne the k-th divided di�erence of a function g at the points

xi; : : : ; xi+k (written [xi; : : : ; xi+k]g) to be the leading coeÆcient (i.e. the coeÆcient of xk)
of the polynomial of order k + 1 which agrees with g at the points xi; : : : ; xi+k. We say
that function p agrees with function g at points � 2 f�0; : : : ; �ng if, for each point � which
occurs m times in the sequence f�0; : : : ; �ng, p and g agree m-fold at � , i.e.

p(i) = g(i) for i 2 f0; : : : ;m� 1g:

4.3. SOLUTION 71

di�erences table.

[]Pi [;]Pi [; ;]Pi [; ; ;]Pi

xi g(xi)
bi

xi g(xi) ci
bi

([xi;xi+1]g�bi�ci4xi)
(4xi)2

xi g(xi)
([xi;xi+1]g�bi)

4xi

[xi; xi+1]g
xi+1 g(xi+1)

(4.10)

This gives us an expression for di in terms of bi and ci

di = ([xi; xi+1]g � bi � ci4xi)=(4xi)2 (4.11)

which we can solve for bi:

bi = [xi; xi+1]g � ci4xi � di(4xi)2: (4.12)

Applying smoothness constraint (4.7) to (4.8) gives us another expression for
di:

ci + 3di4xi = ci+1

di =
1

34xi (ci+1 � ci):
(4.13)

Using (4.12) and (4.13), we can express bi as

bi = [xi; xi+1]g � 2
3
4xici � 1

3
4xici+1

=
4ai
4xi �

2
3
4xici � 1

3
4xici+1

for i 2 f0; : : : ; n� 2g: (4.14)

Applying smoothness constraint (4.6) to (4.8) gives us the equation

bi�1 + 24xi�1ci�1 + 3(4xi�1)2di�1 = bi: (4.15)

Using (4.14) and (4.13), we can write this constraint in terms of ci for i 2
f1; : : : ; n� 2g:

([xi�1; xi]g � 2
3
4xi�1ci�1 � 1

3
4xi�1ci)

+ 24xi�1ci�1 + 3(4xi�1)2
�

1

34xi�1 (ci � ci�1)

�
= [xi; xi+1]g � 2

3
4xici � 1

3
4xici+1;

72 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

which simpli�es to

4xi�1ci�1 + 2(4xi�1 +4xi)ci�1 +4xici+1 = 3

�4ai
4xi �

4ai�1
4xi�1

�
: (4.16)

Since (4.3) tells us that

c0 = cn�1 = 0; (4.17)

we can write the relationship between a � (ai)
n�1
0 and c � (ci)

n�2
1 in matrix

form

Rc = 3QTa (4.18)

where R(n�2�n�2) is the symmetric tridiagonal matrix having general row

[4xi�1; 2(4xi�1 +4xi); 4xi]

R =

2
6666664

2(4x0 +4x1) 4x1 : : : 0

4x1 2(4x1 +4x2) 4x2 ...

4x2 . . .
...

. 4xn�3
0 : : : 4xn�3 2(4xn�3 +4xn�2)

3
7777775

(4.19)

and QT
(n�2�n) the tridiagonal matrix with general row

[1=4xi�1; �1=4xi�1 � 1=4xi; 1=4xi]

QT =

2
66664

1
4x0

� 1
4x0
� 1

4x1
1

4x1
: : : 0

...
...

.

0 : : : 1
4xn�3

� 1
4xn�3

� 1
4xn�2

1
4xn�2

3
77775 : (4.20)

We can determine bn�1 using the derivative of (4.8), with (4.14) and (4.13)
and the fact that cn�1 = 0:

bn�1 = bn�2 + 24xn�2cn�2 + 3(4xn�2)2dn�2
= ([xn�2; xn�1]g � 2

3
4xn�2cn�2) + 24xn�2cn�2 + 3(4xn�2)2 1

34xn�2 (�cn�2)

=
�1
4xn�2an�2 +

1

4xn�2an�1 +
1
3
4xn�2cn�2:

(4.21)

4.3. SOLUTION 73

Combining (4.21) and (4.14), and writing in matrix form, we have

b =Wa� Zc (4.22)

where

Wn�n =

2
6666664

�1
4x0

1
4x0

: : : 0

�1
4x1

1
4x1

...
...

.
�1

4xn�2
1

4xn�2

0 : : : �1
4xn�2

1
4xn�2

3
7777775 (4.23)

and

Zn�n�2 =
1

3

2
666666664

4x0 : : : 0

24x1 4x1 ...
.

... 24xn�3 4xn�3
24xn�2

0 : : : �4xn�2

3
777777775
: (4.24)

Using (4.18), we can write this in terms of a only

b = (W � 3ZR�1QT)a = Fa (4.25)

where F � (W � 3ZR�1QT).
Now, we simplify the form of the integral term in (4.1). Over each interval

(xi; xi+1), the smoothness term in (4.1) is the integral of expression (2ci +
6di(x� xi))

2, which is the square of the area under the straight line segment
with endpoints (2xi; 2ci) and (2xi+1; 2ci+1). Since for any straight line lZ h

0

l2(x)dx = (h=3)(l2(0) + l(0)l(h) + l2(h); (4.26)

we can write the integral term as

(1� p1 � p2)

Z xn�1

x0

(f 00(x))2dx = 4
3
(1� p1 � p2)

n�2X
i=0

4xi(c2i + cici+1 + c2i+1):

(4.27)

74 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

Using (4.25) and (4.27) we can express cost function (4.1) in vector form, in
terms of a and c

S = p1(y � a)TD�2
p (y � a) + p2(v� Fa)TD�2

v (v � Fa)
+ 2

3
(1� p1 � p2)c

TRc; (4.28)

where Dp is the diagonal matrix dÆy0; : : : ; Æyn�1c and Dv is dÆv0; : : : ; Ævn�1c.
By (4.18) we can rewrite (4.28) as a function of a only:

S(a) =p1(y � a)TD�2
p (y � a) + p2(v � Fa)TD�2

v (v � Fa)
+ 6(1� p1 � p2)(R

�1QTa)TR(R�1QTa):
(4.29)

Because D�2
p , D�2

v , and (R�1QTa)TR(R�1QTa) are positive de�nite, the
cost function is minimized when a satis�es

12(1� p1 � p2)(R
�1QT)TR(R�1QTa)

� 2p1D
�2
p (y � a)� 2p2F

TD�2
v (v � Fa) = 0: (4.30)

Solving for a,

�
p1D

�2
p + p2F

TD�2
v F+ 6(1� p1 � p2)(R

�1QT)TR(R�1QT)
�
a

= [p1D
�2
p y + p2F

TD�2
v v]; (4.31)

and simplifying using (R�1)T = R�1 (because R is symmetric), we can solve
the following linear system for a:�
p1D

�2
p + p2F

TD�2
v F+ 6(1� p1 � p2)QR

�1QT
�
a = [p1D

�2
p y + p2F

TD�2
v v]

Ma = z:

(4.32)

Once we know a, we can use (4.18) to solve for c, and by (4.25) we can
compute b = Fa. Finally, we can use (4.13) to determine d � (di)

n�2
i=0 .

Knowing a, b, c, and d, we now can use (4.4) and (4.8) to compute the
trajectory f �(x) over the domain x0 � x � xn�1. Figure 4.3 shows the
result of this computation for the dataset plotted in Figure 4.2 (b), using the
method of Section 4.7 for estimating variances Dp and Dv.

4.4. NOTES ON COMPUTATION AND COMPLEXITY 75

x

y

0 10.5
-4.5

4.5

Figure 4.3: Computed interpolation using p1 = p2 = 0:1, with variance
estimation.

4.4 Notes on computation and complexity

One major problem with the computation in (4.32) is the matrix R�1, which
is always used in conjunction with QT . Letting H = R�1QT , we can solve
the following linear system for H

RH = QT ; (4.33)

such that we can use H to eliminate explicit computation of R�1 in (4.32)
and (4.25). Because R is a tridiagonal symmetric matrix composed of 4xi
elements (see (4.19)), it turns-out that although H is not a band matrix, it
is highly band-dominated.

If we can adequately approximate H by a band matrix ~H, then this
bandedness will propagate through all terms composingM in (4.32) to give us
a band matrix approximation ~M. In this case, inspection of equation (4.32)
shows us that matrix ~M not only can be computed in linear time, but also
is a positive de�nite symmetric band matrix. Cholesky factorization of ~M
can be performed in linear time and space [25], and then approximations to
(a;b; c;d) can be also found in linear time and space.

If we do not approximate H with a band matrix, then M will be a non-
banded positive-de�nite symmetric matrix, and Cholesky decomposition will

76 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

be an O(n3) operation [25], dominating the cost of the smoothing solution.
SinceM is an (n�n) matrix, storage cost of the computation will be O(n2).

The main di�erence in computational expense between the smoothing
algorithm in [16] and our smoother stems from the fact that without velocity
information the linear system may be computed in terms of c rather than
a using (3.4), which is introduced on in Chapter 3 but repeated here for
convenience:

(6(1� p)QTD2Q+ pR)c = 3pQTy:

This reduces the amount of computation necessary for computing the smoothed
function through the data compared to the trajectory-smoother presented
here. Equation (3.4) is a tridiagonal linear system which can be solved in
linear time and space.

4.5 Combining points with similar

parameterizations

Matrices QT and W are built from terms of the form 1=4xi. This is prob-
lematic when multiple points in the data-set have the same or nearly the
same parameterization value x. The solution is to replace each set of points
having similar parameterization values with a single point such that the func-
tion f = f � which minimizes cost function (4.1) remains unchanged. Thus,
for each set of points for which

jxk � x�j < � for k 2 (a; a+ 1; : : : ; b) (4.34)

we compute parameters (y�; Æy�; v�; Æv�), of a replacement point such that

@

@f(x�)

�
y� � f(x�)

Æy�

�2

=
@

@f(x�)

bX
k=a

�
yk � f(x�)

Æyk

�2

(4.35)

and

@

@f 0(x�)

�
v� � f 0(x�)

Æv�

�2

=
@

@f 0(x�)

bX
k=a

�
vk � f 0(x�)

Ævk

�2

: (4.36)

4.5. SIMILAR PARAMETERIZATIONS 77

Simplifying each side of (4.35) gives us

�2(y� � f(x�))

(Æy�)2
= �2

bX

k=a

yk
(Æyk)2

� f(x�)
bX

k=a

1

(Æyk)2

!
: (4.37)

Setting

1

(Æy�)2
=

bX
k=a

1

(Æyk)2
; (4.38)

y� = (Æy�)
2

bX
k=a

yk
(Æyk)2

(4.39)

ensures the equality in (4.37). A similar argument from (4.36) gives us

1

(Æv�)2
=

bX
k=a

1

(Ævk)2
; (4.40)

v� = (Æv�)
2

bX
k=a

vk
(Ævk)2

: (4.41)

Thus to smooth data (x;y;v) given (Æy; Æv), we map these vectors via
(4.38)-(4.41) to (x�;y�;v�) and (Æy�; Æv�) such that x�i + � < x�i+1, then
smooth the mapped points. Many practical uses of the smoother will require
mapping the smoothed-results back to the order of the original data, which
may require mapping individual smoothed points to more than one location
in the original ordering.

In most cases Æv� = Ævk for k 2 (a; : : : ; b), because Æv is an estimated
variance which is a function of x. Then, (4.41) and (4.40) reduce to

1

(Æv�)2
= (b� a + 1)(Æva)

2; (4.42)

v� =
1

b� a+ 1

bX
k=a

vk; (4.43)

and the same happens for the position values. This happens for a posteriori
computations of variance, as in Section 4.7.

78 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

4.6 Multi-dimensional smoothing

When smoothing data of more than one dimension, the cost function becomes

S = p1

n�1X
i=0

k(yi � f(xi))D�1
pi k2 + p2

n�1X
i=0

k(vi � f 0(xi))D�1
vi k2

+ (1� p1 � p2)

Z xn�1

x0

kf (d)(x)k2dx (4.44)

where Dpi and Dvi are diagonal weighting matrices. The process of mini-
mizing this expression can be split into a set of separate minimizations of
the form (4.1), one for each dimension of the data. Thus, there is no signi�-
cant di�erence in method of solution. The method for combining points with
similar parameterizations (Section 4.5) can also be performed separately for
each dimension.

Note that if we use the same weights for each dimension, Dpi = (Æyi)I
and Dvi = (Ævi)I, then we need only compute matrixM from (4.32) once for
the entire multi-dimensional smoothing problem. Moreover, we can compute
its Cholesky decomposition once, and use this decomposition to smooth each
dimension of the data. Thus for each separate dimension of the smoothing
problem, we need only multiply a vector by a matrix (a band matrix, if we
are using the band matrix approximation ~H), and sum the pairwise product
of two vectors to form z, then use forward and backward substitution to solve
for ai.

4.7 Estimation of variances

In the problem formulation (Section 4.2), we said that if we assume that
(yi� f(xi)) and (vi� f 0(xi)) are drawn from roughly Gaussian distributions
at each point xi, then Æyi and Ævi should be the corresponding standard
deviations at xi. The variances are thus (Æyi)

2 and (Ævi)
2. Because we rarely

know these variances a priori , we need some way to estimate them from
the training data. If we assume that the variances are smooth functions of
domain x, then we can estimate them by locally weighing error residuals from
an unweighted iteration of the smoothing procedure [69]. In this case, we �rst
smooth data (y;v) using unit weights Æyi = Ævi = 1 to obtain (au;bu), and
calculate the unweighted residuals rpu = (y� au), rdu = (v�bu). Then, the

4.7. ESTIMATION OF VARIANCES 79

x

y

0 10.5
-4.5

4.5

Figure 4.4: E�ect of variance estimation with p1 = p2 = 0:1, k = 5. Dashed
line unweighted, solid line weighted.

variances are estimated with a local moving average of squared residuals

(Æy1i)
2 = (ni �mi + 1)�1

niX
k=mi

r2puk

(Æv1i)
2 = (ni �mi + 1)�1

niX
k=mi

r2duk;

(4.45)

where

mi = max(0; i� k) and ni = min(n� 1; i+ k): (4.46)

Silverman [69], in the context of conventional spline smoothing, explains that
this method is generally reliable because highly accurate estimates of the
variances are generally not necessary. He suggests that k = 5 has produced
good results for data sets of moderate size, and this has produced reasonable
results for our spline smoother as well. Figure 4.4 shows the e�ect of this
kind of variance estimation on the example dataset, with k = 5.

If desired, another iteration of variance re-estimation can also be per-
formed by smoothing with our previous estimates (Æy1i; Æv1i) to obtain (a1;b1)

80 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

and residuals rp1 = (y � a1), rd1 = (v� b1):

(Æy2i)
2 = (ni �mi + 1)�1(Æy1i)

2

niX
k=mi

r2p1k

(Æv2i)
2 = (ni �mi + 1)�1(Æv1i)

2

niX
k=mi

r2d1k:

(4.47)

If we are performing multidimensional smoothing and want to use a single
variance estimate for all dimensions of each point, we perform the unweighted
smoothing on data (Y;V) using weights Dpu = Dvu = I to obtain (Au;Bu),
and calculate the unweighted residuals rpui = (yi � aui), rdui = (vi � bui).
The variances are then estimated as

(Æy1i)
2 = (ni �mi + 1)�1

niX
k=mi

krpukk2

(Æv1i)
2 = (ni �mi + 1)�1

niX
k=mi

krdukk2

Dp1i = (Æy1i)I

Dv1i = (Æv1i)I;

(4.48)

A second iteration can be performed by smoothing with (Dp1;Dv1) to obtain
(A1;B1) and residuals rp1i = (yi � a1i), rd1i = (v� b1i):

(Æy2i)
2 = (ni �mi + 1)�1(Æy1i)

2

niX
k=mi

krp1kk2

(Æv2i)
2 = (ni �mi + 1)�1(Æv1i)

2

niX
k=mi

krd1kk2

Dp2i = (Æy2i)I

Dv2i = (Æv2i)I:

(4.49)

4.8 Windowing variance estimates

Because the recorded trajectories may not all begin and end at the exact same
locations in the domain, the data at the beginning and end of the smoothing

4.8. WINDOWING VARIANCE ESTIMATES 81

x

y

0 10.5
-4.5

4.5

Figure 4.5: E�ect of windowing the variance estimates. Dashed line is with-
out windowing, solid with windowing.

domain will often be sparser and less representative of the underlying process
than data in the middle of the domain. Therefore, we may want to adjust
the weights of the points at the extremes of the domain to make them count
less in the smoothing process. This can be easily accomplished by applying
a windowing function, such as the Hamming function, to the �rst and last k
points in the dataset:

Æyi (0:54 + 0:46 cos(�(k � j)=k))Æyi

Ævi (0:54 + 0:46 cos(�(k � j)=k))Ævi;
(4.50)

where

j =

(
i for i 2 f0; : : : ; k � 1g
n� i� 1 for i 2 fn� 1� k; : : : ; n� 1g:

The e�ects of windowing the example data-set are shown in Figure 4.5. In
this case, the e�ect is minimal because the variance estimation procedure has
solved most of the problem on its own.

82 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

4.9 The e�ect of velocity information

The e�ects of smoothing with and without velocity information are demon-
strated in Figures 4.6 and 4.7. In 4.6(a), the e�ects of the velocity information
are most noticeable at the ends of the plot. Since the trajectories starting
at the lowest y values tend to start slightly before those with higher initial
y values, we see that the trajectory �tted using only position information
starts low, with a positive �rst-derivative which does not match those of the
sampled points around it. The end of the trajectory has a similar problem,
but it is less pronounced since the local variance of the sample points is
smaller. The �tted trajectory which weighs velocity information has a more
plausible beginning and ending, as we would expect. Figure 4.6(b), shows an
example where a random half the of data-points are removed. The trajectory
�tted using velocity information more closely tracks a single example trajec-
tory. Figure 4.7 shows the e�ect of velocity information for an experimental
data-set that is presented in Chapter 5.

4.10 Cross-validation

Recall from Section 3.3 that cross-validation [73] is typically used to automat-
ically select the smoothing parameter p for a conventional spline smoother,
and that the work of Craven andWahba [13] and Hutchinson and de Hoog [31]
show how to compute this parameter in closed-form and in linear time as part
of the smoothing process.

I have not attempted to derive a similar generalized cross-validation
method for the smoother presented in this chapter, and suspect that it
may not be a simple extension of the generalized cross-validation formulation
for conventional spline smoothing. For deriving generalized cross-validation,
conventional spline smoothers are generally formulated using the mathemat-
ics of reproducing kernel Hilbert spaces [3, 81]. I do not currently know
whether the spline smoother in phase space can be formulated in this man-
ner.

The following chapter uses this smoother within the principal curves al-
gorithm. Cross-validation is not used for this purpose since, as described in
Section 3.9, it tends to result in over-�tting when used within the princi-
pal curves algorithm in con�guration space. Whether cross-validation would
work better in phase space is a question for further research.

4.10. CROSS-VALIDATION 83

x

y

0 10.5
-4.5

4.5

(a) Solid: p1 = p2 = 0:05, dashed: p1 =
0:1, p2 = 0.

x

y

0 10.5
-4.5

4.5

(b) Solid: p1 = 0:01, p2 = 0:09, dashed:
p1 = 0:1; p2 = 0.

Figure 4.6: E�ect of derivative information. Plots use local variance estima-
tion (k = 5).

84 CHAPTER 4. SPLINE SMOOTHER FOR TRAJECTORY FITTING

t

x0

0. 1.6

0.5

12.

(a) Smoothing of horizontal coordinate

t

x1

0. 1.6

3.

10.

(b) Smoothing of vertical coordinate

Figure 4.7: Smoothing data from multiple examples of a drawing motion.
Solid line: p1 = 0:645, p2 = 0:35. Dashed: p1 = 0:995, p2 = 0:0. No variance
estimation.

