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Abstract

We describe a factorization-based method to reconstruct FEuclidean shape
and motion from multiple perspective views with uncalibrated cameras. The
method first performs a projective reconstruction using a bilinear factoriza-
tion algorithm, and then converts the projective solution to a Euclidean one
by enforcing metric constraints. We present three factorization-based nor-
malization algorithms to generate the Fuclidean reconstruction and the in-
trinsic parameters, assuming zero skews. The first two algorithms are linear,
one for dealing with the case that only the focal lengths are unknown, and
another for the case that the focal lengths and the constant principal point
are unknown. The third algorithm is bilinear, dealing with the case that
the focal lengths, the principal points and the aspect ratios are all unknown.
Experimental results show that out method is efficient and reliable.
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1 Introduction

The problem of recovering shape and motion from an image sequence has
received a lot of attention. Previous approaches include recursive methods
(e.g., [11, 2]) and batch methods (e.g., [15, 13, 4]). The factorization method,
first developed by Tomasi and Kanade [15] for orthographic views and ex-
tended by Poelman and Kanade [13] to weak and para perspective views,
achieves its robustness and accuracy by applying the singular value decom-
position (SVD) to a large number of images and feature points. Christy and
Horaud [4, 5] described a method for the perspective camera model by incre-
mentally performing reconstructions with either a weak or a para perspective
camera model. One major limitation with most factorization methods, how-
ever, is that they require the use of intrinsically calibrated cameras.

When nothing is known about the camera intrinsic parameters, the extrin-
sic parameters or the object, it is only possible to compute a reconstruction
up to an unknown projective transformation [6]. There has been consider-
able progress on projective reconstruction ([6, 3, 12, 16]). Triggs proposed a
projective factorization method in [17] which recovers projective depths by
estimating a set of fundamental matrices to chain all the images together.
Heyden [8, 9] presented methods of using multilinear subspace constraints to
perform projective structure from motion.

In order to obtain a Fuclidean reconstruction from the projective recon-
struction some additional information about either the camera or the object
is needed . Hartley recovered the Fuclidean shape using a global optimiza-
tion technique, assuming the intrinsic parameters are constant [7]. In [10]
Heyden and Astrém used a bundle adjustment algorithm to estimate the
focal lengths, the principal points, the camera motion and the object shape
together. Pollefeys et al. assumed that the focal length is the only varying
intrinsic parameter and presented a linear algorithm [14]. Agapito et al. pro-
posed a linear self-calibration algorithm for rotating and zooming cameras
[1].

In this paper we describe a factorization-based method which recovers
Euclidean shape and motion from multiple uncalibrated perspective views.
Given tracked feature points, our method reconstructs the object shape, the
camera motion and the intrinsic parameters (assuming zero skews). We first
present an iterative algorithm to get a projective reconstruction using a bilin-
ear factorization method. We then propose three normalization algorithms
to impose metric constraints on the projective reconstruction. The normal-



ization algorithms recover the unknown intrinsic parameters and convert the
projective solution to a Euclidean one simultaneously. The first algorithm
deals with the case that the focal lengths are the only unknown parameters.
The second one deals with the case that the focal lengths and the principal
point are unknown, while the principal point is fixed. These two algorithms
are linear. The third algorithm, which is bilinear, works in the case that
the focal lengths, the principal points and the aspect ratios are all unknown.
Experiments on synthetic and real images show that our method is efficient
compared with the bundle adjustment method and reliable under noises.

2 Projective reconstruction

Suppose there are n perspective cameras: P;, 2 = 1---n and m object points
X;, 7 = 1---m represented by homogeneous coordinates. The image coordi-
nates are represented by (u;;, v;;). The following hold
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where A;; 1s a non-zero scale factor, commonly called projective depth. The
equivalent matrix form is:
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where W; is the scaled measurement matriz. We propose the following pro-
jective factorization algorithm which iteratively applies factorization to the
current scaled measurement matrix.



