largest noise figure and much stronger frequency dependence, while device C shows the smallest NF and slight frequency dependence. There was a great improvement in the noise figure of the device when metal 1 grounded shielding was used. The results are similar to those of BJTs [5]. After the probe pad parasitics were de-embedded, the NFs of the three devices improved and became much closer to that of other devices. The dependence of the NFs on frequency also decreased especially for device C. The small difference between the de-embedded NFs is presumably caused by imperfect de-embedding. This requires further study of the de-embedding procedures [6–8]. The NFs of devices A, B and C before de-embedding at 2.4 GHz were 3.1, 2.0 and 0.7dB, and those after de-embedding were 1.2, 0.8 and 0.5dB, respectively. Device C exhibited the best noise performance and the smallest difference in NF before and after de-embedding. The results also demonstrate that device C, metal 3 with grounded metal 1 shielding, has the most appropriate pad structure for obtaining the intrinsic noise figure characteristics of MOSFETs. Moreover, the intrinsic NF of a MOSFET having the same pad structure as device C can be approximately obtained without any de-embedding procedure as the frequency is < 3GHz.

![Fig. 3 Equivalent circuit model of MOSFET with GSG probe pads](image)

To explain the different NF behaviours before de-embedding the pad parasitics, we used parasitic equivalent circuits of the dummy GSG probe pads, similar to those of [9]. Fig. 3 shows a simplified equivalent model of the MOSFET with GSG probe pads and Table 1 the extracted equivalent circuit parameters, parasitic oxide capacitance (C_{ox}) and parasitic substrate resistance (R_{sub}). The value of R_{sub} falls from 244.8Ω in the case of device B to 11.6Ω in the case of device C, and are lightly dependent on the frequency because a certain amount of parasitic substrate capacitance (C_{sub}) neglected in Fig. 3 exists in the substrate. Since the noise characteristics relate to the resistive impedance, we believe that a reduction in the value of R_{sub} for device C results in an improvement in the noise performance and makes the least difference before and after de-embedding.

Table 1: Extracted equivalent circuit parameters

<table>
<thead>
<tr>
<th>Device</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ox} (fF)</td>
<td>192</td>
<td>78.8</td>
<td>138.3</td>
</tr>
<tr>
<td>R_{sub} (Ω)</td>
<td>244.8</td>
<td>244.8</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Conclusions: The effect of substrate parasitic resistance on the noise figure performance of MOSFETs has been evaluated by measuring the noise figures of devices with different coplanar GSG probe pad structures. The equivalent parasitic circuit models of the different GSG probe pads were proposed. The improvement in the noise figure of a device with grounded metal 1 shielding is probably due to the reduction in the parasitic substrate resistance. The top metal layer used in modern deep submicron CMOS technology is recommended for realising the GSG probe pads and bottom metal layer as the grounded shielding to obtain the best noise figure performance.

References

Light-sensitive CMOS ring oscillator

N.D. Jankovic and V. Brajovic

A simple light-sensitive CMOS ring oscillator, the oscillation frequency of which depends on the chip ambient illumination, is presented. An experimental 21-stage ring oscillator fabricated in 0.5μm CMOS changes the pulse frequency from 50kHz in total darkness to 2MHz in extreme bright ambient at $V_{DD} = 1V$.

Introduction: A standard CMOS ring oscillator (RO) consists of a self-oscillating chain of odd number inverters connected in a feedback loop. As a voltage-controlled oscillator, it is commonly used for analysing CMOS gate dynamic characteristics [1]. Recently, Boyle et al. proposed a modified current-controlled RO circuit operating as on-chip temperature sensor [2].

In this letter, we describe a light-sensitive RO circuit the oscillation frequency of which depends on the average ambient illumination.