Chapter 5

Principal curves in phase space

for trajectory �tting

5.1 Model formulation

In the last chapter we derived a spline smoother which, when given a pa-
rameterization to smooth against, can generate a best-�t trajectory through
phase space. However, it is rarely possible to provide a good parameterization
variable a priori . For instance, although time is often the most convenient
variable against which to smooth human performance data, it is generally
only satisfactory when constant-speed motion is an integral part of the ac-
tion being learned.

In this chapter, we demonstrate how the principal curves algorithm can
be used in combination with the smoother from Chapter 4 to �t trajectories
through phase space without an a priori parameterization. Chapter 3 showed
how the principal curves algorithm can construct such a parameterization
for data sets in con�guration space. In phase space, this process leads to
excellent best-�t trajectory models for smooth motions. The assumptions
necessary for the smoother and principal curves algorithm to work together
can be combined into the following list:

1. The training data consists of samples from several runs of a process
consisting of a nominal trajectory (structural component), with some
stochastic deviation.

2. The stochastic deviation from the nominal trajectory is a function of
the relative \completedness" of the trajectory (i.e., roughly a function

85

86 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

of time over the trajectory, but taking into account that some example
trajectories will be executed more quickly than others), and that at any
given state of completedness, the probability density of the stochastic
deviation over many trials can be adequately approximated by a zero-
mean Gaussian function with some unknown standard-deviation.

3. Points with similar positions and velocities in the training-set can be
assumed to correspond to the same part of the nominal trajectory.
Thus, we assume that the nominal trajectory does not intersect itself
in phase space, or come very close to intersecting itself.

4. The position and velocity of the nominal trajectory are smooth func-
tions in time, and the position and velocity of the example trajectories
are expected to be smooth functions in time.

Given these assumptions, we can �nd the best-�t trajectory by computing
the trajectory model most likely to have generated the given training data.
Moreover, given estimates of standard deviations at each point along the
best-�t trajectory, we should be able to estimate the probability that a given
data set was generated by that model.

5.2 Input data

We are interested in �nding a best-�t or most-likely trajectory from a set of
example trajectories. Typically, the k-th such example trajectory is stored in
the form (tk(nk);Xk(m� nk)), where the i-th column vector of Xk is the m-
dimensional con�guration-space vector of the example-performance sampled
at time tki.

Our trajectory-smoothing algorithm expects as input a data set of phase
space samples from all the example trajectories, where to which example
each data-point corresponds is not (explicitly) important. These data points
can be stored in the matrix1

Y(t) =

�
X

V(t)

�
(5.1)

1In this chapter, y refers to phase space data: the combination of position and velocity
information. This is in contrast to Chapter 2 where y is used for points that are not in the
training set, and in contrast to Chapter 3 where it use used for response variables (e.g.,
as opposed to explanation variables).

5.3. METRICS AND COSTS 87

such that X = [X0jX1j : : :], and V(t) contains the measured or estimated
time-derivative of each element of X. Later we will map the velocity values
into a projection space and a conditional-expectation space, and give these
mapped vectors di�erent superscripts to avoid confusion. Vector xi, the i-th
column-vector of X, represents the con�guration of the system at time ti of
some training example, and xij represents the value of the j-th element of
this vector. Therefore, vi = (d

dt
xi)jti , and vij = (d

dt
xij)jti.

Rarely is explicitly-measured velocity information available to us. We
usually need to estimate velocities from position data. There are numerous
methods for estimating these time-derivatives from sampled data, but since
numerical di�erentiation of sensor measurement tends to generate noisy re-
sults, it is best to smooth the data before taking the numerical derivative. A
spline smoother, as described in Section 3.3, is a useful tool here because it
can simultaneously smooth and take the time-derivative of a signal, it does
not require samples to be evenly spaced in time, and it allows an explicit
tradeo� between error in approximation of the data-set and smoothness of
the sampled inputs.

In this chapter, we will be using an example of �nding a best-�t trajectory
of an �-drawing skill based on examples from a user drawing onto a graphical
computer interface using a mouse as a pointing device, as shown in Figure 5.1.
This interface samples two-dimensional motion of the mouse (x0; x1; t) within
the drawing window to record multiple examples of a given drawing motion.
Two reasons we use this data are that a 2-dimensional position space is easier
to visualize and understand than a higher-dimensional one, especially since
even this results in a 4-dimensional phase space; and that a 2-dimensional
position space is constrained enough that self-intersecting paths are likely and
easy to demonstrate. Figure 5.2 shows the result of using a spline smoother
to reduce the noise and jitter to and estimate velocity of data-points from
an example performance recorded within this interface.

5.3 Probability, distance metrics, and

cost function

Our approach to �nding a best-�t trajectory will be to �nd the principal
curve of the training data through phase space. Recall from Section 3.6.1
that a principal curve is self-consistent with respect to a given distribution.

88 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

Figure 5.1: Figure-drawing interface

This means that curve f is a principal curve of random variable X if

f(�) = E(X j �f(X) = �);

where �f : R
p ! R

1 is the projection index which speci�es onto which point of
f each point X maps (this is Equation (3.13) from page 54). Equation (3.12)
(shown here for convenience)

�f (x) = sup� [� : kx� f(�)k = inf� kx� f(�)k]

speci�es that the projection f(�(x)) of a point x 2 X onto principal curve
f is the point on that curve which is closest to x. When determining the
principal curve of a set of discrete data-points rather than of a continuous
distribution, we must use a smoother to estimate the conditional expectation
in (3.13).

The trajectory smoother based on principal curves �nds a best-�t trajec-
tory by iteratively improving a trajectory-estimate. It �rst uses the current
estimated trajectory to build a parameterization against which to smooth the
data-set (projection), and then it smoothes each dimension of the training
data against that parameterization to get an improved trajectory estimate

5.3. METRICS AND COSTS 89

t

x0

0. 1.5

0.

12.

(a) x0 smoothing

t

x1

0. 1.5

0.

12.

(b) x1 smoothing

t

v0

0. 1.5

-25.

24.

(c) v0 from smoother

t

v1

0. 1.5

-25.

24.

(d) v1 from smoother

t

dir
(deg)

0. 1.5

-180.

180.

(e) Motion direction in
smoothed plot

x0

x1

0. 12.

10.

2.

(f) Smoothed 2D plot in
position space

Figure 5.2: Preprocessing of a 2D alpha-drawing by spline smoothing

90 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

(conditional expectation). If the trajectory converges to a stable estimate,
then it is self-consistent. An example of this convergence for the conventional
principal curve is shown in Figure 3.6 on page 57. The initial estimate, the
straight-line in Figure 3.6(a), is the �rst principal component. This is the
typical starting-point for the principal curves algorithm when it is used for
nonlinear regression. In contrast to the regression example, the iterative pro-
cess for trajectory smoothing is more complicated because we cannot use the
same space for both projection and conditional expectation. Moreover, we will
see later in this chapter that the �rst principal component is not necessarily
a good initial estimate of a best-�t trajectory.

The projection phase of the principal curves algorithm maps each point
in the training data to the closest point on the current estimate of the prin-
cipal curve. The assumption here is that the probability that a given data-
point corresponds to a given point on a model-trajectory is a monotonically
decreasing function of the distance between these points. Thus, �nding a
principal curve of a data-set is entirely dependent upon having a meaningful
distance metric in the space used for projection, or projection space.

In the conditional-expectation step we will be using the smoother de-
scribed in Chapter 4, which minimizes a cost function, one portion of which
penalizes a measure of distance between the data-points and the projection
of these points onto the current estimate of the principal curve (the other
portion of the cost function will be a measure of the smoothness of the es-
timated principal curve). This distance-cost is computed in the conditional-
expectation space, which we will de�ne in such a way as to make velocity
values consistent with the position space values. For the position-space tra-
jectory to be consistent with the velocity-space trajectory, the derivative of
the con�guration-space variables with respect to the parameterization vari-
able should be equal to the velocity-space variables, scaled by some constant
(i.e., speed). In other words, the derivative of the con�guration-space vari-
ables with respect to the parameterization variable speci�es a line upon which
the velocity values must lie.

To build a self-consistent curve using projection and conditional-expectation
in phase space, not only does the curve need to be a self-consistent path
in phase space, but the distance-cost in conditional-expectation space must
be equal (or at least proportional) to the corresponding distance-metric in
projection space. When this is true, then a curve which is stable after an
iteration of the principal curves algorithm is one where the expected value
of all data-points which map to a point on the principal curve is the value

5.4. PROJECTION SPACE 91

of that point. The next few sections will demonstrate how this result can be
achieved.

5.4 Projection space

The projection step of the principal curves algorithm generates a parameter-
ization against which a smoother may be run. As described in Section 3.6.4,
this step assigns to each point in the training data a parameterization value
which corresponds to the \closest" point on the current principal curve es-
timate. Thus, we need to de�ne a metric function to compare distances
in phase space. In this section, we tailor such a metric speci�cally for the
purpose of estimating best-�t trajectories from human performance data.

There are multiple challenges in designing this metric. The position and
velocity dimensions are obviously qualitatively di�erent from one another,
and even the various position dimensions may represent measurements with
di�erent units and relative magnitudes (e.g., angles in radians, distances
in centimeters, forces in Newtons, etcetera). Nevertheless, our ability to
choose how to weigh each variable allows us to make our assumptions explicit,
and to thus construct a metric which is meaningful rather than arbitrary.
Figure 5.3 demonstrates why velocity information, in addition to position
information, is important in determining to which part of a the model a
given point projects. Our metric will need to balance distance in position
dimensions against distance in velocity dimensions, and also speed against
direction within the velocity dimensions.

To be compatible with the error terms in the smoothing cost function (5.12)
(described in Section 5.5), we base our distance metric k � k(prj) on a sum of
squared errors formulation:

k�yk(prj) = k�y(prj)k =
sX

j<2m

(�y
(prj)
j)2

=

sX
j<m

(�x
(prj)
j)2 +

X
j<m

(�v
(prj)
j)2:

(5.2)

Since this metric is used only for comparing distances to �nd nearest neighbor
points rather than for measuring absolute distance values, in practice we can
instead use any monotonic function of the metric. We thus actually use the
square of distance (5.2) when we compare distances. This not only saves us

92 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

f(�)

xa
xb

Figure 5.3: When determining to which part of a model curve a point maps,
its direction and speed are relevant as well as its position. In this case, we
probably want points xa and xb each to map to the closest point of the model
curve that is compatible in direction, rather than the absolute closest point
in position only.

the computational expense of the square-root, a transcendental operation,
but also allows us to compute the phase space metric as a sum of separate
position and velocity terms:

k�yk2(prj) = k�xk2(pprj) + k�vk2(vprj): (5.3)

Moreover, instead of just building a metric function k � k(prj) in the input
space, we build a projection space

Y(prj) =

�
X(prj)

V(prj)

�
; (5.4)

within which the L2 norm is equivalent to the projection metric. This allows
us to map all the data points into projection space at the beginning of the
projection step, and then use sum of squared errors to compare distances.
This greatly simpli�es implementation issues, particularly when using the
projection method based on kd-trees discussed in Section 3.6.4.

The position dimensions should be scaled such that errors of equal scalar
magnitude in each dimension should be considered equally \unlikely" or
\bad":

E(xia � xib j a 6= b) = E(xjc � xjd j c 6= d) 8i; j: (5.5)

Likewise, each velocity dimension should be scaled such that a di�erence of
of a given magnitude in one dimension is equivalently unlikely or bad when

5.4. PROJECTION SPACE 93

compared to the same di�erence in another:

E(via � vib j a 6= b) = E(vjc � vjd j c 6= d) 8i; j: (5.6)

In the following discussion, we will assume that such scaling to compara-
ble expected error magnitudes in each position and velocity dimension has
already been done.

Once we have accounted for scaling the relative distance weights within
the position and velocity dimensions, we need to weigh the sum of the contri-
butions from the position dimensions against those from the velocity dimen-
sions. We will do this in a manner similar to the smoother cost function (4.1):
the ratio p2=p1 is used to weigh the relative contribution of squared velocity
error compared to squared position error. Section 5.7 will discuss how to
select this ratio. We write the distance metric for position space as

k�xk2(pprj) = p1k�xk2; (5.7)

so to map the position dimensions into projection space we use

x
(prj)
i =

p
p1xi: (5.8)

Weighting parameter p2 will scale the velocity component of the distance
metric once we determine its form.

As we determine the form of the velocity component of the projection
metric, we should note that velocity dimensions v represent both a direction
of motion in space v̂ = v

kvk
and the speed of motion in that direction kvk.

Even when the training examples for a given action are performed at very
di�erent speeds, we want corresponding states in each example performance
to map to the same parameterization value. It is thus useful to focus the
velocity metric more on direction of motion rather than speed when speed is
\great enough." When speed is small, especially when it is very close to zero,
then direction should matter less. To focus the distance metric on direction
only when speed is high, we can scale the velocity vectors using the tanh
function

tanh(a) � ea � e�a

ea + e�a
; (5.9)

(shown in Figure 5.4) or a similar envelope function which asymptotically
approaches 1.0 when the speed is high and which approaches 0.0 linearly

94 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

x

tanh(x=
)

0 3

0

1

 2

Figure 5.4: tanh(x=
)

when the speed is small. Parameter
 is a scalar which controls the shape of
the tanh(�) envelope. The velocity component of the distance metric is thus

k�vk2(vprj) = kva � vbk2(vprj)
= p2

 va

kvak tanh(kvak=
) +
vb

kvbk tanh(kvbk=
)

2 : (5.10)

The equivalent mapping into the velocity subspace of the projection space is

v(prj) = v

�p
p2 tanh(kvk=
)

kvk
�
=
p
p2 tanh(kvk=
)v̂; (5.11)

where v̂ is the unit-vector v
kvk

.
Let us look at the e�ect of our projection metric on three examples of

drawing �-�gures using the interface in Figure 5.1. These example perfor-
mances were preprocessed with a conventional spline smoother, as demon-
strated in Figure 5.2. The resulting data is plotted as a vector �eld in Fig-
ure 5.5. The most diÆcult part of these �gures for the projection step to
parameterize correctly is the region where the examples intersect themselves.
Within this region, we want points to be parameterized to similar values only
if their direction of motion is roughly the same. Thus, we need the velocity
metric to outweigh the position metric for pairs of points within this region.

5.4. PROJECTION SPACE 95

x0

x1

0. 12.

10.

3.

Figure 5.5: Samples from three examples of �-drawing. The arrows give
position and velocity of the sampled points, with speed indicated by the
length of the arrows. The x1 axis is reversed to match the orientation of the
coordinate system of the interface window.

96 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

At the end of the �gure, the direction of motion tends to vary slightly as
the user stops his motion and releases the mouse button to end the draw-
ing stroke. We don't want the local variations in direction to count for much
here. They contribute little to the resulting �gure because the motion is slow.
This is precisely what our projection metric is designed to to, and the results
from running the principal curves algorithm on this data later in this chapter
will show that our metric was able to generate suitable parameterizations for
this data.

5.5 Conditional-expectation space

The projection step results in a parameterization value for each point yi in
the data-set. This parameterization s(y) is a measure of distance along the
estimated principal-curve. It is the time at which the projection of each
point onto the principal-curve estimate will be reached by moving along the
curve at unit speed, starting from one of the end-points at time s = 0. The
conditional expectation step of the principal curves algorithm, discussed in
Section 3.6.5, smoothes each dimension of the data-set against this param-
eterization. We will see that the projection-space used for computing this
parameterization is incompatible with our smoother, and thus we will map
the data to a separate space before performing conditional-expectation. Fur-
thermore, we will actually need to smooth against a parameter which is a
linear function of s rather than directly against s.

We will be using the smoother from Chapter 4, which balances the quality
of �t in position space and velocity space against a measure of the total
smoothness of the curve. The smoother minimizes this cost function:

S = p1

n�1X
i=0

k(xi � f(�i))D
�1
pi k2 + p2

n�1X
i=0

k(vi(ce) � f 0(�i))D
�1
vi k2

+ (1� p1 � p2)

Z max(�i)=1

min(�i)=0

kf 00(�)k2d� (5.12)

where Dpi and Dvi are diagonal weighting matrices with elements Æxji and
Ævji respectively. Here we again see the weighting scalars p1 and p2 from
(5.11) and (5.8). Minimizing cost function (5.12) will lead us to a cubic
spline solution. Hastie and Stuetzle [28] recommend that if spline smoothers
are used for �nding principal curves, the parameterization over the data-set

5.5. CONDITIONAL-EXPECTATION SPACE 97

should be scaled to �t the interval from 0 to 1 rather than using a unit-speed
parameterization. This re-parameterization is necessary because unit-speed
paths de�ned over an arbitrarily large interval can satisfy any smoothness
criterion while visiting every point in the data-set. For this reason, points in
conditional-expectation space will be parameterized by variable �, where

� =
s

smax

: (5.13)

Value smax is the maximum parameterization value of the data-points in
projection-space

smax = max
i
(s(yi)): (5.14)

We need to provide the smoothing algorithm with input points whose ve-
locity dimensions are compatible with derivatives of the position with respect
the smoothing parameter �. This means that the velocity dimensions will
be uniformly scaled versions of the directional derivative. First, we compute
the derivative with respect to unit-speed parameterization s:

v(s)(s) � d

ds
x(s) =

dt

ds

d

dt
x(s)(t(s))

=
1

kv(t(s))k
d

dt
x(t)(t(s));

(5.15)

because ds
dt

is speed. Next, we re-parameterize with respect to �, using the
fact (5.13) that ds

d�
= smax:

v(�)(�) =
ds

d�

d

ds
x(�)(�(s))

=
ds

d�

dt

ds

d

dt
x(t)(t(�))

=
smax

kv(t(�))k
d

dt
x(t)(t(�));

(5.16)

so

v
(�)
i = v

(t)
i

smax

kv(t)i k
= smaxv̂i: (5.17)

Thus, we convert the input data to conditional-expectation space

Y(ce) =

�
X

V(�)

�
(5.18)

98 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

before we call the smoother. Value smax is the length of the current principal
curve estimate, and changes with each iteration of the principal curves algo-
rithm, but it is the only component of v

(�)
i in (5.17) that is not known upon

�rst reading the training data. Thus, we can normalize each velocity vector
at the beginning of the principal-curves algorithm, and then simply scale this
normalized velocity by smax (provided by the projection step) before each call
to the smoother.

It might at �rst seem that we could avoid re-scaling the velocity values in
conditional-expectation space between each iteration of the principal curves
algorithm by instead adjusting the ratio of the parameters p1 and p2 in the
smoother's cost function. Unfortunately, this will not work. The local form
of curve f at any point is a cubic polynomial Pi, which may be written in
Newton form as

Pi(s) = c0i + c1i(s� si) + c2i(s� si)
2 + c3i(s� si)

3: (5.19)

Thus, the squared magnitude of the local smoothness penalty is

kP00
i (s)k2 =

m�1X
j=0

(2c2ij + 6c3ij(s� si))
2: (5.20)

Because this equation is not linear in s and has a non-zero value when s =
si, we cannot account for the e�ects of smoothing against � = s=smax by
adjusting the ratios between weighting parameters p1, p2, and (1 � p1 �
p2). Rescaling the parameterization does not a�ect the smoothness penalty
proportionally.