Iterative Projective Factorization Algorithm

1. Set Ajy =1,fore=1---nand 3 =1---m;

2. Compute the current scaled measurement matrix Wy by Equation
(2);

3. Perform rank4 factorization on Wj, generate the projective shape
and motion;

4. Reset A\;; = PZ»(S)Xj where PZ»(S) denotes the third row of the projection

matrix Pj;

5. If A;;’s are the same as the previous iteration, stop; else go to step

2.

The goal of the projective reconstruction process is to estimate the values
of the projective depths ();;’s) which make Equation (2) consistent. The re-
construction results are iteratively improved by back projecting the current
projective reconstruction to refine the depth estimates. Experiments show
that the iteration is very stable even starting with arbitrary initial depths.
The convergence speed can be improved by first applying a weak perspective
factorization method to get the initial values of the A;;’s. Using rough knowl-
edge of the focal lengths and assuming that the other intrinsic parameters
have generic values, we transform the tracked feature points to calibrated cor-
respondences on which the weak perspective factorization method is applied
[13]. We have,

Aij =kis; + 1 (3)
where s; denotes the jth point position, k; and ¢.; denote the motion of the
1th camera: k; is the third row of the rotation matrix and ¢.; is the translation
of the i¢th camera in z direction.

3 Euclidean reconstruction

The factorization of Equation (2) recovers the motion and shape up to a 4 x4
linear projective transformation H:

W,=PX =PHH'X = PX (4)

where P = PH and H = B~'X. P and X are referred to as the projective
motion and the projective shape. Any non-singular 4 x 4 matrix could be
inserted between P and X to get another motion and shape pair.



Assuming zero skews, we impose metric constraints to the projective mo-
tion and shape in order to simultaneously reconstruct the intrinsic parameters
(i.e., the focal lengths, the principal points and the aspect ratios) and the
linear transformation H, from which we can get the Euclidean motion and
shape. We call this process normalization. We classify the situations into
three cases:

Case 1: Only the focal lengths are unknown.

Case 2: The focal lengths and the principal point are unknown, and the
principal point is fixed.

Case 3: The focal lengths, the principal points and the aspect ratios are all
unknown and varying.

We present three factorization-based normalization algorithms to deal with
the three cases. The methods are linear for the first two cases and bilinear
for the third case.

The first linear algorithm works for the situations that the camera ex-
periences obvious zooming in/out during the sequence. The focal lengths
therefore are the main concerns of the reconstruction process. The second
linear algorithm works for the situations that the camera changes the focal
lengths only a little so that there is no obvious zooming effect and the prin-
cipal point is very close to being constant. The aerial image sequences taken
by a flying platform are examples of this case. The third algorithm, which
is bilinear, works for the situations that multiple cameras are included. The
focal lengths, the principal points and the aspect ratios are different. The
algorithm takes advantage of the relative stable values of the principal points
and the aspect ratios, therefore, it converges within a few iterations in our
experiments.

3.1 Normalization algorithm outline

The projective motion matrix F; is:

P, ~ K; [R;]t] (5)
where
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The upper triangular calibration matrix K; encodes the intrinsic parameters
of the ith camera: f; represents the focal length, (uo;,vo;) is the principal
point and «; is the aspect ratio. R; is the ¢th rotation matrix with i;, j; and
k; denoting the rotation axes. t; is the ith translation vector. Combining
Equation (5) for ¢ = 1---n into one matrix equation, we get,

P =[M|T] (6)
where
M = [m, my, m. --- m,, my,, m.,]"
T = [Ty Ty Ty - Top Tyn Ton]”
and

my; = w; fil; + pivoks my; = piogfijo + pivosks my; = pik;
Toi = pafitei + pivtoitzi Ty = paou fitys + pavoitss Thp = pits (7)

The shape matrix is represented by:

N

where
S =1[s; s Sim]
and
s; = [y oy ozl
x; = [vs! v]

We put the origin of the world coordinate system at the center of gravity of
the scaled object points to enforce

Y vsi=0 (9)
7=1

We get,

m
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Similarly,

m m

v =Tud vy Y Ny =Tu) v (11)
j:l jzl j:l 7

—

Define the 4 x 4 projective transformation H as:

1 = [A|B] (12)
where Ais 4 x 3 and Bis 4 x 1.
Since P = PH, )
[M|T] = P[A|B] (13)
we have, ) ) )
Ty =P,B T,=P,B T,=PFP;B (14)
From Equations (10) and (11) we know,

T DA 1. YA

(15)

we set up 2n linear equations of the 4 unknown elements of the matrix B.
Linear least squares solutions are then computed.

