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Abstract - The design and implementation of robot per-
ception systems that operate in outdoor environments
poses many challenges due to changing weather, lighting,
and temperature conditions. We describe the perception
system for the Ambler, an autonomous, legged mobile robot
that operates in rugged environments, and analyze its per-
formance during a 500 meter autonomous outdoor walking
experiment. The perception system aggressively verifies
sensor data and uses feedback from terrain contact to
increase accuracy. We identify characteristics of a robust
perception system, and summarize our experiences in out-
door perception.

1. INTRODUCTION

The Ambler is an autonomous, walking robot that operates
in rugged terrain (Figure 1). The mechanism is configured as
two stacks, each with a set of three orthogonal legs. The
Ambler body carries on-board computing, power, and control
electronics. A laser scanner is mounted on top of the body to
acquire 3-D range images of the local terrain [1][7], and is
enclosed by a frame that provides weather-proofing for the
vehicle when it is idle.

Figure 1. Ambler in the Outdoor Test Course.

The three major components of the Ambler’s software sys-
tem are perception, planning, and control. The perception sys-
tem builds elevation maps of the local terrain from 3-D range
images. The planning system uses elevation maps to determine
obstacle-free routes and to select footfall locations, and the
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control system takes commands from the planner and executes
body and leg trajectories.

Robotic systems that address the difficulties of outdoor per-
ception have been demonstrated. The Jet Propulsion Laborato-
ry’s Robby used stereo vision to complete a 100 m traverse in
outdoor terrain [6). Work with the Camegie Mellon NavLab
involving both laser rangefinding and camera images to navi-
gate on roads is reported in [8][9]. Road-following for VaMoRs
is described in [2].

The Ambler walking system has successfully negotiated an
assortment of terrain, including sand, rocks, red clay, grass, and
asphalt. During the late spring and summer of 1992, walking
experiments were conducted on an outdoor test course
(Figure 1) consisting of grass-covered, gently rolling hills (up
to 15 degree slope). The temperature ranged between 50° F to
80° F with lighting conditions from bright sunshine to partly
cloudy to early dusk.

The perception system has been thoroughly tested in numer-
ous walking experiments, processing tens of thousands of
images and tens of millions of terrain elevation points. In the
longest walking experiment, the robot autonomously traversed
500 meters over a 21 hour period. During the walk, the percep-
tion system acquired 1200 range images and built 4700 terrain
elevation maps at 10 cm resolution (containing a total of 2.6
million elevation points). The variety of environmental condi-
tions and the duration of the walking experiment taxed the per-
ception system. Our experience highlights the requirements for
a perception system to operate continuously in natural, outdoor
environments. We argue that a robust perception system must:

« Verify sensor data to detect sensor malfunction,

¢ Compensate for long-term sensor drift by monitoring
SEnsor error,

* Quickly process sensor data into its final high-level rep-
resentation,

* Respond and recover from hardware errors detected by
the operating system.

This paper reviews the design and implementation of the
Ambler perception system. We show how feedback from leg
contact with the terrain is used to increase the accuracy of the
temrain elevation maps. We also analyze its performance during
the 500 meter walk, with particular attention to unexpected
problems and how they were solved.
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I1. PERCEPTION SYSTEM

The perception system builds terrain elevation maps of the
local 3-D environment. The elevation maps are computed from
range images acquired by a Perceptron laser scanner that pro-
vides 256 x 256 pixel range and reflectance images, with 12
bits of data per pixel, at a frame rate of 2 Hz [S]. The sensor
uses the phase difference between an emitted amplitude-mod-
ulated laser beam and the reflected signal to determine range.
The scanner has a 60 degree field of view in the horizontal and
vertical directions, and an operating range of 2-40 meters. Fig-
ure 2 shows a pair of range and reflectance images. The scene
consists of a sand base with tens of 1 meter high boulders (fore-
ground) and a wooden ramp (background).

Figure 2. Range (left) and Reflectance (right) Image.

The perception system takes a sequence of range images Iy,
I, ..., Iy together with the position of the robot body By, By, ...,
By (in a world reference frame). Given this set of range images
and the position of the robot when the images were taken, we
compute a map of the environment by merging maps created
from each single image. Maps can be computed in any refer-
ence frame. Common frames include the world frame for glo-
bal maps, the current body frame for leg recovery, and future
body frames for advance planning. If a point in the map cannot
be computed (due to invalid range data, outside the field of
view, or occlusion), the map point is tagged as unknown.

Maps are computed from a sequence of range images,
because maps created from a single frame of data do not, in
general, contain enough information to accomplish even sim-
ple tasks. For example, consider the task of planning the trajec-
tory of a recovering leg. Because the scanner looks forward, the
map constructed from a single forward-looking image cannot
possibly see obstacles either below or behind the vehicle.

Figure 3 shows a4 x 5 meter elevation map at 10 cm resolu-
tion computed from the range image in Figure 2. The dark areas
are labeled unknown regions, either because of terrain occlu-
sion or bad data in the range image.