5.6 Consistency between projection metric

and smoothing penalty

A principal curve is a self-consistent curve through a given distribution. In
the case of trajectory smoothing in phase space, this means that the projec-
tion metric should be equivalent to the sum of position and velocity error
terms in (5.12). We can assure this consistency during the smoothing stage
by determining the proper weighting matrices Dpi and Dvi. A quick compar-
ison between the position cost term in (5.12) and the position component of

5.6. PROJECTION METRIC AND SMOOTHING PENALTY 99

the distance metric (5.7) shows that they are already equivalent. Therefore,
we set

Æxji = 1 8j; i (5.21)

so that Dpi � Dp = I(m�m) is the identity matrix of rank m.
For the velocity dimensions, however, we need to determine the weight

Ævji by which to scale each velocity error in conditional-expectation space.
We have already required in (5.6) that error magnitudes in each velocity
dimension should be considered equivalent in importance, so we weigh them
equally:

Ævji = Ævi;

Dvi = (Ævi)I(m�m):
(5.22)

To ensure that the principal curve is self consistent, we set the veloc-
ity component of the distance metric equal to the corresponding cost in
conditional-expectation space: k�vk2(vprj) = S

�v
(ce)
i

. This expands to

p2

 vi

kvik tanh(kvik=
)�
d
dt
f(�i)

k d
dt
f(�i)k

tanh(k d
dt
f(�i)k=
)

2

= p2

m�1X
j=0

�
vji

(�) � f 0(�i)
Ævi

�2

: (5.23)

We haven't considered the time-derivative of the model function f yet, since
we have been �tting the curve against the � parameterization rather than
time. This value, d

dt
f , is the velocity of the best-�t trajectory, and k d

dt
fk is

the speed. Section 5.12 will deal with the estimation of this value, but for the
purposes of computing Ævi, we will make the approximation that the speed of
the model at �i is the same as that of the example point: k d

dt
f(�i)k � kvik.

Fortunately, since we we do not need to know Ævi to any great precision for
smoothing, this approximation is good enough. This gives us:

p2

�
tanh(kvik=
)
kvik

�2 m�1X
j=0

(vji � d
dt
fj(�i))

2 � p2
(Ævi)2

m�1X
j=0

�
vji

(�) � d
d�
fj(�i)

�2

� p2
(Ævi)2

m�1X
j=0

�
ds

d�

dt

ds
vji � ds

d�

dt

ds

d

dt
fj(�i)

�2

; (5.24)

100 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

and then

p2

�
tanh(kvik=
)
kvik

�2 m�1X
j=0

(vji � d
dt
fj(�i))

2

� p2
(Ævi)2

�
smax

kvik
�2 m�1X

j=0

�
vji � d

dt
fj(�i)

�2
; (5.25)

which can be easily solved for the weight value

1

Ævi
� tanh(kvik=
)

smax
: (5.26)

Note that the numerator of (5.26) can be computed during the initialization
step of the principal curves algorithm, but the denominator changes between
each call to the smoother.

5.7 Selection of scalar weights p1, p2, and

Parameter
 Parameter
 controls the envelope by which we limit the
e�ect of speed on the projection-space distance metric (5.11). From Fig-
ure 5.4 it is evident that we should select
 to be a threshold beyond which
we don't care much about the actual speed of the action, and beyond 2

we shouldn't care about additional speed at all. Direction and speed should
both be important below
=2. Of course, a di�erent function may be chosen
to envelope the e�ect of speed if these rules of thumb do not make sense for
characterizing a given action.

Parameters p1 and p2 If we are using the tanh(�) envelope for velocity,
then we can select the ratio of p1 to p2 by selecting a value for the di�erence
in direction (in radians) between two velocities v1 and v2, both at full-speed
(i.e., kv1k � 2
, kv2k � 2
), such that projection metric for their di�erence
is equivalent to that for a pair of points whose positions are one unit apart:

k�xunitk2(pprj) = kv1 � v2k2(vprj)

p1 =

p
p2 tanh(kv1k=
)

kv1k v1 �
p
p2 tanh(kv2k=
)

kv2k v2

2 : (5.27)

5.7. SELECTION OF SCALAR WEIGHTS 101

1

v̂1

1

v̂2

�=2

�=2

sin(�=2)

Figure 5.6: Distance between unit vectors v̂1 = v1
kv1k

and v̂2 = v2
kv2k

is

2 sin(�=2)

Because the speed of both points is high the tanh(�) expressions asymptoti-
cally approach 1, which gives us

p1 � p2

 v1

kv1k �
v2

kv2k

2 = kv̂1 � v̂2k2: (5.28)

The right-hand-side of (5.28) contains a di�erence of unit-vectors. By simple
geometry, shown in Figure 5.6, we can express the magnitude of this vector-
di�erence in terms of the angle � between the two vectors, allowing us to
rewrite (5.28) as

p1 � p2(2 sin(�=2))
2; (5.29)

which immediately gives us an expression for the ratio of p1 and p2

p1
p2
� 4 sin2(�=2): (5.30)

Thus, given di�erence in velocity-direction � (at high speed) whose distance
metric in projection space we consider equal to a unit position-distance, the
necessary ratio of parameters p1 and p2 is given by (5.30). Once we know
this ratio, then choosing the actual values of p1 and p2 is an exercise in
balancing smoothness of the model-trajectory against approximation-error

102 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

of the trajectory in the cost function (5.12) for conditional-expectation. This
might be accomplished using cross-validation, as discussed in Section 4.10.

We can also solve for the ratio p1=p2 for which a given angle of motion at
high speed is equivalent to a given di�erence in position. From the argument
above, we can write

p1k�xk2 � p2(2 sin(�=2))
2

p1
p2
�
�
2 sin(�=2)

k�xk
�2 (5.31)

Solving for � = �
2
, we get the ratio of weights such that a right angle di�erence

is equivalent to a given k�xk2:
p1
p2
� 2

k�xk2 (for � = �
2
): (5.32)

Solving for � = �, we get

p1
p2
� 4

k�xk2 (for � = �): (5.33)

To make sure points in the region of intersection of Figure 5.5 are correctly
parameterized, we might choose a di�erence in position of 2 or 3 units to have
an equivalent metric value to a right angle di�erence in velocity direction.
By (5.32), this implies that we want a ratio in the range 2

9
� p1=p2 � 1

2
. The

results in Figures 5.8 and 5.9 were made using almost equal values for p1 and
p2, which corresponds to a more daring right-angle equivalent di�erence of
k�xk = p2 � 1:4. Note that this did result in misclassi�cations in the �rst
iteration, but also that later iterations correct them.

5.8 Initial principal curve estimate

In applications of the principal curves algorithm for the purpose of non-linear
regression, the principal curve estimate is often initialized using the �rst prin-
cipal component of the data-set. Figure 3.6(a) on page 57 is an example. This
is appropriate because it is computationally inexpensive, and more impor-
tantly, because the �rst linear principal component is the linear analogue
of the principal curve|if we restrict the principal curves algorithm to use
straight lines, the result must converge to the �rst principal component [28].

5.9. ALGORITHM SUMMARY 103

When using principal curves for trajectory smoothing rather than for re-
gression, however, the �rst principal component is not necessarily a good
initial guess. Instead of a mere regression �t, our principal-curve estimate
for a trajectory is a directed path through phase space. Not only does this
path have a direction, a beginning and an ending point, but there is a close
local relationship between the position and velocity dimensions of the points
along the curve. In valid trajectory estimates in the conditional-expectation
space, the velocity dimensions are the directional derivatives of the position
variables, scaled by 1=smax as indicated in equation (5.17). If we initialize the
principal-curve estimate using the �rst principal component of the training
data, we must either decide to �nd the principal component in position space
(choosing one of the two possible directional orientations), and then choose
a compatible path in velocity space, or we must determine a principal com-
ponent in both position and velocity space simultaneously, in which case the
position and velocity dimensions of the resulting line may not be compatible
with one-another.

Figure 5.7 shows how data points from the �-drawing examples and also
some �-drawings project onto the principal component of the position data.
If we consider the principal component to be a directed path progressing
either leftward or rightward in time, then roughly half the data points will
project onto it with incorrect orientations.

In our case, fortunately, we start with a number of example trajectories.
If these examples are similar enough that our principal curves-based method
should work, then each of these individual examples is probably a fairly good
choice as an initial best-�t trajectory estimate. The next section describes the
procedure for initializing the principal-curve algorithm with a given training
example.

5.9 Summary of trajectory-smoothing

algorithm

In this section, we present the full algorithm for trajectory-smoothing us-
ing principal curves in phase space. The skeletal form of the algorithm is
that of the traditional principal curves algorithm for datasets discussed in
Sections 3.6.4-3.6.5, but this algorithm has been adjusted in the manner dis-
cussed in the previous sections so that (a) distances are weighted properly

104 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

x0

x1

0. 12.

10.

3.

x0

x1

4. 9.

8.

1.

Figure 5.7: Samples from three examples of �-drawing and �ve examples
of �-drawing, where the data has been projected onto the �rst principal
component of the position sub-space. Note that in each case, if the principal
component is considered to be a directed path, then roughly half the points
will project onto it in with the wrong orientation.

5.9. ALGORITHM SUMMARY 105

in projection space (Section 5.4), (b) the velocity dimensions of the data are
computed appropriately for use with the smoother in conditional-expectation
space (Section 5.5), and (c) the weighting matrices for the smoother cause
the penalty for errors in relative position and velocity of the smoothed curve
to match the error-distance metric as measured in projection space (Sec-
tion 5.6).

1. Initialization: (Y;Ye)! (Y
(prj)
0 � Y(prj);�0; s(0)max)

(a) Let Ye be a set of data-points from a given training example,
where the column-vectors are the individual points stored in order
of their sampling-time. Map these data-points into projection-
space by equation (5.4) to get Y

(prj)
e , using (5.11) for the velocity

dimensions and (5.8) for the position dimensions.

(b) Compute the projection-space version of the training data,Y
(prj)
0 �

Y(prj), by applying (5.11), (5.8), and (5.4) to Y.

(c) Specify path �(0) consisting of line-segments connecting consecu-

tive points which are the column-vectors of Y
(prj)
e (i.e., the �rst

line-segment in the path has end-points (y
(prj)
e0 ;y

(prj)
e1), the second

has end-points (y
(prj)
e1 ;y

(prj)
e2), etcetera). Project each point from

the projection-space version of the training data-set Y(prj) to the
nearest point on �(0). Assign to each point y(prj)i in the training

data-set a value s(0)i = d(�(0);y
(prj)
i) that is the distance of its

projection onto path �(0) along that path starting from end-point

y
(prj)
e0 . Compute vector �0 with �(0)i = s(0)i=s(0)max for each point,

where s(0)max = maxi(s(0)i).

2. Repeat, over iteration counter j 2 (1; 2; : : :):

(a) Conditional expectation: (s(j�1)max;Y;Y(prj);�(j�1))! (�(j))
Use the value of s(j�1)max in (5.17) and (5.18) to map the training-

data to conditional-expectation space points Y
(ce)
(j�1). Compute Dv

from (5.26) using s(j�1)max, then use the smoother from Chapter 4

to compute f
(ce)
(j) (�(j�1);i), which is the computed expected value of

each point y
(ce)
(j�1);i given parameterization value �(j�1);i. By multi-

plying the velocity dimensions of f (ce)(j) (�(j�1);i) by kvik=s(j�1)max,

106 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

we computeY(j) : y(j);i f(j)(�(j�1);i). Let px(j) be a permutation
which sorts �(j�1) into order of ascending magnitudes. Path �(j),
the j-th estimate of the best-�t trajectory, is the set of line seg-
ments that connect consecutive column-vectors of y(j);px(j)i , which
is Y(j) whose column vectors are sorted into order px(j).

(b) Projection: (Y(prj);�(j))! (�(j))

Compute �
(prj)
(j) by transforming the end-points of the line segments

in path �(j) using (5.11), (5.8), and (5.4). Project each point

from the projection-space version of the training data-set Y(prj)

to the nearest point on �
(prj)
(j) . Assign to each point y

(prj)
i in the

training data-set a value s(j)i = d(�
(prj)
(j) ;y

(prj)
i) that is the distance

of its projection onto path �
(prj)
(j) along that path starting from end-

point y
(prj)
(j);0. Compute parameterization vector �(j) with �(j);i =

s(j);i=s(j)max for each point, where s(j)max = maxi(s(j);i).

(c) Error evaluation: (Y(prj);Y(j))! (dj)

Calculate dj = kY(prj) �Y(prj)
(j) k.

Until the change (dj�1 � dj) is below some threshold.

5.10 Results from �-example

The results from running the algorithm presented in the previous section
are shown in Figures 5.8 and 5.9. Using principal curves in phase space,
we are actually able to learn a best-�t trajectory which intersects itself in
position space. In the left-hand plot of Figure 5.8(a) where the path crosses
itself, we actually see that the two points from the beginning of the �gure are
misclassi�ed as belonging to the later part of the �gure. The plot relating
the percentage of completion time for each point to its � value, in the right-
hand plot, clearly shows these two misclassi�ed points. Figure 5.8(b) shows
the result from the next iteration of the algorithm. The �rst iteration of
the algorithm has improved the principal curve estimate enough that all the
points are correctly parameterized by this run of the projection step. The
estimated best-�t trajectory is fairly good. Figure 5.9 shows the result from
the third iteration, which we can see has converged to a stable, self-consistent
curve.

5.10. RESULTS FROM �-EXAMPLE 107

x0

x1

0. 12.

10.

3.

�

t

tmax

-0.5 0.4

0.

1.

(a) Result of iteration 1: 2D plot and time-percent vs. �.

x0

x1

0. 12.

10.

3.

�

t

tmax

-0.5 0.5

0.

1.

(b) Result of iteration 2: 2D plot and time-percent vs. �.

Figure 5.8: Results from �rst two iterations of principal curves algorithm on
�-drawing skill.

108 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

x0

x1

0. 12.

10.

3.

�

t

tmax

-0.5 0.5

0.

1.

Figure 5.9: Results from third iteration of principal curves algorithm on
�-drawing skill.

5.10. RESULTS FROM �-EXAMPLE 109

�

x0

0. 1.

0.

13.

(a) Smoothing PC iteration 0

�

x0

0. 1.

0.

13.

(b) Smoothing PC iteration 2

t

x0

0. 1.6

-1.

13.

(c) Smoothing verses time parame-
terization. Solid curve uses variance
estimation, dashed doesn't.

Figure 5.10: Comparison of smoothing x0 variable of �-drawing data against
� in two iterations of principal curves algorithm verses smoothing against a
time parameterization.

110 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

�

x1

0. 1.

2.

10.

(a) Smoothing PC iteration 0

�

x1

0. 1.

2.

10.

(b) Smoothing PC iteration 2

t

x1

0. 1.6

2.

11.

(c) Smoothing verses time parame-
terization. Solid curve uses variance
estimation, dashed doesn't.

Figure 5.11: Comparison of smoothing x1 variable of �-drawing data against
� in two iterations of principal curves algorithm verses smoothing against a
time parameterization.

5.10. RESULTS FROM �-EXAMPLE 111

Figures 5.10 and 5.11 show the smoothing operations of the two position
dimensions of the data against the parameterization generated by iterations 0
and 2 of the principal curves algorithm. In addition, plots 5.10(c) and 5.11(c)
show smoothing against a time parameterization. It is readily apparent from
these �gures that the �-parameterization is a much better parameterization
than time, as the �-parameterized plots have signi�cant error only when the
slope of the �t in a given dimension is changing sign. Also, note the di�erence
between the � plots and time plots at their ends: it is obvious that the motion
is slow at the ends of the time plots, whereas this is not obvious in the �
plots because � is a constant-speed parameterization.

These plots clearly show that the parameterization step of the prin-
cipal curves algorithm has had the intended result in this case: the �-
parameterization gives a much more consistent set of data to smooth, and
thus makes the job of the smoother relatively easy. One minor point to note
is that in the left-most quarter of plot 5.10(a) we see the two misclassi�ed
points pointing upward rather than downward. The smoothing operation is
not especially e�ected by them, and the improved curve estimate allows the
points to be properly parameterized in later iterations.

Another data set for which principal curves in phase space can generate
a high-quality best-�t trajectory where conventional principal curves cannot
work well is shown in Figure 5.12. In addition to the basic drawing motion
intersecting itself at the end of the �gure, the reversal of direction between
the two humps of the �-�gure is extremely sharp in position space, and is
bounded by motions which have opposing velocities but roughly coincide in
position space. The four iterations it took the principal curves algorithm to
converge to a stable solution are shown in Figure 5.13. The �nal result in
Figure 5.13(d) is much a better �gure than are any of the individual examples,
although we might like the beginning of the trajectory to be better aligned
with the rest of the initial vertical stroke.

The reversal of direction between the humps of the � is the most interest-
ing part of the �gure to watch develop over the iterations of the algorithm. It
starts as a shallow indentation, and then gets drawn in towards the sharpest
data in the examples. The reason that the �gure created by a smoother can
have such a sharp feature is that the feature is actually far less sharp in phase
space; the �gure shown is merely the projection of the 4-dimensional phase
space onto the 2-dimensional position space. Although the position space
projection looks like a sharp point, the points on either side of the points are
more distant in velocity space, and thus their � values are relatively distinct.

112 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

x0

x1

4. 9.

8.

1.

Figure 5.12: Smoothed input data from �-drawing examples

5.10. RESULTS FROM �-EXAMPLE 113

x0

x1

4. 9.

8.

1.

(a) Iteration 0.

x0

x1

4. 9.

8.

1.

(b) Iteration 1.

x0

x1

4. 9.

8.

1.

(c) Iteration 2.

x0

x1

4. 9.

8.

1.

(d) Iteration 3.

Figure 5.13: Principal curves iteration results for � example

114 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

5.11 Diagnostics

In the analysis of the �-drawing example, plots of t=tmax in Figures 5.8 and
5.9 were used to indicate the success of the projection step for parameterizing
the data. A related way to judge the quality of the parameterization step
is to plot the � value of each point in a given training example verses its
sampling time. For good parameterizations, the results should generally be
a monotonic relationship. Figure 6.8 on page 132 gives examples of this kind
of plot for data from a telerobotics experiment.

It is often more useful to have a numerical measure of the quality of the
parameterization rather than a large number of graphs to study. One possible
measure is

Mp =

Pne�1
k=0

Pnk�2
i=0 sgn(��ki(nk � 1))

(n� ne)
; sgn(x) =

8<
:

1 (x > �)
0 (jxj < �)
�1 (x < ��)

(5.34)

where ne is the number of training examples, nk is the number of points
in the k-th training example, and ��ki = (�k;i+1 � �k;i), where �k;i is the
parameterization of the i-th point in the k-th example. The value of � should
be a value indicating close to \no change" in �, possibly 1=(10(ne � 1)). An
alternative measure, which is di�erentiable, is

Mp1 =

Pne�1
k=0

Pnk�2
i=0 tanh(3��ki(nk � 1))

(n� ne)
: (5.35)

Both Mp and Mp1 approach 1 for good parameterizations, approach -1 with
parameterizations which are exactly backwards, and tend toward 0 for pa-
rameterizations which are far from monotonic.

Principal curve models can be used to perform gesture-recognition in
a manner similar to that for the smoother in Section 3.4. However, not
only does the probability of each point need to be evaluated given its �tted
parameterization value, but the overall parameterization of the example to
be classi�ed must be evaluated as well. If, after parameterizing an example
against a given principal curve model, the resulting parameterization has
a low value of Mp or Mp1, then the example should be identi�ed as not
belonging to the class of actions corresponding to the model even before
equation (3.9) is applied. For example, if we do not evaluate the quality of

5.12. SPEED OF PERFORMANCES 115

Figure Mp Mp1

�-drawing (5.9, pg. 108) 0.96 0.96
�-drawing (5.13(d), pg. 113) 0.68 0.71
Pre-grasp (6.6, pg. 130) 0.76 0.79
Part transfer (6.9, pg. 134) 0.98 0.93
Loading spring box (6.11, pg. 137) 0.75 0.72

Table 5.1: Summary of parameterization diagnostics. Computation of Mp

uses � = 0:1.

the parameterization, then a set of 10 points all lying exactly on the model
of the �-drawing would measure as an example of an �-drawing motion with
probability 1, even if these points all lie on only the �rst tenth of the model
trajectory (�i < 0:1).