As m,;, m,; and m,; are the sum of the scaled rotation axes, we get the
following constraints from Equation (7):

ma|* =l fE + g
myi|* = piafff+ pivg;
my; - Mmy; = M?uo¢vo¢
mg; M. = piug
my; -m. = v

Based on the three different assumptions of the intrinsic parameters (three
cases), we translate the above constraints to linear constraints on M M7 (see
Section 3.2, 3.3 and 3.4 for details). Since

MM"' = PAATPT (17)

we can compute least squares solutions for the 10 unknown elements of the
symmetric 4 x 4 matrix Q = AAT. Then we get the matrix A from @ by
rank3 matrix decomposition.



Once the matrix A has been found, the projective transformation is [A|B].

The shape is computed as X = H~'X and the motion matrix as P = PH.

We first compute the scales p;:

i = [m| (18)

We then compute the principal points (if applied)

mg,;; - 1m,; my,; - 1M,

Uy = ——  — Vo= ——5 (19)

I %

and the focal lengths as

\/ 1My 2 — ?u2i

Hi

The aspect ratios (if applied) are

my|? — g
Q; =
i fi
Therefore, the motion parameters are
m,, . mgy; — Miuoiki . m, — Mivoiki
ki=— t1=— F—— Ji=———F
i tifi picii fi
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loi = — 1o = o tor lyi = v~ Bors (22)
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The normalization process is summarized by the following algorithm.

Normalization Algorithm

1. Perform SVD on W; and get P and X;

2. Sum up each row of Wy and compute the ratios between them as in
Equation (15);



3. Set up 2n linear equations of the 4 unknown elements of the matrix
B based on the ratios and compute B;

4. Set up linear equations of the 10 unknown elements of the symmetric
matrix () and compute Q;

5. Factorize @ to get A from Q = AAT;

6. Put matrices A and B together and get the projective transformation

H = [A|B];
7. Recover the shape using X = H='X and motion matrix using P =
PH;

8. Recover the intrinsic parameters, the rotation axes and the transla-
tion vectors according to Equations (19)—(22).

3.2 Case 1: Unknown focal lengths

Assuming that the focal lengths are the only unknown intrinsic parameters,
we have

uoi:() UOZ'ZO ozi:1 (23)

We combine the constraints in Equation (16) to impose the following linear
constraints on the matrix @:

Imgi* = |[my[?
my; - Mmy; = 0
my, -1m;, = 0

We can add one more equation assuming p; = 1:
lm_, | =1 (24)

Totally we have 4n + 1 linear equations of the 10 unknown elements of ().

The only intrinsic parameters to be recovered in this case are the focal
lengths. As the aspect ratios are 1, the focal lengths are computed by the
average of Equations (20) and (21):

;| 4 |1,
_ M| 1 My

24 (25)

fi



3.3 Case 2: Unknown focal lengths and constant prin-
cipal point
Assuming that the focal lengths are unknown and the principal point is
constant, that is,
Ugi = Uy Vg = Vg o = 1 (26)
We translate the constraints in Equation (16) to the following constraints.

My, - My . m,,; - M,

(Imgif” = my*)(me; - my;) =

and
m,; - my; . m,; - 1mg;
m[? — |my,| m;[* — [my;|
e — my* o mg|* — my,|®
My - My, My - My,
My - My Mgy - My,
My - My my; - M;;
My; - My My; - My

where j =1+ 1,if ¢ # n;j = 1,if 1 = n. We also have the following equation
assuming pq = 1:

lm_,|[* =1 (29)

These are linear equations of the unknown elements of symmetric matrix
Q1 = qq’, where q is a 10 x 1 vector composed of the 10 unknown elements
of the matrix (). Therefore, we get Tn+1 linear equations of the 55 unknown
elements of the matrix Q1.