Circuit description: An electrical schematic diagram of the novel light-sensitive inverter forming the RO chain is shown in Fig. 1. Two P/N_{cap} photodiodes (PDs) control the charging and the discharging time of the input gate capacitance of both the PMOSTs and NMOSTs. For instance, when the input voltage is high, the PMOST is quickly turned off by the forward-biased PD D_1. The charging time of the NMOST gate is much longer, since it is controlled by the D_2 reverse leakage current $I_{Lak} = I_{Dak} + I_{Phos}$, where I_{Dak} is the diode dark current and I_{Phos} is the light generated photo-current. As a consequence, the PMOST is turned off before the NMOST gate potential achieves the threshold voltage V_T.
Since the same effect also occurs when the input voltage is low, the PMOST and the NMOST are effectively never in the on-state simultaneously. This efficiency eliminates the inverter’s short-circuit current and decreases the total RO power consumption.

![Inverter Circuit](Image)

Fig. 1 Basic inverter circuit of light sensitive ring-oscillator (RO)

where, N is the number of inverters, C_{g} is the gate-source input capacitance, C_{l} is the load capacitance of the next inverter stage (including the diode and line capacitance), g_{m} is the MOS transistor transconductance and k is a constant ($k \approx 2.7$). Eqn. 1 shows that, at high illumination, a linear sensitivity will be maintained as long as the gate charging time is much longer than the MOST turn-on time, which yields the condition $I_{L} \ll g_{m} V_{dd} \frac{C_{g} + C_{l}}{k}$. This condition may not hold at high chip illumination due to the excessive generation of I_{dark}. It can be avoided, however, by minimising the layout of the PD and/or by using various light filters. At low illumination, $F_{[\text{Hz}]}$ becomes fully proportional to L. In this case, a linear sensitivity is preserved if $I_{photo} \gg I_{dark}$. Since I_{dark} is proportional to the PD depletion region volume, it appears that a minimum PD layout design maximises an RO linear sensitivity range at both high and low chip illumination levels.

![Frequency vs. Light Intensity](Image)

Fig. 3 Measured RO frequency against relative light intensity for 1.3 and 1 V power supply V_{dd}

- $V_{dd} = 1.3$ V
- $V_{dd} = 1$ V

The two parasitic N_{well}-P$_{n+}$ PDs, plotted in Fig. 1 by dashed lines, also appear in the inverter design. They are, however, less effective in generating photo-current since most of the photon flux is already absorbed by the main P^{+}/N$_{well}$ PDs. A parasitic PD, which is attached to the gate of the PMOST, operates in parallel with D_{1} during the PMOST gate charging period. It shortens the low-to-high transition time of the inverter and increases the RO output pulse signal duty cycle slightly above 50%. The other parasitic PD is connected to the cathode of D_{2} and has no meaningful influence on the RO frequency.

Experimental results and discussion: A test 21-stage light-sensitive RO with output buffer was designed and fabricated in 0.5μm N_{well} CMOS with silicide block capability via MOSIS. Following given design rules, two identical P^{+}/N$_{well}$ photodiodes of each inverter were laid out as a minimum allowed P^{+} diffusion in a minimal N_{well} area. A final light-sensitive inverter layout including a minimum-size CMOS transistor pair occupied a 30 × 10μm silicon area. A micro-photograph of the fabricated RO with the output buffer is shown in Fig. 2. As seen, a Metal 3 layer was used as the light shield with 3 × 3μm openings only above the areas of the PD. The measured dependencies of the RO frequency against relative light intensity for 1.3 and 1 V voltage supplies are shown in Fig. 3. During the measurements, an open package with mounted RO chip faced a white board illuminated by a constant diffused light. Kodak Wratten neutral gelatin filters were used to vary the chip illumination. Note that the light intensity of 1 on the x-scale of Fig. 3 approximately corresponds to average room illumination. The results in Fig. 3 indicate a linear RO light sensitivity of more than two orders of magnitude change in chip illumination. When V_{dd} was changed from 1.3 to 1 V, the linear range extended towards lower light intensities. As explained previously, this can be attributed to a decrease in I_{dark} with scaling V_{dd}. In full dark-
InGaAs quantum dot lasers with sub-milliamp thresholds and ultra-low threshold current density below room temperature