Table 5.1 summarizes the diagnostic values for the parameterizations of
the best-�t trajectories from the �-drawing and �-drawing data in this chap-
ter, as well as the �nal �ts of the experimental data presented in Chapter 6.
We see that the diagnostic valuesMp andMp1 for the computed �ts are fairly
consistent, but they not interchangeable. Although the measures for the �ts
of the �-drawing and the part transfer data sets are signi�cantly better than
those of the other three, the di�erence is due more to how closely the trials
in each data set resemble one another rather than the relative validity of
the �ts. All the resulting measures should simply be considered high enough
to indicate a successful �t. The diagnostic measures presented in this sec-
tion are a useful tool for evaluating the quality of the �ts of the data, but a
more principled derivation of such a measure is an important issue for further
research.

5.12 Speed of performances

The conditional-expectation step uses a constant-speed representation be-
cause the velocity dimensions are a scaled unit-vector (5.17). Thus, the
speed of the best-�t trajectory as a function of � cannot be directly deter-
mined from the principal curve. However, we can easily estimate values for
the speed of the best-�t trajectory by smoothing the speeds of the training
data against the �-parameterization. Figure 5.14 shows the resulting speed

116 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

�

kvk

0. 1.

-2.49

33.62

(a) �-drawing

�

kvk

0. 1.

-1.77

23.62

(b) �-drawing

Figure 5.14: Smoothed plots of speed verses � for �-drawing and �-drawing
�gures.

5.13. PROBLEMS WITH THE PRINCIPAL CURVE MODEL 117

parameterizations from the �-drawing and �-drawing examples, as well as
the standard-deviation of the estimates. Since the spline smoother minimizes
the second derivative of the speed estimates, the resulting trajectory motions
minimize jerk.

5.13 Problems with the principal curve

model

There are two main problems with the use of principal curves as an action
model as presented in this chapter and Chapter 3. The �rst is that the theory
for extending the representation to more than one dimension is not yet fully
developed. There is no reason why this cannot be done however. A general
approach to extending the dimensionality is described in Section 3.7 and will
be further discussed in the future research section at the end of the thesis.

The other main problem is the size of the model. As derived, the number
of knots in the spline composing the trajectory model is the same as the
number of training points. This is computationally awkward, and clearly
excessive given the smoothness of the resulting curves. Future work needs
to be done to develop methods for eliminating knots in the model which do
not signi�cantly in
ect the model path. Conventional spline smoothers can
be de�ned which �t data to models with reduced numbers of knots [16], and
it should be possible to derive such a smoother for phase space as well.

5.14 Discussion

This chapter presents a method for �tting a trajectory to a given set of phase
space data. Such a best-�t trajectory is arguably the best one-dimensional
model of a given action, as the �ts of the �-drawing and �-drawing skills
suggest, and as will be demonstrated for various actions skills in the robot
teleoperation experiment analyzed in the next chapter. Some actions are
more amenable to this kind of modeling than others, however. The suitability
of an action for modeling with a best-�t trajectory is determined by how
well the training data satis�es the assumptions listed at the beginning of this
chapter. In addition to characterizing which actions can be modeled in this
manner, it is also important to answer the questions of whether the results
from this method can be considered optimal in some sense, and how the

118 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

results from this method might be compared to those from other methods,
possibly yet to be developed.

Suitability of an action for modeling with a trajectory in phase

space The assumptions listed at the beginning of the chapter specify that
the action consists of a single smooth, consistent motion where the state of
the action is adequately described by the phase space vector, and where the
stochastic variability between di�erent performances can be adequately de-
scribed by a Gaussian distribution at any given point along the basic motion.
Roughly, this means that although the example performances may vary, the
overall structure of the motion is consistent. If a data point from one example
motion has nearly the same position and velocity of as a point from another
example, they should correspond to roughly the same part of the basic ac-
tion, and the average of these points should be considered a good estimate
of the expected value of the state during that part of the action. What the
principal curve method learns, then, is basically an averaged trajectory.

While the �-drawing and �-drawing data sets work well with this method,
they would thus not work if the di�erent example �gures were drawn with
signi�cantly di�erent sizes, or especially if the example trajectories were ro-
tated more than a few degrees with respect to one another. In the same way,
while the best-�t trajectory is suitable for modeling a grasping motion, a
single walking stride, a tennis swing, or a consistent pick-and-place motion,
it would not be a good method for modeling a sanding motion where the
velocity of the sanding-block during the many back-and-forth strokes does
not correspond closely with speci�c locations on the surface being sanded.
Erratic scribbling motions, and any other actions which involve randomized
jiggling (or other motion components where the current action state is not
adequately described by position and velocity vectors) will fail to be modeled
by this method.

Optimality of the phase space principal curve model While it might
be nice to �nd a more universal method for modeling actions, the speci�city
of the principal curve's applicability is actually a strength of the method.
The assumptions upon which the method is based not only give a fairly clear
indication of which actions it is best suited to model; they also provide a
good starting point from which to de�ne optimality criteria for comparing
di�erent models. We consider the sampled data points from all examples si-

5.14. DISCUSSION 119

multaneously without explicitly considering which which example each point
was sampled, and assume that points which are similar in position and veloc-
ity project to the same part of the action, and can be averaged together. The
metric for the projection step can be designed explicitly, instead of arising
as a side-e�ect of a black-box method such as one based on neural networks.
Once the projection is accomplished, we average together the data points
which project to similar parts of the action to get a best-�t model of the
entire action. Again, instead of using an opaque learning process, we design
the averaging process to explicitly optimize a chosen set of criteria. In this
case, we balance the smoothness of the curve against its overall accuracy in
approximating the data.

A principal curve found by the method presented in this chapter will be
a local minimum of these optimization criteria. For data sets which satisfy
the assumptions made at the beginning of the chapter, the resulting curve
should be at least close to the globally optimal solution.

Although this method successfully optimizes the model curve given an
explicit weighting of �tting error to smoothness, it does not tell us how to
choose this weighting. There are three weighting parameters which need to
be speci�ed before performing the optimization:
, p1, and p2. Although
Section 5.7 tells us how to pick
 and how to select the ratio p1=p2, the
absolute magnitude of p1 (or alternatively p2) is still a free parameter.

There are several approaches which may be used to determine a good
balance between smoothness and �tting error. The �rst is to simply make
a qualitative adjustment: the balance can be adjusted interactively using an
computer interface which shows a graphical animation of the �tted motion
at various levels of smoothing, or by plotting two-dimensional projections of
the model line against the sampled data. This is the method used in this
thesis, and it works fairly well. In the next chapter, for instance, Figures 6.4
and 6.5 on page 128 demonstrate the e�ect of changing this weighting by a
factor of about 50. The smoother motion might be better for use by a robot,
to minimize energy or simplify control, while the less smooth motion might
look more \human" within a computer animation.

A second method for balancing smoothness against the quality of the �t
is to use an external criterion. For instance, the smoothness weight could be
adjusted to minimize the energy used during execution of the action while
making sure that the result of the action is still acceptable.

A third approach for weighing smoothness against �tting error is to cross-
validate the �t against the training data. Section 3.9 discusses why cross-

120 CHAPTER 5. PRINCIPAL CURVES FOR TRAJECTORY FITTING

Fit k�xk2(pprj) k�vk2(vprj) k�yk2(prj)
�-drawing (5.9, pg. 108) 5.82 3.18 9.00
�-drawing (5.13(d), pg. 113) 21.90 6.95 28.85

Table 5.2: Fitting errors for �-drawing and �-drawing.

validation leads to over-�tting for conventional principal curves, but there
is reason to believe that it could work for principal curves in phase space.
When conventional principal curves over-�t data in position space, the model
curve tends to come closer to points in the data set simply because it winds
a greater length into the volume containing the sampled data. The longer
curve �ts into this volume by changing direction often. The fact that the
directional derivative of the phase space principal curve is constrained to
approximate the velocity of the nearby data points should counteract this
tendency. Cross-validation of the principal curve in phase space is discussed
in the future research section (Section 8.2) at the end of the thesis.

Comparing models from di�erent methods For actions which are suit-
able for modeling using the method described in this chapter, it will even-
tually be desirable to compare the resulting model against those generated
by newer techniques. This comparison should be made in a number of ways.
The �rst is by comparing the absolute magnitudes of the numerical criteria
being optimized. For instance, the �tting error can be compared for the
position and velocity from the sampled performance data (e.g., Table 5.2),
and the smoothness measure for the curve should also be computed. Other
modeling methods will likely optimize other criteria, so the values of these
additional features should be computed for the models as well.

Another way to compare models is through the use of measures which can
give a value for the similarity between the model and the recorded perfor-
mances from which it was learned. Michael Nechyba's stochastic similarity
measure [54] is one promising candidate.

The best way to compare action models, however, is to measure suit-
ability for their intended use. This is an application-speci�c judgment. For
artistic purposes such as modeling actions for use in computer animation,
this comparison might be of a qualitative, or even subjective, nature.

Chapter 6

Action learning in a robot

teleoperation experiment

6.1 Introduction: Analysis of a telerobotic

experiment

The previous chapters have introduced various methods for building reduced-
dimension models of human performance data. In this chapter we use some
of these methods, particularly principal curves through phase space, to study
data from a telerobotics experiment. We will see that the trajectory �t using
velocity information is a valuable tool for analyzing real motions. The data
we use is from Anne Murray's spring-box experiment [49]. This experiment
was designed to test the e�ectiveness of tactile feedback on the ability of
subjects to perform a challenging manipulation task. The object of the ex-
periment is to insert a part into a spring-loaded box. The task is similar
to loading a battery into a radio or other small electronic device, where the
battery is held in place partly by spring force.

Figure 6.1 shows the basic steps of the operation. The teleoperator directs
a Utah-MIT hand mounted on a Puma robot in grasping a T-section of
polyvinyl chloride (PVC) pipe, as shown in Figure 6.1(a). The operator
then uses the hand to lift the part (Figure 6.1(b)), then to carry it to the
spring-box where the part is then used to depress a spring-loaded plunger
(Figure 6.1(c)). The part is then pushed down into the box so that it is held
in place by the spring on one side and a lip at the edge of the box on the
other. Once the part is secure, the operator causes the robot hand to release

121

122 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

(a) Grasping.
(b) Lifting.

(c) Insertion.

(d) Release.

Figure 6.1: Photographs of the spring-box insertion experiment. The teleop-
erator directs the motion of the Utah-MIT hand to the PVC part, then uses
a Cyberglove and a tactile feedback mechanism to grasp the part with two
�ngers, pick up the part, and load it into the spring-loaded box. Pictures are
courtesy of Anne Murray.

6.2. SIMULATION AND ANALYSIS 123

its grasp (Figure 6.1(d)).

As shown in the �gure, only the index �nger and thumb of the hand are
used; the others are positioned so as not to interfere with the task. The
operator's hand is instrumented with a Cyberglove to read the joint angles
in his �ngers, while the location of the operator's hand is read by a Polhemus
6DOF position sensor. The �ngertips of the Utah-MIT hand are enhanced
with force sensors, and the readings of these sensors are displayed to the
user in the form of vibrations from voice coil actuators mounted on the
�ngertips the operator's index �nger and thumb [49, 50, 51]. The operator
thus controls the motion of the robot hand by moving his own hand, and
controls its grasping motion by making a grasping motion with his own index
�nger and thumb. The orientation of the Utah-MIT hand in space is �xed,
so the operator can control its Cartesian position, but not its roll, pitch,
nor yaw. Besides the tactile feedback in the �ngers, the operator also has
visual feedback from a video monitor, but the operator is isolated from direct
view of the robotic testbed and from the sound of the machinery by white
noise fed into a pair of earphones. The experiment thus simulates a remote
teleoperation scenario.

The original experiment involved two skilled operators, each performing
a session of 50 trials each day for three days. In each session, half of the trials
were performed with tactile feedback, and half without (i.e., using only visual
feedback). In this chapter, we look at data from one session of one of the
two operators. The data recorded in the experiment were the reference and
measured values of the six joints in the robot hand, the reference position
for Cartesian control of the robot hand, and the measured force values from
the �ngertip sensors. The reference position of the �nger angles for the robot
were computed from the angles in the index and thumb of the operator as
measured by the Cyberglove, while the reference position for Cartesian-space
control of the robot hand is computed from low-pass �ltered measurements of
the operators Cartesian hand position as measured by the Polhemus sensor.

6.2 Simulation and analysis

In Section 1.1 we discussed our general procedure for analyzing data from
human performances. The approach is to �rst perform a high-level analysis of
the overall structure of the task, breaking it into simpler component motions,
and to then learn a typical motion for each low-level component motion. To

124 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

Figure 6.2: Playback interface for studying spring-box data, so that perfor-
mances can be analyzed, labelled, and rated.

perform this analysis, I wrote a user interface which displays an animated
representation of the performance state from the recorded performance data.
This interface is shown in Figure 6.2. The interface can load the performance
data from a speci�c trial from a binary (Matlab format) �le, and then it can
be used like a VCR to view an animation of that trial. The two views shown
in the window are OpenGL renderings of the index �nger and thumb of the
Utah-MIT hand. The view on the left shows the motion with respect to
the workspace. The view on the right is a \hand-cam" which maintains
a constant position with respect to the simulated robot hand. Both views
can be panned and tilted by dragging with the mouse across the simulation
image. Forces sensed at the index �nger and thumb are shown by the scales
on the right of the interface window. The forces are also shown by the color
of the �ngertips. These are varied from black, for zero pressure, to red for
the maximum pressure sensed in a given trial.

The two rows of buttons and the scale below the views control the time
index of the data like a VCR control panel. The bottom of the interface

6.2. SIMULATION AND ANALYSIS 125

allows the user to label the start and end times for di�erent parts of the
trial, and to write this labelling information to a �le for later use.

Using this interface, we were able to analyze the structure of the perfor-
mances. We broke the task down into �ve component motions:

1. Pre-grasp. The teleoperator starts with his hand resting on a platform
in front of him, so that the robot hand is above and in front of the
PVC part. He lifts his hand o� the platform, then moves his hand to
position the robotic hand for grasping the part.

2. Grasp. The teleoperator closes the robotic �ngers until the part is
securely grasped.

3. Part transfer. Once the part is securely grasped, the teleoperator uses
the robotic hand to lift it and transport it to the spring-box.

4. Loading. The teleoperator causes the robot hand to push the part
forward against the plunger in the spring-box until the end of the part
is beyond the lip at the edge of the box. Then, the hand is moved
back until the spring secures the part against the lip, and the operator
causes the �ngers to release the part.

5. Finish. The operator carefully moves the robot hand away from the
part so as not to knock it out of place, then moves his hand back to
the resting platform.

After segmenting the task into these components, we used the interface to
label each component in each of the 50 trials, and roughly graded the quality
of each grasping motion and loading motion. Once the component motions
were graded and labelled, we were able to construct data sets for each of
these components. For each component motion, trials were selected either
by the grades of that motion (for grasping and loading), or the grades of the
component motions bounding the selected component (for pre-grasp, part
transfer, and �nish), and data was extracted over the proper time interval
of each selected trial. This data was preprocessed by a spline smoother to
compute the velocity of the motion while avoiding noise problems, and then
the resulting data points were sub-sampled to reduce the number of points
to a few hundred to simplify the learning computations. The resulting data
sets are analyzed in the following sections.

126 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

6.3 Pre-grasp: approaching the part

The �rst motion in the task is where the operator lifts his hand from the
resting platform, then directs the robot's hand to a position from which it can
grasp the part. We selected data from trials where the operator accurately
moved the robot hand to the part with a single motion and was able to lift
the part on the �rst attempt (29 of the 50 trials). The end of the pre-grasp
phase is the point of each trial just before the force sensors register contact
with the part.

Because this data corresponds to an unconstrained motion in space, it
makes sense to model it with a nominal trajectory in phase space using the
method developed in the previous chapter. We thus �t a principal curve in
phase space to the Cartesian position data for the motion of the robot hand.
To investigate the e�ect of velocity information on the �t we compared the
results for example �ts both with and without a weight on velocity error, and
we investigated the e�ect of smoothing by varying the ratio of error weighting
to the weight of the smoothness penalty term.

Figure 6.3 shows the results of the �rst two iterations of the principal
curves algorithm with and without a velocity penalty, using heavy smooth-
ing. Figure 6.4 shows the third iteration. The left-most plots in these �gures
present a side view of the course of the motion, with x2 giving the height of
the hand, and x1 indicating backward-forward motion. Note that the axes
of these plots are not scaled proportionally. The height of the starting con-
�gurations is consistent because the hand is sitting on a platform, but their
x1 positions vary because the hand may be sitting relatively more forward or
backward on the platform. The operator's motion is to start with his hand
far out in from of his body, and then to move his hand up and back toward
himself, then down to the grasp point. The right-most plots give a top view
of the motion, and show that the motion is relatively straight back, with lit-
tle sideways movement. At the end of the motion, we see that the operator
moves the robot hand more slowly and slightly forward as he guides it to the
part. When the smoothness penalty is high, as in these plots, we see that
the �tted motions are similar whether or not we are weighing velocity error,
and that the model of the best-�t trajectory appears to consist of a single
continuous motion.

Figure 6.5 shows the �nal result from �tting principal curves with less
of a smoothness penalty, with one �t weighing velocity error and one not.
The ratio of error penalty to smoothness penalty is increased by a factor

6.3. PRE-GRASP: APPROACHING THE PART 127

x1

x2

-0.42 -0.09

-0.08

0.12

x1

x0

-0.42 -0.09

-0.69

-0.6

(a) Iteration 0.

x1

x2

-0.42 -0.09

-0.08

0.12

x1

x0

-0.42 -0.09

-0.69

-0.6

(b) Iteration 1.

Figure 6.3: Results from the �rst two iterations of the principal curves al-
gorithm for �tting the pre-grasp motion in the spring-box experiment. The
solid curve uses weights p1 = 0:35, p2 = 0:64, while the dashed curve uses
p1 = 0:99, p2 = 0:0.

128 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

x1

x2

-0.42 -0.09

-0.08

0.12

x1

x0

-0.42 -0.09

-0.69

-0.6

Figure 6.4: Results from iteration 3 of the principal curves algorithm for
�tting the pre-grasp motion in the spring-box experiment. The solid curve
uses weights p1 = 0:35, p2 = 0:64, while the dashed curve uses p1 = 0:99,
p2 = 0:0.

x1

x2

-0.42 -0.09

-0.08

0.12

x1

x0

-0.42 -0.09

-0.69

-0.6

Figure 6.5: Final results from the principal curves algorithm for �tting the
pre-grasp motion in the spring-box experiment. The solid curve uses weights
p1 = 0:35, p2 = 0:6495, while the dashed curve uses p1 = 0:9995, p2 = 0:0.

6.3. PRE-GRASP: APPROACHING THE PART 129

of 50 from that of the model shown in Figure 6.4. We see that the best-�t
trajectory now appears to be constructed of several distinct motions: a lift,
a fast general approach to a point above the part, then a slower approach
from slightly behind the part to the eventually grasping position. One e�ect
of the velocity error weight is to improve the �t at the beginning of the
motion; the �t without the velocity weight slides along the platform to get
closer to more of the starting con�guration points in a manner inconsistent
with the example trajectories. The other e�ect of the velocity error weight
is to reduce the amount of overshoot as the hand transitions from the fast
initial motion to the �ne-positioning motion at the end of the trajectory.
These e�ects, and the actual angle of �nal approach to the grasp position,
are better demonstrated in Figure 6.6 which shows example points and best-
�t trajectories with proportionally-scaled axes. The results in the remainder
of this section refer to the best-�t trajectory estimate from this �gure shown
with the solid line: the �t with less smoothing and use of velocity information
(p1 = 0:35, p2 = 0:6495).