Once ()1 has been computed, q is generated by rankl matrix decomposi-
tion of ()1. We then put the 10 elements of q into a symmetric 4 x 4 matrix
@) which is factorized as AAT.

We compute the principal point as the average of Equation (19):
Ug=—y ————
n ; et
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vp=— 3 4 (30)

n.3 i

and the focal lengths as the average of Equations (20) and (21):

Imul? = g+ Imy? — s

f o

(31)

3.4 Case 3: Unknown focal lengths, principal points
and aspect ratios

Assuming that the focal lengths, the principal points and the aspect ratios
are all unknown and varying, we represent the constraints in Equation (16)
as bilinear equations on the focal lengths and the principal points plus the
aspect ratios. Starting with the rough values of the principal points and the
aspect ratios, we impose linear constraints on the elements of the matrix @):

My - My, = UgVo; My - MMy
Mmy; -M; = U My - 1My
my; -m, = vy M, - My, (32)

We add two more equations assuming p; = 1:

oy (me|* —ug) = [mpl* —vg,

|mzl|2 = 1 (33)

Once the matrix H has been found, the current shape is X = H='X and
the motion matrix is P = PH. We compute the refined principal points,
the current recovered focal lengths and the refined aspect ratios according to
Equations (19), (20) and (21) respectively. The current motion parameters
are then computed as in Equation (22).

Taking the refined principal points and the aspect ratios, the normal-
ization steps are performed again to generate the matrix H, then the focal
lengths, the current shape and the motion, the refined principal points and
the aspect ratios. The above steps are repeated until the principal points
and the aspect ratios do not change.
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4 Experiments

In this section we apply the perspective factorization method to synthetic
and real image sequences. Given tracked feature points, we first generate the
projective reconstruction as described in Section 2, then choose one of the
three normalization algorithms described in Section 3 to get the Euclidean
reconstruction and the intrinsic parameters. The three real image sequences
demonstrate the three cases respectively. Experimental results on synthetic
and real data show that our method is reliable under noises and efficient
compared with the nonlinear bundle adjustment method.

4.1 Synthetic data

Synthetic experiments have been conducted to study the performance of the
perspective factorization method of its convergence under various motions
and data noises, and of the reconstruction accuracy of the object shape,
the camera motion and the camera intrinsic parameters. The experimental
results show that the method converges reliably even under 5% image noises.
The errors of the recovered object shape and the camera locations are less
than 0.8% of the object size. The recovered focal lengths are always within
1 & 1.8% of the true values. The recovered principal points and the aspect
ratios are more accurate than the focal lengths. The errors of the principal
points are less than 1.5 pixels and the errors of the aspect ratios are less than
0.5% of the true values.

4.2 Real data 1: Building sequence

This sequence was taken by a hand-held camera in front of a building. The
camera was very far from the building at first, then moved close toward the
building, and moved away again. The camera was zoomed in when it was
far and zoomed out when it was close so that the images of the building
have almost the same size in the sequence. The largest focal length is about
3 times of the smallest one according to the rough readings on the camera.
The sequence includes 14 frames. Figure 1(a) shows three of them. 50 feature
points were manually selected along the building windows and the corners.
In this example we assume the focal lengths are unknown while the principal
points are given (the middle of the images) and the aspect ratios are 1. We
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apply the projective factorization algorithm described in Section 2 and the
normalization algorithm described in Section 3.2 to this example.

Figure 1(b) demonstrates the reconstructed building and the camera tra-
jectories. The top view shows that the recovered camera moves from far
to close to the building then moves away again as expected. The recovered
camera positions and orientations shown in the side view demonstrate that
all the cameras have the almost same height and tilt upward a little bit,
which are the expected values that the same person took the sequence while
walking in front of the building. Figure 1(c) shows the reconstructed building
with texture mapping. To quantify the results, we measure the orthogonality
and parallelism of the lines composed of the recovered feature points. The
average angle of pairs of the expected parallel lines is 0.89° and the average
angle between pairs of the expected perpendicular lines is 91.74°. Figure
2 plots the recovered focal lengths, which shows that the focal lengths are
changing with the camera motion as we expected.