G. Park, O.B. Shchekin, D.L. Huffaker and D.G. Deppe

Continuous-wave operation of InGaAs quantum dot lasers is studied. A very low threshold current of 460 μA is achieved at 200K for a 5μm x 1170μm oxide-confined stripe laser. For a larger stripe width of 11μm, a threshold current density of 5.2A/cm² is demonstrated. The characteristic threshold temperature is ~700K at the temperature range of 140-200K, and drops rapidly around room temperature.

Since the pulsed [1] and continuous-wave (CW) [2, 3] demonstrations of 1.3μm quantum dot (QD) lasers, recent attention has focused on fully utilising the potential of QD lasers for low threshold operation [4]. In this Letter, we show that these QD lasers have potential for extremely low threshold current and current density. The room temperature characteristics of the devices are presently limited by heating [5] and do not fully reveal the remarkable potential of QD lasers for low power operation. Here, however, we show the potential for low power that the threshold current temperature operation is limited by lower temperature operation slightly below room temperature. For a 5μm x 1170μm oxide-confined stripe laser at 200K, the CW lasing threshold current is as low as 460 μA with a threshold current density of 7A/cm². For a stripe width of 11μm, the threshold current density is even lower at ~5A/cm². From 140 to 200K the characteristic temperature for CW operation is ~700K. In addition, we discuss how to extend this type of extremely low threshold to room temperature.

The QD edge-emitting laser structure is grown using molecular beam epitaxy. A schematic illustration of the laser is shown in the inset of Fig. 1. The guiding layer is 0.185μm thick undoped Al0.5Ga0.5As, and the cladding layers are 2μm thick Al0.5Ga0.5As containing 300 A thick Al0.45Ga0.55As oxidation layers. The QD active region is grown on 15 monolayers of In0.15Ga0.85As placed at the centre of the guiding layer. The detailed heterostructure and growth parameters are described elsewhere [3, 4].

As shown in Fig. 1, the lasers are fabricated from a ridge structure by wet etching passing through the lower oxidation layer. Wet oxidation at 740°C for 4mins [6, 7] forms aperture widths between 5 and 11μm along the ridge structure. Devices with 1.17μm cavity length are formed by cleaving. High reflectivity coatings are applied to both end facets. After processing, the devices are mounted on copper and tested CW over temperatures ranging from 140 to 300K. The lasing transition is obtained from the ground energy levels of the QD ensemble for all measurement temperatures.

Fig. 1 Light against current density at 140K and threshold current density of 5.2A/cm²
1.3μm QD edge emitter
11μm x 1170μm
HR/HR, CW
Inset: schematic illustration of device cross-section

Fig. 2 Light against current at 200 and 300K and threshold current of 460μA at 200K and 1.3mA at 300K
(i) T = 200K, Ith = 460μA
(ii) T = 300K, Ith = 1.3mA
1.3μm QD edge emitter
5μm x 1170μm
HR/HR, CW
Inset: lasing spectra at wavelengths of 1.30 and 1.34μm at each temperature

Fig. 1 shows the light against current density curve for an 11μm wide device at 140K. A very low threshold current density of 5.2A/cm² is obtained. To our knowledge, this is the lowest threshold current density ever reported for a semiconductor laser operating at this or higher temperatures. The transparency current density of the QD active region is given by Jtrans = qNdτp, where q is the free electron charge, Nd is the QD density and τp is the average lifetime. We estimate that τp ~ 600ps at this temperature [8], and that the transparency current density is ~4μA/cm².

Fig. 2 shows the light against current curve and lasing spectra for a 5μm wide stripe at 200 and 300K. At 200K, the threshold

ELECTRONICS LETTERS 20th July 2000 Vol. 36 No. 15

References