To show the general trend of the speed of motion, we plot velocity against
the parameterization variable �. Figure 6.7 shows the velocity values of the
points in the data set, as well as a smoothing-spline model of this data and
estimated variance about this model. The expected trend is clearly evident.
At the beginning of the motion, while the operator lifts his hand from the
platform and moves roughly near the grasp point, the motion is generally
fast although the actual speed of the example data points is highly varied.
As the hand nears the grasp point the speed of the motion slows, and the
variance of the example data is much lower. This is indicative of the care
necessary for accurate positioning of the hand in preparation for a successful
grasp.

To demonstrate the quality of the �t, we can plot the trend of �-values
verses time for each trial. Four representative plots from the 29 trials we
used are shown in Figure 6.8. Most of the trials (16 of the 29) are clearly
monotonic like the plot of Trial 10 shown in Figure 6.8(b). A few trials (7 of
29) are generally monotonic, but with minor
at sections or minor decreases
in � in a pair of consecutive points, in a manner similar to Trial 9. Trial 12
shows a single point with a �-value that is signi�cantly less than that of the
point before it. There are 5 trials with this characteristic. Trial 13, whose
�nal 5 points have nearly the same �-value, is unique. Using the methods
described in Section 5.11, we can compute the diagnostic values Mp = 0:76
and Mp1 = 0:79 (see Table 5.1 on page 115).

130 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

x1

x2

-0.42 -0.09

-0.08

0.12

x1

x0

-0.42 -0.09

-0.69

-0.6

Figure 6.6: Wide version of �nal results principal curves algorithm for �tting
the pre-grasp motion in the spring-box experiment. The solid curve uses
weights p1 = 0:35, p2 = 0:6495, while the dashed curve uses p1 = 0:9995,
p2 = 0:0.

6.3. PRE-GRASP: APPROACHING THE PART 131

�

kvk

0. 1.

-0.01

0.2

Figure 6.7: Smoothing-spline �t of speed vs. � with estimated variance.

132 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

t

�

0. 8.

0.

1.

(a) Trial 9

t

�

0. 7.5

0.

1.

(b) Trial 10

t

�

0. 13.3

0.

1.

(c) Trial 12

t

�

0. 8.4

0.

1.

(d) Trial 13

Figure 6.8: Plots of � values verses time for four trials from spring-box
experiment.

6.4. GRASP AND FINISH 133

6.4 Grasp and Finish

Although grasping the part was one of the more diÆcult tasks for the opera-
tor, it is really a simple force-regulation task and thus trivial to model. The
object of the experiment was to grasp with as little force as possible while
still maintaining control of the part. The diÆculty of this skill was mainly
the interpretation of the vibration feedback from the voice coils to control
the force of the grasp. Murray's thesis [49] gives a full analysis of this aspect
of the experiment.

The analysis of the �nishing motion, after the part is loaded in to the
spring-box, is similar enough to the analysis of the pre-grasp and part transfer
skills that we will also not include it in this thesis.

6.5 Part transfer

Because the part transfer from the grasp point to the spring-box is just a
motion in space, we can use the same method as that used for the pre-grasp
phase. The results of the principal curve �t in phase space are shown in
Figures 6.9 and 6.10. We see that velocity information greatly improves the
�tted trajectory, and that the motion has roughly three parts. The �rst part
of the motion is a vertical lift of the part from the grasp point out of the
part holder. The second part is the horizontal motion into the plane of the
spring box, and the third motion is down and forward toward the face of the
plunger in the spring-box.

Figure 6.10(b) shows a �t of the speed of motion plotted against the
parameterization variable. We see, as expected, that the hand accelerates
during the lift and through the horizontal motion, and then slows as it ap-
proaches contact with the plunger in the spring-box to allow for careful align-
ment. Plots of � verses time for the �t of the transfer motion are all nicely
monotonically increasing, resembling Figures 6.8(b) and indicating a very
good �t of the examples. The diagnostic values for the parameterization are
Mp = 0:98 and Mp1 = 0:93 (Table 5.1 on page 115).

6.6 Loading the spring-box

We �t the action of loading the spring-box using a principal curve in phase
space of the Cartesian space motion. Figure 6.11(a) shows the �tted motion

134 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

x0

x2

-0.67 -0.47

-0.06

0.09

(a) x0 vs. x2 plot (operator view)

x0

x1

-0.67 -0.47

-0.34

-0.2

(b) x0 vs. x1 plot (top view)

Figure 6.9: PVC transfer motion to spring-box: operator and top views. The
solid curve uses weights p1 = 0:35, p2 = 0:6495, while the dashed curve uses
p1 = 0:9995, p2 = 0:0.

6.6. LOADING THE SPRING-BOX 135

x1

x2

-0.34 -0.2

-0.06

0.09

(a) x1 vs. x2 plot (side view)

�

kvk

0. 1.

0.

0.17

(b) Speed verses �

Figure 6.10: PVC transfer motion to spring-box: side view and speed vs. �.
The solid curve uses weights p1 = 0:35, p2 = 0:6495, while the dashed curve
uses p1 = 0:9995, p2 = 0:0.

136 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

(�t using velocity information). We see very clearly that this skill has two
component motions: the part is �rst moved forward and downward as it is
pushed against the plunger and into the box, and then the hand is pulled
straight back, leaving the part locked between the plunger and the lip at the
edge of the spring-box. Figure 6.11(b) shows that the speed of this motion
stays generally low. The � verses time plots for the �t are generally good
(Mp = 0:75 and Mp1 = 0:72).

The fundamental aspect of the part-loading skill is this motion in space.
Across all the example trials, similar portions of the motion correspond to
the same logical part of the loading skill. The resulting �-parameterization
is thus a good measure against which to compare the other aspects of the
performances: �nger motion and force feedback. We can see how the �-
values relate to the motion in Figure 6.12. The top plot shows the horizontal
motion of the hand, moving �rst forward and then backward. The bottom
plot shows the downward vertical motion as the part is pushed into the box,
then shows that the hand stays low while it is pulled back. In the Cartesian
space projection of the same data in Figure 6.11(a) these �-values are only
implicit in the ordering of the �tted trajectory points.

Figure 6.13 is plotted below Figure 6.12 to show how the force readings
correlate to the motion. The most obvious trend is that as the part is pushed
down into the box, the force readings approach zero, and then remain zero as
the hand is pulled back. This might be due to the fact that the �ngers slowly
release their grip during the insertion. However, note the many zero readings
for both sensors near the beginning of the motion. These are probably due
to the fact that the �ngertips are too low on the part during these trials, and
the grasping pressure thus is being applied above the location of the force
sensors on the robotic �ngertips. These sorts of e�ects make interpretation
of the force sensor information somewhat uncertain for this data set.

Figure 6.14 plots the motion of three �nger joints verses �, with the plot
of forward-backward motion at the bottom for comparison. The top plot, for
q1, is representative of the thumb-joint data: there is no apparent trend in
the data. This is probably because the thumb is used as a simple pushing
instrument, and its �nger-joint motions are just not very important. The
middle plots, of q4 q5, are from the index �nger. We see that the operator
tends to release (straighten) this �nger during the motion, but not at any
speci�c part of the motion.

6.6. LOADING THE SPRING-BOX 137

x1

x2

-0.28 -0.14

-0.08

0.01

(a) x1 vs. x2 plot (side view)

�

kvk

0. 1.

0.

0.09

(b) speed verses �

Figure 6.11: Spring-box loading motion

138 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

�

x1

0. 1.

-0.27

-0.14

�

x2

0. 1.

-0.08

0.

Figure 6.12: Spring-box loading motion: position verses �

�

f0

0. 1.

0.

1900.

�

f1

0. 1.

0.

1680.

Figure 6.13: Spring-box loading: measured force verses �. f0 is force at
thumb, f1 at index �nger.

6.6. LOADING THE SPRING-BOX 139

�

q1

0. 1.

-1.23

-0.02

�

q4

0. 1.

-1.98

1.25

�

q5

0. 1.

0.01

0.79

�

x1

0. 1.

-0.27

-0.14

Figure 6.14: Spring-box loading: �nger motion verses �. q1 is from thumb,
q2 and q3 from index �nger. x1 is hand motion (for comparison).

140 CHAPTER 6. ROBOT TELEOPERATION EXPERIMENT

6.7 Discussion

In this chapter, we demonstrated the e�ectiveness of the methods developed
in the previous chapter for modeling components of a robotic teleoperation
experiment. The trajectory-�t in phase space is a valuable tool for char-
acterizing the motions which the teleoperator used to guide the robot in
performing a diÆcult dextrous manipulation task.

Of course these models do not represent the actual problem the human
operator solved: using visual and tactile information to determine which
actions are necessary to successfully complete the task. A reaction model
is necessary for abstracting this sort of ability, and there is a great deal of
research being performed on methods for performing this very challenging
learning task. However, the action models presented here are very good at
answering the question of what the teleoperator actually did to successfully
complete the task. The action model abstracted a representation of what
a \typical" performance of the task looked like, for instance. These models
were also useful for identifying the critical points in the motion (such as
the location of the grasp) for which the operator's performance was slowest,
most deliberate, and most consistent between performances. The best-�t
trajectory also provided a useful parameterization against which to measure
other action and sensory variables.

Although models of reaction skill are the most direct solution for many
intelligent control applications, action models can also be used in practice
for guiding robotic performance. Many industrial robots are programmed to
trace trajectories in space for the purposes of spray painting and welding, and
the actual process of supplying the proper via points (e.g., by teach pendant)
and building paths between them tends to be diÆcult, primitive, iterative,
and frequently give sub-optimal results. The methods demonstrated here for
trajectory �tting and trajectory smoothing could greatly improve the ease
of programming and the quality of results for these kinds of applications.
Finally, even for applications which need sensory feedback to eliminate mod-
eling errors, action learning can provide a prototypical feed-forward motion
around which the feedback control can be developed.

Chapter 7

Modeling actions for gesture

recognition

7.1 Introduction

Gesture recognition is one of the most important applications of action learn-
ing. When we build models for recognition only, the form of the models does
not necessarily need to be useful for generating representations of typical or
best-�t trajectories, for animation, nor for qualitative motion comparisons.
All we need is to be able to estimate a probability that a given example
performance is associated with the class of actions represented by a given
model. In this chapter, we describe a kind of model for action learning which
is designed solely for use in gesture recognition, and demonstrate its use in
an sign-language recognition application which can learn to recognize new
gestures interactively.

One example of using action models for gesture recognition has already
been presented in Section 3.5. In that approach, the statistical assumptions
underlying the �tted model are used to estimate a probability that a given set
of data would be generated by the model. Before training the action models,
the time variable of each training example was linearly scaled to span the
interval 0 to 1. A spline smoother was used to �nd the best-�t motion from
the training examples for each motion, using the scaled time values as the
smoothing parameterization. Although the resulting models proved e�ective
for gesture recognition, they are based on assumptions which are much more
constraining than necessary for the purpose of gesture recognition. The spline

141

142 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

smoother assumes that the training data has a locally Gaussian distribution
about a single best-�t value for each parameterization value, and that the
best-�t motion is relatively smooth. In addition, the smoother model will
have a diÆcult time recognizing motions which can involve branching or
looping trajectories.

While the assumptions made for the development of smoother-based ac-
tion models are useful for building best-�t trajectories, they are unnecessary
when the models are purely for gesture recognition. The models used in this
chapter are based on discrete hidden Markov models (HMMs), and are thus
very di�erent kind of model than those used elsewhere in this thesis. Because
HMMs are based on Markov models, where state-transition probabilities are
tabulated in a matrix, there is no need for any a priori assumption of proba-
bility distribution like that used for the spline smoother. Thus, unlike models
based upon smoothing splines or principal curves, there is no assumption of
Gaussian distributions nor any problem with probabilistic branching (Sec-
tion 3.8). For the purposes of these models, an example performance is
represented as a single-dimensional or multi-dimensional sequence of sym-
bols. Each HMM model consists of an initial state distribution vector �, a
state-transition probability matrix A, and an output-probability matrix B.
Instead of recording a \snapshot" of the state of the system at a given time,
each symbol or symbol-vector in the sequence represents the state of the sys-
tem within a particular time interval, and the time intervals corresponding
to the symbols in the sequence overlap. The symbols will be represented as
integers, but their ordinal value has no particular meaning: symbol 1 is no
\closer" to symbol 2 than it is to symbol 3. This is in contrast to the contin-
uous variables of the reduced-dimensional representations from NLPCA or
principal curves.

The method demonstrated here for training the models facilitates online,
interactive learning of new gestures and automatic re�nement of previously-
learned models in addition to on-line recognition. The motivation is to allow
us to build systems for intuitive human-computer interfaces, particularly
for constructing interactive gesture-based robot programming environments.
As people interact with machines which are increasingly complex and au-
tonomous, they should be allowed to focus their attention on the content
of their interaction rather than the mechanisms and protocol through which
the interaction occurs. This is best accomplished by making the style of
interaction more closely resemble that to which they are most accustomed:
interaction with other people.

7.2. HIDDEN MARKOV MODELS FOR RECOGNITION 143

This style of interaction should be particularly useful in applications
where robots are programmed by example, or for gesture-based programming.
Examples of such applications include the research of Tung and Kak [78], who
demonstrate automatic learning of robot tasks through a DataGlove inter-
face. Kang and Ikeuchi [34] developed a system for simple task learning by
human demonstration using a vision system. Voyles [80] developed a system
for gesture-based programming via a multi-agent model.

One capability which is currently lacking in systems such as these is a
mechanism for online teaching of gestures with symbolic meanings. Most
gesture recognition systems either require some explicit programming, or in
the case of neural-nets, require o�-line training of model parameters. Such
systems are thus unsuitable for interactive applications where gestures must
be taught and then recognized without waiting for an o�-line training or
programming phase. A teach-by-demonstration system should also be able
to learn a new gesture or skill in an online manner and with a very small
number of examples. This simpli�es the teaching process because it more
closely resembles the manner of instruction which we commonly use to train
people.

The gesture recognition system presented in this chapter can interactively
recognize gestures and learn new gestures online with as few as one or two
examples. It is also able to update its model of a gesture iteratively with
each example it recognizes.

7.2 Hidden Markov models for recognition

Our goal is to make a system which can not only interact with a user by
accurately recognizing gestures, but which can learn new gestures and up-
date its understanding of gestures it already knows in an online, interactive
manner. Our approach is automated generation and iterative training of a
set of hidden Markov models which represent human gestures. Using this
approach, we have built and tested a system which recognizes letters from
the sign language alphabet using a Virtual Technologies `Cyberglove'.

The most basic assumption we make about the nature of human gestures
are that they are \doubly stochastic" processes. These are Markov processes
whose internal states are not directly observable. For each state transition
in such a process, the system generates an observable output signal whose
value depends on a probability distribution which is �xed for each internal

144 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

state. A model of such a system is called a hidden Markov model (HMM).
Generation and use of HMMs for gesture-learning and gesture-recognition is
discussed in Section 7.4. Modeling human gestures as HMMs allows us to
deal with the highly stochastic nature of human gesture performance.

For computational simplicity, we assume that the HMMs are `discrete'
HMMs. These are HMMs whose observable outputs are members of a �nite
set of symbols. Before we can use discrete HMMs to model gestures, we
must therefore preprocess the raw data from the gesture input device into
a sequence of discrete symbols. The algorithm we use for this process is
discussed in Section 7.5.

In the rest of this thesis, the form of the feature-space representation
has been a reduced-dimension vector of real values (Section 1.2). This is
very di�erent from the representation used in this chapter. We use a one-
dimensional sequence of symbols, but we could also use a multi-dimensional
sequence by using multiple output-probability matrices. The design choice
to use a discrete symbol representation is partly due the simpli�ed HMM
computations, but is also due to the fact that much of the additional infor-
mation in a real number state representation is not necessary for recognition
of actions. A real-number vector representation is useful for action models re-
constructing motion in space, but even for this purpose a discrete state-based
representation is sometimes adequate [88].

Gesture recognition is also, to a certain extent, a process of data com-
pression, where we input a large amount of raw data and output a signal
value that represents the classi�cation of the gesture. For the method out-
lined in this chapter, this compression process is composed of two stages.
The greatest data-reduction occurs when the preprocessor converts the large,
multichannel stream of data from the gesture input device to the sequence of
discrete observable symbols. We reduce about 0.5-1.0 Kbytes of data from
the Cyberglove to a sequence of 5-10 observable symbols from a set of 32 and
256 symbols, which is a reduction of about 100:1. Since the online portion of
our gesture learning process is limited to the modi�cation of the parameters
of HMMs, this data-reduction greatly increases the speed and simplicity of
the online learning process by focusing the HMM on modeling speci�c fea-
tures of the signal. In Section 7.7, we discuss the results of our determination
of the proper amount of data-reduction necessary for allowing the system to
e�ectively learn gestures through an interactive training process.

7.3. INTERACTIVE TRAINING 145

7.3 Interactive training

In this chapter, we describe a system which allows for for interactive, online
training. In this system, each kind of gesture is represented by an HMM,
a list of example observation sequences, and an optional action to be per-
formed upon recognition of the gesture. Our concept of interactive training
is currently based on the following general procedure:

1. The user makes a series of gestures.

2. The system segments the stream of data from the input device into
separate gestures, and in real time, tries to classify each gesture.

(a) If the system is certain about its classi�cation of a gesture, it
immediately performs an action associated with that gesture (if
one has been speci�ed). Such an action could be passing the result
of the classi�cation to a higher-level HMM, or sending a command
to a robot.

(b) If the system is in any way unsure about its classi�cation of a
gesture, it queries the user for con�rmation of its classi�cation.
The user either:

� con�rms the system's classi�cation, or

� corrects the classi�cation, or

� adds a new gesture class to the system's bank of gesture mod-
els.

3. The system adds the symbols of the encoded gesture to the list of
example sequences of the proper gesture model, then updates the pa-
rameters of that model by retraining the HMM on the accumulated
example sequences.

In our implementation, recognition of the gesture and automatic update
of the HMM through the Baum-Welch algorithm is fast enough not to be
noticeable during normal use of the system. This provides the system with a
truly interactive character. For example, a user controlling a robot through
the gesture system could perform a gesture which the system has not seen
before, and the system would immediately respond by asking what kind of
gesture it is. The user could respond that it is a \halt" gesture, and that
the robot should stop its current motion when that gesture is made. The

146 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

next time the user performs that gesture, the system should recognize it and
immediately halt the motion of the robot.

7.4 Learning and recognition

Hidden Markov Models [58, 59] are commonly used for speech recognition,
but have also been used for characterizing task information and human skills
for transfer to robots in telerobotic applications [26, 87, 88].

A hidden Markov model is a representation of a Markov process which
cannot be directly observed (a \doubly stochastic" system). The discrete
form of the HMM is represented by three matrices, (A;B;�). The matrix
A = faijg speci�es the probability that the internal state will change from i
to j. B = fbjkg represents the probability that the system will generate the
observable output symbol k on transition to state j. The third component of
a hidden Markov model is a vector � indicating the distribution of probability
that any given state is the initial state of the hidden Markov process.

There are three problems commonly associated with hidden Markov mod-
els [59]:

1. determining the probability that a given sequence of observable symbols
would be generated by a given HMM,

2. determining the most likely sequence of internal states in a given HMM
which would have given rise to a given sequence of observable symbols,
and

3. generating an HMM that best `explains' a sequence or set of sequences
of observables.

We are directly concerned with the �rst problem for gesture recognition, and
the third problem for generating the HMMs used in gesture recognition.

Gesture recognition. The problem of recognizing a gesture from a given
set of input data is an example of problem 1. First, raw input data from the
input device is preprocessed into a sequence of discrete observation symbols
O = O1O2O3 : : : . Then it is determined which of a set of HMMs, each
modeling a di�erent gesture, is most likely to have generated that sequence:
L = argmaxl[P (Oj(Al;Bl;�l))]. In addition, the system determines if there

7.5. SIGNAL PREPROCESSING 147

is an ambiguity between two or more gestures (the probabilities of the most
likely gestures are too close to one another) or if no known gesture is similar
to the observed data (the probability of the most likely gesture is too small).