We compare our results with those of the nonlinear bundle adjustment
method. The nonlinear method starts with the weak perspective factoriza-
tion results as initial values assuming the generic intrinsic parameters and
the rough focal lengths, then uses bundle adjustment to refine the recon-
struction. Figure 2 shows the focal lengths recovered by our method and
by the nonlinear method. Table 1 lists the computation cost (in terms of
the number of float operations) of the two methods. The comparisons show
that the focal lengths recovered by the two methods are very close while our
method is more efficient.

4.3 Real data 2: Grand Canyon sequence

The second example is an aerial image sequence taken from a small airplane
flying over the Grand Canyon. The plane changed its altitude as well as
its roll, pitch and yaw angles during the sequence. The sequence consists of
97 images and 86 feature points were tracked through the sequence. Two
frames from the sequence are shown in Figure 3(a). We assume that the
focal lengths and the principal point are unknown and the principal point is
fixed over the sequence. The normalization algorithm of Section 3.3 is used
here. Figures 3(b) and (c) show the reconstructed camera trajectories and
terrain map. Figure 4 is the plot of the recovered focal lengths by our method
and by the nonlinear method. The camera focal lengths changed little when
taking the sequence. The plot shows the focal lengths recovered by the two
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Figure 1: (a) 1st, 9th and 14th images of the building sequence. (b)Top and
side view of the reconstruction, the 3-axis figures denote the recovered cameras.
The top view shows that the recovered camera moves from far to close to the
building, then moves away again as we expected. The side view shows that the
recovered locations of the cameras are at the same height and the orientations are
tilted upward. (c)Bottom and side view of the reconstructed building with texture

mapping.

methods are both relatively constant. The principal point recovered by our
method is (159,119) and (157,118) by the nonlinear method. Table 1 lists
the comparison of computation cost of our method and the nonlinear method.
It shows that the perspective factorization method is more efficient than the
nonlinear method.

4.4 Real data 3: Calibration setup

In this experiment we test our method on a setup for multi-camera calibra-
tions. The setup includes 51 cameras arranged in a dome and a bar of LEDs
which is moved around under the dome. Each camera takes video sequences
of the moving bar, and the images taken by one camera are combined into
one image of the bar at different positions. The bar is put at known posi-
tions. Therefore, the setup generates 51 images which are used as calibration
data for the cameras. Tsai’s calibration algorithm [19] is used on this setup
to calibrate the 51 cameras. The calibration results of Tsai’s algorithm are
compared with the results of our method. 232 feature points (LED positions)

13



0 —— nonlinear result
30001 * —— factorization result
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Figure 2: Focal lengths of the building sequence recovered by the perspective
factorization method and by the nonlinear method. The recovered values are
changing with the camera motion as expected.

- -(a)- -
(b) (c)

Figure 3: (a) 1st and 91st images of the Grand Canyon sequence. (b)Top and
side view of the reconstruction, the 3-axis figures denote the recovered cameras.
(c)Top and side view of the reconstructed Grand Canyon with texture mapping.
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Figure 4: Focal lengths of the Grand Canyon sequence recovered by the perspec-
tive factorization method and the nonlinear method. The recovered values are
both relatively constant as expected.

are included.

In this example we assume that all the intrinsic parameters (except the
skews) are unknown and different from camera to camera. The normalization
algorithm described in Section 3.4 is applied. We take the generic values of
the principal points (the middle of the images) and the aspect ratios (1) as
the initial values for the bilinear normalization algorithm. Figure 5 shows
the reconstructed LED positions and the camera orientations and locations.
The reconstructed LED positions are compared with their known positions.
The maximal distance is 20mm which is about 0.61 percent of the object size.
The recovered camera locations and orientations are compared with Tsai’s
calibration results. The maximal distance between the recovered camera
locations by the two methods is 32mm which is about 0.98 percent of the
object size, the maximal angle between the recovered camera orientations is
0.3°.