Three concurrent modules that communicate via message
passing, constitute the core of the perception system [3](4].
The Perceptron Interface Module (PIM) acquires range and
reflectance image pairs at the completion of a robot body move.
The Image Queue Manager (IQM) processes and maintains a
list of the most recent images. The Local Terrain Module
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(LTM) builds maps from the image list on demand from other
modules.
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Figure 3. Terrain Elevation Map.

II1. DATA VERIFICATION

The scanner geometry and a weak return signal are two pri-
mary sources of range measurement error. Geometrically, the
scanner aperture introduces invalid range and reflectance pix-
els in a crescent-shaped area in the lower corners of the images
(Figure 4). An internal reflection causes a small region in the
lower right portion of the range image to have range values 50
cm too low. Weak return signals arise from both surface mate-
rial reflectance properties (dark objects reflect less of the laser
than light objects), and from surface geometry (surfaces per-
pendicular to the laser will return a stronger signal than sur-
faces at a smaller angle of incidence).

To accurately build maps of the terrain, we identify pixels in
the range image that are invalid, and do not use them in the
computation of the elevation map. A valid pixel mask is com-
puted from the range image - the valid pixel mask is 1 (white)
if the corresponding range pixel is valid, otherwise it is 0
(black). Scanner geometry defects appear at fixed locations in
the image and are detected by region thresholding. Portions of
the range image with poor signal return (i.e. noisy pixels) are
identified by applying a connected region analysis.

Figure 4 illustrates a mosaic of a range and reflectance image
(upper half), an edge detection over the range image (lower
left), and the valid pixel mask (lower right) computed from the
range image. The scene is a relatively flat, grass-covered area.
The lower comers of the valid pixel mask show the detection
of the aperture effect and the internal reflection (lower right).
At the top of the valid pixel mask, noisy range values due to
surface geometry are identified. In the example, 76% of the
range image pixels are valid - in practice 70-90% are so tagged.

These problems of material sensitivity, internal reflections
etc. are well understood, and are common to each range image.
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Figure 4. Range Image (upper left). Reflectance Image (upper right).
Edge Image (lower left). Valid Pixel Mask (lower right).

During the 500 meter walk, a transient problem was discovered
(appearing approximately once every 20 images). The left hand
sides of Figure 5 and Figure 6 show range images corrupted by
a horizontal band of noise pixels.

Figure 5. Range Image (left) Corrupted in Lower Half.
Valid Pixel Mask (right).
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Figure6.RangeImage(left)Corruptedin Upper Half.
Valid Pixel Mask (right).

Though no definitive explanation for these random bands
was found, one theory is that vibrations to the sensor electron-
ics caused by the robot’s on-board generator loosened a con-
nection or a chip. In this situation, the connected region
analysis correctly tags the noise pixels as invalid (right-hand
side of Figure 5 and Figure 6). Without the connected region
test, this transient problem would not be detected, and the noise
bands would be used in the map computation. When they are,
they appear as 1 to 2 meter high obstacles in the elevation
maps. This exemplifies the requirement to verify the data
before it is accepted into the perception system computations.

IV. ERROR COMPENSATION

Long-duration autonomous operation opens a window of
vulnerability to range measurement drift, leading to inaccura-
cies in the terrain elevation maps. The three main causes of
range measurement drift are changes in temperature, terrain
material properties, and terrain slope. Range values have been
experimentally shown to change 1 cm per degree Fahrenheit
([5] reports a 10 c¢m per degree drift, but sensor enhancements
have reduced this to 1 cm per degree). Different materials (say
walking from grass into soil) have different reflectance proper-
ties which affect the range measurement. Terrain perpendicular
to the incident sensor laser beam will return a stronger (and
hence less noisy) signal than terrain at a smaller angle of inci-
dence. During the 500 m walking experiment, we encountered
all three types of changes; 20 degree F temperature change, wet
to dry grass, and slopes from 0 to 15 degrees.

A. Map Error

To characterize the map error, we use the displacement of the
robot legs as a measure of ground truth. We compare the height
of terrain maps expressed in the robot body frame (computed
by the perception system) to the vertical leg displacement (also
in the body frame) and define:

Map error = Vertical leg displacement - Map height

This is illustrated in Figure 7. Each time the robot takes a
step, we compare the vertical leg displacement to the height of
the perception system’s terrain elevation map under the leg. If
the map error is greater than zero, the foot is above the sensed
terrain, and if the map error is less than zero, the foot is below
the sensed terrain.

k :
Leg Map error > 0
Map /-\_/

Map error< 0

Figure 7. Map Error Computation.



B. Feedback Control of Map Height

The map error term can be used as an error signal in a control
loop to reduce the long-term drift problems. We implemented a
simple control loop where the height of the perception system
maps is the variable being adjusted (Figure 8).