Learning gesture models Developing the HMM which will be associated
with a gesture is an example of problem 3. The algorithm which is commonly
used for this purpose is the Baum-Welch (BW) algorithm. Baum-Welch
uses an iterative expectation/maximization process to �nd an HMM which
is a local maximum in its likelihood to have generated a set of `training'
observation sequences. Although the space of possible HMMs for a given
HMM structure is generally full of many of these local maxima, it has been
observed that most work similarly well for practical use in modeling doubly
stochastic systems.

While training of HMMs is normally a batch process, where many exam-
ples of a given gesture are used simultaneously as inputs to the Baum-Welch
algorithm, we use a di�erent approach. We begin with one or some small
number of examples, run BW until it converges, then iteratively add more
examples, updating the model with BW after each one. This allows for an
online, interactive style of gesture training. Section 7.7 compares the results
of this kind of incremental training to batch-style processing.

7.5 Signal preprocessing

Since we are using discrete HMMs, we need to represent gestures as sequences
of discrete symbols. We must therefore preprocess the raw gesture data,
which in our case are values of 20 joint-angles in the hand, estimated from
18 sensors in the Cyberglove at about 10 Hz.

The �rst choice we must make in performing this preprocessing is whether
we want to generate a one-dimensional sequence of symbols or a multi-
dimensional sequence. The multi-dimensional sequence may be used as input
to a multi-dimensional HMM. If we assume that the dimensions of the ob-
servable sequence are dependent only on the internal state and not on one
another, then the multi-dimensional HMM will have a single A matrix and
multiple B matrices, one for each dimension of the output symbols. Al-
though it makes some intuitive sense to train a multi-dimensional HMM
which takes as inputs, say, 5 dimensions of symbols (one for each �nger), we
chose for simplicity to look at the hand as a single entity, and generated a

148 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

Concatination

Vector quantization

FFT

Windowing

Signal interpolation

Gesture segmentation

CyberGlove

[a | 20 channel continuous stream]

[b | stream segemented into gestures]

[c |resampling at even intervals]

[d | overlapping windows of data]

[e | 20 channels of spectra for each window]

[f | 1 vector for each time window]

[g | 1 symbol for each time window]

Figure 7.1: Data
ow in the gesture-data preprocessor

single-dimensional sequence of symbols which represent features with respect
to the entire hand. The speci�c preprocessing algorithm we chose for this
purpose is inspired by work done with HMMs in the speech community|it
is vector-quantization (VQ) of a series of short-time fast Fourier transforms
(STFFTs) of the signal from the input device.

The preprocessor is designed to encode gestures as sequences of symbols,
where each symbol encodes information about the spectral content of the
gesture within a given interval of time. Figure 7.1 shows the
ow of data
through the preprocessor. 20 channels of joint-angle data from the hand
are read from the Cyberglove [a]. These data are segmented into separate
gestures [b], and resampled by cubic interpolation [c]. Each channel is then
broken into a series of overlapping time-windows of 4-8 readings, and each
time-window is smoothed with a Hamming function before being passed to
the FFT routine [d]. The power spectra of the 20 channels are then concate-
nated [e] to form a large vector [f]. This vector represents the position and
dynamic characteristics of the gesture during the time-window. Each of these
large vectors is turned into an observable symbol by a vector-quantizer [g].

The vector quantizer encodes a vector a by returning the index K of a
vector cK in a set of vectors called the `codebook' (cK 2 C) which is closest

7.6. IMPLEMENTATION 149

Preprocessing/
Recognition/
Learning

Data-collection/
Segmentation

CyberGlove

(A;B; �;O), [action]

(A;B; �;O), [action]

(A;B; �;O), [action]

Unix process

for data collection

Unix process

for GUI,

HMM analysis

RS-232 socket or

temp. �le

[action]

[action]

[action]

...
(Gesture models)

...

Figure 7.2: Data
ow for online learning system

to a in the L2-norm sense (i.e., K = argmink(ck � a)). The codebook is a
set of vectors which is believed to be representative of the domain of vectors
to be encoded. We generate this codebook using the LBG algorithm [23] on
a representative sample of gesture data. Codebook generation is an o�-line
process.

Because the preprocessor is coded as a data �lter, a symbol is sent to the
gesture-recognition system as soon as enough data has been read from the
glove to generate it. This allows the system to eventually be recon�gured
to use HMMs for online segmentation of continuous gestures rather than
performing segmentation as a separate step.

This preprocessor is not task speci�c. It assumes only that all dimen-
sions of the data are related, that the gesture itself is a process which evolves
fairly smoothly over time, that the interesting features of the gesture are
amenable to clustering in the spectral domain and are consistent in nature
over time. It may thus be used without modi�cation for recognizing gestures
such as handwriting, facial expressions, or dance motions as well as hand ges-
tures. Note that specially developed, task-speci�c signal-preprocessors could
be expected to perform better for recognition of speci�c kinds of gestures by
leveraging expert a priori knowledge of the structure of the gestures, and
would be necessary for signals which do not satisfy the assumptions stated
above.

7.6 Implementation

Although HMMs are able to automatically segment gestures from continuous
streams of data, we perform segmentation before data is sent to the HMM.

150 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

This makes the process of learning new kinds of gestures tractable, because
the HMMs are unable to segment gestures they have not seen before. Our
gesture segmentation procedure is very simple, relying on the hand of the op-
erator to be still for a short time between gestures. We generate a smoothed
measure of the overall velocity of points on the hand or of joint angles. When
this measure exceeds an `on' threshold value, we begin recording data as a
gesture, and when the measure falls beneath an `o�' threshold, we indicate
that the gesture is completed. Another possible tool for segmentation is an
acceleration threshold. This is useful for segmentation when the hand does
not stop between gestures, and can be combined with the velocity-based
segmentation.

Figure 7.2 shows the organization of our system. A Cyberglove is in-
terfaced to a Sun Sparcstation via an RS-232 serial connection, and sends
readings of joint angles in the user's hand to a data-collection program at
about 10 Hz. Each reading that is part of a gesture is marked with a times-
tamp, and sent to the gesture-recognition program via either a TCP-based
UNIX socket or a temporary �le. The socket connection is used for normal
operation, and the temporary �le is used for creating databases of gesture
data for o�-line generation of vector-codebooks, and for automated testing
and tuning of system parameters.

After the data for a gesture is preprocessed by the algorithm speci�ed
in Section 7.5, it is evaluated by all HMMs for the recognition process, and
then used to update the parameters of the proper HMM. For recognition of
hand gestures, we used 5-state Bakis HMMs. A Bakis HMM is one where
the system is restricted to only move from a given state to the same state or
one of the next 2 states. A 5-state Bakis HMM may move from state 1 to
states 1, 2, or 3, and from state 4 to state 4 or 5 (there is no state 6). This
restriction encodes the assumption that the gestures we are classifying are
in general a simple sequence of motions, and non-cyclical in nature. Using
this HMM structure, we performed tests to determine the ability of the sys-
tem to accurately recognize gestures and to optimize the parameters of the
preprocessor.

The data-collection program for the Cyberglove was written in C, and
the interactive HMM recognition/training/GUI program was written in a
combination of C, Tk, and Scheme. Although matrix operations are coded
in C for speed, the outer loops of Baum-Welch, gesture-recognition, and
all other code is currently executed in interpreted Scheme. Even with the
majority of the code written in Scheme, gesture-recognition and update of

7.7. CONFIDENCE MEASURE 151

the proper HMM occurs in a fraction of a second on a Sparcstation.

7.7 Con�dence measure

We de�ned a simple evaluation function to examine the classi�cation power
of our algorithm. The function indicates misclassi�cations and their severity,
as well as the system's con�dence in its correct classi�cations.

Our evaluation function is

V = log10

 X
i

PEi
=PC

!
; (7.1)

where PC is the probability that the observation sequence would be created by
the correct gesture model, and PEi

is the probability that the gesture symbols
would be created by the ith incorrect model. Therefore, if V < 0, we have
correct classi�cation, and if V > 0, the gesture is incorrectly classi�ed. If
�1 < V < 1, the classi�er should indicate that its classi�cation is suspect. If
V < �2, the system has made the correct classi�cation and is very con�dent
of the classi�cation.

We plotted the performance of the system using the following procedure:

1. Train each gesture model with one example.

2. Test the classi�cation of 20 test examples of each kind of gesture (the
models are never trained on these examples).

3. Plot the average value of the V verses the number of examples of ges-
tures each model has seen.

This procedure allows us to judge the performance of the algorithm with
respect to learning rate and overall con�dence. It also allows us to test the
e�ect of varying parameters such as the number of vectors in the codebook
(the number of observable symbols), the size of the STFFT windows, and
the resampling time step for the signal interpolator.

For our test, we picked 14 letters from the sign language alphabet which
were amenable to VQ clustering and unambiguous with respect to general
hand orientation, since we did not using the Polhemus 6D position/orientation
sensor for the hand. The letters we used are A, B, C, D, E, F, G, I, K, L,

152 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

-25

-20

-15

-10

-5

0

1 2 3 4 5 6 7 8 9 10

V

Number of training examples

A
B
C
D
E
F
G
I

K
L

M
U
W
Y

(a) 128 symbols, 10 Hz resampling, 4 point
data windows

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

1 2 3 4 5 6 7 8 9 10

V

Number of training examples

A
B
C
D
E
F
G
I

K
L

M
U
W
Y

(b) 64 symbols, 20 Hz resampling, 8 point
data windows

Figure 7.3: Evaluation of gesture classi�cation process

7.8. DISCUSSION 153

M, U, W, and Y. The �nal positions for two of these gestures are shown in
Figure 3.3 on page 49.

Two plots from our tests are shown in Figure 7.3. They demonstrate that
the system is very reliable for both these sets of preprocessing parameters.
The average value of V in all cases is less than zero, indicating reliable clas-
si�cation. Measuring percentage of classi�cation errors, the trial of plot (b)
had 1% error after 2 examples and less than 0.1% error after 4 examples. The
trial of plot (a) had 2.4% error after two training examples, and made no
classi�cation errors after seeing 6 examples. These results are comparable to
the results from Section 3.5, but both methods work so well on the data that
their recognition abilities cannot be adequately compared using this data set.

The iterative training of the HMMs usually results in models which are
close to the quality of batch-trained HMMs when we compare the likelihood
that the training data would be generated by the models. In a few cases,
however, batch training did much better. This is probably the result of
early training examples biasing an HMM toward a poor local maximum.
Fortunately, batch training from a random HMM is a rapid process, and can
be easily used to try to improve HMM models during a couple seconds while
the system is not doing real time recognition. Our results show that this
is not generally necessary, however, as iteratively trained HMMs work well
enough in classifying gestures.

7.8 Discussion

We have demonstrated an eÆcient and reliable system for online learning and
recognition of gestures. Online learning of gestures in an interactive system
might be used to make cooperation between robots and humans easier in
applications such as teleoperation and programming by demonstration.

The number of gestures we can accurately classify is currently limited by
the number of observable symbols the preprocessor generates. Thus systems
which perform o�-line training can recognize a larger gesture vocabulary.
Fels and Hinton [19], for example, use neural networks trained o�-line to
recognize 66 root words, each with up to 6 endings. A future direction in
which the work of this chapter could be taken forward is to increasing the
potential size of the gesture vocabulary of our online system by having the
preprocessor generate 5 dimensions of symbols (one for each �nger) as input
to a multidimensional HMM.

154 CHAPTER 7. MODELING ACTIONS FOR RECOGNITION

Due to the expense of a Cyberglove and the awkwardness of its use in
real situations, recognition by visual tracking of a person's hand [57, 71]
may be more practical for many applications. Since this work was originally
published [39], HMMs have recently been used for online adaptive recognition
of arm motions using a vision system [82].

It is interesting to compare the results from this chapter to the results
from the spline smoother model in Section 3.5. Since both methods did so
well on this set of letter-signing data, it would be helpful to have a more
diÆcult data set to better characterize their relative strengths for recogni-
tion. Nevertheless, we can say that the online learning capability of the
HMM-based approach is a large advantage. It is possible that similar ca-
pabilities might be developed for the spline smoother model, however, and
the spline smoother model would then have the advantage that it requires
no o�-line process for codebook generation, and has no need of sophisticated
preprocessing of the performance data.

The most interesting di�erence between the smoothing spline and hidden
Markov model methods is the nature of the resulting models. Because the
spline smoother model is an estimate of a best-�t trajectory with associated
variance values, it can be used for high-quality smooth animations of the
learned motion. The HMM model, on the other hand, is far too opaque for
e�ective use in animation. The fact that the HMM model is not tied to a
Gaussian distribution makes it better suited for recognizing motions which
vary in ways including probabilistic branching and looping in con�guration
space.

Chapter 8

Conclusion

8.1 Contributions

The central idea of this thesis is the formulation of action learning as a
dimension reduction problem. The most important theoretical contribution,
however, is a new nonparametric method for �tting trajectories to phase
space data. In addition to these, the thesis contributes a comparison of
previously existing methods which may be applied to dimension reduction
for action learning. Finally, a large amount of new software was written
during this thesis, a subset which is being distributed freely on the Internet.

8.1.1 Formulation of action learning as a dimension

reduction problem

In this thesis, action learning is formulated as the characterization of the
lower-dimensional manifold or constraint surface, within the much higher-
dimensional state space of space of possible actions, upon which human ac-
tions states tend to lie during performance of a given task. While it is useful
to characterize the regions of con�guration space visited during typical exam-
ple performances, the thesis shows that it is even more useful to characterize
the regions of phase space visited, as this comprises a more complete descrip-
tion of the performance's state space.

Once such a description has been learned, it is a valuable tool for recogniz-
ing and classifying particular observed performances, for performing motion
analysis, for skill transfer applications, and for creating computer animations.

155

156 CHAPTER 8. CONCLUSION

8.1.2 Nonparametric methods for trajectory �tting

in phase space

This thesis argues that the \best-�t trajectory" is the best one-dimensional
model for a set of action data. To build such a model from a set of position
and velocity data sampled from multiple examples of task-execution, this
thesis develops two new mathematical tools:

� a spline smoother is derived for �tting phase space data sets, and

� the principal curves algorithm is adapted to use this new smoother for
�tting trajectories in phase space without an a priori parameterization.

Together, these provide a practical solution for an important general problem:
What is the best-�t path through a sampled vector �eld?

The spline smoother �ts a curve which balances a measure of its smooth-
ness against the errors in its approximation of a given set of parameterized
position and velocity data. The optimal curve is found by solving a linear
system. When used with this smoother in phase space, the principal curves
algorithm is transformed from a method for nonlinear regression into a valu-
able tool for modeling the motion of a dynamic system.

8.1.3 Examination of existing parametric and

nonparametric methods for action learning

The use of parametric and nonparametric methods for mapping raw perfor-
mance data to and from a lower-dimensional feature space is demonstrated
on an example data set, and the nonparametric methods are shown to present
greater promise.

Linear parametric models such as PCA, while easy to interpret, are lim-
ited in the range and complexity of actions they can represent eÆciently.
Nonlinear parametric models such as NLPCA are capable of eÆciently rep-
resenting a more general range of actions, but result in opaque and often
suboptimal mappings.

Nonparametric methods combine a set of local models which are individ-
ually easy to analyze and interpret into a global model which is capable of
representing complex actions. The form of the local models can be designed
explicitly for the purpose of modeling action data, and as we have seen, can
be designed to work simultaneously with both position and velocity data.

8.1. CONTRIBUTIONS 157

8.1.4 Software

Several new software packages were developed in the process of this research,
some of which are being freely distributed at
http://www.cs.cmu.edu/~chrislee/Software/

The most signi�cant are listed here.

CMATLIB The Cmatlib package is a library for linear algebra. It has
functions for building and managing memory for matrices, and has an easy-
to-use interface to the same high-performance matrix libraries BLAS and
LAPACK which Matlab uses to perform its computations. The BLAS and
LAPACK interfaces are generated by a Perl program I wrote called For-
tranwrap, which automatically generates glue-code and macros for calling
Fortran code from C. Another package I wrote, G-Wrap, is used to create
an interface between Cmatlib and the RScheme Scheme interpreter written
by Donovan Kolbly. This allows RScheme to be used as a matrix computa-
tion environment like Matlab, but with a much more powerful programming
language.

G-Wrap I wrote G-Wrap to automatically generate glue-code for calling C
functions from a Scheme interpreter. Currently, both the Guile and RScheme
interpreters are supported. G-Wrap is also currently being used by Rob
Browning at the University of Texas to add a Guile-based scripting interface
to GNUCash, a free personal �nance program for Unix-compatible operating
systems. I recently turned over maintenance of G-Wrap to Rob Browning,
and the program has been packaged for an upcoming version of the Debian
GNU/Linux operating system.

RSK The Robot Scheme Kernel is a virtual machine which is capable of
executing Scheme code in real-time systems. I wrote it as part of the high-
level control system for the (DM)2 and (SM)2 robots in the Space Robotics
Laboratory, and it will eventually be suitable for directing the high-level
operation of a robot which uses low-level actions skills learned by methods
such as those presented in this thesis. This system, described more fully in
Appendix A, is able to represent high-level robot operations (or simulations)
with a special version of the Scheme programming language which has been
extended to represent both temporal as well as logical relationships between
individual operations. RSK is not yet being distributed.

158 CHAPTER 8. CONCLUSION

8.2 Future research

The research presented in this thesis leaves open many avenues for future
work.

8.2.1 An investigation of cross-validation for principal

curves in phase space

The spline smoother presented in Chapter 4 uses two parameters, p1 and
p2, which weigh the relative penalty for approximation error in position and
velocity respectively against the smoothness of the model curve. Chapter 5
demonstrates how to select a ratio of p1=p2 which satis�es a given criterion for
disambiguating the projection of sampled data points with similar positions
but di�erent velocities. This still leaves us with one free weighting parameter
for building our principal curve �t, however.

This parameter, weighing overall approximation error against the smooth-
ness of the model curve, is useful for manually tuning the approximating
curve to satisfy other task-dependent criteria. However, we might prefer to
use cross-validation to chose the parameter automatically from the training
data. Although cross-validation is problematic for the conventional principal
curves algorithm, sometimes resulting in severe over-�tting [28], it may not
be a problem for principal curves in phase space.

Longer model curves can �t a given set of data better in position space
while not signi�cantly increasing the smoothness penalty and not lowering
the position-space cross-validation error. This tends to result in a model
which does not resemble the original motion trajectories, however. These
long model curves will not match the directional velocities of the original
trajectories at the sample points, so they are not a likely result of cross-
validation in phase space.

To study the e�ectiveness of cross-validation for principal curves in phase
space, the relationship between cross-validation error in position space and
velocity space should be related theoretically to the e�ect of the scaling of the
parameterization used for the conditional-expectation step of the principal
curves algorithm (Section 5.5). Without a derivation for eÆcient generalized
cross-validation for spline smoothing in phase space, cross-validation for the
principal curve will be signi�cantly slower than determination of the principal
curve without cross-validation.

8.2. FUTURE RESEARCH 159

8.2.2 Generalized cross-validation for smoothing

splines in phase space

Conventional spline smoothers can automatically determine the best smooth-
ing weight based on generalized cross-validation, and this determination can
be performed in linear space and time. It may be possible to extend this
result to the spline smoother in phase space presented in Chapter 4, but this
may require a more sophisticated re-derivation of the smoother.

Such a result would make cross-validation for the principal curve algo-
rithm, discussed above, highly eÆcient.

8.2.3 Building multidimensional action skill models

around the \skeleton" of the best-�t trajectory

Although it is possible to build such a multidimensional model using the
method described in Section 3.7, the diÆculty is building a model where
the second or third parameterizing variable has a consistent, understandable
meaning over the entire course of the best-�t trajectory. The work by Tib-
shirani [76] on rede�ning the principal curve based on mixture models is a
useful starting point, as well as the work of LeBlanc and Tibshirani on adap-
tive principal surfaces [37], and the work of Tipping and Bishop on mixtures
of probabilistic principal component analysis [77].