Figure 6 are the plots of the differences of the focal lengths, the princi-
pal points and the aspect ratios recovered by the perspective factorization
method and by Tsai’s calibration algorithm. The plots show that the calibra-
tion results of our method are very close to those of Tsai’s algorithm. Table
1 compares the computation cost of our method and the nonlinear bundle
adjustment method. It shows that our method is more efficient.

Obtaining the ground truth is difficult and time-consuming in camera
calibration. This example demonstrates a good calibration method for multi-
camera systems. Instead of carefully putting objects at accurate positions,
a person can wave one stick randomly in the room. The stick has marks
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Figure 5: Top and side view of the reconstruction of the calibration setup, the
points denote the recovered LED positions, the 3-axis figures are the recovered
cameras.
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Figure 6: Differences of (a)the focal lengths (b) the principal points (ug,vg) (c)
the aspect ratios of the calibration setup data recovered by the perspective factor-
ization method and by Tsai’s calibration algorithm.

which enable the fast and easy computation of correspondences. Given these
tracked feature points, the perspective factorization algorithm is applied to
recover the camera extrinsic and intrinsic parameters simultaneously.

5 Discussion

Given tracked feature points from multiple uncalibrated perspective views,
we recover the object shape, the extrinsic camera parameters and the intrin-
sic parameters simultaneously. We first perform a projective reconstruction
using a bilinear factorization algorithm, then generate the Euclidean recon-
struction from the projective solution and recover the focal lengths, the prin-
cipal points and the aspect ratios using metric constraints. We present three
factorization-based normalization algorithms dealing with different assump-
tions on the intrinsic parameters. The algorithm for the case that the focal
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Perspective factorization method
Image sequence Comparison Projective factorization | Normalization | Nonlinear method
Building Iterations 18 1 27
Computation cost 2,926k 1,613k 15,745k
Grand Canyon Iterations 38 1 43
Computation cost 28,558 1,771k 834,991k
Calibration setup Iterations 16 4 34
Computation cost 285,579k 157,170k 1,765,700k

Table 1: Computation cost comparisons of the perspective factorization method
and the nonlinear method. Computation cost in the table is the number of float
operations per iteration which are computed according to: 22m?® 4 18mn? for each
projective iteration, 20n> for each normalization iteration, and 27m?> + 189m?n +
41mn? + 343n> for each nonlinear iteration, where n is the number of frames
and m is the number of points. The perspective factorization method includes
iterations for the projective reconstruction and normalization, which is 1 for the
linear normalization methods. The results show that our method is more efficient.

lengths are the only unknown intrinsic parameters is linear, as well is the
algorithm for the case that the focal lengths and the constant principal point
are unknown. The algorithm is bilinear in the case that the focal lengths,
the principal points and the aspect ratios are all unknown.

Our projective reconstruction is still a nonlinear parameter-fitting pro-
cess. It is based on the bilinear relationship of projective depth and linear
reconstructions, which provides a compromise between linear methods (up to
affine camera models) and nonlinear optimization in terms of reconstruction
quality and computation cost. Our method achieves reliability and accuracy
by uniformly considering all the data in all the images like in most factoriza-
tion methods.

The normalization process is computationally equivalent to recovering the
absolute quadric which is computed by translating the constraints on the in-
trinsic camera parameters to the constraints on the absolute quadric [18, 14].
Our representation is explicit in the motion parameters (rotation axes and
translation vectors) and enables the geometric constraints to be naturally en-
forced. The representation also deals with the similarity ambiguity problem
directly by putting the world coordinate system at the center of gravity of
the object and aligning its orientation with the first camera. Compared with
the method presented by Pollefeys et al. in [14], the normalization algorithm
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described in Section 3.2 is based on the same constraints as their method, but
our representation enables natural extensions to the reconstruction of other
intrinsic parameters (normalization algorithms of Section 3.3 and 3.4).
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