Vertical System

Leg Displacement

Map height

Map error

Figure 8. Closed Loop Control of Map Height

The results of open loop operation followed by a closed loop
control are shown in Figure 9. In this example, the robot took
371 steps over an 8 hour period, and travelled a distance of 172
meters. During the open loop portion of the experiment, there
is a pronounced upward drift in the elevation values. When
closed loop operation began (with gain K set to 0.1), we drive
the map error to near zero, and minimize the effects of long-
term sensor drift. Note that the nominal sensor noise of 10-20
cm remains.
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Figure 9. Map Error During Open Loop and Closed Loop Control
Total Distance = 172 meters.

There are two important consequences of the closed loop
operation. First, leg recovery (lifting a rear leg, swinging it for-
ward, and planting it on the ground in front of the robot) is
more energy efficient because the leg stays very close to the
ground (compared to the open loop case where it is further
away from the terrain). The second consequence is greater
mobility on slopes. Consider the configuration in Figure 10 in
which the robot travels along the slope’s contour line (towards
the observer), and has a leg on the left stack near a lower verti-
cal limit (the leg cannot be raised), and is near an upper vertical
limit (the leg cannot move lower) on the right side. If the per-
ception system maps are too high, the planner cannot raise the
leg on the left stack to clear the terrain, as this would exceed the
leg limit. The opposite problem surfaces on the right stack if

perception maps are too low. In this case, leg extensions to con-
tact the terrain are not allowed, because this would exceed the
upper leg limit. Decreasing the map error to near zero increases
mobility, by permitting a greater range of terrain slopes to be
successfully traversed. Both of the advantages of closed loop
operation were demonstrated during the 500 m experiment.

-
Upper Vertical
Lower Vertical L
Leg Limit Leg Limit

(Cannot be raised) (Cannot be lowered)

Terrain
Figure 10. Slope Traversal. Direction of Motion is Forward.

V. COMPUTING

Perception system computer performance is dominated by
both the significant memory required to store the list of range
images, and the time to compute terrain elevation maps, With-
out timely map construction, the perception system would be
the bottleneck in the walking cycle. For researchers contem-
plating similar work, we list computer performance metrics
from the 500 m walk. All perception computing was done on a
Sun Microsystems Sparc II with 64MB of memory.

A. Memory Requirements

For optimum performance, there must be sufficient physical
memory to store the list of range images taken as the robot
moves through the terrain. In practice, it is impractical to store
the complete list due to the finite amount of memory available.
However, as the robot moves forward through the terrain, only
a subset of the range images taken will be used to build maps
because the size of the map is, in general, much smaller than
the field of view of a single range image (typical map size from
0.2 to 5 square meters, range image field of view approximately
20 square meters. For small maps completely in front of the
body, only one or two range images may be needed; for large
maps behind the body, more images from the list may be used.
The number of range images needed to fulfill a map request is
histogramed in Figure 11. In many cases, only 5 images were
used; this number increased to 30 a sizable amount of times.
The memory to store 30 images, plus the code to manipulate
them, was about 25MB.

B. Map Computation Time

Perception system compute time is dominated by map com-
putation and is determined by the number of range images
needed o compute the map. The number of range images is a
function of both the geometry (which subset of images have
fields of view that overlap the map region), and the quality of
images (the more invalid range pixels in a single image, the
greater number of images that will be needed from the list).
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Figure 11. Number of Range Images Needed to Build
Temmain Elevation Maps.

Figure 12 histograms the time required to build the 4700
maps computed during the experiment. Most maps were com-
puted in less than 5 seconds, with the maximum time being 13
seconds. Because the maps were of different sizes, the normal-
ized time to compute a single map elevation values is histo-
gramed in Figure 13. This shows it takes about 7 milliseconds
to compute a single elevation map point.

> 1600
S 1400
1200
£ 1000
800
600
400
200

0 5 10 15 20 25 30
Time (seconds)

Figure 12. Time to Build Maps.
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Figure 13. Time/map point.

V1. RESPONSE TO HARDWARE ERRORS

The most severe (and surprising) perception system failure
that occurred during the experiment was an intermittent hard-
ware memory parity error. Even though the computer passed all
the memory diagnostics, the Image Queue Manager’s growing
appetite for memory occasionally triggered the parity error.

Because the error was unexpected, no mechanism existed to
detect and recover from the error. As perception code at the
applications level becomes more robust, the limiting factor will
be similar hardware and operating system errors. Next-genera-
tion perception systems should detect this class of errors, and
restart themselves.

VII. CONCLUSIONS

A perception system for an autonomous, mobile robot that
operates in outdoor terrain has been described. Based on our
walking experiments, we conclude that a robust perception sys-
tem must verify sensor data to detect sensor malfunctions,
compensate for long-term sensor drift, rapidly process sensor
data, and respond to hardware errors.

We have demonstrated that feedback compensation from the
contact of the leg with the terrain increases the map accuracy,
and hence increases the mobility of the robot. We also show
that verification of sensor data before its use in map computa-
tion allows the robot to operate autonomously for many hours,
and not be crippled by sensor malfunction.
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