8.2.4 Reducing the number of knots in the spline

models of best-�t trajectories

Spline smoothers can be de�ned which use less knots than training points [16].
It should be possible to adapt the smoother derived in Chapter 4 to work
on this principle, and to modify the principal curves algorithm described in
Chapter 5 to adaptively reduce the number of knots in its representation of
the principal curve. This should make the models produced by this method
more compact and easier to work with, and reduce the computational re-
sources required for using them.

160 CHAPTER 8. CONCLUSION

8.2.5 Reducing the computational complexity of the

phase space

smoother to linear space and time

Section 4.4 outlines how the spline smoother derived in this thesis could be
implemented to run with time and memory requirements which are linear
in number of points being smoothed. This has not been implemented yet,
however, and the nature of the approximations necessary for such a solution
need to be researched further.

8.2.6 Characterizing the complexity of low-level

action skills

The relationship between the complexity of low-level action skills and their
implicit, underlying dimensionality is an interesting direction for further
study. The methods demonstrated in this thesis should be very e�ective
for this research.

8.2.7 Building usable robot skills from action models

Action modeling should be bene�cial for building usable representations of
robot skills for tasks which are diÆcult but largely feed-forward in nature.
This work could be done in the context of the high-level control framework
presented in Appendix A.

8.3 Publications from thesis work

Some of the material in this thesis has been published previously in the
peer-reviewed literature, in the following papers:

� Christopher Lee, Yangsheng Xu. Trajectory �tting with smoothing
splines using velocity information. IEEE International Conference on
Robotics and Automation, San Francisco, CA. April 2000. pp. 2796{
2801.

� Christopher Lee, Yangsheng Xu. Message-based evaluation for high-
level robot control. Journal of Intelligent and Robotic Systems, Vol.
25, June 1999. pp. 109{119.

8.3. PUBLICATIONS FROM THESIS WORK 161

� Christopher Lee, Yangsheng Xu. Reduced-dimension representations of
human performance data for human-to-robot skill transfer. Proceedings
of the 1998 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Victoria, B.C. vol. 3, pp. 1956{1961.

� Christopher Lee, Yangsheng Xu. Online, interactive learning of ges-
tures for human/robot interfaces. 1996 IEEE International Conference
on Robotics and Automation, Minneapolis, MN. vol. 4, pp. 2982{2987.

162 CHAPTER 8. CONCLUSION

Appendix A

High-level robot control for

action execution

In Section 1.1, we discussed how action-skills are decomposed into high-level
strategy and low-level components. In this appendix, we present an architec-
ture for implementing high-level strategies which could be useful for executing
these action skills. We also present a kind of interpreted scripting language
based upon the general-purpose Scheme programming language, but which
is evaluated using a novel method of code execution called \message-based
evaluation" (MBE). This scripting language allows high-level task strategy to
be described in terms of both logical and temporal relationships of individual
low-level actions. The original motivation for this work is to build a high-level
control system which can safely meet the needs of dynamically recon�gurable
real-time software system (e.g., for control of manipulator robots running the
Chimera operating system), but the general approach is also applicable for
animation, simulation, and for building interactive video game engines.

A.1 Dynamically recon�gurable

real-time software

A major goal of real-time operating systems like Chimera is to enable sensor-
based control applications to be built from libraries of reusable software mod-
ules. For this purpose, they provide standard interface speci�cations for im-
plementing reusable real-time software modules, and a library of functions
for building and using con�gurations of these modules [72]. A well-written

163

164 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

Encoder Gravity
 comp.

Dynamics

Torque

PID

Actuator

Q_REF

TORQ_CTL

TORQ_GRV

TORQ_DYN TORQ

Q_MEZ

Trajectory
 generator

Figure A.1: Example con�guration of real-time modules

and debugged library of real-time modules thus facilitates rapid develop-
ment of reliable sensor-based control systems. In Chimera, these modules or
\port-based objects," typically cycle at some �xed frequency and communi-
cate their inputs and outputs through a global state-variable table. A typical
con�guration of real-time modules for controlling a robot manipulator arm
is shown in Figure A.1.

A real-time software module is reusable only if it is suÆciently indepen-
dent of the speci�c details of the di�erent applications for which it is used.
Therefore, an essential focus of developing recon�gurable software is keeping
task-level details out of the reusable modules. For example, a PID control
module should not care whether it is controlling a joint-angle in a robot-
arm, a Cartesian tool-coordinate, or a feature-coordinate in a visual-servoing
process. As a result, reusable software modules are most useful for the lowest-
level tasks within a robot software architecture|those which do not require
explicit knowledge of the task-level details of the robot's operation.

In robotic applications, this specialization results in a need for a higher-
level layer of the software architecture which can direct the use of the reusable
modules for the purpose of satisfying the robot's task-level requirements.
This layer typically initializes all the reusable modules when the robot is
booted, sends messages to modules telling them to modify their working pa-
rameters (e.g., adjusting controller gains, or sending via-points to a trajectory-
generator module), and receives messages from modules to learn of signi�-
cant events in the operation of the robot (e.g., signi�cant qualitative changes
in the readings of robot sensors). Most importantly, when the qualitative
nature of the robot's task changes signi�cantly, the high-level layer of the
architecture must change the con�guration of reusable-modules to match the
needs of the task. For instance, when a manipulator arm is moving in a

A.2. SCRIPTING FOR HIGH-LEVEL CONTROL 165

Cartesian control mode and contact is sensed at the end-e�ector, the robot
should switch to a force-control or impedance control con�guration. Such a
\dynamic recon�guration" typically involves turning o� some modules and
turning others on. This must be done on the
y, changing the active control
law without disturbing the timing or e�ectiveness of the overall system. In
cases such as the switch from Cartesian to compliant control, this must be
performed without delay to avoid unacceptable forces at the end-e�ector. It
is thus essential for the safety of the robot and its surroundings that the
high-level controller react to important task-level events in hard real-time.

A.2 General purpose scripting languages for

high-level control

Several strategies have previously been used for managing such dynamically
recon�gurable subsystems, including on-line state machines, and separate
high-level programs running on host workstations. In several Chimera-based
robot architectures [18, 46], the high-level process recon�gures the real-time
subsystem based on an on-line state machine interpreter responding to mes-
sages sent from modules in the recon�gurable subsystem. ControlShell [65]
for the VxWorks operating system also uses a state machine for managing
dynamically recon�gurable real-time subsystems. Implementing interpreters
for state machines is fairly straightforward, and state-machines are well un-
derstood and amenable to design through graphical user interfaces. Syn-
chronous languages such as Esterel [8] which is used in the ORCCAD [70]
robot application development system, may also be useful for this purpose.

Another approach for managing recon�gurable subsystems of real-time
control modules is represented by Onika, a visual programming environment
for designing control systems as con�gurations of modules, and for control-
ling the recon�guration of these control systems during execution of Chimera
applications [24]. Onika's visual programming language is limited in terms
of the algorithms it can represent, however, and because it manages dynamic
recon�guration of the low-level Chimera modules from a non real-time work-
station, it is inappropriate for managing recon�gurations which must occur
in hard real-time.

In this appendix, we present the approach of using an embedded inter-
preter for a general-purpose programming language for high-level control of

166 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

Figure A.2: (DM)2

recon�gurable subsystems. This approach has a number of advantages:

� suÆcient expressive capability for most high-level task speci�cations
can be guaranteed by using a suitably powerful interpreted language,

� a general-purpose programming language can specify robot-tasks using
traditional structured-programming or object-oriented methods,

� hard real-time response times to events can be achieved through careful
implementation of the embedded interpreter, and

� an interpreted language (in source-code form or compiled to virtual-
machine code) is a convenient way for remote operators to send general-
purpose commands to a robot while it is running (e.g., for remote
teleoperation).

Development of a robot architecture for the Dual-use Mobile Detach-
able Manipulator, (DM)2, originally motivated our adoption of this strategy.
(DM)2, shown in Figure A.2, is a mobile robot consisting of a mobile base
and a detachable manipulator arm [86]. The manipulator is a symmetric 5-
DOF arm with a gripper at each end, and may either grasp the mobile base
with one gripper to become a mobile manipulator system, or detach from the
base and walk hand-over-hand by grasping special handles with its grippers.

A.2. SCRIPTING FOR HIGH-LEVEL CONTROL 167

The software for this robot is built upon the Chimera 3.2 operating system.
It uses con�gurations of real-time modules for controlling the motion of the
mobile base and manipulator arm, and requires the ability to dynamically
change these con�gurations as the robot changes hardware con�gurations
(i.e., from mobile manipulator to walking arm) or performs di�erent tasks
(e.g., switching from walking to grasping and then lifting an object).

(DM)2 requires high-level software which can not only perform the neces-
sary recon�gurations of its low-level software in hard real-time, but which is
intelligent enough to manage the overall operation of a mobile robot. Some
examples of what the high-level software for (DM)2 must do include: using
an internal map of its environment to keep track of the angle of inclina-
tion of the surface the arm is walking on (to adjust the gravity vector for
calculating gravity-compensation torques in the joints); allowing multiple
attempts at grasping handles or the mobile base before admitting failure
(possibly perturbing the set-point slightly each time); switching between dif-
ferent controllers during di�erent subtasks (i.e., using an adaptive controller
when picking-up an object of unknown mass); following procedural descrip-
tions of arm motions for walking and mobile base movements from on-line
or o�-line path-planners; and accepting commands from a remote operator.
In all these cases, we need to specify alternative actions to be taken if any
individual operation fails.

In developing a software architecture for (DM)2, we initially built an in-
terpreter for a simple, custom-designed scripting language to manage the
dynamic recon�gurations of the low-level real-time subsystem [38]. After
some experience programming this system, however, we decided that a more
powerful, general-purpose language would be better suited to our needs and
chose Scheme. Scheme is a Lisp dialect with a concise speci�cation for which
small, eÆcient interpreters can be written. It is also a powerful language
commonly used for writing arti�cial-intelligence algorithms and for program-
ming in a functional style [1]. It is simple to use for writing descriptions
of the operations necessary for high-level control of our robot, and we felt
it easier to write more complex approaches to such task-level needs with a
general-purpose programming language than with a state-machine descrip-
tion. Scheme, in particular, has continuations as �rst-class objects, and
these play an important role in our method of executing high-level robot
code (as discussed in Section A.3). We thus developed the Robot Scheme
Kernel (RSK), which can respond to events in real-time, and which works
cooperatively with real-time code written in a system programming language

168 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

; Move arm in direction dir with speed speed until contact is detected at
; the end-e�ector, but stop if the motion lasts longer than 5 seconds.
(define (move-to-contact dir speed)

(race

(lambda () (move-arm dir speed))

(lambda () (detect-contact) 'contact)

(lambda () (pause 5.0) 'no-contact)))

; If moving the arm achieves contact, switch to a con�guration
; for compliant control
(case (move-to-contact <down> <slow>)

((contact) (start-compliant-control))

(else (GUI:error "Contact was not detected")))

Figure A.3: Robot code for a guarded move

(such as C) within an existing multi-threaded, multiprocessor robot architec-
ture. RSK satis�es these requirements through real-time memory manage-
ment strategies and a novel execution model which is designed speci�cally
for controlling robots.

A.3 Message-based evaluation

Task-based management for supervision and dynamic recon�guration of the
low-level subsystem requires a very di�erent style of coding than that for
which traditional system programming languages are designed. Two of the
main challenges in writing such high-level robot code are that

1. there may be a high degree of functional parallelism in the normal
operation of the robot's hardware, and

2. its operations involve physical processes that occur much more slowly
than the elementary software operations which are used to manage
them.

General-purpose programming languages (especially system programming
languages such as C), excel at data manipulation and logic-based control
of execution
ow. However, they are less appropriate for specifying temporal

A.3. MESSAGE-BASED EVALUATION 169

p

+

� �

a a b b

p

+

� �

3 3 4 4

p

+

9 16

p

25

5))))

Figure A.4: Evaluation by graph reduction

relationships between subexpressions such as those demonstrated by the code
in Figure A.3 (the details of which will be discussed later in this section).
RSK executes code like this by employing a method we call message-based
evaluation (MBE), which is designed to allow the structure of high-level
robot control code to re
ect the structure of the tasks whose execution it
supervises.

In functional programming languages, the evaluation of an expression is
often modeled as a process of \graph-reduction." An expression is an acyclic
graph, and evaluation is a process whereby the graph is simpli�ed in a step-
by-step fashion to a single node representing the value of the expression.
For instance, the evaluation of the expression

p
a2 + b2, coded in Scheme as

(sqrt (+ (* a a) (* b b))), could be represented (for a = 3; b = 4) as
the graph simpli�cation shown in Figure A.4.

This evaluation could be accomplished by a conventional stack-based com-
putation such as (PUSH a, PUSH a, APPLY `�', PUSH b, PUSH b, APPLY
`�', APPLY `+', APPLY `sqrt'). Such a method is eÆcient for conventional
computers and does not require a literal graph-based representation of the ex-
pression to work. A very di�erent evaluation method could also be used|one
based on message-passing between nodes of an explicit graph representation
of the expression. In such a method, each node of the graph is represented
by an object which may receive messages from and send messages to its par-
ent and child nodes, and which knows how to compute its own value when
given the value of each of its child nodes. The evaluation process is trig-
gered by sending a message to the root node commanding it to evaluate the
graph. The evaluation occurs through each node implementing the following
procedure:

1. For each child node (if you have any), send a message to that child

170 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

telling it to evaluate itself and to reply with a message containing the
result of this evaluation.

2. Once all child nodes have replied, evaluate yourself and return the
result.

In the case of the expression graphed in Figure A.4, the \variable nodes" a
and b immediately look-up their values and send them to the \multiplication
nodes" which in turn calculate their products and send these to the \addition
node", which sends the sum of these products to the \square-root node",
which returns the �nal result (5).

Although this method is obviously ineÆcient for the example computa-
tion, it has some interesting characteristics:

� For each node in the graph which has more than one child node, the
order of evaluation of the child nodes is unspeci�ed, and the child nodes
could even compute their results in parallel.

� If the underlying messaging system were to support the necessary com-
munication (see Section A.4), each node could be on any CPU of a
multiprocessor system or even on a separate computer. The evaluation
process would be exactly the same in these cases.

If we extend the evaluation process so that each node controls when and if
each of its child nodes is evaluated, we can build expressions which explicitly
represent temporal (as well as logical) relationships between the execution
of their subexpressions. We can, for instance, implement \async nodes"
which evaluate their child nodes sequentially (equivalent to the stack-based
evaluation strategy); \conditional nodes" which evaluate some child nodes
depending on the results returned by others (e.g., a node implementing an
\if-then" operation); \sync nodes" which evaluate all their child nodes in
parallel; and even \race nodes" which tell all their child nodes to evaluate
themselves and return the result of the �rst child node to �nish (aborting the
evaluation of the other child nodes). Figure A.3 shows an example of the use
of a race node. Writing an equivalent expression in a system programming
language would be much more diÆcult, typically requiring the use of explicit
polling mechanisms, or a combination of a state-machine description and a
state-machine implementation.

MBE combines a standard expression evaluation technique, similar to the
stack-based method, with an implementation of the message-passing method.

A.3. MESSAGE-BASED EVALUATION 171

This results in an interpreter with both the eÆciency of the standard method
and the ability of the message-passing method for executing code represent-
ing explicit temporal relationships between subexpressions. MBE extends
the model of the message-passing evaluation architecture by specifying that
a node must either return its result to its parent node \immediately" or
tell its parent node that it is \not done yet." The interpreter can thus use
the standard evaluation method to evaluate an expression until a call to a
function within the expression raises a \not-done" exception. When this ex-
ception is raised, the interpreter creates a child-node object representing the
incomplete function call, and a parent-node object representing the remain-
der of the (as yet un�nished) computation. At the appropriate time, the
child-node can cause the interpreter to resume the evaluation by sending its
value in a message to its parent node. Such an event is typically triggered
by a message sent from another branch of the evaluation tree or from a low-
level module indicating that a gripper has been closed, a manipulator motion
completed, or an obstacle detected.

When MBE switches from its standard evaluation strategy to its message-
passing strategy, it need only create a single object to represent the remain-
der of the incompletely reduced graph rather than an explicit graph repre-
sentation of the entire un�nished computation. This is because the object
representing the graph above the child node contains a continuation. A
continuation is a representation of the entire default course of a given com-
putation, and as such is a full representation of the incompletely reduced
graph of an expression. Continuations are typically used to implement co-
routines, threading, and throw-catch style exception handling. In Scheme,
continuations are �rst class objects. If a Scheme implementation is based
on a \continuation chain," or a chain of \incomplete continuation" objects,
rather than on a C-style stack, then creating such a continuation object is
roughly equivalent in speed and memory cost to a function call. This allows
the switching between the two styles of evaluation to be very eÆcient. Thus,
MBE works quickly and cheaply for interpreting the Scheme language.

Note that while this model of evaluation allows parallel operations to be
represented by multiple \not-done" child-nodes below a parent node, this
does not mean that MBE itself is performing any kind of multi-threaded
operation. The \not-done" nodes represent processes occurring outside the
main thread of the interpreter, typically in the recon�gurable modules. These
processes may include things such as grippers opening and closing, and ma-
nipulator arms executing motion commands. A \not-done" node may also

172 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

be waiting for command-messages from the teleoperation console, or for a
panic-message from anywhere in the robot architecture indicating that the
robot needs an immediate shutdown for safety reasons. Thus, RSK is usu-
ally waiting for messages rather than running Scheme code, and its job is to
react to these messages without delay. The state of the current evaluation
tree indicates what actions the high-level system should take when it receives
messages from the reusable modules or the host workstation.

A.4 Messaging infrastructure

In discussing the process of code evaluation by message-passing, we noted
that if the underlying messaging system were to support the necessary com-
munication, each node in the graph of the expression could be evaluated
on a di�erent CPU or computer. This motivated us to design a system for
message-passing that is optimized for speed in the local delivery of mes-
sages, but which is also able to use whatever operating-system communi-
cation mechanisms are available for passing messages to and from remote
domains.

Each RSK message contains a \To" address for directing message delivery
and a \From" address so that it may be easily replied to. Each address has a
local component and a domain name. Two nodes are in the same \domain"
if they are able to use valid memory pointers to one another for their local
addresses. Message passing within a domain is thus an inexpensive operation,
consisting of adding a message to the priority queue \in-box" of its recipient,
and adding the recipient node to a prioritized list of nodes in the domain
which have pending messages. A function written in C may also register a
local address with the messaging system, allowing it to receive messages via a
call-back mechanism. Among other things, this allows high-level Scheme code
to send parameters such as gains and via-points to low-level control modules
in a recon�gurable subsystem. If a message is sent to a node in a di�erent
domain, the message is converted from its local representation (a Scheme
object) to a binary representation which may be sent via operating-system
communication mechanisms to a process in the appropriate destination. This
remote process converts the message back to its original form and performs
the local delivery. Since Chimera is a multiprocessor operating system, and
because it is hosted by a UNIX workstation, RSK's messaging mechanism
enables it to deliver commands and information between CPUs of the real-

A.5. MEMORY MANAGEMENT 173

time computer, and to any computer on the host-workstation's network (e.g.,
the Internet).

The messaging infrastructure thus allows RSK interpreters running in
each CPU of the real-time computer to cooperate with one another, and
provides a mechanism for cooperation between the high-level control process
of the real-time computer and o�-line resources such as remote teleoperation
consoles and planners. An additional bene�t is that this communication
mechanism allows RSK to o�load some of the work of Scheme interpretation
to the host workstation. The host workstation can parse Scheme code and
compile it to a virtual machine-code representation (the compiler is actually
a Scheme program running on a UNIX implementation of RSK), and then
send a message containing the resulting virtual-machine code to the real-time
computer for execution. This allows the high-level process on the real-time
computer to focus its resources on managing the operation of the robot rather
than on parsing and compiling Scheme code.

A.5 Memory management

In Lisp-like languages, explicit management of dynamically allocated mem-
ory is infeasible. These languages rely on \garbage collection", which is
a mechanism for automatically determining what memory a program is no
longer using and recycling it for other use. Because this determination in-
volves a global analysis of the interpreter's memory pool, most commonly
used garbage collection algorithms require that the interpreter be stopped
during the collection in ways which are incompatible with real-time opera-
tion. Rees and Donald [60] use an embedded Scheme interpreter for control
of small mobile robots. This interpreter is appropriate for their work, but
garbage collection pauses make it inappropriate for use in real-time applica-
tions. If a robot were unable to react quickly to end-e�ector contact during
a guarded move because the high-level was paused for garbage collection,
damage to the robot and its environment could result.

In the initial version of RSK, we addressed this problem by simply using
reference-counting for garbage collection. This is a local strategy rather
than a global strategy for analysis of memory usage, and can be done in
small increments which preserve the overall responsiveness of the interpreter.
Although this strategy can be made to work for managing the interpreter's
own use of data structures [21], and though this strategy has been successful

174 APPENDIX A. HIGH-LEVEL ROBOT CONTROL

for controlling our robot without memory leaks, reference-counting cannot
reclaim data-structures which point to themselves even when they are not
referenced by any data structures in use by the interpreter. Fortunately, there
are now methods which allow garbage collectors to run eÆciently on stock
hardware in hard real-time [83], in addition to those which run on specialized
hardware [55]. To allow programmers to use RSK for code which may use
cyclic data structures, and to simplify the interpreter, we are implementing
a real-time garbage collector based on the \write-barrier" strategy used in
Wilson and Johnstone's real-time collector [84].

A.6 Conclusion

We have described dynamically recon�gurable subsystems for sensor-based
control of robot systems, and presented the Robot Scheme Kernel (RSK), an
embedded Scheme interpreter designed for high-level management of these
subsystems. To allow RSK to evaluate Scheme expressions which repre-
sent temporal relationships between their subexpressions, we have developed
\message-based evaluation" (MBE). MBE allows the structure of high-level
robot control code to re
ect the structure of the robot's intended task per-
formance. The messaging infrastructure underlying MBE helps to simplify
operation in multiprocessor environments, providing a mechanism for the
robot to interact cooperatively with remote processes such as teleoperation
consoles and o�-line planners. Real-time garbage collection strategies allow
RSK to respond in hard real-time to important events during the course of
robot operation. Future work will focus on a more formal characterization of
this method and its use in robot systems, and a more complete comparison
between it and other currently available methods for high-level robot control.

Bibliography

[1] Harold Abelson et al. Revised4 report on the algorithmic language
Scheme. ACM Lisp Pointers IV, 4(3), July-September 1991.

[2] Colin Archibald and Emil Petriu. Skills-oriented robot programming.
In F.C.A. Groen, S. Hirose, and C.E. Thorpe, editors, Proceedings of
the International Conference on Intelligent Autonomous Systems IAS-
3, pages 104{15, Pittsburgh, PA, 1993. IOS Press.

[3] Nachman Aronszajn. Theory of reproducing kernels. Transactions of
the American Mathematical Society, 68:337{404, 1950.

[4] Christopher G. Atkeson, Andrew W. Moore, and Stefan A. Schaal. Lo-
cally weighted learning. Arti�cial Intelligence Review, 11(1-5):11{73,
1997.

[5] Christopher G. Atkeson, Andrew W. Moore, and Stefan A. Schaal. Lo-
cally weighted learning for control. Arti�cial Intelligence Review, 11(1-
5):75{113, 1997.

[6] Yusuf Azoz, Lalitha Devi, and Rajeev Sharma. Reliable tracking of
human arm dynamics by multiple cue integration and constraint fusion.
In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), pages 905{910, Santa Barbara, CA, June 1998.

[7] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press Inc., New York, 1995.

[8] Fr�ed�eric Boussinot and Robert De Simone. The Esterel language. Pro-
ceedings of the IEEE, 79:1293{1304, 1991.

175

176 BIBLIOGRAPHY

[9] Christopher Bregler and Stephen M. Omohundro. Surface learning with
applications to lipreading. In J. D. Cowan, G. Tesauro, and J. Alspector,
editors, Advances in Neural Information Processing Systems, volume 6,
pages 43{50. Morgan Kaufmann, San Mateo, CA, 1994.

[10] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal
of Scienti�c Computing, 16(5):1190{1208, 1995.

[11] William S. Cleveland. Robust locally weighted regression and smooth-
ing scatterplots. Journal of the American Statistical Association,
74(368):829{36, December 1979.

[12] William S. Cleveland and Clive Loader. Smoothing by local regression:
Principles and methods. Technical Report 95.3, AT&T Bell Laborato-
ries, Statistics Department, Murray Hill, NJ, 1994.

[13] Peter Craven and Grace Wahba. Smoothing noisy data with spline
functions|estimating the correct degree of smoothing by the method
of generalized cross-validation. Numerische Mathematik, 31(4):377{403,
1979.

[14] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems, 2:303{314, 1989.

[15] James W. Davis. Recognizing movement using motion histograms. Per-
ceptual Computing Section 487, MIT Media Laboratory, 1999.

[16] Carl De Boor. A Practical Guide to Splines. Springer-Verlag, New York,
1978.

[17] D. Dong and Thomas J. McAvoy. Nonlinear principal component
analysis-based on principal curves and neural networks. Computers &
Chemical Engineering, 20(1):65{78, January 1996.

[18] Alexander Douglas and Yangsheng Xu. Real-time shared control sys-
tem for space telerobotics. Journal of Intelligent and Robotic Systems:
Theory and Applications, 13(3):247{62, July 1995.

[19] S. Sidney Fels and Geo�rey E. Hinton. Glove-talk: A neural network
interface between a data-glove and a speech synthesizer. IEEE Transa-
tions on Neural Networks, 4(1):2{8, January 1994.

BIBLIOGRAPHY 177

[20] Ildiko E. Frank and Jerome H. Friedman. A statistical view of some
chemometrics regression tools. Technometrics, 35(2):109{135, May 1993.

[21] Daniel Friedman and David Wise. Reference counting can manage the
circular invironments of mutual recursion. Information Processing Let-
ters, 8(1):41{45, Janary 1979.

[22] Jerome Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An al-
gorithm for �nding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209{26, September 1977.

[23] Allen Gersho. On the structure of vector quantizers. IEEE Transactions
on Information Theory, IT-28(2):157{166, 1982.

[24] Matthew Gertz, David Stewart, and Pradeep Khosla. A software
architecture-based human-machine interface for recon�gurable sensor-
based control systems. In Proceedings of 8th IEEE International Sym-
posium on Intelligent Control, pages 75{80, Chicago, IL, August 1993.
IEEE.

[25] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. The Johns Hopkins Uni-
versity Press, Baltimore, MD., third edition edition, 1996.

[26] Blake Hannaford and Paul Lee. Hidden Markov model analysis of
force/torque information in telemanipulation. The International Journal
of Robotics Research, 10(5):528{539, 1991.

[27] Tsutomu Hasegawa, Takashi Suehiro, and Kunikatsu Takase. A model-
based manipulation system with skill-based execution. IEEE Transac-
tions on Robotics and Automation, 8(5):535{44, October 1992.

[28] Trevor Hastie and Werner Stuetzle. Principal curves. Journal of the
American Statistical Society, 84(406):502{16, June 1989.

[29] Gerd Hirzinger, Bernhard Brunner, Johannes Dietrich, and Johan
Heindl. Sensor-based space robotics{ROTEX and its telerobotic fea-
tures. IEEE Transactions on Robotics and Automation, 9(5):649{63,
October 1993.

178 BIBLIOGRAPHY

[30] Geir Hovland, Pavan Sikka, and Brenan J. McCarragher. Skill aqui-
sition from human demonstration using a hidden Markov model. In
Proceedings of the 1996 IEEE International Conference on Robotics and
Automation, volume 3, pages 2706{11, 1996.

[31] Michael F. Hutchinson and Frank R. de Hoog. Smoothing noisy data
with spline functions. Numerische Mathematik, 47:99{106, 1985.

[32] Katsushi Ikeuchi and Takashi Suehiro. Toward an assembly plan from
observation; part I: Task recognition with polyhedral objects. IEEE
Transactions on Robotics and Automation, 10(3), June 1994.

[33] Ian T. Jolli�e. Principal component analysis. Springer-Verlag, New
York, 1986.

[34] Sing Bing Kang and Katsushi Ikeuchi. Robot task programming by hu-
man demonstration. In Proceedings of the Image Understanding Work-
shop, 1994.

[35] Ralf Koeppe and Gerd Hirzinger. Learning compliant motions by task-
demonstration in virtual environments. In Fourth International Sympo-
sium on Experimental Robotics, ISER'95, Lecture notes in control and
information sciences, Stanford, CA, June-July 1995. Springer-Verlag.

[36] Mark A. Kramer. Nonlinear principal component analysis using au-
toassociative neural networks. AIChe Journal, 37(2):233{43, February
1991.

[37] Michael LeBlanc and Robert Tibshirani. Adaptive principal surfaces.
Journal of the American Statistical Society, 89(425):53{64, March 1994.

[38] Christopher Lee and Yangsheng Xu. (DM)2: A modular solution for
robotic lunar missions. International Journal of Space Technology,
16(1):49{58, 1996.

[39] Christopher Lee and Yangsheng Xu. Online, interactive learning of ges-
tures for human/robot interfaces. In 1996 IEEE International Confer-
ence on Robotics and Automation, volume 4, pages 2982{7, Minneapolis,
MN., 1996.

BIBLIOGRAPHY 179

[40] Sheng Liu and Haruhiko Asada. Teaching and learning of deburring
robots using neural networks. In Proceedings of 1993 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, volume 3, pages
339{45. IEEE, July 1993.

[41] Tom�as Lozano-P�erez. Task planning. In Michael Brady, editor, Robot
Motion: Planning and Control. MIT Press, Cambridge, MA, 1982.

[42] Edward C. Malthouse. Limitations of nonlinear PCA as performed
with generic neural neworks. IEEE Transactions on Neural Networks,
9(1):165{73, January 1998.

[43] Maja J. Matari�c, Victor B. Zordan, and Matthew M. Williamson. Mak-
ing complex articulated agents dance: An analysis of control methods
drawn from robotics, animation and biology. Autonomous Agents and
Multi-Agent Systems, 2(1):23{44, March 1999.

[44] Paul Michelman and Peter Allen. Forming complex dextrous manipu-
lations from task primitives. In Proceedings 1994 IEEE International
Conference on Robotics and Automation, volume 4, pages 3383{8, San
Diego, CA, May 1994. IEEE Computer Society Press.

[45] Thomas P. Minka. Automatic choice of dimensionality for PCA. Techni-
cal Report 514, MIT Media Laboratory, Perceptual Computing Section,
Cambridge, MA, December 1999.

[46] J. Daniel Morrow. Sensorimotor primitives for programming robotic
assembly skills. PhD thesis, Robotics Institute, Carnegie Mellon Uni-
versity, April 1997.

[47] J. Daniel Morrow and Pradeep K. Khosla. Sensorimotor primitives for
robotic assembly skills. In Proceedings of the 1995 IEEE International
Conference on Robotics and Automation, volume 2, pages 1894{9. IEEE,
May 1995.

[48] J. Daniel Morrow, Brad J. Nelson, and Pradeep K Khosla. Vision and
force driven sensorimotor primitives for robotic assembly skills. In Pro-
ceedings of the 1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 234{40. IEEE Computer Society
Press, August 1995.

180 BIBLIOGRAPHY

[49] Anne Murray. Engineering Design and Psychophysical Evaluation of
a Wearable Vibrotactile Display. PhD thesis, Electrical and Computer
Engineering Department, Carnegie Mellon University, Pittsburgh, PA,
1999.

[50] Anne Murray, Roberta Klatzky, and Pradeep Khosla. Enhancing subjec-
tive sensitivity to vibrotactile stimuli. In ASME Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, Anaheim,
CA, 1998.

[51] Anne Murray, Roberta Klatzky, and Pradeep Khosla. Summation of
multi-�nger vibrotactile stimuli. In ASME Symposium on Haptic Inter-
faces for Virtual Environment and Teleoperator Systems, Nashville, TN,
1999.

[52] Keiji Nagatani and Shin'ichi Yuta. Designing strategy and implementa-
tion of mobile manipulator control system for opening door. In Proceed-
ings. 1996 IEEE International Conference on Robotics and Automation,
volume 3, pages 2828{34, Minneapolis, MN, 1996. IEEE.

[53] Michael C. Nechyba and Yangsheng Xu. Human skill transfer: neural
networks as learners and teachers. In Proceedings of the 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3,
pages 314{19. IEEE Computer Society Press, 1995.

[54] Michael C. Nechyba and Yangsheng Xu. Stochastic similarity for vali-
dating human control strategy models. In Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, volume 1, pages
278{83, Albuquerque, NM, April 1997. IEEE.

[55] Kevin Nilsen. Reliable real-time garbage collection in C++. Computing
Systems, 7(4):467{504, 1994.

[56] Hiroyuki Ogata and Tomoichi Takahashi. Robotic assembly operation
teaching in a virtual environment. IEEE Transactions on Robotics and
Automation, 10(3):391{9, June 1994.

[57] Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual
interpretation of hand gestures for human-computer interaction: A re-
view. IEEE Transaction on Pattern Analysis and Machine Intelligence,
19(7), 1997.

BIBLIOGRAPHY 181

[58] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257{
285, February 1989.

[59] Lawrence R. Rabiner and B. H. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, pages 4{16, January 1996.

[60] Jonathon Rees and Bruce Donald. Program mobile robots in Scheme.
In Proceedings of 1992 IEEE International Conference on Robotics and
Automation, pages 2681{8, Nice, France, May 1992. IEEE.

[61] Christian H. Reinsch. Smoothing by spline functions. Numerische Math-
ematik, 10:177{83, 1967.

[62] Stefan Schaal. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233{242, 1999.

[63] Stefan Schaal. Nonparametric regression for learning nonlinear trans-
formations. In H. Ritter, O. Holland, and B. M�ohl, editors, Prerational
Intelligence in Strategies, High-Level Processes and Collective Behavior,
volume 2, pages 595{621. Kluwer Academic Press, 1999.

[64] Stefan Schaal, Sethu Vijayakumar, and Christopher G. Atkeson. Local
dimensionality reduction. In M. I. Jordan, M. J. Kearns, and S. A. Solla,
editors, Advances in Neural Information Processing Systems, volume 10.
MIT Press, Cambridge, MA, 1998.

[65] Stan Schneider, Vincent Chen, Jay Steele, and Gerardo Pardo-
Castellote. The ControlShell component-based real-time programming
system, and its application to the Marsokhod Martian rover. In ACM
SIGPLAN 1995 Workshop on Languages, Compilers, and Tools for Real-
Time Systems, volume 30 of SIGPLAN Notices, pages 146{55, June
1995.

[66] Isaac J. Schoenberg. Spline functions and the problem of graduation.
Proceedings of the National Academy of Science, U.S.A., 52:947{50,
1964.

[67] David W. Scott. Multivariate Density Estimation : Theory, Practice,
and Visualization. John Wiley & Sons, 1992.

182 BIBLIOGRAPHY

[68] Bernard W. Silverman. Spline smoothing: the equivalent variable kernel
method. The Annals of Statistics, 12(3):896{916, 1984.

[69] Bernard W. Silverman. Some aspects of the spline smoothing approach
to non-parametric regression curve �tting. Journal of the Royal Statis-
tical Society, Series B, 47(1):1{52, 1985.

[70] Daniel Simon, Bernard Espiau, Konstantinos Kapellos, and Roger
Pissard-Gibollet. ORCCAD: software engineering for real-time robotics;
a technical insight. Robotica, 15(1):111{5, 1997.

[71] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time Ameri-
can Sign Language recognition using desktop and wearable computer
based video. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 20(12), December 1998. also appears as MIT Media Lab
Perceptual Computing Section Technical Report No. 466.

[72] David Stewart, Richard Volpe, and Pradeep Khosla. Integration of real-
time software modules for recon�gurable sensor-based control systems.
In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 325{332, 1992.

[73] M. Stone. Cross validatory choice and assesment of statistical preditions
(with discusson). Journal of the Royal Statistical Society, Series B,
36:111{47, 1974.

[74] Gerald Sussman. A Computer Model of Skill Aquisition. Number 1
in Arti�cial intelligence series. American Elsevier Publishing Company,
New York, 1975.

[75] Shufeng Tan and Michael L. Mavrovouniotis. Reducing data dimen-
sionality through optimizing neural network inputs. AIChe Journal,
41(6):1471{1480, June 1995.

[76] Robert Tibshirani. Principal curves revisited. Statistics and Computing,
2(4):183{90, December 1992.

[77] Michael E. Tipping and Christopher M. Bishop. Mixtures of proba-
bilistic principal component analysis. Technical Report NCRG/97/003,
Neural Computing Research Group, Department of Computer Science
and Applied Mathematics, Aston University, June 1997.

BIBLIOGRAPHY 183

[78] Cheo-Ping Tung and Avi C. Kak. Automatic learning of assembly tasks
using a dataglove system. In Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems, pages 1{8, 1995.

[79] Sethu Vijayakumar and Stefan Schaal. Robust local learning in high
dimensional spaces. Neural Processing Letters, 7:139{149, 1998.

[80] Richard Voyles. Tactile gestures for human/robot interaction. In Pro-
ceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems,
1995.

[81] Grace Wahba. Spline Models for Observational Data. SIAM, Philadel-
phia, Pa, 1990.

[82] Andrew D. Wilson and Aaron F. Bobick. Realtime online adaptive
gesture recognition. In Proceedings of the International Workshop on
Recognition, Analysis and Tracking of Faces and Gestures in Real-Time
Systems, Corfu, Greece, September 1999. also appears as MIT Media
Lab Perceptual Computing Section Technical Report No. 505.

[83] Paul Wilson. Uniprocessor garbage collection techniques. In Inter-
national Workshop on Memory Management, number 637 in Springer-
Verlag Lecture Notes in Computer Science, St. Malo, France, September
1992.

[84] Paul Wilson and Mark Johnstone. Real-time non-copying garbage col-
lection. In ACM OOPSLA Workshop on Memory Management and
Garbage Collection, Washington D.C., September 1993. ACM.

[85] Herman Wold. Soft modelling by latent variables: The Non-Linear It-
erative Partial Least Squares (NIPALS) approach. In J. Gani, editor,
Perspectives in Probability and Statistics, pages 117{142. Applied Prob-
ability Trust, 1975.

[86] Yangsheng Xu, Christopher Lee, and H. Benjamin Brown, Jr. A sep-
arable combination of wheeled rover and arm mechanism: (DM)2. In
Proceedings of the 1996 IEEE International Conference on Robotics and
Automation, volume 3, pages 2383{8, 1996.

[87] Yangsheng Xu and Jie Yang. Towards human-robot coordination: skill
modeling and transferring via hidden Markov model. In Proceedings of

184 BIBLIOGRAPHY

the IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 1906{1911, 1995.

[88] Jie Yang, Yangsheng Xu, and C.S. Chen. Hidden Markov model ap-
proach to skill learning and its application to telerobotics. IEEE Trans-
actions on Robotics and Automation, 10(5):621{31, October 1994.

[89] Jianwei Zhang and Alois Knoll. Learning manipulation skills by combin-
ing PCA technique and adaptive interpolation. In Sensor Fusion and
Decentralized Control in Robotic Systems, volume 3523 of Proceedings
of the SPIE { The International Society for Optical Engineering, pages
211{22, Boston, MA, 1998.

